R. Bhaduri, S. Ma, and L. Janson. Compositional Covariate Importance Testing via Partial Conjunction of Bivariate Hypotheses. 2025. [pdf] [arXiv] [BibTeX]
B. Schiffer and L. Janson. Stronger Regret Bounds for Safe Online Reinforcement Learning in the Linear Quadratic Regulator. 2024. [pdf] [arXiv] [BibTeX]
M. Li and L. Janson. Optimal ablation for interpretability. Conference on Neural Information Processing Systems (Spotlight), Vancouver, Canada, December 2024. [pdf] [arXiv] [code] [BibTeX]
N. Vyas, D. Morwani, R. Zhao, I. Shapira, D. Brandfonbrener, L. Janson, and S. Kakade. SOAP: Improving and Stabilizing Shampoo using Adam. NeurIPS Workshop on Optimization for Machine Learning, Vancouver, Canada, December 2024. [pdf] [arXiv] [code] [BibTeX]
S. Sengupta and L. Janson. The ℓ-test: leveraging sparsity in the Gaussian linear model for improved inference. 2024. [pdf] [arXiv] [code] [BibTeX]
D. Morwani*, I. Shapira*, N. Vyas*, E. Malach, S. Kakade, and L. Janson. A New Perspective on Shampoo’s Preconditioner. 2024. [pdf] [arXiv] [BibTeX]
S. Ma, C. Huttenhower, and L. Janson. Compositional Differential Abundance Testing: Defining and Finding a New Type of Health-Microbiome Associations. 2024. [bioRxiv] [BibTeX]
B. Liang, L. Xu, A. Taneja, M. Tambe, and L. Janson. A Bayesian Approach to Online Learning for Contextual Restless Bandits with Applications to Public Health. 2024. [pdf] [arXiv] [BibTeX]
N. Boehmer*, Y. Nair*, S. Shah*, L. Janson, A. Taneja, and M. Tambe. Evaluating the Effectiveness of Index-Based Treatment Allocation. 2024. [pdf] [arXiv] [BibTeX]
W. Wang, L. Janson*, L. Lei*, and A. Ramdas*. Total Variation Floodgate for Variable Importance Inference in Classification. International Conference on Machine Learning, Vienna, Austria, July 2024. [pdf] [conference] [arXiv] [BibTeX]
Y. Nair and L. Janson. Randomization Tests for Adaptively Collected Data. 2023. [pdf] [arXiv] [BibTeX]
B. Liang, L. Zhang, and L. Janson. Powerful Partial Conjunction Hypothesis Testing via Conditioning. 2022. [pdf] [arXiv] [BibTeX]
M. Aufiero and L. Janson. Surrogate-Based Global Sensitivity Analysis with Statistical Guarantees via Floodgate. 2022. [pdf] [arXiv] [BibTeX]
A. Spector and L. Janson. Controlled Discovery and Localization of Signals via Bayesian Linear Programming. Journal of the American Statistical Association, 1-12, 2024. [pdf] [journal] [arXiv] [BibTeX]
K. Zhang, L. Janson, and S. Murphy. Statistical Inference After Adaptive Sampling in Non-Markovian Environments. 2022. [pdf] [arXiv] [BibTeX]
F. Wang and L. Janson. Rate-matching the Regret Lower-bound in the Linear Quadratic Regulator With Unknown Dynamics. Conference on Decision and Control, Singapore, December 2023. [pdf] [arXiv] [BibTeX]
D. W. Ham, K. Imai*, and L. Janson*. Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis. Political Analysis, 2024. [pdf] [journal] [arXiv] [code] [BibTeX]
K. Zhang, L. Janson, and S. Murphy. Statistical Inference with M-Estimators on Adaptively Collected Data. Conference on Neural Information Processing Systems, December, 2021. [pdf] [arXiv] [BibTeX]
S. Ma, B. Ren, H. Mallick, Y.S. Moon, E. Schwager, S. Maharjan, T. Tickle, Y. Lu, R. Carmody, E. Franzosa, L. Janson, and C. Huttenhower. A Statistical Model for Describing and Simulating Microbial Community Profiles. PLOS Computational Biology, 17(9):1-27, 2021. [bioRxiv] [journal] [code] [BibTeX]
A. Spector and L. Janson. Powerful Knockoffs via Minimizing Reconstructability. Annals of Statistics, 50(1):252-276, 2022. [pdf] [journal] [arXiv] [code] [BibTeX]
F. Wang and L. Janson. Exact Asymptotics for Linear Quadratic Adaptive Control. Journal of Machine Learning Research, 22(265):1-112, 2021. [pdf] [journal] [arXiv] [BibTeX]
W. Wang and L. Janson. A High-Dimensional Power Analysis of the Conditional Randomization Test and Knockoffs. Biometrika, 109(3):631-645, 2022. [pdf] [journal] [arXiv] [BibTeX]
P. Bayle, A. Bayle, L. Janson*, and L. Mackey*. Cross-validation Confidence Intervals for Test Error. In Conference on Neural Information Processing Systems, December, 2020. [pdf] [conference] [arXiv] [code] [BibTeX]
R. F. Barber* and L. Janson*. Testing Goodness-of-fit and Conditional Independence with Approximate Co-sufficient Sampling. Annals of Statistics, 50(5):2514-2544, 2022. [pdf] [journal] [arXiv] [code] [BibTeX]
L. Zhang and L. Janson. Floodgate: Inference for Model-Free Variable Importance. 2020. [pdf] [arXiv] [code] [BibTeX]
M. Liu, E. Katsevich, L. Janson*, and A. Ramdas*. Fast and Powerful Conditional Randomization Testing via Distillation. Biometrika, 109(2):277-293, 2022. [pdf] [journal] [arXiv] [code] [BibTeX]
K. Zhang, L. Janson*, and S. Murphy*. Inference for Batched Bandits. Conference on Neural Information Processing Systems, December, 2020. [pdf] [arXiv] [code] [BibTeX]
D. Huang and L. Janson. Relaxing the Assumptions of Knockoffs by Conditioning. Annals of Statistics, 48(5):3021-3042, 2020. [pdf] [journal] [arXiv] [code] [BibTeX]
S. Bates*, E. Candès*, L. Janson*, and W. Wang*. Metropolized Knockoff Sampling. Journal of the American Statistical Association, 116(535):1413-1427, 2021. [pdf] [journal] [arXiv] [code] [BibTeX]
K. Solovey, L. Janson, E. Schmerling, E. Frazzoli and M. Pavone. Revisiting the Asymptotic Optimality of RRT*. IEEE Conference on Robotics and Automation, Paris, France, May 2020. [pdf] [arXiv] [BibTeX]
A. Elhafsi, B. Ivanovic, L. Janson, and M. Pavone. Map-Predictive Motion Planning in Unknown Environments. IEEE Conference on Robotics and Automation, Paris, France, May 2020. [pdf] [arXiv] [BibTeX]
E. Candès*, Y. Fan*, L. Janson*, and J. Lv*. Panning for Gold: Model-X Knockoffs for High-dimensional Controlled Variable Selection. Journal of the Royal Statistical Society: Series B, 80(3):551-577, 2018. [pdf] [journal] [arXiv] [code] [BibTeX]
L. Janson, T. Hu, and M. Pavone. Safe Motion Planning in Unknown Environments: Optimality Benchmarks and Tractable Policies. Robotics: Science and Systems, Pittsburgh, Pennsylvania, June 2018. [pdf] [journal] [arXiv] [BibTeX]
L. Janson, B. Ichter, and M. Pavone. Deterministic Sampling-Based Motion Planning: Optimality, Complexity, and Performance. International Journal of Robotics Research, 37(1):46-61, 2018. [Preliminary version appeared in International Symposium on Robotics Research 2015]. [pdf] [journal] [arXiv] [BibTeX]
Y. Chow, M. Ghavamzadeh, L. Janson, and M. Pavone. Risk-Constrained Reinforcement Learning with Percentile Risk Criteria. Journal of Machine Learning Research, 18(167):1-51, 2018. [pdf] [journal] [arXiv] [BibTeX]
L. Janson, R. Foygel Barber, and E. Candès. EigenPrism: Inference for High-Dimensional Signal-to-Noise Ratios. Journal of the Royal Statistical Society: Series B, 79(4):1037-1065, 2017. [pdf] [journal] [supp] [arXiv] [code] [BibTeX]
S. Tamang, A. Milstein, H. Sørensen, L. Pedersen, L. Mackey, J. Betterton, L. Janson, N. Shah. Predicting Patient ''Cost Blooms'' in Denmark: a Longitudinal Population-Based Study. BMJ Open, 7(1), 2017. [pdf] [journal] [BibTeX]
L. Janson* and W. Su*. Familywise Error Rate Control Via Knockoffs. Electronic Journal of Statistics, 10(1):960-975, 2016. [pdf] [journal] [arXiv] [code] [BibTeX]
L. Janson, W. Fithian, and T. Hastie. Effective Degrees of Freedom: A Flawed Metaphor. Biometrika, 102(2):479-485, 2015. [pdf] [corrected supp] [journal] [arXiv] [BibTeX]
L. Janson, E. Schmerling, A. Clark, and M. Pavone. Fast Marching Tree: a Fast Marching Sampling-Based Method for Optimal Motion Planning in Many Dimensions. International Journal of Robotics Research, 34(7):883-921, 2015. [Preliminary versions appeared in International Symposium on Robotics Research 2013 and Robotics: Science and Systems Workshop: Robotic Exploration, Monitoring, and Information Gathering 2013] [pdf] [journal] [arXiv] [code] [BibTeX]
E. Schmerling, L. Janson, and M. Pavone. Optimal Sampling-Based Motion Planning under Differential Constraints: the Drift Case with Linear Affine Dynamics. Conference on Decision and Control, Osaka, Japan, December 2015. [pdf] [arXiv] [BibTeX]
L. Janson*, E. Schmerling*, and M. Pavone. Monte Carlo Motion Planning for Robot Trajectory Optimization Under Uncertainty. In International Symposium on Robotics Research, Sestri Levante, Italy, September 2015. [pdf] [arXiv] [code] [BibTeX]
J. Starek, J. Gomez, E. Schmerling, L. Janson, L. Moreno, and M. Pavone. An Asymptotically-Optimal Sampling-Based Algorithm for Bi-directional Motion Planning. IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg, Germany, September 2015. [pdf] [arXiv] [BibTeX]
E. Schmerling, L. Janson, and M. Pavone. Optimal Sampling-Based Motion Planning Under Differential Constraints: The Driftless Case. IEEE Conference on Robotics and Automation, Seattle, Washington, May 2015. [pdf] [arXiv] [BibTeX]
G. Poultsides, T. Tran, E. Zambrano, L. Janson, D. Mohler, M. Well, R. Avedian, B. Visser, J. Lee, K. Ganjoo, E. Harris, J. Norton. Sarcoma Reconstruction With and Without Vascular Reconstruction: A Matched Case-Control Study. Annals of Surgery, 262(4):632-640, 2015. [pdf] [journal] [BibTeX]
S. Gholami, L. Janson, et al. Number of Lymph Nodes Removed and Survival after Gastric Cancer Resection: An Analysis from the US Gastric Cancer Collaborative. Journal of the American College of Surgeons, 221(2):291-299, 2015. [pdf] [journal] [BibTeX]
L. Janson and B. Rajaratnam. A Methodology for Robust Multiproxy Paleoclimate Reconstructions and Modeling of Temperature Conditional Quantiles. Journal of the American Statistical Association, 109(505):63-77, 2014. [pdf] [journal] [arXiv] [code] [BibTeX]
L. Janson*, M. Klein*, H. Lewis*, A. Lucas*, A. Marantan*, and K. Luna. Undergraduate Experiment in Superconductor Point-Contact Spectroscopy with a Nb/Au Junction. American Journal of Physics, 80(2):133-140, 2012. [pdf] [journal] [BibTeX]
*author order determined alphabetically