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Abstract

Compositional data (i.e., data comprising random variables that sum up to a
constant) arises in many applications including microbiome studies, chemical ecol-
ogy, political science, and experimental designs. Yet when compositional data serve
as covariates in a regression, the sum constraint renders every covariate automat-
ically conditionally independent of the response given the other covariates, since
each covariate is a deterministic function of the others. Since essentially all covari-
ate importance tests and variable selection methods, including parametric ones, are
at their core testing conditional independence, they are all completely powerless on
regression problems with compositional covariates. In fact, compositionality causes
ambiguity in the very notion of relevant covariates. To address this problem, we
identify a natural way to translate the typical notion of relevant covariates to the
setting with compositional covariates and establish that it is intuitive, well-defined,
and unique. We then develop corresponding hypothesis tests and controlled vari-
able selection procedures via a novel connection with bivariate conditional inde-
pendence testing and partial conjunction hypothesis testing. Finally, we provide
theoretical guarantees of the validity of our methods, and through numerical exper-
iments demonstrate that our methods are not only valid but also powerful across a
range of data-generating scenarios.

1 Introduction

1.1 Background and Motivation

Compositional random variables are random vectors whose elements sum up to a known
non-random constant. Compositional data arises whenever a fixed whole is divided into
parts, such as in chemistry (chemical composition of solutions (Brückner and Heethoff,
2017; Baum, 1988)), material science (Pesenson et al., 2015), marketing (e.g., brand or
product shares (Joueid and Coenders, 2018)), sociology (e.g., time-use surveys (Dumuid
et al., 2020)), political science (e.g., voting proportions (Rodrigues and Lima, 2009)),
food science (e.g., nutrient composition (Greenfield and Southgate, 2003)), or geology
(e.g., rock composition (Buccianti et al., 2006)). Compositionality also arises when data
values are only meaningful relative to one another, making it natural to normalize them to
sum to a constant, such as relative abundance data in microbiome research (Turnbaugh
et al., 2007; Gloor et al., 2017). Any categorical or factor random variable can also
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be treated as compositional via one-hot encoding, resulting in a random vector of all
zeros except a single entry one indicating the factor level. Such categorical data arises
in many settings, e.g., clinical trials (e.g., testing multiple drugs (Festing, 2020)), social
science/economics (e.g., evaluating multiple disjoint policies (Stoker and John, 2009)),
genomics (e.g., gene knockout experiments (Zhang et al., 1994)) and business/marketing
(e.g., conjoint analysis (Green and Srinivasan, 1978)). While their applications and usage
vary, compositional data across fields all present a common problem when they are treated
as covariates (i.e., explanatory variables, X) to explain or predict a response variable (Y ).

Consider a specific example where the research question is to relate the gut microbiome
(covariates measured, as is standard, via the compositional relative abundances of differ-
ent gut microbes) with colorectal cancers, or CRC (response variable). Fusobacterium nu-
cleatum, an opportunity pathogen, is considered a gut microbial risk factor for CRC, with
mechanistic and epidemiological evidence supporting its role in the cancer’s tumorigenesis
and development (Wang and Fang, 2023). However, the compositionality of microbiome
abundances means that F. nucleatum cannot be independent of the rest of the micro-
biome. Unconditionally, this means that any marginal dependence between CRC and
F. nucleatum guarantees marginal dependence between CRC and other microbes, even
if they are non-cancer-related. Such issues with dependent (even non-compositional) co-
variates are the reason that regression inference is typically done in a multivariate way,
where each covariate’s dependence with the response is evaluated conditionally on the
other covariates. Yet due to compositionality, the abundance of F. nucleatum is deter-
ministic given the abundance of the other microbes, and hence can have no conditional
dependence on the response, wrongfully negating its biological association with CRC.
This example highlights the challenge of identifying, and even defining, important co-
variates under compositionality, so we now formalize a simplified version of it (where
F. nucleatum is the only important covariate) with mathematical notation and concrete
distributions.

Example 1. Let Y ∈ {0, 1} represent the CRC disease status and X := (X{1}, . . . , X{p})
represent the relative abundances of p microbes in a gut microbiome sample. By definition,∑p

j=1 X{j} = 1. To simplify things further, suppose the X{j} are i.i.d. Expo(1) random
variables normalized by their sum

∑p
j=1X{j} (note the normalization makes them no

longer independent of one another) and the true (unknown) causal model for Y given X is
Y | X ∼ Bernoulli(e−X{1}), where X{1} denotes the relative abundance of F. nucleatum.
Although compositionality ensures that a model that excludes X{1}, namely, Y | X ∼
Bernoulli(e−(1−

∑p
j=2 X{j})), explains the response as well as the causal model, selecting

{X{2}, . . . , X{p}} as the set of important covariates for Y (as implied by that model)
leads to a very wrong scientific conclusion. And indeed, while both the sets {X{1}} and
{X{2}, . . . , X{p}} each can explain Y equally well, in most scientific problems, a domain
expert presented with these two options will choose {X{1}} as the far more biologically
plausible one; this is the ubiquitous scientific principle of parsimony, or Occam’s Razor.
Thus, we argue that a good definition of an important covariate, when applied to this
example, should consider only {X{1}} as important, yet this is not the case for existing
methods as we explain in the rest of this subsection and also in Section 1.3.

As alluded to in the microbiome example above, existing definitions of covariate im-
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portance consider X{j} “unimportant” (this is considered the null hypothesis Hj) either
when it satisfies unconditional independence with Y or conditional independence with Y
given the remaining covariates X{j}c . In Example 1, the unconditional H1 will be false,
correctly defining X{1} as an important covariate. But compositionality also makes every
other X{j} unconditionally dependent on X{1} and hence also on Y , so all unconditional
Hj will be false! It is not hard to see that this situation is typical when the covariates
are compositional: for almost all compositional covariate distributions and (even sparse)
response conditional distributions, all unconditional hypotheses will be false and hence
any hypothesis test or selection method controlling an error rate with respect to such
hypotheses will be unreliable for Type I errors with respect to any sparse true model.
Switching to the conditional version of Hj creates the opposite problem: compositional-
ity means that every X{j} is a deterministic function of X{j}c , which immediately implies
that each X{j} is conditionally independent of Y given X{j}c and hence gives the degen-
erate conclusion that every conditional Hj is true! Thus, any hypothesis test or selection
method based on identifying false conditional Hj’s will be guaranteed to have trivial
power.1

Unfortunately, the conditional hypothesis Hj : Y ⊥⊥ X{j} | X{j}c forms the basis of the
majority of existing parametric and nonparametric hypothesis tests and variable selec-
tion techniques. For instance, parametric hypothesis tests and variable selection methods
generally test hypotheses of the form βj = 0 (Barber and Candès, 2015; Javanmard and
Javadi, 2019; Montgomery et al., 2021) where the parameter βj represents the contri-
bution of X{j} to Y ’s conditional model, and a zero value represents no contribution
and thus conditional independence. Similarly, a standard nonparametric null hypoth-
esis for covariate importance in causal inference is that the average treatment effect is
zero (Chernozhukov et al., 2018), which is also implied by conditional independence. It
has also become increasingly popular to explicitly test conditional independence (Candès
et al., 2018; Shah and Peters, 2020) (or conditional mean independence (Lundborg et al.,
2022) which is also implied by conditional independence) directly. Since the conditional
independence hypothesis is true for all covariates in a regression problem with compo-
sitional covariates, all the aforementioned methods (and many more) are guaranteed to
have trivial power in such settings, regardless of the true relationship between Y and X.

We note here that a common workaround for conditional testing is to simply drop one
arbitrarily chosen covariate, rendering the remaining covariates non-compositional. This
indeed fixes the problem entirely, but only if the dropped covariate is not part of the
true model. If the dropped covariate is part of the true model, not only does it preclude
identifying that true covariate, but, due to the compositionally induced dependence, it
also renders false covariates non-null. In particular, in Example 1 if we were to drop
X{1}, then conditional testing would of course be unable to correctly discover X{1}, but
would also consider all of X{2}, . . . , X{p} as non-null. Since an analyst will not know a
priori which variables are in the true model, there is no clear way in general to know that
dropping a covariate will actually help.

1For instance, a level-α hypothesis test for Hj must have power at most α.
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1.2 Contributions

This paper makes two core contributions:

1. Formalizing important covariates under compositionality: To overcome the
aforementioned misalignment between hypotheses (conditional or unconditional)
and true signals in a parsimonious regression model with compositional covariates,
we define the set of important covariates as the minimal set of covariates that
together render all other covariates unhelpful for predicting the response, namely,
the Markov boundary. We argue that under compositionality of the covariates,
the Markov boundary aligns with natural intuition for what covariates should be
discovered, and we show that it is well-defined, nontrivial, and unique under mild
conditions. Although our conditions are technical, we show they can be simplified
in certain compositional cases of interest.

2. Methods for testing and variable selection with compositional covariates:
Our results about the Markov boundary reveal a direct connection between it and
the bivariate conditional independence hypotheses Hi,j := Y ⊥⊥ X{i,j}c | X{i,j},
which are not rendered trivially true for compositional covariates like their univari-
ate analogues. Leveraging this connection, we frame testing for covariate impor-
tance as a partial conjunction hypothesis test and apply multiple testing methods
to such tests for variable selection. We propose a number of methodological innova-
tions specific to our problem for partially overcoming the conservativeness inherent
in partial conjuction hypothesis testing, and we demonstrate that our methods are
valid and powerful in a range of simulations.

1.3 Related work

Testing for and selecting important covariates in multivariate regression is a heavily
studied topic. First, there are many methods for estimating covariate importance or the
set of important variables, which can be useful but do not generally come with Type I
error guarantees, e.g., Zhang (2008); Schwarz (1978); Tibshirani (1996); Bertsimas et al.
(2016); Berger and Pericchi (1996). As our ultimate goal in this paper is to perform
rigorous hypothesis tests and controlled variable selection, we focus our literature review
on methods with Type I error guarantees, which either devise individual hypothesis tests
(whose p-values can be fed into multiple testing procedures (Holm, 1979; Benjamini
and Hochberg, 1995; Benjamini and Yekutieli, 2001) for controlled variable selection)
or directly perform controlled variable selection without individual hypothesis testing.
Either way, these methods broadly fall into parametric (e.g., Barber and Candès (2015);
Javanmard and Montanari (2018); Montgomery et al. (2021); Kuchibhotla et al. (2022);
Xing et al. (2023)) and nonparametric (e.g., Candès et al. (2018); Chernozhukov et al.
(2018); Berrett et al. (2020); Liu et al. (2022); Lundborg et al. (2022)) approaches. But
the degeneracy of conditional covariate importance mentioned in Section 1.1 applies to
all of these methods, parametric and nonparametric: they all define covariate importance
in such a way that Y ⊥⊥ X{j} | X{j}c implies that X{j} is unimportant/null, and hence
all of these methods treat all compositional covariates as null and thus will have trivial
power to identify any covariates of interest. It is worth noting that although prior works
like Candès et al. (2018) do, like us, define the set of important covariates as the Markov
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boundary, they justify this target under standard assumptions which fail to hold for
compositional covariates, and in particular their inferential methods are entirely based
on the identity that the Markov boundary is exactly the set of covariates X{j} for which
Y ⊥̸⊥ X{j} | X{j}c ; this identity fails to hold when the covariates are compositional, and
hence new theory (which we present in Section 2) is needed to handle regression with
compositional covariates.

There does exist a substantial body of literature on analyzing compositional data, but
much of it has been focused on analyzing properties of the distribution of the composi-
tional data itself (see, e.g., Aitchison (1982); Egozcue et al. (2003); Filzmoser and Hron
(2009); Filzmoser et al. (2009); Pawlowsky-Glahn and Buccianti (2011); Greenacre et al.
(2021); Pal and Heumann (2022)), as opposed to analyzing the conditional distribution
of a response variable Y conditioned on compositional covariates X. There is work on
compositional outcome regression (Fiksel et al., 2022), which is regression with a compo-
sitional response variable, but this is still different from our setting where the covariates
are compositional. We note that, primarily within the microbiome field, a popular group
of methods known as the Differential Abundance (DA) analysis (Paulson et al., 2013;
Mallick et al., 2021) tests for marginal independence, i.e., Y ⊥⊥ X{j} for each j, optionally
adjusting for confounding covariates but not other microbes (e.g. any host demographics,
phenotypes, or exposure variables than can be associated with both X and Y ).2 Within
canonical DA analysis, X{j} is usually treated as the outcome in regression modeling,
against Y as the exposure variable of interest and other covariates. The corresponding
null hypothesis, however, is equivalent to treating individual X{j}’s as covariates and Y
as the outcome (as they are treated in our paper), due to the tests’ marginal nature.
As such, DA methods do not account for the compositionality, or more generally the
dependence, of microbial covariates. Hence they all suffer from the issue highlighted in
Section 1.1 that unconditional testing will usually treat all compositional covariates as
non-null, and thus cannot be expected to control any Type I error rate with respect to
any sparse or parsimonious set of important covariates (see Candès et al. (2018, Appendix
B) for related discussion).

Finally, there are works which take a conditional approach to testing or selecting impor-
tant covariates in regression with compositional covariates, and as these are the works
most closely related to ours, we review them more closely in the rest of this subsection.
A number of such works assume Y | X follows a linear or generalized linear model with
respect to the log-transformed covariates (Lin et al., 2014; Shi et al., 2016; Lu et al., 2019;
Sohn and Li, 2019). To address the unidentifiability of the coefficient vector induced by
compositionality, these works enforce a constraint on the coefficient vector that it must
sum to zero. To the best of our knowledge this constraint is purely statistically motivated
and thus may impact the interpretation of the coefficient vector they treat as their inferen-
tial target. In particular, if in Example 1 we were to model Y | X ∼ Bernoulli(e−(β0+Xβ))
for an intercept β0 ∈ R and coefficient vector β ∈ Rp that sums to 0, then the “correct”

2We note that “differential abundance” analysis can also refer to methods that test for marginal
independence between Y and the latent absolute abundance of the jth microbe (Zhou et al., 2022; Wang,
2023; Lin and Peddada, 2024; Zong et al., 2024). Even moreso than canonical DA analysis, these methods
differ fundamentally from the approach of this paper but require more space to fully explain, so we defer
such discussion to Appendix A.
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value of β would be (p−1
p
,−1

p
, . . . ,−1

p
) which is not sparse, and hence inference based

on zeros/non-zeros in β will scientifically incorrectly treat X{2}, . . . , X{p} as non-null.
Srinivasan et al. (2021) employs a similar linear model as these works but replaces the
assumption that the coefficient vector sums to zero with an assumption that a non-empty
set of variables can be screened away based on the data, and that set of variables is guar-
anteed to contain no non-nulls—this is akin to a minimum signal size condition which
may not hold in many settings.

More broadly, when regression covariates contain factors, i.e., covariates that take k pos-
sible non-metric levels, they are often handled by contrast coding, which creates k binary
features each representing the indicator function for one of the factor levels, but then
drops one of the factor levels (called the reference level) to address the compositionality
of these k covariates (Montgomery, 2017). Contrast coding raises the challenge of select-
ing the reference level, since any downstream conclusions will depend on its choice (and
one is generally not allowed to choose it based on the data itself). In particular, as men-
tioned at the end of Section 1.1, dropping one of the covariates in Example 1 and then
defining importance via conditional dependence will correctly consider only X{1} as im-
portant if one of X{2}, . . . , X{p} is dropped, but will very wrongly consider X{2}, . . . , X{p}
as important if X{1} is dropped, and, given the analyst does not know a priori that X{1}
is special, it is unclear how an analyst can avoid such a mistake via dropping a variable.

Finally, the work that is closest to ours is Ma et al. (2024), which also adapts the
usual conditional definition of covariate importance via conditional independence to a
new definition catered to compositional covariates that avoids the degeneracy of condi-
tional independence. Ma et al. (2024) defines a covariate as important if and only if

Y ⊥̸⊥ X{j} | X{j}c∑
k ̸=j X{k}

, which says that a covariate is important if, when we intervene

on its value while keeping the relative proportions of the remaining covariates fixed, Y ’s
(conditional) distribution changes. While this interventional definition is appealing and
may be appropriate in some settings, it automatically treats all levels of a one-hot-coded
factor covariate as null, and furthermore it defines all covariates as important in Exam-
ple 1. In contrast, the definition of important covariates we lay out in this paper, using
the Markov boundary, naturally handles factor covariates and correctly identifies only
X{1} as important in Example 1.

1.4 Notation

In this paper, we use [p] to denote the set {1, . . . , p} for any p ∈ N. For any set A ⊆ [p],
denote its complement [p]\A by Ac. For any p-dimensional vector X = (X1, . . . , Xp) and
a subset A ⊆ [p], XA denotes the subvector (Xj : j ∈ A) of X. For an m × n matrix P
and indices i ∈ [m] and j ∈ [n], we denote the entry in row i and column j by Pi,j and
we define log(P ) as the m× n matrix with log(P )i,j = log(Pi,j).

1.5 Outline

In Section 2, we formally define important covariates in the compositional setting via the
Markov boundary and prove that it remains well-defined under mild conditions despite
compositionality. Section 3 details our methods for testing and controlled variable se-
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lection and their theoretical guarantees. In Section 4, we assess the validity and power
of our proposed methods across diverse data generation scenarios and hyperparameter
settings. Finally, Section 5 concludes the paper with contributions, limitations, and ideas
for future research.

2 Defining important compositional covariates

As highlighted in the previous section, the typical ways of defining an important covari-
ate are not well-suited to compositional covariates. In this section, we put forth the
Markov boundary as a solution and argue that, unlike conditional or unconditional de-
pendence, membership in the Markov boundary continues to capture the right notion of
an important covariate even under compositionality.

2.1 The Markov boundary

Suppose we have an Rp-valued covariate vector X = (X{1}, . . . , X{p}) and a response Y ;
we place no restriction on the form of Y , and in particular it can be Euclidean-valued or
categorical. As X is compositional,

∑p
i=1X{j} = c for some constant c, and without loss

of generality, we will assume c = 1. As has been done in previous work (Candès et al.,
2018) (though not for compositional covariates), we consider Y ’s Markov boundary as a
natural definition of the set of important covariates:

Definition 2.1 (Markov boundary (Pearl, 1988)). For random variables X ∈ Rp and Y
defined on the same probability space, a subset M of [p] is called a Markov boundary of
Y if:

1. Y ⊥⊥ XMc | XM, and

2. Y ⊥̸⊥ XM′c | XM′ for all M′ ⊊ M.

Unfortunately, when the covariates are compositional, there will in general be multiple
Markov boundaries of Y , so the remaining subsections of this section are devoted to
establishing mild conditions under which the above definition provides a well-defined,
unique, and nontrivial set of important covariates. But in the remainder of this subsection
we will first justify why Definition 2.1 provides a natural and intuitive definition for the
set of important covariates. For readability, in the remainder of this subsection, we will
suppose we are in the setting established by the end of next subsection, in which there is
a unique nontrivial Markov boundary, and hence refer to the Markov boundary instead
of a Markov boundary.

Item 1 in Definition 2.1 says that, after accounting for the covariates in the Markov
boundary, all the remaining covariates provide no further information about Y . Item 2
says that the Markov boundary is the minimal such set, in the sense that no subset of
it has the property in item 1. Together, this definition informally says that the Markov
boundary is the minimal set of variables that, once known, allows us to drop all other
variables without losing information about Y , and removing any variable from this set
would lead to a strict loss of information about Y . When the covariates are not com-
positional, the Markov boundary is (under very mild conditions) equivalent to the set of
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important covariates defined via conditional dependence (Edwards, 2012; Candès et al.,
2018), which, as mentioned in the second-to-last paragraph of Section 1.1, is the basis for
covariate importance throughout the literature on parametric and nonparametric meth-
ods for identifying important covariates in regression. Thus we find it to be a natural
and intuitive target for variable selection with compositional covariates if we can show
it remains well-defined under compositionality.

2.2 Conditions for uniqueness of the Markov boundary

The reader may be surprised that we can establish any conditions under which the Markov
boundary will ever be unique with compositional covariates, since an immediate conse-
quence of covariate compositionality is that every set of size p− 1 covariates will satisfy
item 1 of Definition 2.1 and hence contain a subset satisfying condition 2 (and hence there
can never be a truly unique Markov boundary when the covariates are compositional).
However, we will show in this subsection that under very mild conditions, all but at most
one Markov boundary will be of exactly size p− 1, and it is our position that, when X is
compositional, a Markov boundary of size p−1 is trivial and not worth considering, since
every set of covariates of size p−1 is information theoretically equivalent to the entire set
of covariates due to compositionality. In Example 1, {1} and {2, . . . , p} are both techni-
cally Markov boundaries, but the latter is trivial and the former is the unique nontrivial
Markov boundary. Our position is that the unique (under mild conditions) nontrivial
Markov boundary is the natural target for variable selection even though other Markov
boundaries technically exist.

First, we give an example to demonstrate why it is necessary to make some sort of
assumptions in order to establish uniqueness of even of a nontrivial Markov boundary.

Example 2. Suppose p = 4, X{1}, X{2}, X{3} are mutually independent, and X{4} =
1−X{1} −X{2} −X{3}. If Y = X{1} +X{2} + ϵ for ϵ independent of X, then:

• Y ⊥⊥ X{3}, X{4} | X{1}, X{2}, since ϵ ⊥⊥ X{3}, X{4},

• Y ⊥⊥ X{1}, X{2} | X{3}, X{4}, since X{1} +X{2} = 1−X{3} −X{4}, and

• Y ⊥̸⊥ X{1,2,3,4}\{j} | X{j} for all j ∈ {1, 2, 3, 4}.

Thus, both {1, 2} and {3, 4} are Markov boundaries of size < p− 1.

Such a simple example may give the impression that it is not hard to find non-unique
nontrivial Markov boundaries, but in fact it is constructed very carefully and we argue it
should be vanishingly rare to encounter such an example in real data. In particular, the
non-uniqueness of the nontrivial Markov boundary is a product of a precise interaction
between Y | X, which depends on X{1} and X{2} through exactly their unweighted sum,
and the compositionality of X, whose constraint also involves X{1} and X{2} through
exactly their unweighted sum. So even changing Y | X to Y = X{1} + 0.999X{2} + ϵ or
Y = X{1} + X0.999

{2} + ϵ would result in a unique nontrivial Markov boundary. Thus, it
seems one would have to get very unlucky to encounter a real data set whose alignment
of Y | X with the compositional constraint on X is so perfect.

To formalize when the nontrivial Markov boundary is uniquely defined, we will represent
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it as a function of identifiable and testable statistical hypotheses. Let M denote any
Markov boundary as defined by Definition 2.1. For any j ∈ M, if X were not com-
positional, we would expect Y to be conditionally dependent of X{j} given X{j}c since
X{j} contains unique conditional information about Y not captured by X{j}c ; indeed the
Markov boundary is typically (when the covariates are non-compositional) uniquely iden-
tified as the set of j for which Y ⊥⊥ X{j} | X{j}c is false (Edwards, 2012; Candès et al.,
2018). The reason this identification strategy fails for compositional covariates is that
any one covariate is perfectly determined by all the others, so, intuitively, X{j}’s unique
conditional information about Y cannot shine through because it is entirely absorbed into
the information in X{j}c . An intuitive fix is to shift one more covariate from X{j}c to join
X{j}, i.e., for some i ∈ {j}c, consider the conditional relationship between Y and X{i,j}
given X{i,j}c . If j ∈ M, we would expect Y ⊥̸⊥ X{i,j} | X{i,j}c to hold for any i ∈ {j}c,
since X{j} contains unique conditional information about Y , and hence so should X{i,j},
and that unique information is no longer entirely absorbed by the covariates that are
conditioned on under compositionality, since X{i,j} | X{i,j}c is not deterministic under
compositionality. This leads us to define

S = {j ∈ [p] : Hi,j is false for all i ∈ {j}c},

where the Hi,j : Y ⊥⊥ X{i,j} | X{i,j}c are bivariate conditional independence null hypothe-
ses. S consists of the indices j such that all the bivariate null hypotheses containing j
as one of the indices are false. After a brief remark, the remainder of this subsection
will establish what our intuition suggests: under mild conditions, S (which is uniquely
defined by construction) coincides with the unique nontrivial Markov boundary.

Remark 1. Key to our intuitive argument that bivariate conditional independence will
allow us to identify the Markov boundary is the fact that compositionality places only a
single constraint on X. If there were a further constraint, e.g.,

∑p
j=1 jX{j} = p/2, then

X{i,j} | X{i,j}c would again be deterministic for all i, j pairs, and we would have to instead
consider trivariate conditional independence, Hi,j,k : Y ⊥⊥ X{i,j,k} | X{i,j,k}c, and so on
if there were yet more constraints on X. We will detail an important exception to this
intuition in Section 2.3.2, but in the remainder of this subsection it may help the reader
to think of the compositional X we consider as satisfying no additional deterministic
constraints beyond compositionality, and our technical conditions will for the most part
preclude additional constraints.

First, we show that without any further conditions, any nontrivial Markov boundary
contains S:

Lemma 2.1. For any Markov boundary M such that |M| < p− 1, M ⊇ S.

Proof. Since M is a Markov boundary, Y ⊥⊥ XMc | XM. The weak union prop-
erty3 (Pearl, 1988) implies that for any {i, j} ⊆ Mc, Hi,j is true. Since S contains
exactly the i such that Hi,j is false for all j ̸= i, that means that as long as |Mc| > 1
(which holds by assumption), i ∈ Mc implies i ∈ Sc. Thus Mc ⊆ Sc, i.e., M ⊇ S. □

3(Weak union property) For any Rp-valued random variable X and four subsets A, B, C and D of
[p], XA ⊥⊥ XB∪D | XC implies XA ⊥⊥ XB | XC∪D.
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If we can show Y ⊥⊥ XSc | XS , then we are done, since M ⊇ S by Lemma 2.1 but if
M ⊋ S it would contradict property 2 of Definition 2.1 of a Markov boundary, so that
only leaves the possibility that M = S. Such a result will require some technical (yet,
we argue, mild) conditions, but the intuition is as follows. If there exists an M of size
< p− 1, then since S ⊆ M by Lemma 2.1, |Sc| ≥ 2, i.e., given some i ∈ Sc, there exists
by definition some other j ∈ Sc such that Y ⊥⊥ X{i,j} | X{i,j}c . Suppose we have another
index k ∈ Sc \ {i, j} such that Y ⊥⊥ X{j,k} | X{j,k}c (if there is no such k, then |S| = p− 2
and Lemma 2.1 immediately proves M = S given |M| < p − 1). If we can apply the
intersection property4 of conditional independence (Pearl, 1988) on these variables, then
Y ⊥⊥ X{i,j,k} | X{i,j,k}c . So, the intersection property ‘grew’ the conditional independence
statement from Y ⊥⊥ X{i,j} | X{i,j}c to Y ⊥⊥ X{i,j,k} | X{i,j,k}c . If all the elements of Sc

can be iteratively added to the conditional independence statement via the intersection
property, then we arrive at Y ⊥⊥ XSc | XS as desired. So, the key to proving M = S
is showing that we can apply the intersection property recursively, and the rest of this
subsection describes sufficient conditions for this.

The standard sufficient condition for the intersection property is that X has a continuous
density with respect to the Lebesgue measure (Peters, 2015). This fails for compositional
X, whose support lies on the standard (p − 1)-simplex, which has Lebesgue measure
zero. So, we need to find a different set of assumptions which will be appropriate for
compositional covariates. To do that, we first need to reintroduce some definitions from
Peters (2015) about a random variable X ∈ Rp with distribution F .

Definition 2.2 (Coordinatewise connectivity (through A and B) (Peters, 2015)). Let A
and B be two subsets of [p]. Then two points x, x′ ∈ support(F ) are said to be coordi-
natewise connected (through A and B) if either xA = x′

A or xB = x′
B.

Definition 2.3 (Equivalence (through A and B) (Peters, 2015)). Any two points x1, x2 ∈
support(F ) ⊆ Rp are said to be equivalent (through A and B) if there exists z1, z2, . . . , zL ∈
support(F ) for some finite L such that the pairs (x1, z1), (z1, z2), . . . , (zL−1, zL), (zL, x2)
are each coordinatewise connected through A and B.

So, equivalence extends coordinatewise connectivity in a pathwise way, in the sense that
any two equivalent points can be connected by a sequence of consecutively coordinatewise
connected points. Note that, as the name suggests, equivalence is indeed an equivalence
relation, so we can define corresponding equivalence classes. The following lemma proves
a version of the intersection property (Pearl, 1988) for two sets of variables such that X
has a single equivalence class through them.

Lemma 2.2. For random variables X ∈ Rp and Y defined on the same probability space,
if A ⊆ [p] and B ⊆ [p] are such that XA∪B | X(A∪B)c has only one equivalence class
(through A \ B and B \ A), then Y ⊥⊥ XA | XAc and Y ⊥⊥ XB | XBc together imply
Y ⊥⊥ XA∪B | X(A∪B)c.

The lemma and its proof in Appendix B.1 are inspired by Peters (2015, Corollary 1).

4(Intersection property) For any Rp-valued random variable X and four subsets A, B, C, and D of
[p], if XA ⊥⊥ XB | XC∪D and XA ⊥⊥ XC | XB∪D, then XA ⊥⊥ XB∪C | XD.
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Next, define

∆ =
{
{A,B} : XA∪B | X(A∪B)c has 1 equivalence class (through A \B and B \ A)

}
.

So ∆ denotes the pairs of sets on which we can apply Lemma 2.2. Further, define I as
the set of distinct {i, j} pairs whose bivariate null hypotheses are true:

I = {{i, j} : Hi,j is true}.

Now, let us define the following operation on sets.

Definition 2.4 (Set action). Suppose we have a set Φ of pairs of sets (like ∆). Consider
a set Q of sets (like I). We define the action of Φ on Q (denoted by Φ ◦Q) as

Φ ◦Q := Q ∪ {A ∪B : A ∈ Q,B ∈ Q, {A,B} ∈ Φ}.

Note that both instances of the word “sets” in Definition 2.4 will refer to sets of integers
in [p] in this paper. Consider any set C ∈ ∆ ◦ I. By Definition 2.4, there exist A,B ∈ I
satisfying {A,B} ∈ ∆ with A ∪ B = C. Since A,B ∈ I, we have, by Lemma 2.2,
Y ⊥⊥ XA∪B | X(A∪B)c , i.e, Y ⊥⊥ XC | XCc . Since C was generic, we conclude that
Y ⊥⊥ XC | XCc for all C ∈ ∆ ◦ I. Applying the same argument with ∆ ◦ I replacing I,
we get the same conditional independence for all C ∈ ∆ ◦ (∆ ◦ I). Continuing in this
way, we get

Y ⊥⊥ XC | XCc ∀C ∈ (∆◦)k I, ∀k ∈ Z≥0.

The above argument is just a recursive way of combining sets for which the conditional
independence statement Y ⊥⊥ XC | XCc is true through the intersection property. We
continue this until we have a big enough set C. In particular, to show M ⊆ Sc it is
enough to show that we can reach a C ⊇ Sc in this way. Theorem 2.1, whose proof is
presented in Appendix B.2, formalizes this argument.

Theorem 2.1 (Uniqueness of nontrivial Markov boundary). If S = [p] then no nontrivial
Markov boundary exists. Otherwise, if Sc ∈ (∆◦)k I for some k ∈ Z≥0, then S is the
unique nontrivial Markov boundary.

In addition to establishing when S is the unique nontrival Markov boundary for compo-
sitional X, Theorem 2.1 also says that there is no nontrivial Markov boundary when all
the Hi,j are false. We can interpret this as the setting where there is no parsimony or
sparsity at all and thus it is natural to consider all covariates as being important in this
setting. Hence, although S = [p] is not a Markov boundary in this case, it remains an
appropriate definition of the set of important covariates.

Theorem 2.1 is applicable to different types of compositional covariates, including discrete
covariates as found in many experimental designs, continuous covariates such as relative
abundances of chemicals, and mixed covariate distributions such as for microbe relative
abundances which have both discrete (at 0) and continuous components. Additionally,
the theorem is not restricted solely to compositional data but can also apply to any
covariate data satisfying at most one deterministic constraint; see Section 5 for other
examples. However, the condition that Sc ∈ (∆◦)k I is rather abstract, so in the next
subsection we provide simpler and more interpretable corollaries for important classes of
compositional covariates.
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2.3 Simplifications of Theorem 2.1

2.3.1 Continuous covariates

Continuous compositional distributions such as the Dirichlet distribution are often used
to model compositional covariates. These arise commonly when a continuous whole
is partitioned, such as component fractions of a chemical solution or amount of time
spent on different activities during a day. For continuous compositional distributions,
the assumptions in Theorem 2.1 can be simplified substantially. This is formalized in the
following corollary:

Corollary 2.1 (Uniqueness of nontrivial Markov boundary for continuous distributions).
If S = [p] then no nontrivial Markov boundary exists. Otherwise, if the following two
assumptions on the distribution of (Y,X) hold:

(i) For all i, j ∈ Sc, there exists a finite t and a sequence l1, l2, . . . , lt such that Hi,l1,
Hl1,l2, . . . , Hlt−1,lt, Hlt,j are all true,

(ii) X can be written as X = Z∑
j∈[p] Z{j}

for a Rp-valued random variable Z such that

there exists a function fZ that is a density for Z and is continuous in [0,∞)p \{0p}
and zero elsewhere, and for all C ⊆ [p] and c ∈ [0, 1]|C|, the set{

z :
zC∑

j∈[p] z{i}
= c, fZ(z) > 0

}

is path connected if non-empty,

then S is the unique nontrivial Markov boundary.

The proof of Corollary 2.1 from Theorem 2.1 in Appendix B.3 requires a nontrivial adap-
tation of Peters (2015, Proposition 1) to the compositional setting. Assumption (i) places
restrictions on the distribution of Y | X and precludes pathological cases like Example 2
which had {H1,2,H3,4} as the (non-path-connected) set of true nulls. On the other hand,
assumption (ii) is a condition on the marginal distribution of X and is completely ag-
nostic to the distribution Y | X. Its main role is to exclude the possibility of additional
constraints on the distribution of X aside from the sum constraint due to composition-
ality. Standard continuous compositional distributions such as the Dirichlet distribution
(which is a normalization of independent Gamma distributed random variables) can be
easily shown to satisfy assumption (ii).

2.3.2 Categorical or factor covariates

In addition to relative abundance data, compositional data can arise when covariates
represent categorical factors, which is common, for instance, in experimental design. The
simplest case is when the covariates represent a single factor with p levels; such covariates
arise, e.g., in one-way ANOVA experimental designs. In this case, X{j} is the indicator
variable for the jth level of the factor; this is also sometimes called “one-hot” encoding.
Since the factor can only take one level at a time, X sums to 1. We can generalize this
to K factors (as would arise in a K-factor design) by considering X as the concatenation
of K single-factor versions of X, and notationally, we will say that the p entries of X
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can be partitioned into sets F1, . . . , FK , corresponding to each factor, so that for each
k ∈ [K],

∑
j∈Fk

X{j} = 1.5 While this imposes K constraints, contradicting the intuition
of Remark 1, the disjointness of the constraints (since each only applies to XFk

and the
Fk are disjoint) makes it a special case that still permits the application of Theorem 2.1.

Note that, due to compositionality within each factor, Hi,j is always true if i and j
correspond to different factors. This immediately implies S = ∅ when K > 1, so we
present a modified definition of S for this setting:

SF =
⋃

k∈[K]

{j ∈ Fk : Hi,j is false for all i ∈ Fk \ {j}} .

Note that when K = 1, SF = S. We also generalize the definition of a nontrivial
Markov boundary: for a Markov boundary M, we define the factored Markov boundary
corresponding to the factor k as Mk = M∩Fk and we call a factored Markov boundary
Mk nontrivial if |Mk| < |Fk| − 1.

Corollary 2.2 (Uniqueness of nontrivial factored Markov boundary for regression withK
factors). Consider regression with K-factor covariates, and fix some k ∈ [K]. If Fk ⊆ SF ,
then no nontrivial factored Markov boundary corresponding to factor k exists. Otherwise,
if the following two assumptions hold:

(i) For all i, j ∈ Sc
F ∩ Fk, there exists a finite t and a sequence l1, l2, . . . , lt ∈ Fk such

that Hi,l1, Hl1,l2, . . . , Hlt−1,lt, Hlt,j are all true,

(ii) Positive probability is assigned to all levels of factor k,

then SF ∩ Fk is the unique nontrivial Markov boundary corresponding to factor k.

Assumption (i) is on Y | X while (ii) is only on the marginal distribution of X. The
proof of Corollary 2.2 in Appendix B.4 generalizes that of Corollary 2.1 to multiple
compositional groups of covariates.

A generalization of K-factor covariates enforces that each observation take L ≥ 1 levels
from each factor; this arises frequently in gene knockout experiments where exactly L > 1
out of p genes are knocked out per individual, resulting in

∑
j∈Fk

X{j} = L for all k ∈ [K].
Corollary C.1 in Appendix C proves uniqueness of the Markov boundary for this setting.

Remark 2. Although the Markov boundary can usually be thought of as a property of
Y | X, when X has highly restricted support supp(X), the Markov boundary can also
depend on supp(X) as well as Y | X. This phenomenon is perhaps most intuitively
clear when thinking about interactions: if Y = X{1}X{2} and X{1}, X{2} ∈ {0, 1}, then we
expect the Markov boundary will be {1, 2} and indeed it will be if the support of (X{1}, X{2})

contains (1, 1) and at least one other point. But if instead X{1} +X{2} = 1, then Y
a.s.
= 0

and the Markov boundary will be empty (though well-defined). Thus, analysts should think
carefully about the choice of supp(X) in an experimental design and how it may impact
the Markov boundary, especially when interactions are of interest (Dean and Voss, 1999).

5While this means
∑p

j=1 X{j} = K instead of 1, we still refer to X as compositional.
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3 Hypothesis testing and variable selection

Section 2 identified sufficient conditions for the existence of a unique nontrivial Markov
boundary and argued that it provides a natural definition of important compositional
covariates in regression. It also argued that when no nontrivial Markov boundary exists,
the natural definition of important compositional covariates in regression is simply [p]. In
particular, Theorem 2.1 established two possibilities: either (a) S = [p] and no nontrivial
Markov boundary exists, or (b) S ⊊ [p] and is (under the conditions of Theorem 2.1) the
unique nontrivial Markov boundary. Note that the possibility that no nontrivial Markov
boundary exists and S ⊊ [p] is precluded by the assumption of the theorem that if S ⊊ [p],
then Sc ∈ (∆◦)k I for some k ∈ Z≥0 and S is the unique nontrivial Markov boundary.
So while Section 2 was focused conceptually on the Markov boundary, what it really did
was justify S, which is always unique and well-defined, as an appropriate definition of
the set of important covariates via its connection with the Markov boundary, under mild
conditions. Thus, turning to methodology in this section, we will always assume the
conclusion of Theorem 2.1:

Assumption 1. Either (a) S = [p] and no nontrivial Markov boundary exists, or (b)
S ⊊ [p] and is the unique nontrivial Markov boundary.

Then, we simply treat S as our inferential target, and in particular we will develop
hypothesis tests for

H0j : j /∈ S

as well as multiple testing procedures combining such tests for the task of controlled
variable selection.

3.1 Testing for the importance of a compositional covariate

First, as is always the case in constructing hypothesis tests, we need only consider the
properties of a test when the hypothesis is true (since if the hypothesis is false, it cannot
be falsely rejected and hence the Type I error is automatically controlled). And the
existence of a true H0j precludes case (a) of Assumption 1, so we only need to construct
hypothesis tests that are valid under case (b) of Assumption 1. Thus, in the remainder
of this subsection, we will focus solely on the case when S ⊊ [p] is the unique nontrivial
Markov boundary, as this is the only case we need to consider to establish valid hypothesis
tests.

Just based on its definition, it may not be immediately clear how to test H0j. But
since S is defined via the hypotheses Hi,j, which are standard conditional independence
hypotheses which many methods exist to test, our first goal in this section is to connect
H0j with the hypotheses Hi,j. In particular, by definition, H0j = Hp−1

0j , where for any
integer r, Hr

0j is defined as

Hr
0j : |{i ∈ {j}c : Hi,j false}| < r. (1)

But in fact, letting s := |S|, since we are only considering the case when s < p (recall also
that by definition, s ̸= p−1, so s < p ⇒ s < p−1), then because S is a Markov boundary
(Y ⊥⊥ XSc | XS) and by the weak union property of conditional independence, Hi,j is
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true for all i, j ∈ Sc. So (under Assumption 1) H0j = Hs+1
0j , and combining this with the

fact that Hr
0j ⇒ Hr′

0j for any r ≤ r′, we get two useful conclusions: first, a hypothesis test
for Hr

0j constitutes a valid test for H0j so long as r > s, and second, tests for Hr
0j will

tend to have power nonincreasing in r. Thus, if an analyst has any domain knowledge
upper-bounding the size of S, then they should test Hs

0j where s is the smallest (strict)
upper-bound on s they are confident about, and that test will be valid for H0j as long as
s > s (or s = p− 1 remains always a valid choice, regardless of the value of s).

In fact it is not uncommon to have at least a coarse upper-bound for s (see Filzmoser
et al. (2018); Chen and Li (2013); Rivera-Pinto et al. (2018) for examples of regression
with compositional covariates in which such an upper-bound is available), since sparsity
is a common belief in many applications. As we show in our simulations, even a relatively
weak upper-bound on s of s = p/2 is sufficient to gain substantial power over using just
s = p−1. However, we emphasize that extra knowledge upper-bounding s is not necessary
for the methods we propose, as the choice s = p− 1 is always valid and can still provide
good power.

Having equated our hypothesis of interest, H0j, with the hypothesis Hr
0j from Equa-

tion (1) with r = s, we now point out that Hr
0j is a partial conjunction hypothesis (PCH)

(Benjamini and Heller, 2008). For a given integer r, a PCH states that strictly fewer than
r base hypotheses are false out of some collection of base hypotheses (in our case, the set
of p−1 hypotheses {Hi,j : i ∈ {j}c}), aligning exactly with Equation (1). PCH testing is a
well-studied topic in the statistical literature (applications include meta-analyses (Owen,
2009), genomics (Wang and Owen, 2019), and neuroscience (Friston et al., 1999)), allow-
ing us to apply existing PCH tests to Hs

0j and thus to H0j.

PCH tests assume access to a p-value for each of the base hypotheses. Since our base
hypotheses Hi,j are standard conditional independence hypotheses, there exist numerous
methods for testing them given, say, a data set of n i.i.d. observations of the random
vector (X, Y ) (certain forms of dependence among observations, such as those arising from
common experimental designs, are also compatible with conditional independence testing;
see Section 3.4). This paper does not attempt to contribute to the substantial literature
on conditional independence testing, and instead we take a conditional-independence-
test-agnostic approach by simply assuming that for each Hi,j, one of the many excellent
available conditional independence tests has been applied to obtain a p-value Pi,j that
is valid for Hi,j.

6 In Section 3.4 we discuss a bit further the topic of testing Hi,j and
describe the particular choice we make for our simulations.

In this paper, we will consider two PCH tests as ways to combine our base p-values Pi,j

into a valid test for H0j. Recognizing that the PCH Hr
0j is equivalent to the statement

that at least (p−1)− (r−1) base hypotheses are null, the standard PCH testing strategy
is to apply a global null hypothesis test to the (p − 1) − (r − 1) largest base p-values,
and the validity of such an approach follows from the super-uniformity of such p-values
(Benjamini and Heller, 2008). The first PCH test we consider applies the Bonferroni
global test, which, given r = s ≤ p− 1 as discussed earlier (which can either be p− 1 or

6While one may expect Pi,j = Pj,i since Hi,j = Hj,i, we will not assume this, though we will allow it.
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a known strict upper-bound on s), gives the p-value

PB
j = (p− s)P(s),j, (2)

where for any i ∈ [p − 1], P(i),j denotes the ith smallest p-value among {Pi′,j : i′ ∈
{j}c}. The following result, which given our results so far is an immediate consequence
of Benjamini and Heller (2008, Theorem 2), proves the validity of PB

j for testing H0j.

Corollary 3.1. Under Assumption 1, if s > s or s = p − 1, then for any α ∈ [0, 1],
PH0j

(PB
j ≤ α) ≤ α.

The appeal of the Bonferroni approach is that it requires no assumptions about the
dependence among the base p-values Pi,j. This is always a nice property to have, but is
perhaps of particular value in our setting where Pi,j and Pi′,j are testing hypotheses which
are quite strongly linked, since they are computed from the same data and both contain
X{j} in the pair of covariates whose conditional independence with Y is being tested.
However, the Bonferroni approach tends to have low power when r is much less than the
number of base hypotheses, and, perhaps surprisingly and as we discuss in Appendix E.7,
PB
j is not monotonic with respect to s.

The other PCH test we consider applies the Simes global test (Simes, 1986), which requires
some assumptions about the dependence among the Pi,j but can have substantially more
power than the Bonferroni approach. Given r = s as discussed earlier, the Simes approach
to testing H0j gives the p-value

P S
j = min

s≤i≤p−1

{
p− s

i− s+ 1
P(i),j

}
. (3)

Validity of the Simes p-value requires a form of positive dependence among the null base
p-values, namely, positive regression dependency on each one from a subset (PRDS) (Ben-
jamini and Yekutieli, 2001). Positive dependence may be plausible (if not easily provable)
for the base p-values in our setting because the shared structure of their corresponding
hypotheses is a form of alignment, not disalignment, and indeed in our simulations we
never observed Type I error violations for the Simes approach despite having no formal
proof of PRDS for the null base p-values in any setting. Formally, we have the following
validity result for P S

j , which given our results so far follows from Benjamini and Heller
(2008, Theorem 1).

Corollary 3.2. Under Assumption 1, if either s > s or s = p− 1, and the base p-values
{Pi,j : i ∈ Sc \ {j}} are PRDS, then for all α ∈ [0, 1], PH0j

(P S
j ≤ α) ≤ α.

Note that the power benefit of the Simes approach over the Bonferroni approach is only
available when s < p− 1, since when s = p− 1,

P S
j = PB

j = max
i∈{j}c

Pi,j,

which is a valid p-value under no assumptions at all (not even Assumption 1).

Corollary 3.3. For all α ∈ [0, 1], PH0j
(maxi∈{j}c Pi,j ≤ α) ≤ α.

Because all the methods described in this subsection apply PCH testing methods to
bivariate conditional independence tests, we refer to this general approach as Bivariate
Conditional PCH, or BCP for short.
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3.2 Controlled variable selection

In addition to testing for the importance of an individual compositional covariate Xj, an

analyst may be interested in finding a set of covariates Ŝ that contains as many important
covariates as possible while controlling some error rate, i.e., controlled variable selection.

3.2.1 Variable selection controlling the familywise error rate

To select a set Ŝ controlling the familywise error rate (FWER) at level α, i.e., P(Ŝ ̸⊆ S) ≤ α,
one option is to simply apply Holm’s procedure (Holm, 1979) to the p-values {PB

j }
p
j=1,

which will control the FWER under the conditions of Corollary 3.1. Similarly, Holm’s
procedure applied to {P S

j }
p
j=1 will control the FWER when the conditions of Corollary

3.2 hold for all j ∈ Sc, but for expositional purposes we will focus on {PB
j }

p
j=1 first before

returning to {P S
j }

p
j=1 later in this subsection.

While the above procedure is straightforward and can be powerful, the structure of the
BCP p-values can be leveraged for an even more powerful procedure that controls the
FWER under identical assumptions. To see this, first recall that Holm’s procedure se-
quentially builds a set of rejected indices Ŝ by starting from Ŝ1 = ∅ and at the jth step,
executes the following:

if min
j∈Ŝc

j

PB
j ≤ α

p− j + 1
, set Ŝj+1 = Ŝj ∪ {argmin

j∈Ŝc
j

PB
j }; else, return Ŝ = Ŝj. (4)

The intuition behind the Holm’s procedure’s increasing (in j) p-value threshold α
p−j+1

is

that, at the jth step, the j−1 hypotheses in Ŝj have already been confidently identified as
false, and thus one only needs to correct for the multiplicity of the remaining p−(j−1) =
p − j + 1 hypotheses in Ŝc

j . But we can also apply this same intuition to the BCP p-
values being thresholded to make them smaller, as follows. For a set A ⊆ {j}c, let
P(i),j(A) denote the ith smallest p-value among {Pi′,j : i

′ ∈ {j}c \ A}, and define

PB
j (A) = (p− s)P(s−|A|),j(A). (5)

Then our proposed Holm’s procedure simply replaces the PB
j ’s in (4) with PB

j (Ŝj); see
Algorithm 1 in Appendix D.1 for a full statement.7 The intuition is that, having already
rejected Ŝj before the j

th step, we can not only discard its j−1 elements in the multiplicity
correction, but we can also discard its elements from the set of base hypotheses Pi,j

we consider in constructing our PCH tests. Note that for any A ⊆ A′ and i > |A′|,
P(i−|A′|),j(A

′) ≤ P(i−|A|),j(A), and thus also PB
j (A

′) ≤ PB
j (A). In particular, PB

j (Ŝj) ≤
PB
j (∅) = PB

j , guaranteeing that Algorithm 1’s rejections will always contain those of
the original Holm’s procedure with PB

j . The following result (proved in Appendix B.6)
establishes that it also controls the FWER under identical conditions as the original
Holm’s procedure—in particular, under no assumptions at all on the dependence among
the Pi,j or P

B
j .

7This procedure becomes undefined at the (s + 1)th step since s − |Ŝs+1| = 0, but if we assume (as
we do) that s > s, then the procedure can simply reject all of [p] if this step is ever reached. In practice
it seems more sensible (but slightly less powerful) to simply stop at the sth step if it is reached, unless s
is set to its default value p− 1 and is not known to be a strict upper-bound on s.
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Theorem 3.1. Under Assumption 1, if s > s or s = p − 1, then Algorithm 1 controls
the FWER at level α.

As in the previous section, if a user is willing to make an assumption of PRDS among
{Pi,j : i ∈ Sc\{j}} for each j, then it is valid and more powerful to use the Simes p-values
P S
j in Holm’s procedure, and this procedure also admits a uniform improvement by using

P S
j (Ŝj) := min

s−|Ŝj |≤i≤p−1−|Ŝj |

{
p− s

i− s+ 1 + |Ŝj|
P(i),j(Ŝj)

}
(6)

in place of P S
j at each step; see Algorithm 2 in Appendix D.1 for a full statement. The

following result (proved in Appendix B.7) establishes that this modified Holm’s procedure
with P S

j (Ŝj) also controls the FWER under identical conditions as the original Holm’s
procedure with P S

j .

Theorem 3.2. Under Assumption 1, if either s > s or s = p − 1, and for each j ∈ [p]
the base p-values {Pi,j : i ∈ Sc \ {j}} are PRDS, then Algorithm 2 controls the FWER
at level α.

Informally, Theorem 3.2 requires the Pi,j’s that share the same j to be positively depen-
dent, and as was mentioned immediately after P S

j was introduced in Equation (3), since
Pi,j and Pi′,j are testing analogous hypotheses on two pairs of covariates that overlap
in one covariate (Xj), we may expect them to be at least somewhat positively aligned,
and thus positively dependent. Furthermore, Theorem 3.2 places no assumptions beyond
this, and in particular allows Pi,j and Pj,i to be arbitrarily strongly dependent, which
is important because Pi,j and Pj,i are in fact testing the same hypothesis (on the same
data), and hence are likely to be extremely strongly dependent, and could even be equal.
Allowing for these forms of dependence seems to be important, as an alternative method
for FWER control with multiple PCH p-values, AdaFilter-Bonferroni (Wang et al., 2016),
assumes independence among the base p-values in order to prove validity and we found
that it failed to control the FWER in our simulations; see Appendix E.8. In contrast,
Algorithm 2 controlled the FWER empirically in all our simulations. We note that Bogo-
molov and Heller (2018) provide another method for FWER control with PCH p-values,
but it is is only applicable when the number of base hypotheses for each PCH is 2, making
it unsuitable for our setting.

3.2.2 Variable selection controlling the false discovery rate

To select a set Ŝ controlling the false discovery rate (FDR) at level α, i.e., E
[

|Ŝ\S|
max{|Ŝ|,1}

]
≤ α,

one option is to apply the Benjamini–Yekutieli procedure (Benjamini and Yekutieli, 2001)
to the Bonferroni BCP p-values {PB

j }
p
j=1, which will control the FDR under the condi-

tions of Corollary 3.1. However, it is much more powerful to instead apply the Benjamini–
Hochberg procedure (Benjamini and Hochberg, 1995) to the Simes BCP p-values {P S

j }
p
j=1,

and it turns out that this is valid when the base p-values are PRDS.

Theorem 3.3 (FDR Control). Under Assumption 1, if either s > s or s = p − 1, and
the p(p−1) base p-values {Pi,j}i ̸=j are PRDS, then Algorithm 3 controls the FDR at level
α.
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Note that Theorem 3.3 would be a direct corollary of standard FDR control results (Ben-
jamini and Yekutieli, 2001) if it assumed the BCP p-values were PRDS, but instead it
assumes the base p-values are PRDS, and thus relies instead on recent results from Bogo-
molov (2021, Theorem 3.1) (see Appendix B.8 for complete proof). As discussed in the
paragraph after Theorem 3.2, there are multiple sources of (potentially strong) positive
dependence among the base p-values that are important to allow for. As with FWER,
another method for FDR control with PCH p-values, AdaFilter-BH (Wang et al., 2016),
assumes the base p-values Pi,j are independent, and fails to control the FDR in our simu-
lations (see Appendix E.8), underscoring the importance of allowing positive dependence
among the p-values in the theoretical guarantees of our methods. In contrast, Algorithm 3
controls the FDR empirically in all our simulations. We note that another FDR control
method for PCH tests by Heller and Yekutieli (2014) has a time complexity exponentially
increasing with p, making it impractical for our setting, and the FDR control method of
Bogomolov and Heller (2018) is only applicable when the number of base hypotheses for
each PCH is 2, making it unsuitable for our setting.

3.3 Addressing sparsity in the covariates

An interesting phenomenon arises when some of the compositional covariates X{j} are
sparse, i.e., P(X{j} ̸= 0) is small, as would be expected in, e.g., the microbiome, as
certain microbial taxa may be completely absent from most observations. In the non-
compositional setting, a high degree of sparsity in a covariate may make the power to
identify that covariate as important quite low, but does not generally have much impact
on the power to identify other (non-sparse) important covariates. Surprisingly, when the
covariates are compositional, even having just one sparse covariate can make it nearly
impossible to identify any important covariates via BCP, even if they are not sparse
at all. To see why, let ϵj := P(X{j} ̸= 0). If ϵj = 0, then X{j}

a.s.
= 0 and for any

i ̸= j, Hi,j : Y ⊥⊥ X{i,j} | X{i,j}c is equivalent to Hi : Y ⊥⊥ X{i} | X{i}c , and as discussed
throughout Section 1, this Hi is definitionally true for all i when the covariates are
compositional, guaranteeing that S = ∅ and trivializing the power of any BCP methods
introduced in this section thus far. This is due to exactly the issue raised in Remark 1,
and the problem with sparse covariates is that they approximate this situation by having
X{j} = 0 for most observations, effectively leading to most observations providing no
evidence against H0i for any i and, thus, BCP methods having very low power to reject
any H0i.

Remark 1 alluded to addressing a similar issue via higher-order conditional independence
hypotheses, such as trivariate conditional independence, but this required that the extra
constraint(s) (beyond compositionality) be deterministic (and known a priori), which will
not typically be the case with sparse covariates for which ϵj is small but strictly positive.
Our proposed solution is to condition on covariates that are expected a priori to be sparse,
giving up on having any power to identify them as members of S (which would likely
have been low anyway, due to their sparsity), but salvaging the power to identify the rest
of S. Formally, suppose the covariate vector X is split into two parts: D, the indices of
covariates expected to be dense, and Dc, the indices of covariates expected to be sparse.
Define

SD = {j : Hi,j is false for all i ∈ D \ {j}},
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as the analogue of S if we simply condition on XDc and only consider XD as candidate
covariates for rejection. By simply treating all our random variables as conditional on
XDc and treating XD as our covariates (which, conditional on XDc , remain compositional,
since they sum to 1−|XDc |), all the results and BCP methods of this paper extend directly
to (multiple or single) testing HD

0i : j ∈ SD. And as long as none of the elements of D
are sparse, no bivariate conditional independence tests involving a sparse covariate are
required (indeed, only PD, the |D| × |D| submatrix of P containing Pi,j for i, j ∈ D, is
needed when conditioning on XDc), so they cannot impact power.

Ultimately, however, our interest remains in our original target, S, so to interpret the
results of our BCP procedures conditional onXDc , we must connect SD with S. Indeed the
following theorem shows that under similarly mild conditions as Theorem 2.1, SD = S∩D,
so that BCP methods conditioning on XDc remain valid for our original target S, though
they will only have power to detect its dense elements, S ∩ D.

Theorem 3.4 (Connecting SD and S). If S = [p], then SD = D (= S ∩ D). Otherwise,
if |Sc ∩ D| ̸= 1 and Sc ∈ (∆◦)kI for some k ∈ Z≥0 then SD = S ∩ D which is the
intersection of the unique nontrivial Markov boundary with D.

The proof of this theorem is presented in Appendix B.5. In addition to the conditions
in Theorem 2.1, there is one additional condition in Theorem 3.4: |Sc ∩ D| ≠ 1. When
|Sc ∩D| = 1 (call the element in this intersection j⋆), the conditional compositionality of
XD results in SD = D rather than the desired D \ {j⋆} = S ∩D, so we must assume this
case does not occur.

From a methodological perspective, note that BCP procedures conditional onXDc can not
only increase power (when XDc are sparse) over their unconditional counterparts, but also
save on computation, as they only require computing bivariate conditional independence
tests for pairs of elements of D.

3.4 Obtaining base p-values Pi,j

This section so far has described methods for testing and variable selection that take as
input the bivariate conditional independence test p-values Pi,j (i ̸= j), but has left the
choice of test to the user. As the topic of conditional independence testing is well-studied,
we view this as a feature of our methods that they are flexible to this choice of test, as
well as the assumptions under which the test is valid. For further details on methods
to test conditional independence, and the assumptions under which they are valid, see,
e.g., Doran et al. (2014); Sen et al. (2017); Candès et al. (2018); Shah and Peters (2020);
Berrett et al. (2020); Lundborg et al. (2022); Liu et al. (2022); Tansey et al. (2022); Kim
et al. (2022); Shi et al. (2024).

While our position on which conditional independence test to use with our proposed
BCP methods remains an agnostic one, we are forced to make a choice when we run our
simulations; we choose the Conditional Randomization Test (Candès et al., 2018), and in
particular a computationally efficient variant called the distilled conditional randomiza-
tion test (dCRT) with a lasso-based test statistic (Liu et al., 2022). Appendix E.1 contains
implementation details for the dCRT for bivariate conditional independence testing as it
is used in our simulations.
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We note here that while we originally assumed that the Pi,j were computed from a dataset
of n i.i.d. samples of (Y,X), nothing in our theory relied on this assumption. Indeed,
many conditional independence tests, including the dCRT, can be readily extended to
settings in which the samples are neither independent nor identically distributed (see
Appendix E.1 for more discussion of this topic for the dCRT), and hence the BCP methods
proposed in this paper will immediately apply in such settings as well.

3.5 Computational speedups

BCP variable selection methods require computing p2 (or |D|2 when conditioning on XDc)
base p-values, which can be quite expensive, especially in high dimensions, although it is
trivially and fully parallelizable. Nevertheless, to help alleviate this issue, we discuss in
this subsection some computational shortcuts for BCP methods.

Following the idea of ‘screening’ in Liu et al. (2022), any subset of the Pi,j’s can be
set to 1 without impacting the marginal validity of (all) the Pi,j’s (only making them
conservative), even if this subset is chosen based on the entire data set. This can lead to
a substantial computational speedup if there is a relatively inexpensive way to identify
which Pi,j’s are likely to be large, since then these Pi,j’s can simply be set to 1 without
computing them. And if the Pi,j’s set to 1 were indeed going to be large anyway (e.g.,
> 0.1), then making them larger isn’t likely to reduce power much, if at all, since any
such base p-value would have been too large to contribute to a rejection anyway, even if
fully computed.

Such a subset of the Pi,j’s could be chosen via sparse regression of the response on
the covariates, e.g., as the zero elements of the fitted coefficient vector of a single run
of cross-validated LASSO. Another option, which can be used in conjunction with the
aforementioned sparse regression approach, is possible if the Pi,j’s are being computed
serially: when about to compute a given Pi,j, if enough other base p-values, Pi′,j, in the
same column have been computed already and are large, then there will already be no
hope of the PCH p-value combining the base p-values of that column being small, and
hence it is faster and no less powerful to simply set Pi,j (and any other as-yet-uncomputed
base p-values in the same column) to 1 without wasting computation on it.

In some cases, further speedups are possible within the computation of the conditional
independence tests themselves; we detail one such for the dCRT in Appendix E.9 which
also takes the form of setting some Pi,j’s to 1 without (fully) computing them, i.e., another
form of data-dependent screening.

While data-dependent screening provably retains marginal validity of the Pi,j’s (Liu et al.,
2022), it does in general change the dependence structure of the base p-values. This will
have no impact on the validity of our BCP procedures that do not assume anything about
the dependence among the base p-values (e.g., Holm’s procedure applied to Bonferroni
PCH p-values), but could in principle impact the validity of BCP procedures that assume
a form of positive dependence. However, we found all the speedups used in our simulations
never led to empirical error control violations, and in fact led to nearly identical sets of
rejections as the same procedures without any speedups (average Jaccard indices > 98%
in each setting we tried; see Appendix E.9). Furthermore, putting these speedups together
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made a big computational difference, with about a 5× speedup with n = p = 100, and
more than a 30× speedup for n = p = 1000; see Appendix E.9 for details.

4 Numerical Experiments

In this section we demonstrate our methods’ performance in compositional settings (Sec-
tion 4.1), non-compositional settings (for comparison with non-compositional methods;
Section 4.2), and compositional settings with sparse covariates as described in Section 3.3
(Section 4.3). The appendix contains many more simulations, details, and plots, in partic-
ular: additional simulations to assess robustness under covariate model misspecification
(Appendix E.6), evaluate the performance of the multiple PCH testing method AdaFil-
ter (Appendix E.8), and examine the impact of computational speedups on validity and
average power (Appendix E.9). For each simulation presented in the main text, we
include only key, representative figures to demonstrate the main findings, with addi-
tional figures and results provided in Appendices E.2–E.5. Code to replicate all numeri-
cal experiments is available at https://github.com/Ritwik-Bhaduri/Compositional_
Covariate_Importance_Testing/.

While Section 3 considered combining base p-values into PCH p-values via both Bonfer-
roni’s and Simes’ method, the simulations in this section will focus only on PCH p-values
combined via Simes’ approach (i.e., P S

j ), while we provide all the same results for Bon-
ferroni’s approach in Appendix E.7. This is because BCP methods using the Simes’
approach have significantly more power than those using Bonferroni’s while still empiri-
cally controlling their respective error rates well. See Appendix E.7 for more details on
the comparison between the Bonferroni and Simes approaches within BCP.

We compare three different values of s for our methods: p− 1, p/2, and s+ 1 (in all our
simulations, s + 1 < p/2). These values represent increasing levels of knowledge about
the sparsity of the data: p− 1 indicates no knowledge of sparsity, s+ 1 indicates perfect
knowledge, and p/2 indicates a moderate (and we argue realistic in many settings; see
discussion in Section 3.1) level of knowledge by assuming at least half of the covariates
are irrelevant. Given s, we call the BCP hypothesis test (with Simes’ approach, i.e., P S

j )
BCP(s), and for variable selection, we call our methods BCP(s)-BH (Algorithm 3) and
BCP(s)-Holm (Algorithm 2) for FDR and FWER control, respectively. In Section 4.1
and Section 4.2, we compare BCP methods to case-specific benchmark methods described
in those respective subsections.

4.1 Standard compositional covariate settings

In these simulations, the rows of the covariate matrix are generated as independent
copies of a compositional random variable X ∈ R100. We consider two different mod-
els of X to show the validity of our method for different dependence structures among
the compositional covariates. First we consider the Dirichlet distribution where X ∼
Dirichlet(α1, . . . , α100) with α1 = · · · = α100 = 2. The other compositional distribution

we consider is the logistic-normal distribution (Xia et al., 2013), where Xj =
eZj∑100
i=1 e

Zi
for

j ∈ {1, . . . , 100} and Z ∼ N (0,Σ) with Σij = 0.6|i−j|.
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The response Y is generated from a linear model N (log(X)β, 1). Our simulated data
sets consist of n = 100 i.i.d. samples from (X, Y ). For single testing, the coefficient
of the variable being tested is varied on the x-axis of our plots, while the non-null nui-
sance coefficients are i.i.d. N (0, 1). For variable selection, all non-null coefficients are
N (0, SNR2), where the scalar value SNR is varied on the x-axis, and can be thought of as
a signal-to-noise ratio as it modulates the signal in the non-nulls. In all these simulations,
there is a unique non-trivial Markov boundary, also equal to S, which is given by the set
of non-zero coefficients; its size s is always 10.

As we are not aware of any existing methods that can test for or select elements of the
Markov boundary with error control guarantees when the covariates are compositional,
we compare BCP methods to a benchmark that is invalid, but popular and powerful.
Namely, we consider as a benchmark a Leave-One-Out (LOO) approach that first drops
a column j uniformly at random from the data, and then analyzes the resulting non-
compositional data via a standard (i.e., non-compositional) conditional independence
test directly analogous to the bivariate conditional independence tests used within the
BCP methods, namely, the dCRT with a lasso-based test statistic (see Appendix E.2
for more details). For variable selection with FWER control or FDR control, we plug
the p − 1 p-values from this LOO approach into Holm’s procedure (LOO-Holm) or the
Benjamini–Hochberg procedure (LOO-BH), respectively. This method is consistent with
heuristics currently used in practice (like contrast coding) and is powerful. However, it
lacks error control, as discussed near the end of Section 1.3.

The left panel of Figure 1a shows that for single testing, the LOO method fails to control
type I error at the nominal level of 5%, while the BCP methods all control type I error well
below 5%. Indeed, BCP methods were conservative across simulations due to their use
of PCH p-values, which are well-known to be conservative (Wang et al., 2016). The right
panel of Figure 1a shows the power of the BCP(s) methods decreases with the value of s,
as expected. BCP(s+1), which assumes complete knowledge of s, achieves power similar
to the LOO method and, in fact, beats the latter for higher signal strengths. The more
realistic method—BCP(p/2)—achieves power close to the oracle method BCP(s+1) and
LOO, and well above that of BCP(p−1). Figure 1b shows analogous performance of BCP
methods for variable selection: LOO-BH fails to control FDR, while BCP(s)-BH methods
are conservative but have average power similar to LOO-BH. Appendix E.2 shows the
results for FWER control are similar to those for FDR control. Furthermore, Appendix
E.3 shows that both single testing and variable selection with logistic-normal covariates
behave broadly similarly as with Dirichlet covariates. The only notable difference is a
substantial drop in power for BCP(p− 1) (but not the other BCP methods), which could
be attributed to the additional dependence structure in the data leading to the base p-
values Pi,j, where i is null and j is non-null, being less concentrated around zero. This
effect would have more impact on the power of BCP methods with higher s.

4.2 Non-compositional covariate settings

While BCP methods are primarily designed and recommended for regression problems
with compositional covariates, nothing in their development or theory precludes their
use on non-compositional covariates. In such a setting, we can benchmark them against

23



0.0

0.1

0.2

0.3

0.0 0.5 1.0 1.5
Coefficient

Ty
pe

 I 
E

rr
or

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5
Coefficient

P
ow

er

Methods

BCP(p − 1)
BCP(p 2)
BCP(s + 1)
LOO
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type I error is 5% and error bars correspond to ±2 Monte Carlo standard errors.
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Figure 1: Comparison of methods for (a) single testing and (b) variable selelction with
Dirichlet covariates.
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state-of-the-art non-compositional methods that are both valid and powerful (unlike in the
previous subsection, where there was no available valid benchmark). In this subsection’s
simulation, X ∈ R100 is generated from N (0,Σ) where Σ is a Toeplitz matrix such that
Σi,j = 0.6|i−j|. The rest of the simulation setup including the conditional distribution of
the response given the covariates and the sample size remain the same as in Section 4.1.

As a benchmark, we consider a standard (i.e., non-compositional) conditional indepen-
dence test directly analogous to the bivariate conditional independence tests used with
the BCP methods, namely, the dCRT with a lasso-based test statistic. This Univariate
testing approach is valid and powerful for testing whether a covariate is a member of the
Markov boundary when the covariates are non-compositional, and for variable selection
with FWER control or FDR control, these test’s p-values can be plugged into Holm’s
procedure (Univariate-Holm) or the Benjamini–Hochberg procedure (Univariate-BH), re-
spectively.

Figure 2a shows that all single-testing methods control the type I error and the non-
compositional Univariate test has the highest power, closely followed by the proposed
BCP methods. Figure 2b shows the same pattern for FDR-controlled variable selection
except the gap between average power of the BCP methods and Univariate-BH is even
narrower; Appendix E.4 shows very similar results for FWER control. Thus, despite
all the methodological overhead in the BCP approach that is needed to accommodate
compositional covariates (and the significant corresponding conservativeness that comes
with it), we find that in non-compositional settings, BCP methods are nevertheless not far
behind state-of-the-art conditional independence tests in terms of power, with particularly
competitive variable selection average power.

4.3 Sparse compositional covariate settings

To explore the BCP approach to sparse compositional covariates as presented in Sec-
tion 3.3, we generate covariates in this section from a 100-dimensional Dirichlet-Multinomial
distribution as follows: let α ∈ R100 have entries αj = (1 + e

j−50
5 )−1 and sample θ ∼

Dirichlet(α) and X ∼ Multinomial(200, θ). This X distribution overall has about half
of its entries non-zero but the sparsity is highly imbalanced, with the last entries much
sparser than the first ones. The response Y is generated from a log-linear modelN (log(1 +X)β, 1),
where the coefficient vector β is zero except for 10 uniformly randomly selected entries
which are sampled independently from N (0, 1). The sample size was n = 100.

The goal of this simulation is to study the effect of D on power, and since the density of
the covariates decreases with increasing index, we choose D = [k] and vary k from 30 to
100. In this subsection, we will consider BCP methods with the following three values
of s: |D| − 1, p/4(= 25 < 30 ≤ |D|), and s + 1; this is because the conditional BCP
approach of Section 3.3 requires s < |D|.

Figure 3 shows that conditioning on sparse covariates as proposed in Section 3.3 can
yield substantial gains in power over not doing so (i.e., |Dc| = 0) in both single testing
and variable selection. All methods in all settings benefited from conditioning on at
least the 35 sparsest covariates (the 35th-sparsest covariate is 8% non-zero), and in some
cases continued to benefit from conditioning on more than half the covariates. However,

25



0.0

0.1

0.2

0.3

0.0 0.2 0.4 0.6
Coefficient

Ty
pe

 I 
E

rr
or

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6
Coefficient

P
ow

er

Methods

BCP(p − 1)
BCP(p 2)
BCP(s + 1)
Univariate

(a) Comparison of type I error and power for single testing with multivariate normal covariates.
The target type I error is 5% and error bars correspond to ±2 Monte Carlo standard errors.

0.0

0.2

0.4

0.6

0 1 2 3 4 5
SNR

F
D

R

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5
SNR

A
ve

ra
ge

 P
ow

er

Methods

BCP(p − 1) − BH

BCP(p 2) − BH

BCP(s + 1) − BH

Univariate − BH

(b) Comparison of FDR and average power for variable selection with multivariate normal
covariates. The target FDR level is 10% and error bars correspond to ±2 Monte Carlo standard
errors.

Figure 2: Comparison of methods for (a) single testing and (b) multiple testing with
multivariate normal covariates.

26



0.00

0.25

0.50

0.75

1.00

0 20 40 60

# Covariates Conditioned on (|Dc|)

P
ow

er

Methods

BCP(|D |−1)

BCP(p/4)

BCP(s + 1)

0.0

0.1

0.2

0.3

0.4

0 20 40 60

# Covariates Conditioned on (|Dc|)

A
ve

ra
ge

 P
ow

er

Methods

BCP(|D |−1)−Holm

BCP(p/4)−Holm

BCP(s+1)−Holm

0.0

0.1

0.2

0.3

0.4

0 20 40 60

# Covariates Conditioned on (|Dc|)

A
ve

ra
ge

 P
ow

er

Methods

BCP(|D |−1)−BH

BCP(p/4)−BH

BCP(s+1)−BH

Figure 3: Effect of conditioning out the sparse covariates on power for single testing (left)
and average power for FWER control (middle) and FDR control (right), respectively.
Error bars correspond to ±2 Monte Carlo standard errors.

as expected, for nearly all methods there is a sweet spot, and conditioning on too many
covariates starts to harm power as covariates that are conditioned on cannot be discovered
(recall that in these simulations, the probability that a covariate is non-null is independent
of its sparsity). Appendix E.5 shows the corresponding type I error, FWER, and FDR
plots, all of which are controlled below their nominal levels.

5 Discussion

In this work, we have defined an interpretable model-free notion of an important covariate
in regression problems with compositional covariates. With this notion as an inferential
target, we then developed novel, valid, and powerful procedures for testing and controlled
variable selection, integrating ideas from conditional independence testing and partial
conjunction hypothesis testing.

While this paper has primarily focused on compositional covariates, its contents in fact
apply more generally to covariates that satisfy any single deterministic equality constraint.
For example, the methods and theorems in this paper remain valid when the covariates
are constrained to any (p− 1)-dimensional linear subspace. Another allowable constraint
is that the covariates lie on the surface of the ((p − 1)-dimensional) unit p-sphere (Lin,
2019); such data arises in, e.g., geophysics (Freeden et al., 1998), cosmology (Dodelson
and Schmidt, 2020), plate tectonics (Chang et al., 2000) and embryology (Tyszka et al.,
2005).

A natural future direction for this work is the setting of multiple constraints, i.e., when
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the covariates are constrained to lie in a set of dimension p − k for k > 1. This setting
arises in, e.g., feature engineering (Zheng and Casari, 2018), basis expansion (Oreshkin
et al., 2019), multi-factor experimental designs (Box and Hunter, 1957), and experimental
designs with interactions (Dean and Voss, 1999). Section 2.3.2 showed that this paper’s
approach can already handle multi-factor experimental design since the constraints are
on disjoint subsets of the indices, but for other type of multiple constraints, näıve ex-
tension of the ideas in this paper would lead to computational intractability as discussed
in Remark 1, with k constraints requiring testing of O

(
pk+1

)
k-variate conditional inde-

pendence hypotheses. We hope that further insights and improvements along the lines
of the computational speedups in Section 3.5 can be discovered in future work to make
such approaches tractable.
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A Differential Absolute Abundance Methods

As mentioned in a footnote in Section 1.3, there is a class of differential abundance
methods in the microbiome field that test for marginal independence between Y and the
absolute abundance of the jth microbe (Zhou et al., 2022; Wang, 2023; Lin and Peddada,
2024; Zong et al., 2024). We refer to such methods collectively as differential absolute
abundance (DAA) to distinguish them from canonical DA analysis. To understand how
DAA methods relate to this paper, suppose that the observed compositional covariates
X represent the normalization of a latent noncompositional random vector Z, i.e., X =
Z/
∑

j Z{j}. Then DAA methods are designed to test hypotheses of the form Y ⊥⊥ Z{j}.
Because DAA methods resemble DA methods but with X{j} replaced by Z{j}, they are
in some sense a step further removed from this paper than DA methods, which is why
we defer their discussion to this appendix.

First and foremost, DAA methods test a hypothesis in terms of the latent random vari-
ables Z{j}. Thus, it represents fundamentally different scientific questions than consid-
ered by DA methods or any of the methods in this paper, which are entirely in terms
of the observable random variables Y and X. In fact, Z is only a meaningful quantity
in certain applications where X represents the normalization of some underlying ran-
dom variable (for example, the microbiome field). Many other compositional random
variables (e.g., factors in experimental design, chemical compositions, or time use within
a day), however, are compositional but do not represent normalization from underlying
noncompositional variables. There is thus no natural scientific question regarding the
latent Z{j}’s for these types of applications.

Beyond the conceptual difference, DAA methods differ from our approach in two addi-
tional, important ways. First, like DA methods, DAA methods test marginal indepen-
dence, meaning that unlike the multivariate approach taken in this paper, they do not
account for any covariates other than the jth in their hypothesis. Second, the latency of Z
will generally make it (and hence nearly any hypothesis involving it) unidentifiable except
under specific assumptions: most DAA methods assume highly parametric distributions
on Z{j} and X{j}; all require some form of sparsity conditions that not too many Z{j}’s
can be associated with Y . As such, DAA methods also differ from this paper in taking a
parametric approach to inference, necessitated in part by the latency of Z.

B Proof of Theorems

B.1 Proof of Lemma 2.2

We are first going to prove Lemma Lemma 2.2 holds for coordinatewise connected vectors
(through A \B and B \ A). The proof for equivalent vectors will follow similarly.

Consider two vectors (u, v, w) and (u′, v′, w′) in the support of XA∪B, conditioned on
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X(A∪B)c = z, that are coordinatewise connected through A \B and B \A. Here, (u, v, w)
is shorthand for XA∩B = u, XA\B = v, and XB\A = w.

We will use the notation p(· | ·) to represent the conditional measure of Y given a
subvector of X. This notation is general and accommodates various scenarios:

1. Conditional probability in the discrete case, i.e., P(Y = y | XA∪B = (u, v, w)).

2. Conditional density function in the continuous case, i.e., fY (y | XA∪B = (u, v, w)).

3. More generally, using measure-theoretic notation, for any Borel set B in the sigma-
algebra of Y and the eventXA∪B = (u, v, w), p(B | XA∪B = (u, v, w)) represents the
conditional expectation E[1B | FXA∪B

] where FXA∪B
is the sigma-algebra generated

by XA∪B. This accommodates cases where our random variables might not have
purely discrete or continuous distributions.

Without loss of generality (WLOG), assume the vectors are coordinatewise connected
through B \ A. Then, w = w′. So, we have,

p
(
Y | X(A∩B) = u,X(A\B) = v,X(B\A) = w,X(A∪B)c = z

)
= p

(
Y | X(B\A) = w,X(A∪B)c = z

)
(by the conditional independence Y ⊥⊥ XA | XAc)

= p
(
Y | X(B\A) = w′, X(A∪B)c = z

)
(as w = w′)

= p
(
Y | X(A∩B) = u′, X(A\B) = v′, X(B\A) = w′, X(A∪B)c = z

)
.

Instead of the vectors being coordinatewise connected through B \ A, if they were con-
nected through A \B, we would have used the conditional independence Y ⊥⊥ XB | XBc .
So, it follows that p(Y | u, v, w, z) = p(Y | u′, v′, w′, z) whenever the vectors (u, v, w)
and (u′, v′, w′) from the support of XA∪B conditioned on X(A∪B)c = z are coordinatewise
connected (via A \B and B \ A).

Now suppose (u, v, w) and (u′, v′, w′) are equivalent (through A \ B and B \ A). So
there exist points (ui, vi, wi), i = 1, . . . , L for some L such that ((u, v, w), (u1, v1, w1)),
((u1, v1, w1), (u2, v2, w2)), . . . , ((uL−1, vL−1, wL−1), (uL, vL, wL)) and ((uL, vL, wL), (u

′, v′, w′))
are coordinatewise connected. From the above argument it follows that

p (Y | u, v, w, z) = p (Y | u1, v1, w1, z1) = · · · = p (Y | uL, vL, wL, zL) = p (Y | u′, v′, w′, z) .

This completes the proof.

B.2 Proof of Theorem 2.1

We begin by proving the following result first.

Proposition B.1. Suppose there exists i ̸= j such that Y ⊥⊥ X{i,j} | X{i,j}c. If Sc ∈
(∆◦)kI for some k ∈ Z≥0 then there exists a unique set M which satisfies the following:

1. Y ⊥⊥ XMc | XM

2. For all M′ such that Y ⊥⊥ XM′c | XM′, |M| ≤ |M′|

Further, this unique set is given by M = S.
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Proof. Recall that we defined I as I = {{i, j} : Hi,j is true} and S was defined as
S = {i ∈ [p] : Hi,j is false for all j ∈ {i}c}. Finally, ∆ = {{A,B} : XA∪B |
X(A∪B)c has 1 equivalence class (through A \ B and B \ A)}. If Hi,j is true for some
i ̸= j, I is non-empty.

Consider the case |I| = 1, where I = {{i, j}}. Define M = {i, j}c. M satisfies condition
1 by definition of I. Now for assumption 2, consider any M′ such that Y ⊥⊥ XM′c | XM′ .
If |M′| < |M| = p − 2, for any three distinct elements of M′c, i′, j′, and k′, by the
weak union property (Pearl, 1988), Y ⊥⊥ X{i′,j′,k′} | X{i′,j′,k′}c . Using the weak union
property again, {i′, j′}, {j′, k′}, {k′, i′} ∈ I which contradicts |I| = 1. So, M satisfies
both conditions 1 and 2. To show that no other set satisfies these conditions, consider
any other set M′ which satisfies them. Due to the previous argument |M′| ≥ p−2. Also,
|M′| < p − 1 since M satisfies condition 2. If |M′| = p − 2 but M′ ̸= M, then this
implies M′c ∈ I and M′c ̸= {i, j} which again contradicts I. Therefore, when |I| = 1
and I = {{i, j}}, M = {i, j}c is the unique set satisfying conditions 1 and 2. Also, in
this case, S = {i, j}c making M = S which proves the statement of the proposition for
the case |I| = 1.

In the case |I| ≥ 2, consider any set C ∈ I. Note that C is a set of two elements. For
such a C, Y ⊥⊥ XC | XCc . If we take any two sets C and D in I such that XC∪D | X(C∪D)c

has 1 equivalence class (through C \D and D \C), then Lemma 2.2 implies the following
is true:

Y ⊥⊥ XC∪D | X(C∪D)c .

Since ∆ is defined as all the sets of sets with one equivalence class, the same logic implies
that for any set C ∈ ∆ ◦ I, Y ⊥⊥ XC | XCc . This argument can be applied to elements of
∆ ◦ I also to get the following,

Y ⊥⊥ XC | XCc for all C ∈ (∆◦)2I.

Proceeding recursively, we get, for any k ∈ Z≥0,

Y ⊥⊥ XC | XCc for all C ∈ (∆◦)kI.

So, if Sc ∈ (∆◦)kI for some integer k, then Y ⊥⊥ XSc | XS and S satisfies condition 1,
and thus |M| ≤ |S| for any M satisfying conditions 1 and 2. Now, conditions 1 and
2 imply M is a Markov boundary. Hence, by Lemma 2.1, for any such M, S ⊆ M.
Combining them, we get under the assumptions of the proposition, M = S is unique set
satisfying conditions 1 and 2. □

Now that we have proven the proposition, we shall use it along with Lemma 2.1 to prove
Theorem 2.1. Under the assumptions of Theorem 2.1, we have two cases: S = [p] and
|S| < p. If S = [p], then Y ⊥̸⊥ X{i,j} | X{i,j}c for all i ̸= j. For the sake of contradiction,
suppose there exists a nontrivial Markov boundary, i.e., some setM such that |M| < p−1
and Y ⊥⊥ XMc | XM. Then there exists some {i, j} ⊆ Mc such that i ̸= j. Then, the
weak union property (Pearl, 1988) implies Y ⊥⊥ X{i,j} | X{i,j}c which contradicts S = [p].
So, in this case there does not exist a nontrivial Markov boundary.

In the other case, that is when |S| < p, there must exist some i ̸= j such that Y ⊥⊥ X{i,j} | X{i,j}c .
Now, consider any subset M′ of [p] which is a Markov boundary and |M′| < p− 1. So,
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Y ⊥⊥ XM′c | XM′ . Lemma 2.1 and |M′c| > 1 imply M′ ⊇ S. So, any nontrivial Markov
boundary must be a superset of S. The only thing left to show is that it is indeed equal to
S. But Proposition B.1 already tells us that S is the smallest set such that Y ⊥⊥ XS | XSc .
If M′ ⊋ S, then M′ violates item 2 in Definition 2.1. Hence, M′ has to be equal to S.
So, any Markov boundary must either have size = p − 1 or be equal to S which proves
the Theorem.

B.3 Proof of Corollary 2.1

Corollary 2.1 presents an application of Theorem 2.1 for the case of continuous distribu-
tions with further assumptions on the support of the conditional distribution. First the
case S = [p] is identical to that in Theorem 2.1 and is omitted in this proof.

For the case |S| < p, we will apply Theorem 2.1 to prove the corollary. First, suppose
that for any two subsets A and B of [p] with |B| = 2 and |A ∩ B| = 1, the support of
the conditional distribution XA∪B | X(A∪B)c = c has only one equivalence class through
A \B and B \A; we will prove this supposition shortly. Then ∆ = {{A,B} : |A ∩B| =
1, |B| = 2}. Due to assumption (i), for any two (two element) sets C1 and C2 in I
there exists a sequence of sets D1, . . . , Dk for some k ∈ Z≥0 such that |C1 ∩ D1| = 1,
|D1 ∩D2| = 1, |D2 ∩D3| = 1, . . . , |Dk−1 ∩Dk| = 1 and |Dk ∩C2| = 1. Consider all pairs
of elements of I. For each of them we get a sequence of sets (Di : i ∈ [k]) connecting
them for some k ∈ Z≥0. Consider k⋆ to be the maximum such k. Note that k⋆ is finite
as it is the maximum over

(|I|
2

)
integers. Therefore, Sc ∈ (∆◦)k⋆I which satisfies the

assumptions of Theorem 2.1.

The only thing left to prove is that for any A,B ⊂ [p] such that |A∩B| = 1 and |B| = 2,
the support of the conditional distribution XA∪B | X(A∪B)c = c has only one equivalence
class. First note that if c < 0 or c > 1, the support is empty and when c = 1, the
support is equal to the singleton {0|A∪B|} and hence, has a single equivalence class. So,
we consider the only nontrivial case which is 0 ≥ c < 1. To do that, define the sets

Supp>0(Z) = {z ∈ Rp : fZ(z) > 0}

and Supp>0(X) = {x ∈ Rp :
∑
j∈[p]

x{j} = 1, fX(x) > 0}.

Here fZ is the density of Z and fX is the density ofX with respect to the p−1–dimensional
Hausdorff measure induced by fZ . Note that Supp>0(X) represents a set related to the
support of fX , however with the difference that Supp>0(X) only includes points with
positive density, as opposed to its closure which is commonly defined as the support of
fX . For some C ⊆ [p] (think of C as (A ∪B)c), and some c ∈ R|C| such that there exists
x ∈ Supp>0(X) with xC = c, consider the following set

Supp>0(X | XC = c) = {x ∈ Supp>0(X) : xC = c} .

We want to show that Supp>0(X | XC = c) is open and path connected inx ∈ Rp :
∑
j∈[p]

x{j} = 1, xC = c

 .
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To do that, we will be using the following Lemma (see Appendix B.9 for proof):

Lemma B.1. Let Z be a p-dimensional random vector. Define the function g : [0,∞)p \
{0p} → [0,∞)p as follows

x = g(z) :=

(
z{1}∑p
k=1 z{k}

,
z{2}∑p
k=1 z{k}

, . . . ,
z{p}∑p
k=1 z{k}

)
.

Let fZ denote the density of Z with respect to the Lebesgue measure and fX that of X
(:= g◦Z) with respect to the (p−1)–dimensional Hausdorff measure induced by fZ. Then,
if fZ is continuous in [0,∞)p \ {0p}, Supp>0(X) = g (Supp>0(Z)).

Step 1: Path connectedness of conditional support We begin by demonstrating
that the support is path-connected. Consider any two points x and x′ in Supp>0(X |
XC = c). Since x ∈ Supp>0(X | XC = c), it follows that fX(x) > 0. By Lemma
B.1, this implies there exists a z ∈ Supp>0(Z) such that x = g(z), where g is defined
as in the Lemma. Similarly, for x′, there exists a point z′ ∈ [0,∞)p \ 0p such that
fZ(z

′) > 0 and x′ = g(z′). Assumption (ii) implies that there exists a path z(t) in
{z ∈ Supp>0(Z) : g(z)C = c} connecting z and z′. Formally, z(·) is a continuous map
from [0, 1] to [0,∞)p\0p such that z(0) = z, z(1) = z′, z(t) ∈ Supp>0(Z), and g(z(t))C = c
for all t ∈ [0, 1].

Define x(t) = g(z(t)) for t ∈ [0, 1]. For any t ∈ [0, 1], since z(t) ∈ Supp> 0(Z), by
Lemma B.1, we have x(t) ∈ Supp>0(X). Additionally, given that g(z(t))C = c, it follows
that x(t) ∈ Supp>0(X | XC = c). To demonstrate that Supp>0(X | XC = c) is path-
connected, it is sufficient to show that x(·) is continuous on [0, 1]. This holds because
x(·) = g ◦ z(·) is the composition of two continuous functions. Therefore, x and x′ are
connected via the path x(t), which proves that Supp>0(X | XC = c) is path-connected
in {x ∈ Rp :

∑p
j=1 xj = 1, xC = c}.

Step 2: Openness of conditional support Now, we will show that Supp>0(X |
XC = c) is open in {x ∈ ∆p−1 : xC = c}. To show that, consider any point x ∈
Supp>0(X | XC = c). By Lemma B.1, there exists z ∈ Supp>0(Z) such that x = g(z).
By assumption (ii), since fZ is continuous in [0,∞)p \ {0p}, there exists an open ball
Bϵ(z) (open in [0,∞)p \ {0p}) such that Bϵ(z) ⊆ Supp>0(Z). Define

B ϵ
t
(x) =

{
x′ ∈ ∆p−1 : x′

C = c, ||x− x′|| < ϵ

t

}
, t =

p∑
j=1

zj.

It is enough to show that B ϵ
t
(x) ⊆ Supp>0(X | XC = c). Consider some x′ ∈ B ϵ

t
(x).

Define z′ = t · x′. Since ||z − z′|| = ||tx − tx′|| = t||x − x′|| < t · ϵ
t
= ϵ, z′ ∈ Bϵ(z)

and hence z′ ∈ Supp>0(Z). Therefore, by Lemma B.1, x′ ∈ Supp>0(X). Finally, since
x′
C = c, x′ ∈ Supp>0(X | XC = c). This shows that Supp>0(X | XC = c) is open in

{x ∈ ∆p−1 : xC = c}.

Step 3: Proving uniqueness of equivalence class of conditional support
Now that we have shown Supp>0(X | XC = c) is open and path connected in
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{
x ∈ Rp :

∑
j∈[p] x{j} = 1, xC = c

}
for all C ⊆ [p], and all c ∈ R|C| such that there

exists x ∈ Supp>0(X) with xC = x, we shall show that for any A,B ⊂ [p] such that
|A ∩ B| = 1 and |B| = 2 and for all c ∈ Rp−|A∪B| such that

∑
j∈[p−|A∪B|] c{j} < 1,

XA∪B | X(A∪B)c = c has only one equivalence class through A \ B and B \ A. Note
that we only need to consider 2-sized sets B with one intersection with A because we
want to “combine” the sets {i, j} for {i, j} ∈ I. Consider any two points x and x′ in
Supp>0(X) such that x(A∪B)c = x′

(A∪B)c = c. We shall show that x and x′ are equiv-

alent through A \ B and B \ A. Since Supp>0(X | X(A∪B)c = c) is path connected in{
x ∈ Rp :

∑
j∈[p] x{j} = 1, xC = c

}
, there exists a path x(t) in the latter set connecting

x and x′. Since Supp>0(X | X(A∪B)c = c) is open in
{
x ∈ Rp :

∑
j∈[p] x{j} = 1, xC = c

}
,

there exist open balls Bϵt(x(t)) (open in
{
x ∈ Rp :

∑
j∈[p] x{j} = 1, xC = c

}
) for all

t ∈ [0, 1], such that Bϵt(x(t)) ⊆ Supp>0(X | X(A∪B)c = c) for all t ∈ [0, 1]. Here
the balls are defined with respect to the standard euclidean norm (or the L2 norm).
Now consider the sets B ϵt√

2
(x(t)) for t ∈ [0, 1].

⋃
t∈[0,1]B ϵt√

2
(x(t)) is an open cover of

{x(t) : t ∈ [0, 1]}. Also, since [0, 1] is compact and x(t) is continuous, {x(t) : t ∈ [0, 1]}
is compact in Supp>0(X | X(A∪B)c = c). This implies there exists a finite subcover
B1, . . . , Bn of {x(t) : t ∈ [0, 1]}. Call the respective centers xt1 , . . . , xtn . Remember that
for all t ∈ {t1, . . . , tn}, the ball centered at x(t) has L2 radius ϵt√

2
. WLOG assume B1 is

centered at x and Bn is centered at x′. Call the rest of the centers y1, . . . , yn−2. If we
can show that the centers of adjacent open balls are equivalent, then we will have shown
x and x′ are equivalent. To show that, consider any two balls Bj and Bj+1 with centers
w and w′, respectively. Since Bj and Bj+1 are adjacent open balls, they must have a
non-empty intersection. Consider a particular point w⋆ ∈ Bj ∩ Bj+1. If we can show w
and w⋆ are equivalent, we can use the same argument to show w⋆ and w′ are equivalent,
thereby showing the equivalence of w and w′, which would complete the proof. Since ∑

j∈A\B

w{j} + w⋆
B\A

+

 ∑
j∈A\B

w⋆
{j} + wB\A

 ≤
∑
j∈[p]

w{j} +
∑
j∈[p]

w⋆
{j} = 2,

either
∑

j∈A\B w{j} + w⋆
B\A ≤ 1 or

∑
j∈A\B w⋆

{j} + wB\A ≤ 1.

First, consider the case when
∑

j∈A\B w{j} + w⋆
B\A ≤ 1. Introduce the notation w =

(wA\B, wA∩B, wB\A, c) and w′ = (w′
A\B, w

′
A∩B, w

′
B\A, c) and define

w† =

wA\B, 1−
∑

j∈A\B

w{j} − w⋆
B\A −

∑
j∈[p−|A∪B|]

cj, w
⋆
B\A, c

 .
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Then the L2 distance between w and w† is as follows

||w − w†||2 =
√∑

j∈[p]

(
w{j} − w†

{j}

)2

=

√√√√√
wA∩B −

1−
∑

j∈A\B

w{j} − w⋆
B\A −

∑
j∈[p−|A∩B|]

cj

2

+
(
wB\A − w⋆

B\A

)2
=

√
2 ·
(
wB\A − w⋆

B\A

)2
≤
√

2 ·
∑
j∈[p]

(
w{j} − w⋆

{j}

)2

≤

√
2 ·

ϵ2tj
2

(
Since w⋆ ∈ B ϵ√

2
(w)
)

= ϵtj

Since ||w − w†||2 ≤ ϵtj , w
† ∈ Bϵtj

(x(tj)) which implies fX(w
†) > 0 or in other words,

w† ∈ Supp>0(X | XC = c). Since w and w† are coordinatewise connected through A \ B
and w† and w⋆ are connected through B \A, w and w⋆ are equivalent through A \B and
B \ A.

Now, consider the other case:
∑

j∈A\B w⋆
{j} +wB\A ≤ 1. In this case, define w† as follows

w† =

w⋆
A\B, 1−

∑
j∈A\B

w⋆
{j} − wB\A −

∑
j∈[p−|A∪B|]

cj, wB\A, c

 .

With this w† the L2 distance can be bounded as

||w − w†||2 =
√∑

j∈[p]

(
w{j} − w†

{j}

)2

=

√√√√√ ∑
j∈A\B

(
w{j} − w⋆

{j}

)2
+

wA∩B −

1−
∑

j∈A\B

w⋆
{j} − wB\A −

∑
j∈[p−|A∩B|]

cj

2

=

√ ∑
j∈A\B

(
w{j} − w⋆

{j}

)2
+
(
wA∩B − w⋆

A∩B + wB\A − w⋆
B\A

)2
≤
√ ∑

j∈A\B

(
w{j} − w⋆

{j}

)2
+ 2 (wA∩B − w⋆

A∩B)
2 + 2

(
wB\A − w⋆

B\A

)2
≤
√

2 ·
∑
j∈[p]

(
w{j} − w⋆

{j}

)2

≤

√
2 ·

ϵ2tj
2

(
Since w⋆ ∈ B ϵ√

2
(w)
)

= ϵtj
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Using the same argument as in the previous case, ||w−w†||2 ≤ ϵtj implies w† ∈ Bϵtj
(x(tj))

which implies w† ∈ Supp>0(X | XC = c). Further, since w and w† are coordinatewise
connected through B \ A and w† and w⋆ are connected through A \ B, w and w⋆ are
equivalent through A \B and B \ A. So, in both the cases,

w and w⋆are equivalent through A \B and B \ A.

Using a similar construction, we can show that w⋆ and w′ are equivalent through A \ B
and B \ A. Applying this argument recursively, we can show that all the centers of the
balls B1, . . . , Bn are equivalent, thereby proving x and x′ are equivalent (through A \ B
and B \ A). Since x and x′ are chosen to be any two points in Supp>0(X | XC = c),
this proves that Supp>0(X | XC = c) has only one equivalence class. This proves the
conditions of Theorem 2.1 which completes the proof of the Corollary.

B.4 Proof of Corollary 2.2

First, consider the case when Fk ⊆ SF . Suppose, for the sake of contradiction, there
exists a nontrivial Markov boundary M i.e., |Mc∩Fk| ≥ 2. Then there exists i ̸= j such
that {i, j} ⊆ Mc ∩ Fk. By the weak union property (Pearl, 1988), Y ⊥⊥ X{i,j} | X{i,j}c .
Therefore i /∈ SF and j /∈ SF which implies |Fk \ SF | ≥ 2 which contradicts Fk ⊆ SF .

Now, in the other case, consider some nontrivial Markov boundary M. To show M =
SF ∩ Fk we will follow the following steps:

1. ∆ includes sets of sets of the following form:

(a) {A,B} where both A,B ⊆ Fk for |A ∩B| ≥ 1.

(b) {A,B} where A ⊆ Fk and B ⊆ F c
k .

2. For any Markov boundary M with |Mc ∩ Fk| ≥ 2, Mk ⊇ SF ∩ Fk.

3. If |Mc ∩ Fk| ≥ 2, Mk = SF ∩ Fk.

Step 1: ∆ contains sets of form {A,B}, A,B ⊆ Fk Consider two subsets A and
B of Fk such that |A ∩ B| ≥ 1. Given X(A∪B)c = c, let us consider the support of
XA∪B. If

∑
j∈(A∪B)c∩Fk

cj = 1, then the support of XA∪B | X(A∪B)c = c only includes
the 0|A∪B| vector. So, it trivially contains a single equivalence class. Conversely, when∑

j∈(A∪B)c∩Fk
cj = 0, the support of XA∪B | X(A∪B)c contains all the canonical vectors of

length |A ∪ B|. This is true because the rows of X are randomly selected such that all
treatment combinations have positive probability. Consider any two vectors x and y in
the support of XA∪B | X(A∪B)c . Note that, since both vectors x and y have a single non
zero entry (=1), there can only be one of the two following cases, with the roles of x and
y being reversible:

(a) xA\B = yA\B = 0|A\B| or xB\A = yB\A = 0|B\A|.

(b)
∑

j∈A\B x{j} = 1, yA\B = 0|A\B| and xB\A = 0|B\A|,
∑

j∈B\A y{j} = 1.

In case (a), the two vectors x and y are connected through A \B and B \A respectively.
This shows that any two vectors in the support of XA∪B | X(A∪B)c are coordinatewise
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connected through A \B and B \A, thereby proving that support of XA∪B | X(A∪B)c has
only one equivalence class (through A \B and B \ A).

In case (b), consider a canonical vector z with
∑

j∈A∩B z{j} = 1. If |A ∩ B| > 1, then
z could be any canonical vector with

∑
j∈A∩B z{j} = 1 and if |A ∩ B| = 1, then z is

the canonical vector with zA∩B = 1 and zeros in all other indices. Then, xB\A = zB\A
and yA\B = zA\B. Note that z belongs to the support of XA∪B | X(A∪B)c . This shows
that x and y are equivalent, which shows that support of XA∪B | X(A∪B)c has only one
equivalence class (through A \B and B \ A).

Therefore, in both cases (a) and (b), the support of XA∪B | X(A∪B)c has only one equiv-
alence class proving ∆ contains all sets of the form {A,B} where |A ∩ B| ≥ 1 and
A,B ⊆ Fk.

Step 2: ∆ contains sets of the form {A,B}, A ⊆ Fk, B ⊆ F c
k Consider A ⊆ Fk

and B ⊆ F c
k . Without loss of generality, we can assume that both A and B are non-

empty. If both A and B are singletons, then, the support of XA∪B | X(A∪B)c only has one
element which is determined by X(A∪B)c . Consider the case when one of A and B is a
singleton. Suppose, A is a singleton. Then for all points in the support of XA∪B | X(A∪B)c

will be either have xA = 0 or xA = 1. In both the cases, any two points in the support is
coordinatewise connected through A \B (= A). The case when B is a singleton is same
as then B is a proper subset of some other factor (k′) and A is a subset of F c

k′ .

So, the only case left is when both |A| ≥ 2 and |B| ≥ 2. Consider any point x in
the support of XA∪B | X(A∪B)c = c for some vector c in the support of X(A∪B)c . If∑

j∈Ac∩Fk
x{j} = 1, then for all points in the support, xA = 0|A| making the support

coordinatewise connected through A \ B (= A). If
∑

j∈Ac∩Fk
x{j} = 0, then for any

point x in the support xA = ei for some i. Here ei represent canonical vectors of length
|A|. Consider any two points x and y in the support of XA∪B | X(A∪B)c = c. Define
z = (xA, yB). Since z satisfies the criteria

∑
j∈Fk

z{j} = 1, z lies in the support. x and
z are coordinatewise connected through A \ B (= A) and y and z are coordinatewise
connected through B \ A (= B). This implies x and y are equivalent which proves the
support of XA∪B | X(A∪B)c has only one equivalence class. Therefore ∆ contains all sets
of the form {A,B} such that A ⊆ Fk and B ⊆ Fkc .

Step 3: For M with |Mc ∩ Fk| ≥ 2, Mk ⊇ SF ∩ Fk Consider any Markov bound-
ary such that |Mc∩Fk| ≥ 2 and some i ∈ Mc∩Fk. Since |Mc∩Fk| ≥ 2, there exists some
j ∈ (Mc ∩ Fk) \ {i}. By the weak union property, since {i, j} ⊆ Mc, Y ⊥⊥ XMc | XM
implies Y ⊥⊥ X{i,j} | X{i,j}c . This means i ∈ Sc

F ∩ Fk. Therefore, Mc ∩ Fk ⊆ Sc
F ∩ Fk

which proves Mk = M∩ Fk ⊇ SF ∩ Fk.

Step 4: For M with |Mc ∩ Fk| ≥ 2, Mk = SF ∩ Fk To show this, it is enough
to show that Mk ̸⊃ SF ∩ Fk. We will first begin by showing that

Y ⊥⊥ XSc
F∩Fk

| X(SF∩Fk)∪F c
k
.
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This is equivalent to showing Sc
F ∩ Fk ∈ (∆◦)lI for some finite l. Consider the sets in I

which have both the elements in Fk. We call the collection of those sets Ik. Formally,

Ik = I ∩ {{i, j} : i, j ∈ Fk}.

Then Sc
F ∩ Fk can be written as the union of all the sets in Ik. Consider any A,B ∈ Ik.

By step 1, if |A ∩ B| ≥ 1, {A,B} ∈ ∆. Since all the elements in Ik are assumed
to be connected by a sequence of true bivariate conditional hypotheses (of the form
Hi,j : {i, j} ⊆ Fk), we have Sc ∩ Fk ∈ (∆◦)lkIk where lk = |Ik|. Therefore,

Y ⊥⊥ XSc
F∩Fk

| X(SF∩Fk)∪F c
k
.

Now, M is a Markov boundary implies Y ⊥⊥ XMc | XM which further implies, by the
weak union property,

Y ⊥⊥ XMc∩F c
k
| XM∪Fk

.

Define A = Sc
F ∩Fk and B = Mc∩F c

k . Since A and B satisfy the form of sets considered
in Step 2, {A,B} ∈ ∆. Therefore Y ⊥⊥ XA∪B | XAc∩Bc . Putting the expressions of A and
B we get,

Y ⊥⊥ X(Sc
F∩Fk)∪(Mc∩F c

k)
| X(SF∩Fk)∪(M∪F c

k)
.

So, (SF ∩ Fk) ∪ (M∪ F c
k ) is a Markov blanket. If SF ∩ Fk ⊊ M∩ Fk, then (SF ∩ Fk) ∪

(M∪F c
k ) ⊊ M which is a contradiction to the definition of Markov boundary. Therefore

SF ∩ Fk = M∩ Fk. This completes the proof of Step 4 and hence, Corollary 2.2.

B.5 Proof of Theorem 3.4

If S = [p], Y ⊥̸⊥ X{i,j} | X{i,j}c for all i ̸= j. In particular, Y ⊥̸⊥ X{i,j} | X{i,j}c for all
{i, j} ⊆ D. Therefore, SD = D which proves first part of the Theorem. For the other
case, first note that SD ⊇ S ∩ D. When Sc ∩ D = ∅, D ⊆ S which implies SD ⊆ S ∩ D.
Combining them we get, SD = S ∩ D.

Now consider the case |Sc ∩ D| > 1. For the sake of contradiction, suppose there exists
i ∈ SD\S. Since |Sc∩D| ≥ 2, there exists j ̸= i such that j ∈ D\S. Therefore {i, j} ⊆ Sc.
Since the conditions of Theorem 2.1 are satisfied in this case, we have S = M and hence,
Y ⊥⊥ XSc | XS . By the weak union property (Pearl, 1988) Y ⊥⊥ X{i,j} | X{i,j}c . This
implies i /∈ SD which is a contradiction. Therefore, SD ⊆ S∩D. Since we already showed
that SD ⊇ S ∩ D, SD = S ∩ D.

Finally, as we already mentioned, the conditions of Theorem 2.1 are satisfied here. So,
S = M. Combining everything, SD = S ∩ D = M∩D which proves the Theorem.

B.6 Proof of Theorem 3.1

Since we are considering Bonferroni’s p-values after h−1 rejections (call the corresponding
rejection set Ŝ), we have the following p-values to consider:

PB
j (Ŝ) = (p− s)P(s−h+1),j(Ŝ) for all j ∈ Ŝc.

Now, these p-values are valid for the null variables j (i.e., j ∈ Sc) if there are at least
p−s−1 null p-values in the vector PŜc\{j},j. If there are no null variables in the rejection
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set after the h− 1th step—Ŝ, then there are indeed p− s− 1(≥ p− s− 1) null p-values
in this vector which is ensured by our assumption.

So, PB
j (Ŝ) are valid for all null j if and only if Ŝ does not contain any null variables.

Coming back to the proof of validity of the Bonferroni–Holm method (described in Al-
gorithm 1), this method introduces an order among the hypotheses Hj : j ∈ [p] which
is the order in which each column is considered for rejection (if we were to reject all
the variables). Let the hypotheses arranged according to this order be represented as
H(1),H(2), . . . ,H(p). Suppose H(h) is the first falsely rejected null hypothesis and let us
denote the corresponding variable as j⋆. Since j⋆ is a null variable and all the h− 1 vari-
ables corresponding to the hypotheses H(1),H(2), . . . ,H(h−1) which were rejected prior to

it were non-null, Bonferroni’s p-value PB
j⋆(Ŝ) is superuniform. So, we have,

PB
j⋆(Ŝ) ⪰ Uniform[0, 1].

Let us now consider the cutoff values. Since only non-null variables are rejected before
step h, h < s + 1. This implies p − h + 1 ≥ p − s. Therefore, j⋆ is rejected implies

PB
j⋆(Ŝ) ≤ α

p− h+ 1
≤ α

p− s
. Using these results, we can upper bound the FWER as

follows:

FWER = P(V > 1) = P

(⋃
j∈Sc

{j is rejected}

)
= P

(
PB
j⋆(Ŝ) ≤

α

p0

)

= P

(⋃
j∈Sc

{
PB
j (Ŝ) ≤

α

p0

})
≤
∑
j∈Sc

P
(
PB
j (Ŝ) ≤

α

p0

)
≤
∑
j∈Sc

α

p− s
= α.

B.7 Proof of Theorem 3.2

The proof of this theorem follows the exact same structure as the proof of Theorem 3.1.
The only difference is that, we are using Simes’ p-values here instead of Bonferroni’s
p-values. For any column j, after h− 1 rejections and the corresponding rejection set Ŝ,
we have the following p-values to consider:

P S
j (Ŝ) := min

s−h+1≤i≤p−h

{
p− s

i− s+ h
P(i),j(Ŝ)

}
For a null variable j, this p-value is valid when there are at least p−s−1 null p-values in
the vector P[p]\{Ŝ∪{j}},j and P[p]\{Ŝ∪{j}},j satisfy the PRDS assumption (see Appendix B.8
for definition) which is true by the assumptions of this Theorem. Therefore, we only need
to show that there are at least p− s− 1 p-values in P[p]\{Ŝ∪{j}},j. This is exactly what we
have showed in Appendix B.6. So, using a similar argument, we can show that FWER
≤ α.
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B.8 Proof of Theorem 3.3

Simes p-values are defined as follows:

P S
j = min

s≤i≤p−1

p− s

i− s+ 1
P(i),j.

Simes p-values are superuniform under the partial conjunction null assuming the base
p-values are PRDS (Benjamini and Heller, 2008, Theorem 1). Formally, the PRDS as-
sumption, defined in Benjamini and Yekutieli (2001), is as follows:

Definition B.1 (Positive Regression Dependency on the Subset (PRDS)). (Benjamini
and Yekutieli, 2001) We say that p-values P ′ := (P ′

1, P
′
2, . . . , P

′
m) satisfy the PRDS prop-

erty on a subset I0 ⊆ [m] if, for any increasing set D ∈ [0, 1]m and each j ∈ I0, the
probability P(P ′ ∈ D | P ′

j = x) is non-decreasing in x. Here, D is called a non-decreasing
set if x ∈ D and y ≥ x implies that y ∈ D as well. We simply say that the p-values P ′

are PRDS if the p-values satisfy are PRDS on the the entire set [m].

To prove the validity of our method, it is enough to show that the PRDS assumption on
the base p-values implies that the Simes p-values are also PRDS (Benjamini and Yekutieli,
2001, Theorem 1.2). We will do so using Bogomolov (2021, Theorem 3.1). Specifically,
we will be examining conditions outlined in item 1 of the Theorem—we restate a special
case of their Theorem below in our notation, but first we need a few new definitions.

Definition B.2 (Blanchard and Roquain (2008)). A threshold collection ∆ is function

∆ : (j, r) ∈ [m]× R+ → ∆(j, r) ∈ R+,

which is non-decreasing in its second input. A factored threshold collection is a
threshold collection of the form

∆(j, r) =
αwjβ(r)

m
∀(j, r) ∈ [m]× R+,

where wj is a prior weight for the ith hypothesis and β : R+ → R+ is a non-
decreasing function called a shape function. Given a threshold collection ∆, the ∆-
thresholding-based multiple testing procedure at rejection volume r is a multiple
testing procedure that has the following rejection set when applied to the vector of p-values
P ′ = {P ′

1, . . . , P
′
m}:

L∆(r) = {j ∈ [m] : P ′
j ≤ ∆(j, r)}.

Definition B.3 (Bogomolov (2021)). Consider a multiple testing procedure applied on a
set of p-values {P ′

j : j ∈ [m]} corresponding to hypotheses {Hj : j ∈ [m]} with the set
of indices of rejected hypotheses R = R(P ′) ⊆ [m].

1. The procedure is called self consistent with respect to threshold collection ∆ if the
rejection set R satisfies R ⊆ L∆(|R|) almost surely.

2. The procedure is non-increasing if |R(P ′)| is non-increasing in each p-value
P ′
j , j ∈ [m].
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3. The procedure is said to follow the natural monotonicity property if given a
set of rejected hypotheses R1, decreasing a certain p-value will result in rejecting a
superset R2.

Definition B.4 (Wright (1992)). The adjusted p-value for a particular hypothesis within
a collection of hypotheses of a certain multiple testing procedure is the smallest overall
significance level at which the multiple testing procedure rejects said particular hypothesis.

When the multiple testing procedure is Benjamini–Hochberg at level α (BH) applied on
a set of p-values {P ′

j : j ∈ [m]}, the jth adjusted p-value is

max
k∈[m]: P ′

k≥P ′
j

{
P ′
k ·m

rank(P ′
k;P

′)

}
,

where rank(P ′
k;P

′) is the rank of P ′
k in P ′ (Yekutieli and Benjamini, 1999).

Theorem B.1 (Bogomolov (2021), Theorem 3.1). Consider M base null hypotheses with
p-values P ′

1, . . . , P
′
M , grouped into m groups Aj, for j ∈ [m], with |Aj| = mj. Let P be a

self-consistent multiple testing procedure with respect to thresholds of the form ∆(j, r) =

αr/m ∀ j ∈ [m]. Consider a family of partial conjunction hypotheses {Hrj/mj

0,j , j ∈ [m]}
for the m groups of p-values. For each j ∈ [m], let Pj be a multiple testing procedure
satisfying the natural monotonicity property and for each j ∈ [m], the partial conjunction

p-value P
rj/mj

j is connected to Pj in the following way:

P
rj/mj

j = max
{
P

1/(mj−rj+1)
j [A] : A ⊆ Aj, |A| = mj − rj + 1

}
,

where P
1/(mj−rj+1)
j [A] is the minimum adjusted p-value according to Pj applied on the

p-values with indices in A. Suppose the procedure P, the procedures {Pj, j ∈ [m]}, and
the base p-values satisfy the following conditions:

(a) The p-values {P ′
1, . . . , P

′
M} are PRDS on the set of true base null hypotheses.

(b) The multiple testing procedure P is non-increasing.

(c) For each j ∈ [m], the multiple testing procedure Pj is self-consistent with respect to
thresholds of form ∆(i, r) = αr/mj.

Then, if I0 denotes the set of true partial conjunction hypotheses Hrj/mj

0,j and R denotes

the set of rejections when the procedure P is applied on {P rj/mj

j , j ∈ [m]} at level α, the
FDR of the resulting procedure

E
[
|R ∩ I0|
|R|

]
≤ α

|I0|
m

≤ α.

For Algorithm 3, the multiple testing procedure P is BH and m = p. We will be show-
ing shortly that the multiple testing procedures P1,P2, . . . ,Pm connected to the partial
conjunction p-values in Algorithm 3 are also BH. For all j ∈ [p], the partial conjunction

p-value P
rj/mj

j = P S
j with rj = s, mj = p− 1, and Aj = {(i, j) : i ∈ {j}c}.
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We will begin the proof of validity of Algorithm 3 by proving that BH is self-consistent,
non-increasing and has the natural monotonicity property. Specifically, we will consider
BH applied on a vector of m̃ p-values P̃ = (P̃1, P̃2, . . . , P̃m̃). To show self-consistency, we
will show the rejection set

R = R(P̃ ) ⊆
{
j ∈ [m] : P̃j ≤

α|R|
m

}
.

We begin by noting the following identities about the rejection set of the BH procedure.

R = {j ∈ [m̃] : Pj ≤ P̃(|R|)}

and

|R| = max

{
j ∈ [m̃] : P̃(j) ≤

αj

m̃

}
.

Here for any j ∈ [m̃], P̃(j) denotes the jth ordered p-value among {P̃1, P̃2, . . . , P̃m̃}. In

particular, P̃(|R|) ≤ α|R|
m̃

. This, combined with the first identity implies that for any

j ∈ R, P̃j ≤ α|R|
m̃

which proves self-consistency of BH. This proves that the methods
P ,P1,P2, . . . ,Pm are all self-consistent.

To show that BH is non-increasing and follows the natural monotonicity property, we
consider some j⋆ ∈ [m̃] and define Q̃ = (P̃1, . . . , P̃j⋆−1, Q̃j⋆ , P̃j⋆+1, . . . , P̃m̃) where Q̃j⋆ ≥
P̃j⋆ . To prove BH satisfies the natural monotonicity property, we will show that R(P̃ ) ⊇
R(Q̃) and to show that BH is non-increasing, we will show that |R(P̃ )| ≥ |R(Q̃)|. For
the proof, first observe that the ordered vectors of P̃ and Q̃ satisfy P̃(j) ≤ Q̃(j) for all
j ∈ [m̃]. Therefore{

j ∈ [m̃] : P̃(j) ≤
αj

m̃

}
⊇
{
j ∈ [m̃] : Q̃(j) ≤

αj

m̃

}
.

Since |R(P̃ )| = max
{
j ∈ [m̃] : P̃(j) ≤ αj

m̃

}
and |R(Q̃)| = max

{
j ∈ [m̃] : Q̃(j) ≤ αj

m̃

}
, we

get that |R(P̃ )| ≥ |R(Q̃)| proving BH is non-increasing. Then, the natural monotonicity
property holds because of the following:

R(P̃ ) =

{
j ∈ [m̃] : P̃j ≤

α|R(P̃ )|
m̃

}
⊇

{
j ∈ [m̃] : P̃j ≤

α|R(Q̃)|
m̃

}

⊇

{
j ∈ [m̃] : Q̃j ≤

α|R(Q̃)|
m̃

}
= R(Q̃).

The first inclusion (⊇) holds because |R(P̃ )| ≥ |R(Q̃)|, and the second inclusion follows
from the fact that Q̃j ≥ P̃j for all j ∈ [m]. This proves that the BH procedure, and by
extension the multiple testing procedures P1,P2, . . . ,Pm, follow the natural monotonicity
property.

Next, we will establish the connection between the Simes’ partial conjunction p-values
and BH. For that, we again consider a vector of p-values P̃ = (P̃1, P̃2, . . . , P̃m̃) and some
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r̃ ≤ m̃. We want to show that the Simes’ PCH p-value P r̃,m̃ (as defined in Equation (3),
with P·,j replaced by P̃ , s by r̃, and p− 1 by m̃) satisfies the following

P r̃,m̃ = max
{
P 1,m̃−r̃+1[A] : A ⊆ [m̃], |A| = m̃− r̃ + 1

}
,

where P 1,m̃−r̃+1[A] is the minimum adjusted p-value according to BH applied to the
subvector P̃A. The set of adjusted p-values for BH applied to P̃A is{

m̃− r̃ + 1

rank(P̃j; P̃A)
P̃j : j ∈ A

}
,

where rank(P̃j; P̃A) is the rank of P̃j in P̃A. Therefore, it is enough to show

min
r̃≤j≤m̃

m̃− r̃ + 1

i− r̃ + 1
P̃(j) = max

A⊆[m̃]:|A|=m̃−r̃+1
min
j∈A

m̃− r̃ + 1

rank(P̃j; P̃A)
P̃j. (7)

Now,

min
j∈A

m̃− r̃ + 1

rank(P̃j; P̃A)
P̃j = min

j∈[m̃−r̃+1]

m̃− r̃ + 1

j
(P̃A)(j),

where (P̃A)(j) denotes the jth ordered p-value in P̃A. Define Amax as the set of m̃− r̃+ 1

maximum p-values in P̃ . Then

((
P̃Amax

)
(1)

,
(
P̃Amax

)
(2)

, . . . ,
(
P̃Amax

)
(m̃−r̃+1)

)
is coordi-

natewise greater than or equal to

((
P̃A

)
(1)

,
(
P̃A

)
(2)

, . . . ,
(
P̃A

)
(m̃−r̃+1)

)
which implies

min
j∈[m̃−r̃+1]

m̃− r̃ + 1

j
(P̃Amax)(j) ≥ min

j∈[m̃−r̃+1]

m̃− r̃ + 1

j
(P̃A)(j) for any A ⊆ [m̃], |A| = m̃−r̃+1.

Therefore, the RHS of Equation (7) equals

max
A⊆[m̃]:|A|=m̃−r̃+1

min
j∈A

m̃− r̃ + 1

rank(P̃j; P̃A)
P̃j = min

j∈Amax

m̃− r̃ + 1

rank(P̃j; P̃Amax)
P̃j

= min
j∈{r̃,...,m̃}

m̃− r̃ + 1

j − r̃ + 1
P̃(j)

= LHS of Equation (7).

Therefore, the Simes’ PC p-values and BH are connected as stated in Theorem B.1 which
proves the connection of the Simes’ PC p-values P S

j and BH in Algorithm 3.

Finally, we assume that the p-values {Pi,j : i, j ∈ [p], i ̸= j} are PRDS. We have demon-
strated that Algorithm 3 satisfies all the conditions of Theorem B.1, which implies that
it controls the FDR at level α.

B.9 Proof of Lemma B.1

Define the transformation h : Rp → Rp+1 as follows:

g(Z) = (X,T ) X{j} =
Z{j}∑p
k=1 Z{k}

∀j ∈ [p], T =

p∑
k=1

Z{k}

48



X lies on the p − 1 dimensional simplex. For any d ∈ N define Hd and λd as the d-
dimensional Hausdorff measure and Lebesgue measure in Rd respectively. So fZ is the
Radon–Nikodym derivative or simply the probability density function of Z with respect
to λp. fX is the Radon–Nikodym derivative of the push forward measure of X induced
by h and the measure of Z with respect to Hp−1 if and only if P (X ∈ B) =

∫
B
fXdH

p−1

for all open sets B on the p− 1 dimensional simplex. Now

P (X ∈ B) =

∫
h−1(B×[0,∞))

fZdλp =

∫
B×[0,∞)

fZ(xt)D(x, t)dHp

where D(x, t) is the appropriate volume element associated with this change of vari-
ables. If J(x, t) is the Jacobian of the transformation h at (x, t), then D(x, t) =

det
(
J(x, t)TJ(x, t)

)− 1
2 . Now,

∂xi

∂zi
=

∑
j ̸=i zi

(
∑p

j=1 zj)
2
=

1

t
− xi

t
,

∂xi

∂zj
=

−zi
(
∑p

j=1 zj)
2
= −xi

t
,

∂t

∂zi
= 1

implying J(x, t) =

(
1
t
Ip − 1

t
x1T

p

1T
p

)
and hence J(x, t)TJ(x, t) = 1

t2
Ip + (1 + 1

t2
xTx)1p1

T
p −

1
t2
1px

T − 1
t2
x1T

p .

∴ det(J(x, t)TJ(x, t)) =
1

t2p
det
(
Ip + (t2 + xTx)1p1

T
p − 1px

T − x1T
p

)
=

1

t2p
det

Ip +
(√

t2 + xTx1p −1p −x
)√

t2 + xTx1T
p

xT

1T
p


=

1

t2p
det

I3 +

p(t2 + xTx) −p
√
t2 + xTx −

√
t2 + xTx√

t2 + xTx −1 −xTx

p
√
t2 + xTx −p −1


=

1

t2p
det

1 + p(t2 + xTx) −p
√
t2 + xTx −

√
t2 + xTx√

t2 + xTx 0 −xTx

p
√
t2 + xTx −p 0


=

1

t2p
pt2 =

p

t2(p−1)
.

So, D(x, t) ∝ tp−1 which implies the following

P (X ∈ B) ∝
∫
B×[0,∞)

fZ(xt)t
p−1dHp

∝
∫
B

∫
[0,∞)

fZ(xt)t
p−1dλ1dH

p−1

Define

fX(x) = c

∫
[0,∞)

fZ(xt)t
p−1dλ1 = c

∫ ∞

0

fZ(xt)t
p−1dt

where c is a constant
(
=
∫
∆p−1

∫
[0,∞)

fZ(xt)t
p−1dλ1dH

p−1
)
. Then by Radon–Nikodym

Theorem, fX is the density of X with respect to Hp−1.

Now, to show the Lemma, we first prove the following claims
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Claim 1: Supp>0(X) ⊇ g
(
Supp>0(Z)

)
Consider a point z ∈ Supp>0(Z) and define

x = g(z). We want to prove that x ∈ Supp>0(X). Since fZ is continuous in Rp \ 0p and
fZ(z) > 0, fZ(z

′) > 0 for all z′ in some open neighborhood of z. Formally, there exists
ϵ > 0 such that fZ(z

′) > 0 ∀ z′ ∈ Bϵ(z) ∩ [0,∞)p \ 0p. Then, we have the following

fX(x) = c

∫ ∞

0

fZ(tx) · tp−1dt ≥ c

∫ max({t: xt∈Bϵ(z)∩[0,∞)p\0p})

min({t: xt∈Bϵ(z)∩[0,∞)p\0p})
fZ(tx) · tp−1dt.

Note that for any z ∈ [0,∞)p \ 0p and x = g(z), {t : xt ∈ Bϵ(z) ∩ [0,∞)p \ 0p}
is an open interval. This, together with the fact that fZ(tx) > 0 and t > 0 for all
t ∈ {t : xt ∈ Bϵ(z) ∩ [0,∞)p \ 0p}, imply that, fX(x) > 0 which proves Claim 1.

Claim 2: Supp> 0(X) ⊆ g (Supp> 0(Z)) It is enough to show that for any point
x ∈ ∆p−1 such that fX(x) > 0, there exists z ∈ [0,∞)p \ 0p such that fZ(z) > 0.
Assume the contrapositive, i.e., fZ(z) = 0 for all z ∈ Rn such that x = g(z). Then,∫∞
0

fZ(tx)t
p−1dt = 0, which implies fX(x) = 0, contradicting our assumption. Therefore,

there must exist z such that fZ(z) > 0 and x = g(z). This proves Claim 2 and, in turn,
the Lemma.

C Application of Theorem 2.1 for gene knockout ex-

periments.

In Corollary 2.2, we considered regression problems with factor covariates where each
observation is assigned a single level from each factor. We can generalize this setup where
each observation receives multiple levels from a single factor. This arises frequently in
gene knockout experiments where exactly L out of p genes are knocked out per individual,
resulting in the sum of each row of the binary design matrix equal to L. For simplicity we
consider only one factor with L levels and define S and the nontrivial Markov boundary
as in Section 2.1.

Corollary C.1 (Uniqueness of nontrivial Markov boundary for gene knockout experi-
ments). Consider a regression problem where the covariate X denotes levels of a single
factor. If S = [p] then no nontrivial Markov boundary exists. Otherwise if (Y,X) satisfies
the following two assumptions:

(i) For all i, j ∈ Sc, there exists a finite t and a sequence l1, l2, . . . , lt such that Hi,l1,
Hl1,l2, . . . , Hlt−1,lt, Hlt,j are all true,

(ii) Positive probability is assigned to all vectors x such that
∑

j∈[p]X{j} = L,

then S is the unique nontrivial Markov boundary.

Proof of Corollary C.1. If S = [p], Theorem 2.1 proves there does not exist any nontrivial
Markov boundary. Lets consider the other case, that is |S| < p. By assumption (i), to
prove Corollary C.1 using Theorem 2.1, using the same logic as in Appendix B.3, it is
enough to show that {A,B} ∈ ∆ for any A,B ⊆ [p] such that |A ∩ B| = 1 and |B| = 2.
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So, we choose any such A,B and consider the distribution of XA∪B | X(A∪B)c = c.
Define L1 = L − ||c||1 = |XA∪B| and L2 = L − L1. If L1 = 0, then the support of
XA∪B | X(A∪B)c = c is equal to the set {0p} which is path connected. Otherwise if L1 > 0,
consider any two points x and y in the support of XA∪B | X(A∪B)c = c. If xB\A = yB\A,
then they are coordinatewise connected through B\A implying {A,B} ∈ ∆. In the other
case, when xB\A ̸= yB\A, assume WLOG that xB\A = 1 and yB\A = 0. There are three
cases based on the values of xA∩B and yA∩B:

Case 1: (xA∩B = yA∩B = 0)
We introduce the following notation: for any vector w ∈ Rp, we denote
w = (wA\B, wA∩B, wB\A, w(A∪B)c). In the case xA∩B = yA∩B = 0, define
z = (xA\B, 1, yB\A, c).

∑
j∈[p] z{j} = L which implies z is in the support of

XA∪B | X(A∪B)c = c by assumption (ii). x and z are coordinatewise connected
through A \ B and y and z are coordinatewise connected through B \ A proving
the equivalence of x and y through A \B and B \ A.

Case 2: (yA∩B = 1)
Define z = (yA\B, 0, xB\A, c). Similar to case 1, since

∑
j∈[p] z{j} = L, assumption

(ii) implies that z is in the support of XA∪B | X(A∪B)c = c. Also, x and z are
coordinatewise connected through B \A and y and z are connected through A \B
which shows that x and y are equivalent through A \B and B \ A.

Case 3: (xA∩B = 1 and yA∩B = 0)
Since

∑
j∈A\B x{j} −

∑
j∈A\B y{j} = 2, xA\B must have at least two zeros. De-

fine x′
A\B as xA\B with one additional 1 in place of a zero. Then if we define

x(1) = (x′
A\B, 0, xB\A, c),

∑
j∈[p] z

(1)
{j} = L which implies x(1) belongs to the support

of XA∪B | X(A∪B)c = c. Define another point x(2) = (x′
A\B, 1, 0, c). Again, entries of

x(2) also add up to L implying x(2) belongs to the support of XA∪B | X(A∪B)c = c
by assumption (ii). Finally, we note that the following:

- x and x(1) are coordinatewise connected through B \ A.

- x(1) and x(2) are coordinatewise connected through A \B.

- x(2) and y are coordinatewise connected through B \ A.

Together, they imply x and y are equivalent through A \B and B \ A.

Therefore, in all the cases, x and y are equivalent through A \B and B \A which shows
that XA∪B | X(A∪B)c has only one equivalence class. Hence, {A,B} ∈ ∆. This is true for
any A,B such that |A ∩ B| = 1 and |B| = 2. Hence, we can apply Theorem 2.1 which
completes the proof of Corollary C.1. □

While Corollary C.1 is stated for a single factor, one can extend it to the L-factor case
similar to Corollary 2.2.
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D Pseudocode of Algorithms

D.1 FWER control

Algorithm 1: Method: (for FWER control under arbitrary dependence)

Data: P-value matrix P ∈ [0, 1]p×p, desired FWER threshold α, and a strict
upper bound on the number of non-nulls s

Result: Rejected indices Ŝ
1 Initialize: Ŝ = ∅
2 for k ∈ [p] :
3 for j ∈ [p] :

4 Define Bonferroni’s p-value PB
j (Ŝ) as in Equation (5).

5 Define j⋆ = argmin
j∈[p]

PB
j (Ŝ).

6 if PB
j⋆(Ŝ) ≤

q
p−k+1

then

7 Add j⋆ to Ŝ;
8 else

9 return Ŝ.
10 return Ŝ.

Algorithm 2: Method: (for FWER control under positive dependence)

Data: P-value matrix P ∈ [0, 1]p×p, desired FWER threshold α, and a strict
upper bound on the number of non-nulls s

Result: Rejected indices Ŝ
1 Initialize: Ŝ = ∅
2 for k ∈ [p] :
3 for j ∈ [p] :

4 Define Simes’ p-value P S
j (Ŝ) as in Equation (6).

5 Define j⋆ = argmin
j∈[p]

P S
j (Ŝ).

6 if P S
j⋆(Ŝ) ≤

q
p−k+1

then

7 Add j⋆ to Ŝ;
8 else

9 return Ŝ.
10 return Ŝ.
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D.2 FDR control

D.3 FDR control

Algorithm 3: Detecting Markov boundary while Controlling FDR

Data: P-value matrix P ∈ [0, 1]p×p, desired FDR threshold α, and a strict upper
bound on the number of non-nulls s

Result: Rejected indices Ŝ
1 Initialize: Ŝ = ∅
2 for j ∈ [p] :
3 Define Simes’ p-value P S

j as in Equation (3).

4 Sort Simes’ p-values in ascending order: P S
(1) ≤ P S

(2) ≤ · · · ≤ P S
(p);

5 Define k⋆ = max
{
k ∈ [p] : P S

(k) ≤
k
p
· α
}
;

6 Define Ŝ =
{
j : P S

j ∈
{
P S
(1), . . . , P

S
(k⋆)

}}
;

7 return Ŝ;

E Additional simulation details

E.1 Conditional independence testing for simulations

In Section 3.4, we mentioned that any conditional independence test could be used to
obtain the Pi,j’s. For our simulations, we use the distilled conditional randomization
test (dCRT) (Liu et al., 2022), which is a computationally efficient special case of the
conditional randomization test (Candès et al., 2018), to test the hypotheses Hi,j : Y ⊥
⊥ X{i,j} | X{i,j}c for i, j ∈ [p]. To describe how we implement the dCRT, we need to
introduce some notation first. Let Y denote the vector of observed outcomes and let X
denote the design matrix. X{i,j} denotes the matrix of the ith and jth columns of X and
X{i,j}c denotes the matrix with all the columns of X except i and j.

The first step of the dCRT is to draw samples X̃(1)
{i,j}, X̃(2)

{i,j}, . . . , X̃(K)
{i,j} independently

from the distribution of X{i,j} | X{i,j}c . Since, in our simulations, rows of X consist of

independent observations of the random variable X, each row of X̃(k)
{i,j} can be sampled

independently from the conditional distribution X{i,j} | X{i,j}c .

Now we define the test statistics for dCRT. Let Ŷ ∈ Rn denote the fitted values obtained
from a 5-fold cross-validated LASSO fitting Y to X{i,j}c . Also, for any vector y ∈ Rn and
matrix z ∈ Rn×2, define T (y, z) as the R2 from the regression of y on log(z). Then the
dCRT p-value is defined as follows:

Pi,j =
1

K + 1

(
1 +

K∑
k=1

1{
T
(
Y−Ŷ,X̃(k)

{i,j}

)
≥T(Y−Ŷ,X{i,j})

}
)
. (8)

Under Hi,j, the dCRT p-value Pi,j has a super-uniform distribution because it is a special
case of the conditional randomization test, which is proved to be valid in Candès et al.
(2018).
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E.2 Dirichlet

As mentioned in the previous subsection, we use thedCRT (Liu et al., 2022) to test the
base hypotheses Hi,j. For each i, j ⊂ [p], we calculate the p-value Pi,j as described in
Appendix E.1. For the benchmark LOO methods, we select some j ∈ [p] at random and

for each i ∈ {j}c, we define d
{i}
Y as the prediction from a 5-fold cross-validated LASSO

regression of Y on X{i,j}c . Since X{j}c is non-compositional, we draw resamples from
X{i} | X{i,j}c (which follows a Beta distribution in this case). Then, we define the r-

squared of the regression of Y − d
{i}
Y on log(Xi) as the test statistic T and calculate

p-values as in Liu et al. (2022, Algorithm 1). In this way, we only get p-values for all
i ∈ {j}c.
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Figure 4: Comparison of FWER and average power for variable selection with Dirichlet
covariates. The target FWER level is 10% and error bars correspond to ±2 Monte Carlo
standard errors.

Figure 4 shows that like in the case of FDR control (Figure 1b), the proposed methods—
BCP(p− 1)-Holm, BCP(p/2)-Holm and BCP(s+1)-Holm—control the FWER at a level
much below the nominal level of 10% while the benchmark method LOO-Holm violates
the FWER level. In terms of average power, BCP(p/2)-Holm and BCP(s + 1)-Holm
achieve comparable average power to LOO-Holm.

E.3 Logistic-normal

For this distribution, the conditional distribution ofX{i,j} givenX{i,j}c lacks a closed form,
which is why we use MCMC to generate dCRT resamples. These resamples although
not independent, are exchangeable, which is sufficient for validity. Figure 5 shows that
LOO methods fail to control respective error rates while the proposed methods control
the same (Figure 5). BCP(p/2) and BCP(s + 1) methods achieve power and average
power similar to the benchmarks. In contrast to the Dirichlet case, BCP(p− 1) methods
have considerably lower average power than the rest of the methods in multiple testing
scenarios.
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(a) Comparison of type I error and power for single testing with Logistic-normal covariates.
The target type I error is 5% and error bars correspond to ±2 Monte Carlo standard errors.
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(b) Comparison of FWER and average power for variable selection with Logistic-normal covari-
ates. The target FWER level is 10% and error bars correspond to ±2 Monte Carlo standard
errors.
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(c) Comparison of FDR and average power for variable selection with Logistic-normal covariates.
The target FDR level is 10% and error bars correspond to ±2 Monte Carlo standard errors.

Figure 5: Comparison of methods for (a) single testing, (b) FWER control and (c) FDR
control with Logistic-normal covariates.
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E.4 Multivariate normal

0.0

0.2

0.4

0.6

0 1 2 3 4 5
SNR

F
W

E
R

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5
SNR

A
ve

ra
ge

 P
ow

er

Methods

BCP(p − 1) − Holm

BCP(p 2) − Holm

BCP(s + 1) − Holm

Univariate − Holm

Figure 6: Comparison of FWER and average power for variable selection with multivari-
ate normal covariates. The target FWER level is 10% and error bars correspond to ±2
Monte Carlo standard errors.

Figure 6 shows that the three proposed methods achieve average power very close to
the benchmark Univariate-Holm while controlling FWER at a level much lower than the
nominal level 10%.

E.5 Studying the effect of conditioning on sparse covariates

Figure 3 illustrated that we can gain substantial power by conditioning out sparse co-
variates. As Figure 7 shows, the error rates for the proposed methods remain well below
the nominal levels, 5% for single testing and 10% for multiple testing, irrespective of the
number of covariates we condition out.

E.6 Robustness study

In this simulation, we study the effect of conditioning out the sparse covariates. To do
this, we generate the data from a Dirichlet distribution where the parameter vector is
a vector of 2’s of length 100. So, the distribution of X{i,j} given X{i,j}c is a scaled beta
distribution which can be used in the dCRT step. However, here we consider the scenario
where the parameters for the Dirichlet distribution are not known. Instead, we estimate
the parameters of the Dirichlet distribution using the fit dirichlet function (Minka,
2000) in R. Figures 8b and 8c show that estimating parameters has little impact on the
average power and the error rates of the proposed methods BCP(p− 1), BCP(p/2), and
BCP(s+ 1).

E.7 Bonferroni p-values

All of the plots in Section 4 used PCH p-values combined via Simes’ approach. In this
section, we present the same results for Bonferroni’s approach.
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Figure 7: Effect of conditioning out the sparse covariates on type I error (left), FWER
(middle), and FDR (right), respectively. The target type I error, FWER, and FDR are
5%, 10%, and 10%, respectively, and error bars correspond to ±2 Monte Carlo standard
errors.

Figures 9, 10, and 11 show a considerable decrease in power and average power of BCP(s),
BCP(s)-Holm, and BCP(s)-BH methods when we use Bonferroni p-values instead of
Simes in the cases of Dirichlet, Logistic-normal, and multivariate normal covariates re-
spectively. In figures 10 and 11 we see that BCP methods with Bonferroni p-values
almost always have zero power or average power. One reason for this is that 1,500 dCRT
resamples are insufficient to achieve non-zero power at these SNR values when using
Bonferroni p-values, unlike when Simes p-values are used. In order to confirm that, we
have increase the number of dCRT resamples to 25,000 in Figure 9 and we observe that
more BCP methods achieve non-zero (average) power using Bonferroni p-values. We also
observe from Figure 9b that unlike the Simes p-values, the Bonferroni p-values are not
monotone with respect to s. BCP(p − 1)-Bonferroni-Holm has non zero average power
while BCP(p/2)-Bonferroni-Holm and BCP(s + 1)-Holm both have zero average power
in the SNR range used.

While a smaller s should provide more information and yield smaller p-values, Bon-
ferroni’s p-values lack monotonicity with respect to s. To illustrate, consider a simple
example: for a particular Hs

0j with p = 4 and s = 1, suppose the base p-values are
P{j}c,j = (0.2, 0.25, 0.3). Bonferroni’s PCH p-value for s = 1 is PB

1/3 = 3 × 0.2 = 0.6,

while for s = 2, it is PB
2/3 = 2 × 0.25 = 0.5. Thus, the p-value for s = 1 is higher than

for s = 2, contrary to the expectation that a smaller s would result in a lower p-value.
Unlike Bonferroni’s p-values PB

r/n, Simes’ p-values satisfy monotonicity with respect to s.

Figure 12 shows that the power and average power of BCP methods using Bonferroni
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(a) Effect of sampling from an estimated distribution on single testing methods. The target
type I error is 5% and error bars correspond to ±2 Monte Carlo standard errors.
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(b) Effect of sampling from an estimated distribution on FWER control methods. The target
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Figure 8: Simulation studies showing the effects of sampling from an estimated Dirichlet
distribution on (a) FWER and (b) FDR control methods.
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p-values increases when we condition out more and more sparse covariates. In fact, when
we do not condition out any covariate, all BCP methods have zero power in both single
and multiple testing problems.

E.8 Performance of AdaFilter

AdaFilter (Wang et al., 2016) is a method designed for testing multiple PCHs. Standard
PCH p-values can be quite conservative which reduces power in detecting weak signals.
AdaFilter involves a filtering step which reduces the potential detected signals to a smaller
set of more promising hypotheses, giving it an edge over traditional methods in terms of
average power. Since we also combine multiple PCH tests, AdaFilter may seem like a
natural tool to use in our framework. However, AdaFilter requires independence of the
base p-values for validity and as discussed in the paragraph after Theorem 3.2, the base
p-values will typically be far from independent in our framework.

In Figure 13 we denote AdaFilter–BH and AdaFilter–Bonferroni methods with r =
s (Wang et al., 2016, Section 3.1) as adafilter(s)-BH and adafilter(s)-Bonferroni respec-
tively. Figure 13 shows that, in the Dirichlet data setting (see Section 4.1), AdaFilter
fails to control the FDR and the FWER at the nominal level (10%) particularly in the
low SNR regime, while the proposed methods, BCP(s)-BH and BCP(s)-Holm, effectively
control both the FDR and Familywise Error Rate (FWER) well below the nominal level of
10% while having comparable average power. In fact, for FWER control, adafilter(s+1)-
Bonferroni fails to control the FWER anywhere in our SNR range. So, AdaFilter is not
a suitable method for our problem. The reason, as we stated in the previous paragraph,
is the strong dependence among the p-values.

E.9 Computational speedups

In Section 3.5, we discussed two ways of significantly speeding up the proposed method.
In this section, we look at simulation studies quantifying said speedups.

But first, we mention one further computational improvement we considered that is spe-
cific to the dCRT (in fact it would apply to any conditional randomization test), which
is the conditional independence testing approach we used in our simulations to calculate
the Pi,j. In the dCRT, resamples X̃{i,j} are drawn from the conditional distribution of

X{i,j} | X{i,j}c , and a test statistic T (y, X̃{i,j}, X{i,j}c) is computed for each CRT resample
to be compared with T (y,X{i,j}, X{i,j}c). However, many resamples (we denote the num-
ber of resamples by K) are needed for a powerful test, especially for variable selection
where multiple testing corrections are applied. For faster computation, one can initially
draw a smaller number (e.g., K/10) of resamples and compute an initial p-value based
on just these resamples. If that initial p-value is above, say, 0.1, then it is very unlikely
that more resamples will lead to a very small p-value that would provide strong evidence
against any null hypothesis, and hence we could just set the p-value to 1 without further
resampling in this case. If the initial p-value is small, then we would continue resampling
to the full number K and compute the p-value as normal.

As mentioned in the main text, all three proposed computational speedups take the form
of data-dependent screening: they replace individual p-values by 1 in the absence of
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evidence of them being non-null. This makes the resulting p-values strictly superuniform
when both i and j are null variables. While this proves validity of FWER control method
as in Algorithm 2 defined using Bonferroni’s combining function, proving FDR control
is difficult. This is because the screening procedures can introduce complex dependence
among the p-values, potentially breaking the PRDS structure.

To assess the statistical impact of these computational speedups, we perform a simula-
tion study where we consider the same setup as in model 1 of Section 4.1. The setup
consists of 100 observations of the form (Y,X) where X has 100 columns and each row of
X is sampled independently from a Dirichlet distribution, making X compositional. As
Figure 14 shows, the proposed methods with the speedups effectively maintain the False
Discovery Rate (FDR) and Family-Wise Error Rate (FWER) well below the designated
threshold of 10%. Notably, the BCP(s) procedures, coupled with computational improve-
ments, demonstrate average power levels almost identical to their counterparts without
these speedups. Moreover, these optimizations reduce the average computation time for
the BCP(s) methods with BH to 3.22 minutes, compared to 15.55 minutes without the
speedups, yielding an approximate 4.8-fold decrease in computation time. The runtimes
were calculated using a single core of a second-generation Intel Xeon processor. It is also
observed that the average computation time increases with the SNR level. Specifically,
the average runtimes for SNR values of 0.25, 0.5, 1, 2, and 4 are 1.4, 2.3, 3.3, 3.5, and
3.8 minutes, respectively for BCP(s)-BH with the computational speedups. In contrast,
the run times for methods without the speedups decrease with SNR, with corresponding
times of 19.1, 17.1, 14.9, 13.5, and 12.9 minutes.

While we get approximately 5 times speedup for a 100×100 covariate matrix, the compu-
tational gains are much more pronounced for higher dimensional datasets. To illustrate
this we ran a similar experiment with 1000× 1000 dimensional covariate matrix. In this
case, we ran the proposed methods, both with and without the speedups, on a 24-core
Intel Xeon CPU parallelly. The average time taken for the proposed method without any
speedups was 23.99 hours while that of the method with them was 42.22 minutes. So, we
achieve around 34 fold increase in speed. This shows the effectiveness of these computa-
tional improvements in real world datasets where covariates are often high dimensional.
Another important point to note here is that, in this simulation, X contains no sparse
columns. When X contains sparse columns, one can substantially speed up our method
using the technique mentioned in Section 3.3.
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(a) Comparison of type I error and power for single testing with Dirichlet covariates. The target
type I error is 5% and error bars correspond to ±2 Monte Carlo standard errors.
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(b) Comparison of FWER and average power for variable selection with Dirichlet covariates.
The target FWER level is 10% and error bars correspond to ±2 Monte Carlo standard errors.
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(c) Comparison of FDR and average power for variable selection with Dirichlet covariates. The
target FDR level is 10% and error bars correspond to ±2 Monte Carlo standard errors.

Figure 9: Comparison of BCP(s) with Simes and Bonferroni PC p-values.
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(a) Comparison of type I error and power for single testing with Logistic-normal covariates.
The target type I error is 5% and error bars correspond to ±2 Monte Carlo standard errors.
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(b) Comparison of FWER and average power for variable selection with Logistic-normal covari-
ates. The target FWER level is 10% and error bars correspond to ±2 Monte Carlo standard
errors.
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(c) Comparison of FDR and average power for variable selection with Logistic-normal covariates.
The target FDR level is 10% and error bars correspond to ±2 Monte Carlo standard errors.

Figure 10: Comparison of BCP(s) with Simes and Bonferroni PC p-values for Logistic-
normal covariates.
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(a) Comparison of type I error and power for single testing with multivariate normal covariates.
The target type I error is 5% and error bars correspond to ±2 Monte Carlo standard errors.
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(b) Comparison of FWER and average power for variable selection with multivariate normal
covariates. The target FWER level is 10% and error bars correspond to ±2 Monte Carlo
standard errors.
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(c) Comparison of FDR and average power for variable selection with multivariate normal
covariates. The target FDR level is 10% and error bars correspond to ±2 Monte Carlo standard
errors.

Figure 11: Comparison of BCP(s) with Simes and Bonferroni PC p-values for multivariate
normal covariates.
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(a) Effect of conditioning out the sparse covariates on power for single testing (left) and average
power for FWER control (middle) and FDR control (right), respectively. Error bars correspond
to ±2 Monte Carlo standard errors.
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Figure 12: Comparison of effect of conditioning out sparse covariates on BCP(s) with
Simes and Bonferroni PC p-values.

64



0.0

0.2

0.4

0.6

0 1 2 3 4 5
SNR

F
W

E
R

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5
SNR

A
ve

ra
ge

 P
ow

er

Methods

adafilter(s + 1) − Bonferroni

adafilter(p 2) − Bonferroni

adafilter(p − 1) − Bonferroni

BCP(s + 1) − Holm

BCP(p 2) − Holm

BCP(p − 1) − Holm

(a) FWER and average power of AdaFilter for variable selection with Dirichlet covariates. The
target FWER level is 10% and error bars correspond to ±2 Monte Carlo standard errors.
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(b) FDR and average power of AdaFilter for variable selection with Dirichlet covariates. The
target FDR level is 10% and error bars correspond to ±2 Monte Carlo standard errors.

Figure 13: Performance of AdaFilter on Dirichlet data in controlling (a) FWER and (b)
FDR.
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(a) Comparison of FWER and average power for variable selection with computational speedups.
The target FWER level is 10% and error bars correspond to ±2 Monte Carlo standard errors.
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(b) Comparison of FDR and average power for variable selection with computational speedups.
The target FDR level is 10% and error bars correspond to ±2 Monte Carlo standard errors.

Figure 14: Comparison of proposed method with computational speedups discussed in
Section 3.5 for variable selection while controlling (a) FWER and (b) FDR control.
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