
Map-Predictive Motion Planning in Unknown Environments

Amine Elhafsi1, Boris Ivanovic1, Lucas Janson2, Marco Pavone1

Abstract— Algorithms for motion planning in unknown en-
vironments are generally limited in their ability to reason
about the structure of the unobserved environment. As such,
current methods generally navigate unknown environments by
relying on heuristic methods to choose intermediate objectives
along frontiers. We present a unified method that combines
map prediction and motion planning for safe, time-efficient au-
tonomous navigation of unknown environments by dynamically-
constrained robots. We propose a data-driven method for
predicting the map of the unobserved environment, using the
robot’s observations of its surroundings as context. These map
predictions are then used to plan trajectories from the robot’s
position to the goal without requiring frontier selection. We
demonstrate that our map-predictive motion planning strategy
yields a substantial improvement in trajectory time over a naı̈ve
frontier pursuit method and demonstrates similar performance
to methods using more sophisticated frontier selection heuristics
with significantly shorter computation time.

I. INTRODUCTION

As robots move from meticulously-organized research labs
and factory floors into natural or human-built environments,
they must be capable of safely and efficiently planning
trajectories through unexplored spaces. This is particularly
important for a variety of robotic applications, such as search
and rescue operations in uncharted areas, autonomous driving
with occluded perception, and planetary exploration.

A common approach to planning in unknown environ-
ments relies on repeatedly replanning trajectories towards
intermediate objectives within the robot’s known environ-
ment, with the expectation that the robot will eventually
arrive at its desired goal. However, such a planning strategy
is shortsighted in that it does not reason about the map
beyond the observed environment, resulting in greedy and
inefficient trajectories. For example, a robot navigating an
indoor environment may suddenly observe a perpendicular
corridor, calling for an abrupt maneuver to complete the
turn—especially if traveling at higher speeds as conceptu-
alized by Fig. 1. Similarly, the pursuit of a frontier point,
without reasoning about what may lie beyond, may lead the
robot towards an occluded obstacle, requiring the execution
of some emergency maneuver.

We begin by enumerating four desiderata of a motion-
planning algorithm for unknown environments. First, the
method must be capable of performing planning for robots
with dynamic constraints. Second, robot safety must be

*This work was supported in part by NSF, Award Number: 1931815, by
NASA under the NSTRF program, and by TRI. This article solely reflects
the opinions and conclusions of its authors and not of NSF, NASA, TRI or
any other Toyota entity.

1Department of Aeronautics and Astronautics, Stanford
University, Stanford, CA 94305, USA {amine, borisi,
pavone}@stanford.edu

2Department of Statistics, Harvard University, Cambridge, MA 02138,
USA ljanson@fas.harvard.edu

Fig. 1. Left: A frontier pursuit method plans without reasoning about the
unobserved environment. As a result, it is not prepared for the turn and
must slow down excessively and turn sharply. Right: Our motion planning
method accounts for potential upcoming turns via map prediction, enabling
a smooth and more efficient trajectory through the hallway.

guaranteed with respect to observed obstacles and the unob-
served environment, where unseen obstacles may reside. The
definition of safety in this work requires that the algorithm
does not produce trajectories in collision with these regions
of the workspace. Additionally, the robot should not put the
robot into a state where future collisions may be unavoidable.
Third, this method should be capable of incorporating rea-
soning about the unobserved environment in a manner that
is invariant to the prediction model. Finally, the algorithm
must lend itself to rapid replanning such that it is amenable
to real-world applications. We motivate our proposed method
by considering these desiderata among prior work related to
this problem.

II. RELATED WORK

Traditionally, motion planning strategies in unknown en-
vironments have relied on repeatedly replanning trajectories
towards intermediate objectives until the final goal region is
reached [1], [2], [3]. This receding-horizon style of planning
usually relies on unsophisticated heuristics to choose an in-
termediate objective (e.g. pursuing the frontier point nearest
the goal at each iteration [4]; more sophisticated heuristics
may be found in [5]). However, these heuristics often yield
greedy, short-sighted behaviors as previously described.

Several works have proposed techniques for reasoning
about the unobserved environment to navigate through them
more efficiently. One class of works seek to use the robot’s
current knowledge of the environment to better inform high-
level routing decisions through topologically complex en-
vironments (e.g. indoor building floor plans). [6] proposes
a method of navigating partially-revealed environments in



minimum distance by modeling the problem as a Partially
Observable Markov Decision Process (POMDP), where op-
timal actions correspond to frontiers that lead directly to
the goal rather than lengthy detours or dead ends. Towards
a similar objective, [7] passes an occupancy grid encoding
a robot’s current knowledge of the environment through a
Convolutional Neural Network (CNN) and uses the output
to weigh frontiers based on their likelihood of leading to a
point of interest. While these works enable shorter-distance
navigation through unknown environments to a desired goal,
they crucially do not consider robot dynamics.

Another class of such works look to directly predict
the structure of the unknown environment. [8] represents
building floor plans as graphs, where nodes correspond to
rooms and edges indicate traversable paths, and proposes a
method of predicting extensions to the known environment
topology. Such an approach would be useful for improving
high-level routing, yet the graph representation of the en-
vironment is not amenable to low-level trajectory planning
for dynamic robots. [9], [10] more explicitly attempt to
predict an occupancy grid of the unknown environment
by comparing the robot’s current observations against a
collection of previously stored maps. The prediction process
compares the surroundings of an unexplored region with the
built map of explored regions. However, the accuracy and
feasibility of this prediction depends on the robot having
previously observed similar structure, hampering generaliza-
tion. Drawing inspiration from image inpainting literature
(e.g. [11], [12]), [13], [14] treat the problem of occupancy
grid prediction as one of image completion. These works
propose using CNNs which take as input an occupancy
grid of the observed environment and produce occupancy
predictions for the unknown regions as outputs. However, a
CNN-based approach requires that the inputs and outputs be
of some fixed sizes set at training time. Due to the dynamic
nature of navigation in unknown environments, available
information and desired outputs may vary. For example, in
confined environments a robot’s sensing is limited and only
a small subset of the CNN input would be required whereas
sparse environments would require much larger inputs to
provide enough context. Similarly, high-speed navigation
would require a significantly larger prediction region than
low-speed travel.

Several works have also sought to combine reasoning
about the unknown environment with planning. [15] proposes
a neural network architecture that is trained to learn a
mapping from first-person views to a discrete movement
action set (i.e. stay still, move forward, turn left/right), and
is capable of navigating novel environments. Yet, beyond
the limited action space, such an end-to-end learning-based
approach is effectively a black-box function which provides
little insight behind the robot’s reasoning for choosing a
particular action. [16] introduces a planner for dynamic,
high-speed navigation through unknown environments. The
planning problem is formulated as a POMDP where actions
are chosen from a library of motion primitives minimizing
time and collision probability. Reasoning about the unob-
served environment is implicitly performed via the prediction
of collision probabilities which are learned as a function of
the robot action and a set of hand-coded features encoding

the robot’s immediate observations. [17] proposes a similar
planner for visual navigation by mapping images and robot
actions to collision probabilities using a neural network.
While these works demonstrate significant performance gains
in terms of trajectory time, they crucially lack formal safety
guarantees.

Along the lines of combining map prediction and plan-
ning, [18] introduces a general framework for tackling this
problem and is closely related to this work. As such, we
formulate our motion problem according to this framework
and experimentally compare to a baseline algorithm which
is an instantiation of this framework.

Statement of Contributions: To address the problem of
motion planning in unknown environments, we make the
following three contributions: (1) We introduce a data-driven
approach to predicting an environment’s structure in regions
that are occluded or beyond sensor range. In particular, our
method produces human-interpretable probabilistic map pre-
dictions that can be passed to any general motion planning al-
gorithm. (2) We propose a method of incorporating these pre-
dictions within a motion planning framework that guarantees
robot safety. This framework makes use of the predictions
to penalize trajectories passing through regions with a high
probability of occupancy. (3) We demonstrate, with extensive
numerical experiments, that using these predictions yields
a substantial improvement in trajectory time over a naı̈ve
frontier pursuit method and significant computation time
reduction over methods using more sophisticated frontier
selection heuristics. Our method uniquely addresses all four
aforementioned desiderata; it is capable of planning safe,
dynamically-constrained trajectories with low computation
times amenable to real-time performance.

III. PROBLEM FORMULATION

In order to more efficiently navigate unknown environ-
ments, we seek to predict the probability of occupancy at
some set of unobserved points in the environment given some
nearby observations as context. We then formulate a motion
planning problem seeking a safe trajectory minimizing a
desired cost function through these environments.

A. Map Prediction
We begin with the assumption that robot perception is

achieved via some range-limited line-of-sight mechanism
such as a lidar. We further assume that the robot’s per-
ception is incorporated within a deterministic occupancy
grid representation of the environment, encoding regions of
free, occupied and unknown space. Finally, we make the
assumption that the environment is static.

We consider the environment’s occupancy grid to be an n-
tuple random variable (Y1, . . . , Yn) whose elements represent
the occupancy at grid cell i and are described by some
unknown distribution. We denote yi ∈ Y = {0, 1} to be
a realization of Yi. We also define a map’s set of spatial
coordinates as the set X ∈ R2, with the observed and
unobserved regions denoted by Xobs ⊂ X and Xun = X \
Xobs, respectively. We let the context set C = {(xi, yi)}i=1:c,
correspond to the set of c observed locations xj ∈ Xobs for
j = 1, . . . , c paired with their known occupancy state yi.
Finally, the target set is denoted by T = {xi}i=(c+1):(c+t)



and corresponds to the t spatial coordinates xk ∈ Xun for
k = c+ 1, . . . , c+ t for which we seek the occupancy value.

It is then assumed that there exists some stochastic process
P over functions f : X → Y . For some function f ∼
P , we set yi = f(xi). As such, the stochastic process
defines the joint distribution P ({f(xi)}i=1:(c+t)) and thus
the conditional distribution P (f(T ) | C, T ). Given this
formulation, the objective is to determine this conditional
distribution.

B. Motion Planning with Map Predictions

The motion planning problem is concerned with planning
trajectories to minimize some objective function of a trajec-
tory σ, subject to initial and terminal boundary conditions,
while satisfying dynamic, control and safety constraints. We
define a trajectory, σ, as a tuple of states, s (t), control
inputs, u (t) , and duration, T . In order to make use of map
predictions, we focus on strategies that repeatedly replan
trajectories as new information is observed. However, rather
than computing partial trajectories to intermediate objectives
at each iteration, we choose to plan all the way to the
goal using predictions to guide the trajectory computation
in unknown regions following the framework presented by
[18]. In effect, at each iteration we seek trajectories solving
the optimization problem:

minimize
σk,σu

c(σk, σu) + h(σu,Φ)

subject to sk(tinitial) = sinitial

sk(tfrontier) = su(tfrontier)

su(tfinal) ∈ Sfinal

σk, σu ∈ ΣD (1)
uk(t),uu(t) ∈ U ∀ t
uk(tfrontier) = uu(tfrontier)

sk(t) ∈ Sfree ∀ t
sk(t) /∈ Sunsafe ∀ t.

In this formulation, we partition the full trajectory σ into
subtrajectories σk and σu. We designate σk as the immediate
trajectory in the known region for the robot to execute,
terminating at a frontier. We use σu to represent a tentative
future trajectory in the unknown region beginning from the
end point of σk. The objective function consists of the
terms c(σk, σu) the primary cost we wish to minimize, and
h(σu, φ), a penalty term to discourage σu from passing
through regions of high predicted occupancy. States and
controls share the same subscript convention. We enforce
initial and final state constraints with sinitial representing the
initial robot state and Sfinal representing the set of acceptable
goal states. The set of dynamically feasible trajectories
and admissible control actions are denoted ΣD and U ,
respectively. Finally, Sfree represents the set of collision-free
states while Sunsafe represents any chosen set of states that
compromise the robot’s safety, such as Inevitable Collision
States (ICS) [19]. Within this setting, an ICS is defined as a
state for which the robot will either eventually collide with
an obstacle or enter unobserved space (where obstacles may
reside), despite any control sequence the robot may execute.
Note that state and control continuity are enforced at tfrontier,

MLP

MLP

MLP

MLP

MLP

Fig. 2. Our map prediction CNP architecture. Context points and their
occupancies {xi, yi}i=1:c are first encoded by h, a multilayer perceptron
(MLP), to generate representation vectors {ri}i=1:c. These representation
vectors are then averaged to produce an overall scene encoding r. The vector
r is then concatenated with each of the target points {xi}i=(c+1):(c+t)
and fed through our decoder g, another MLP, which produces occupancy
probabilities {φi}i=(c+1):(c+t) for each of the target points.

the time at which the trajectory first crosses a frontier into
unknown space. The last two constraints guarantee safety by
requiring σk to be collision free and outside of any ICS.

Rather than thresholding predictions and enforcing that
σu be collision free with respect to the predicted map, our
formulation seeks to simply bias σu away from regions of
high occupancy probability. We find that this formulation is
more forgiving in the event that predictions are inaccurate,
e.g. in cases where there is only one route to a goal and
inaccurate thresholded predictions would wall it off, leading
to infeasibility. In practice, we solve this problem at each
iteration, execute a portion of σk, update the robot’s map
of the environment, and repeat this process until the goal is
reached. Although the robot should never execute any part of
σu, its presence in the optimization influences σk to navigate
the known environment in a more informed manner, e.g.,
better situating the robot for a predicted turn in the future.

IV. MAP-PREDICTIVE MOTION PLANNING WITH
CONDITIONAL NEURAL PROCESSES

A. Map Prediction
Machine learning-based approaches are uniquely primed

to model the distribution over maps, especially given the
variety and complexity of real-world environments. Machine
learning models can implicitly capture the salient features of
environments from data, rather than formulating their distri-
bution explicitly. Specifically, we choose a Conditional Neu-
ral Process (CNP) [20] architecture to directly parametrize
the conditional stochastic process approximating P (f(T ) |
C, T ). In contrast to CNNs, CNPs are flexible in that they
accept arbitrarily many inputs, as determined by the size of C,
as well as query arbitrarily many predictions, as determined
by T . This approach also has similarities to Gaussian process
regression, yet is more scalable as it overcomes the need for
costly matrix inversions.

The CNP architecture consists of an encoding neural
network, an aggregation operation and a decoding neural
network to produce parameters of the approximating con-
ditional distribution Q(f(T ) | C, T ). The CNP architecture
is illustrated in Fig. 2.

The encoding procedure involves using the encoding neu-
ral network, h(xi, yi), to produce embeddings ri for each of



the c context pairs (xi, yi) ∈ C. These embeddings are then
aggregated into a single conditioning representation vector r.
In the CNP formulation, this aggregation operation, a(r1:c),
may take the form of any commutative operation mapping
multiple vectors in Rd to a single vector in Rd. Finally, the
decoding network, g(xi, r) produces a vector of parameters,
φ, of a distribution over the occupancy of some xi ∈ T .

The encoding network was designed as a four-layer
fully-connected feedforward network to produce a 256-
dimensional ri. Each layer consists of 256 neurons with
Rectified Linear Unit (ReLU) activations. For the aggregation
operation, we choose to simply average the embeddings
since this operation weighs all information equally and en-
sures a similar magnitude between the embeddings and r—
characteristics beneficial to network stability once deployed.

Finally, the decoding network consists of another four-
layer fully-connected network with each layer consisting of
256 ReLU activated neurons. The final layer feeds into a
sigmoid output representing a scalar-valued φ. The model
was trained to minimize a negative log-likelihood loss func-
tion such that φ could be interpreted as parametrizing a
Bernoulli distribution over a target point’s occupancy. With
the predicted occupancy values in hand, we now describe
how we these predictions are incorporated within our motion
planning framework.

B. Motion Planning
For this work, we are interested in navigating unknown

environments in minimum-time and as such take c(σk, σu) to
represent the overall trajectory duration, T . We also choose

h(σu,Φ) = α

∫
su

1

1− Φ(su) + ε
dsu

which yields a higher cost for σu passing through regions
of high occupancy probability. Here, Φ(su) is a function
mapping the state su to a predicted occupancy, α is a scaling
parameter chosen to be 0.25 experimentally and ε is a small,
positive constant introduced to avoid singularities. In this
work we present one possible selection of c and h, but
we emphasize that the framework is general and alternative
choices may be selected depending on designer preferences.

We take a simple friction circle car as our system of
interest with dynamics

ms̈(t) =

[
cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

]
u(t)

where m is the car’s mass, θ is the car’s instantaneous
heading. The state s ∈ R2 represents the robot position. The
control input u may be explicitly written as [ulong ulat]

ᵀ with
the first and second components respectively representing
longitudinal and lateral forces in the vehicle body frame.
The friction circle constraint is expressed as

‖u‖ ≤ µmg

where µ is the friction coefficient and g is the gravitational
constant. A constraint specifying the minimum turning ra-
dius, Rmin, is also enforced as

ulat ≤ m
‖ṡ‖2

Rmin
.

We modeled our system after a radio-controlled (RC) car
with m = 2.5 kg, µ = 0.9, Rmin = 0.5 m.

To approximate solutions to (1) at each iteration, we
perform a grid search to find a reference path from the robot’s
position to the goal, smooth this path to be feasible under our
system’s dynamics and then optimize the speed profile for
minimum-time traversal. As compared to [18]’s use of the
sampling-based planner FMT* [21], we choose this decom-
posed motion planning strategy with practical realizability
(i.e. real-time computation requirements) in mind.

We use the A* search algorithm to find the path from
the robot’s position to the goal. We use the Euclidean
distance heuristic and treat obstacles as impenetrable within
the known region. Within the unknown region, we attempt
to account for the effect of h in the objective function by
multiplying the Euclidean distance heuristic by α/(1−φi+ε).

Using the A* path as a reference, we then solve the
convex optimization problem formulated by [22] to produce
a dynamically-feasible trajectory. This smoothing operation
begins by placing a sequence of “bubbles” about the points
constituting the A* reference path defining a collision-
free “tube.” Within this tube, the optimization problem is
formulated as to minimize the curvature of the path subject
to dynamic constraints. As an implementation consideration,
we compute bubble radii for the A* path in the known region
using the distance from the corresponding reference point to
the nearest obstacle. Since we do not know the locations of
the obstacles in the unknown regions, we select a constant,
relatively small bubble radius1 to ensure that the smoothed
trajectory does not excessively stray from the reference path.

Finally, the speed profile of this trajectory is optimized for
minimum time traversal by solving the convex optimization
problem presented by [23]. In order to ensure safety, we
enforce the additional constraint that the robot velocity must
be zero at the end of σk. We reason that, provided the robot
begins in a safe state and succeeds in planning a collision-
free trajectory in the manner described, it will always be able
to safely return to zero velocity within the known region
of the environment. If any of the optimizations returns an
infeasible solution at a particular iteration i, it would suffice
to execute the remainder of the trajectory σk,i−1 planned at
the previous iteration to safely bring the robot to rest.

V. EXPERIMENTS

We have trained a CNP model using data obtained from
a set of 75 randomly-generated, single-path maze environ-
ments consisting of frequent corners and U-turns with 2.5 m
hallways spanning a 25 m × 25 m area. To generate training
data, we sample 504 unoccupied points from each map and
simulate a 5 m range lidar scan. The spatial coordinates of
the visible occupancy grid cells, expressed relative to the
robot, and their occupancies then make up the context set C.
The target set T consists of the coordinates corresponding
to points in C in addition to the coordinates of unobserved
points within a 7.5 m radius about each frontier. Although
our goal is to teach the model to predict the map beyond the
frontiers, including observed points in T was found to benefit

1We have found values similar to the vehicle’s turn radius to perform
well as demonstrated in our experiments.



Fig. 3. Left: Our method plans from the robot’s current position to the goal, taking into account the predicted occupancy probabilities outside of the
known environment. Our CNP’s predictions are visualized centered at the current frontier point. Occupancy probabilities range from white (free space) to
dark grey (occupied). Middle: A* plans through a higher occupancy probability region, even though our model correctly predicted a hallway to the left.
This occurs because our A* heuristic trades off a higher occupancy probability penalty for a lower distance to the goal. Right: This is mitigated by our
algorithm’s frequent replanning; there is no detriment to the executed trajectory.

prediction accuracy. The model was trained for 1,000,000
iterations using a batch size of 4.

We evaluate our methodology2 on a set of 30 randomly-
generated mazes not seen during training. We compare
against a naı̈ve frontier pursuit baseline and [18]’s method.
The naı̈ve baseline simply plans trajectories within the
known map to the frontier centroid nearest the goal. Our
implementation of [18] faithfully recreates their heuristics,
with two exceptions: (1) We use the method described in
Section IV-B for planning trajectories rather than FMT*
(to reduce runtime complexity), and (2) we plan over an
occupancy grid as opposed to a polygonal representation of
the environment (to better match real-world hardware). Our
CNP model was written in TensorFlow [24] with training and
experimentation performed on a desktop computer running
Ubuntu 18.04 equipped with an AMD Ryzen 1800X CPU
and two NVIDIA GTX 1080 Ti GPUs. Path smoothing
and trajectory optimization were performed with MOSEK
[25] interfaced through Convex.jl [26] in Julia [27]. In this
section, any stated P values are obtained from two-tailed
t-tests on the means of the two quantities differing.

A. Planning with Map Predictions

A key component of our methodology is the ability to
predict what might lie in the unknown region, conditioned
on current observations, and incorporate that prediction in
motion planning. Fig. 3 shows a robot navigating through
one of our mazes, visualizing our predictions of the unknown
region. In it, we can see how our soft penalty encourages A*
to plan paths through predicted free space for some distance
into the unknown region, leading to smoothed paths that
better prepare the robot for turns.

We can also see emergent behavior as a result of planning
ahead with map predictions in Fig. 3. Specifically, Fig. 3
(left) shows robot turning away from the second corner, prior
to reaching it, enabling it to better hit the apex and maintain
speed through the turn.

2All of our source code, trained models, and data are pub-
licly available online at https://github.com/StanfordASL/
MapPredictiveMotionPlanning.

Fig. 4. Mean completion times for each method relative to the optimal
completion time (lower is better). Error bars show bootstrapped 95%
confidence intervals.

B. Maze Completion Time Analysis

We quantitatively compare our method to the naı̈ve base-
line and [18] in terms of completion time relative to the
optimal trajectory. In Fig. 4, we can see that our method sig-
nificantly outperforms the naı̈ve baseline (P < .001) for all
maximum speed values. This is especially true as maximum
speed increases, showing the efficacy of map predictions
for maintaining path smoothness and speed through turns.
Additionally, our method generally matches the performance
of [18]. For maximum speeds of 3 and 4 m/s, our method
is directly comparable to [18] (P = {0.17, 0.46}). For lower
maximum speeds, our method is only 2% worse in relative
completion time (105% vs. 107%, P = {.042, .046}).

To determine if there is any performance that a better
map prediction model could gain for our algorithm, we
compare our method with an ideally-augmented version of
itself (using perfect map predictions), which is referred to
as “Oracle Maps” in Fig. 4. Our method performs equally
as well as it would with perfect map predictions for all
maximum speed values (0.74 ≤ P ≤ 0.96). This confirms
that there is no performance to be gained by switching our
CNP model for another type of map predictor.

Since our map predictions can be paired with any motion
planner, we augmented [18] with CNP predictions to deter-
mine how probabilistic map knowledge aids performance. As



Fig. 5. Mean runtime of one planning step for each method, with
subcomponent contribution shown as proportions of each bar. Our method
consistently runs at ∼ 2 Hz. Error bars show 95% confidence intervals.

can be seen in Fig. 4, the methods perform similarly (0.12 ≤
P ≤ 0.43). However, as maximum speed increases, [18] with
map predictions demonstrates more consistent performance
compared to [18], even achieving a better average value at the
highest maximum speed. This consistency in performance is
also shared by our method as it maintains only a 7-8% deficit
to the optimal trajectory across maximum speed values, and
is especially visible when compared to the naı̈ve baseline’s
worsening trend in Fig. 4.

C. Computation Time
While our method and [18] share similar performance in

maze completion time, our method executes significantly
faster. Fig. 5 shows a comparison of the runtime of both
methods, as well as [18] with CNP predictions and the naı̈ve
baseline. Our method, with an unoptimized Julia implemen-
tation and general-purpose solver, consistently achieves 0.5
s (2 Hz) execution time per planning iteration (∼ 11× faster
than [18]). This is fast and predictable enough for real-time
replanning on, e.g., a robot moving at 4 m/s with sensor
and prediction ranges of 7.5 m and 5 m, respectively. The
longest-running parts of our method are path smoothing and
frontier selection, i.e., executing A* from the robot to the
frontier centroids and from the frontier centroids to the goal,
and smoothing the resulting path. Notably, obtaining map
predictions by forward propagation of the CNP model yields
negligable overhead, executing in 10 ms on average.

Beyond very long execution times, [18] also suffers from
a high runtime variance. This is undesirable in practice as
it is difficult to estimate how far ahead to plan in order to
ensure a real-time replanning frequency.

D. Path and Speed Profiles
Fig. 6 shows the trajectories and speed profiles obtained by

the naı̈ve baseline, our method, and the optimal trajectory. As
the baseline cannot foresee corners before they are visible,
it acts late and needs to slow down heavily to make most
turns. Conversely, our method closely follows the optimal
trajectory and its speed profile through the map. This is
especially noticeable in the first set of zig-zags where the
baseline must slow down and turn for each corner. Our
method predicts that the zig-zags will continue and plans
a smooth, straight trajectory through them, nearly matching
the optimal trajectory.

E. Performance under Different Conditions
Since there are a variety of sensors used in robotics, there

are many sensor ranges for which this method could be

Fig. 6. Our method, the naı̈ve baseline, and the optimal trajectory visualized
with speed indicated by color. The baseline sees harsher braking and takes
sharper turns than our method and the optimal trajectory.

Fig. 7. The relative completion times of our model, our model with perfect
predictions, and the naı̈ve baseline for different sensor and prediction ranges
with a maximum speed of 4 m/s.

used. Our CNP was trained to predict 5 m into the unknown
region from context points observed with a 7.5 m range laser
scanner. To verify that the CNP can generalize to a variety
of sensor and prediction ranges, we evaluate our method on
different lidar and prediction ranges. Fig. 7 shows the results
of this evaluation.

As before, our method generally outperforms the naı̈ve
baseline and matches the augmentation with ideal map
predictions. Notably, all methods perform poorly when the
sensor’s range is 2.5 m. Such a small observation range
means the robot does not have enough time to accelerate
to maximum speed before needing to slow down to maintain
safety, degrading completion time. Importantly, we maintain
algorithm performance for a prediction range of 7.5 m, which
is larger than our CNP’s trained prediction range of 5.0 m.

VI. CONCLUSION

In this work, we present a unified method that combines
map prediction and motion planning to enable safe, time-
efficient autonomous navigation of unknown environments
with real-time performance. We demonstrate significant per-
formance improvements in terms of time-to-goal compared
to a naı̈ve frontier pursuit baseline. We also demonstrate
significantly lower computation times than [18], which uses
much better informed planning heuristics. Our method strikes
a balance between performance and computational run-time
constraints, while guaranteeing robot safety. Future work will
evaluate the benefit of such predictions for motion planning
in more realistic environments, e.g. real office environments.
Further, we will deploy this algorithm on an RC car platform
with dynamics matching those simulated in this work.



REFERENCES

[1] K. E. Bekris and L. E. Kavraki, “Greedy but safe replanning under
kinodynamic constraints,” in Proc. IEEE Conf. on Robotics and
Automation, 2007.

[2] M. Pivtoraiko, D. Mellinger, and V. Kumar, “Incremental micro-uav
motion planning for exploring unknown environments,” in Proc. IEEE
Conf. on Robotics and Automation, 2013.

[3] S. Liu, M. Watterson, S. Tang, and V. Kumar, “High speed navigation
for quadrotors with limited onboard sensing,” in Proc. IEEE Conf. on
Robotics and Automation, 2016.

[4] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in Proc. IEEE Int. Symp. on Computational Intelligence in Robotics
and Automation, 1997.

[5] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider, “Co-
ordinated multi-robot exploration,” IEEE Transactions on Robotics,
vol. 21, no. 3, pp. 376–386, 2005.

[6] G. J. Stein, C. Bradley, and N. Roy, “Learning over subgoals for
efficient navigation of structured, unknown environments,” in Conf.
on Robot Learning, 2018.

[7] J. A. Caley, N. R. J. Lawrance, and G. A. Hollinger, “Deep learning
of structured environments for robot search,” Autonomous Robots,
vol. 43, no. 7, pp. 1695–1714, 2019.

[8] A. Aydemir, P. Jensfelt, and J. Folkesson, “What can we learn from
38,000 rooms? reasoning about unexplored space in indoor environ-
ments,” in IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, 2012.

[9] H. J. Chang, C. S. G. Lee, Y. Lu, and Y. C. Hu, “P-slam: Simultaneous
localization and mapping with environmental-structure prediction,”
IEEE Transactions on Robotics, vol. 23, no. 2, pp. 281–293, 2007.

[10] D. P. Ström, F. Nenci, and C. Stachniss, “Predictive exploration
considering previously mapped environments,” in Proc. IEEE Conf.
on Robotics and Automation, 2015.

[11] G. Liu, F. A. Reda, K. J. Shih, T. C. Wang, A. Tao, and B. Catanzaro,
“Image inpainting for irregular holes using partial convolutions,” in
European Conf. on Computer Vision, 2018.

[12] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. Huan, “Generative image
inpainting with contextual attention,” in IEEE Conf. on Computer
Vision and Pattern Recognition, 2018.

[13] R. Shrestha, F. P. Tian, W. Feng, P. Tan, and R. Vaughan, “Learned
map prediction for enhanced mobile robot exploration,” in Proc. IEEE
Conf. on Robotics and Automation, 2019.

[14] K. Katyal, K. Popek, C. Paxton, P. Burlina, and G. D. Hager,
“Uncertainty-aware occupancy map prediction using generative net-
works for robot navigation,” in Proc. IEEE Conf. on Robotics and
Automation, 2019.

[15] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik,
“Cognitive mapping and planning for visual navigation,” in IEEE Conf.
on Computer Vision and Pattern Recognition, 2017.

[16] C. Richter, W. Vega-Brown, and N. Roy, “Bayesian learning for safe
high-speed navigation in unknown environments,” in Int. Journal of
Robotics Research, 2018.

[17] C. Richter and N. Roy, “Safe visual navigation via deep learning and
novelty detection,” in Robotics: Science and Systems, 2017.

[18] L. Janson, T. Hu, and M. Pavone, “Safe motion planning in un-
known environments: Optimality benchmarks and tractable policies,”
in Robotics: Science and Systems, 2018.

[19] T. Fraichard and H. Asama, “Inevitable collision states – a step towards
safer robots?” Advanced Robotics, vol. 18, no. 10, pp. 1001–1024,
2004.

[20] M. Garnelo, C. M. Rosenbaum, D., T. Ramalho, S. M. Saxton, D.,
Y. W. Teh, D. Rezende, and S. M. A. Eslami, “Conditional neural
processes,” in Int. Conf. on Machine Learning, 2018.

[21] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast Marching
Tree: a fast marching sampling-based method for optimal motion
planning in many dimensions,” Int. Journal of Robotics Research,
vol. 34, no. 7, pp. 883–921, 2015.

[22] Z. Zhu, E. Schmerling, and M. Pavone, “A convex optimization
approach to smooth trajectories for motion planning with car-like
robots,” in Proc. IEEE Conf. on Decision and Control, 2015.

[23] T. Lipp and S. Boyd, “Minimum-time speed optimisation over a fixed
path,” Int. Journal of Control, vol. 87, no. 6, pp. 1297–1311, 2014.

[24] M. Abadi et al. (2015) TensorFlow: Large-scale machine learning
on heterogeneous systems. Software available from tensorflow.org.
[Online]. Available: https://www.tensorflow.org/

[25] Mosek APS. The MOSEK optimization software. Available at http:
//www.mosek.com.

[26] M. Udell, K. Mohan, D. Zeng, J. Hong, S. Diamond, and S. Boyd,
“Convex optimization in Julia,” in High Performance Technical Com-
puting in Dynamic Languages, 2014.

[27] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A
fresh approach to numerical computing,” SIAM Review, vol. 59, no. 1,
pp. 65–98, 2017.


