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Abstract

In this paper we present a novel probabilistic sampling-based motion planning algo-
rithm called the Fast Marching Tree algorithm (FMT∗). The algorithm is specifically
aimed at solving complex motion planning problems in high-dimensional configura-
tion spaces. This algorithm is proven to be asymptotically optimal and is shown to
converge to an optimal solution faster than its state-of-the-art counterparts, chiefly
PRM∗ and RRT∗. The FMT∗ algorithm performs a “lazy” dynamic programming re-
cursion on a predetermined number of probabilistically-drawn samples to grow a tree
of paths, which moves steadily outward in cost-to-arrive space. As such, this algorithm
combines features of both single-query algorithms (chiefly RRT) and multiple-query

∗This work was originally presented at the 16th International Symposium on Robotics Research, ISRR
2013. This revised version includes an extended description of the FMT∗ algorithm, proofs of all results,
extended discussions about convergence rate and computational complexity, extensions to non-uniform sam-
pling distributions and general costs, a k-nearest version of FMT∗, and a larger set of numerical experiments.
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algorithms (chiefly PRM), and is reminiscent of the Fast Marching Method for the so-
lution of Eikonal equations. As a departure from previous analysis approaches that are
based on the notion of almost sure convergence, the FMT∗ algorithm is analyzed un-
der the notion of convergence in probability: the extra mathematical flexibility of this
approach allows for convergence rate bounds—the first in the field of optimal sampling-
based motion planning. Specifically, for a certain selection of tuning parameters and
configuration spaces, we obtain a convergence rate bound of order O(n−1/d+ρ), where
n is the number of sampled points, d is the dimension of the configuration space, and
ρ is an arbitrarily small constant. We go on to demonstrate asymptotic optimality
for a number of variations on FMT∗, namely when the configuration space is sampled
non-uniformly, when the cost is not arc length, and when connections are made based
on the number of nearest neighbors instead of a fixed connection radius. Numerical
experiments over a range of dimensions and obstacle configurations confirm our the-
oretical and heuristic arguments by showing that FMT∗, for a given execution time,
returns substantially better solutions than either PRM∗ or RRT∗, especially in high-
dimensional configuration spaces and in scenarios where collision-checking is expensive.

1 Introduction

Probabilistic sampling-based algorithms represent a particularly successful approach to robotic
motion planning problems in high-dimensional configuration spaces, which naturally arise,
e.g., when controlling the motion of high degree-of-freedom robots or planning under un-
certainty (Thrun et al., 2005; Lavalle, 2006). Accordingly, the design of rapidly converging
sampling-based algorithms with sound performance guarantees has emerged as a central
topic in robotic motion planning and represents the main thrust of this paper.

Specifically, the key idea behind probabilistic sampling-based algorithms is to avoid the
explicit construction of the configuration space (which can be prohibitive in complex plan-
ning problems) and instead conduct a search that probabilistically probes the configuration
space with a sampling scheme. This probing is enabled by a collision detection module,
which the motion planning algorithm considers as a “black box” (Lavalle, 2006). Proba-
bilistic sampling-based algorithms may be classified into two categories: multiple-query and
single-query. Multiple-query algorithms construct a topological graph called a roadmap,
which allows a user to efficiently solve multiple initial-state/goal-state queries. This family
of algorithms includes the probabilistic roadmap algorithm (PRM) (Kavraki et al., 1996) and
its variants, e.g., Lazy-PRM (Bohlin and Kavraki, 2000), dynamic PRM (Jaillet and Siméon,
2004), and PRM∗ (Karaman and Frazzoli, 2011). In single-query algorithms, on the other
hand, a single initial-state/goal-state pair is given, and the algorithm must search until it
finds a solution, or it may report early failure. This family of algorithms includes the rapidly
exploring random trees algorithm (RRT) (LaValle and Kuffner, 2001), the rapidly exploring
dense trees algorithm (RDT) (Lavalle, 2006), and their variants, e.g., RRT∗ (Karaman and
Frazzoli, 2011). Other notable sampling-based planners include expansive space trees (EST)
(Hsu et al., 1999; Phillips et al., 2004), sampling-based roadmap of trees (SRT) (Plaku et al.,
2005), rapidly-exploring roadmap (RRM) (Alterovitz et al., 2011), and the “cross-entropy”
planner in (Kobilarov, 2012). Analysis in terms of convergence to feasible or even optimal
solutions for multiple-query and single-query algorithms is provided in (Kavraki et al., 1998;
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Hsu et al., 1999; Barraquand et al., 2000; Ladd and Kavraki, 2004; Hsu et al., 2006; Karaman
and Frazzoli, 2011). A central result is that these algorithms provide probabilistic complete-
ness guarantees in the sense that the probability that the planner fails to return a solution,
if one exists, decays to zero as the number of samples approaches infinity (Barraquand et al.,
2000). Recently, it has been proven that both RRT∗ and PRM∗ are asymptotically optimal,
i.e., the cost of the returned solution converges almost surely to the optimum (Karaman and
Frazzoli, 2011). Building upon the results in (Karaman and Frazzoli, 2011), the work in
(Marble and Bekris, 2012) presents an algorithm with provable “sub-optimality” guarantees,
which “trades” optimality with faster computation, while the work in (Arslan and Tsiotras,
2013) presents a variant of RRT∗, named RRT#, that is also asymptotically optimal and
aims to mitigate the “greediness” of RRT∗.

Statement of Contributions : The objective of this paper is to propose and analyze a
novel probabilistic motion planning algorithm that is asymptotically optimal and improves
upon state-of-the-art asymptotically-optimal algorithms, namely RRT∗ and PRM∗ . Im-
provement is measured in terms of the convergence rate to the optimal solution, where
convergence rate is interpreted with respect to execution time. The algorithm, named the
Fast Marching Tree algorithm (FMT∗), is designed to reduce the number of obstacle collision-
checks and is particularly efficient in high-dimensional environments cluttered with obstacles.
FMT∗ essentially performs a forward dynamic programming recursion on a predetermined
number of probabilistically-drawn samples in the configuration space, see Figure 1. The
recursion is characterized by three key features, namely (1) it is tailored to disk-connected
graphs, (2) it concurrently performs graph construction and graph search, and (3) it lazily
skips collision-checks when evaluating local connections. This lazy collision-checking strategy
may introduce suboptimal connections—the crucial property of FMT∗ is that such subopti-
mal connections become vanishingly rare as the number of samples goes to infinity.

FMT∗ combines features of PRM and SRT (which is similar to RRM) and grows a tree
of trajectories like RRT. Additionally, FMT∗ is reminiscent of the Fast Marching Method,
one of the main methods for solving stationary Eikonal equations (Sethian, 1996). We refer
the reader to (Valero-Gomez et al., 2013) and references therein for a recent overview of
path planning algorithms inspired by the Fast Marching Method. As in the Fast Marching
Method, the main idea is to exploit a heapsort technique to systematically locate the proper
sample point to update and to incrementally build the solution in an “outward” direction,
so that the algorithm needs never backtrack over previously evaluated sample points. Such
a one-pass property is what makes both the Fast Marching Method and FMT∗ (in addition
to its lazy strategy) particularly efficient1.

The end product of the FMT∗ algorithm is a tree, which, together with the connection
to the Fast Marching Method, gives the algorithm its name. Our simulations across a
variety of problem instances, ranging in obstacle clutter and in dimension from 2D to 7D,
show that FMT∗ outperforms state-of-the-art algorithms such as PRM∗ and RRT∗, often by
a significant margin. The speedups are particularly prominent in higher dimensions and in
scenarios where collision-checking is expensive, which is exactly the regime in which sampling-

1We note, however, that the Fast Marching Method and FMT∗ differ in a number of important aspects.
Chiefly, the Fast Marching Method hinges upon upwind approximation schemes for the solution to the
Eikonal equation over orthogonal grids or triangulated domains, while FMT∗ hinges upon the application of
the Bellman principle of optimality over a randomized grid within a sampling-based framework.
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based algorithms excel. FMT∗ also presents a number of “structural” advantages, such as
maintaining a tree structure at all times and expanding in cost-to-arrive space, which have
been recently leveraged to include differential constraints (Schmerling et al., 2014, 2015), to
provide a bidirectional implementation (Starek et al., 2014), and to speed up the convergence
rate even further via the inclusion of lower bounds on cost (Salzman and Halperin, 2014)
and heuristics (Gammell et al., 2014).

It is important to note that in this paper we use a notion of asymptotic optimality
(AO) different from the one used in Karaman and Frazzoli (2011). In Karaman and Frazzoli
(2011), AO is defined through the notion of convergence almost everywhere (a.e.). Explicitly,
in Karaman and Frazzoli (2011), an algorithm is considered AO if the cost of the solution it
returns converges a.e. to the optimal cost as the number of samples n approaches infinity.
This definition is apt when the algorithm is sequential in n, such as RRT∗ (Karaman and
Frazzoli, 2011), in the sense that it requires that with probability 1 the sequence of solutions
converges to an optimal one, with the solution at n+1 heavily related to that at n. However,
for non-sequential algorithms such as PRM∗ and FMT∗, there is no connection between the
solutions at n and n+ 1. Since these algorithms process all the samples at once, the solution
at n+ 1 is based on n+ 1 new samples, sampled independently of those used in the solution
at n. This motivates the definition of AO used in this paper, which is that the cost of
the solution returned by an algorithm must converge in probability to the optimal cost.
Although convergence in probability is a mathematically weaker notion than convergence
a.e. (the latter implies the former), in practice there is no distinction when an algorithm
is only run on a predetermined, fixed number of samples. In this case, all that matters is
that the probability that the cost of the solution returned by the algorithm is less than an
ε-fraction greater than the optimal cost goes to 1 as n→∞, for any ε > 0, which is exactly
the statement of convergence in probability. Since this convergence is a mathematically
weaker, but practically identical condition, we sought to capitalize on the extra mathematical
flexibility, and indeed find that our proof of AO for FMT∗ allows for a tighter theoretical
lower bound on the search radius of PRM∗ than was found in Karaman and Frazzoli (2011).
In this regard, an additional important contribution of this paper is the analysis of AO under
the notion of convergence in probability, which is of independent interest and could enable
the design and analysis of other AO sampling-based algorithms.

Most importantly, our proof of AO gives a convergence rate bound with respect to the
number of sampled points both for FMT∗ and PRM∗—the first in the field of optimal
sampling-based motion planning. Specifically, for a certain selection of tuning parameters
and configuration space, we derive a convergence rate bound of O(n−1/d+ρ), where n is the
number of sampled points, d is the dimension of the configuration space, and ρ is an ar-
bitrarily small constant. While the algorithms exhibit the slow convergence rate typical of
sampling-based algorithms, the rate is at least a power of n.

Organization: This paper is structured as follows. In Section 2 we formally define the
optimal path planning problem. In Section 3 we present a high-level description of FMT∗,
describe the main intuition behind its correctness, conceptually compare it to existing AO
algorithms, and discuss its implementation details. In Section 4 we prove the asymptotic
optimality of FMT∗, derive convergence rate bounds, and characterize its computational
complexity. In Section 5 we extend FMT∗ along three main directions, namely non-uniform
sampling strategies, general cost functions, and a variant of the algorithm that relies on k-
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Figure 1: The FMT∗ algorithm generates a tree by moving steadily outward in cost-to-arrive
space. This figure portrays the growth of the tree in a 2D environment with 2,500 samples
(only edges are shown).

nearest-neighbor computations. In Section 6 we present results from numerical experiments
supporting our statements. Finally, in Section 7, we draw some conclusions and discuss
directions for future work.

Notation: Consider the Euclidean space in d dimensions, i.e., Rd. A ball of radius r > 0
centered at x̄ ∈ Rd is defined as B(x̄; r) := {x ∈ Rd | ‖x− x̄‖ < r}. Given a subset X of Rd,
its boundary is denoted by ∂X and its closure is denoted by cl(X ). Given two points x and
y in Rd, the line connecting them is denoted by xy. Let ζd denote the volume of the unit
ball in d-dimensional Euclidean space. The cardinality of a set S is written as cardS. Given
a set X ⊆ Rd, µ(X ) denotes its d-dimensional Lebesgue measure. Finally, the complement
of a probabilistic event A is denoted by Ac.

2 Problem Setup

The problem formulation follows closely the problem formulation in Karaman and Frazzoli
(2011), with two subtle, yet important differences, namely a notion of regularity for goal
regions and a refined definition of path clearance. Specifically, let X = [0, 1]d be the config-
uration space, where the dimension, d, is an integer larger than or equal to two. Let Xobs

be the obstacle region, such that X \ Xobs is an open set (we consider ∂X ⊂ Xobs). The
obstacle-free space is defined as Xfree = cl(X \Xobs). The initial condition xinit is an element
of Xfree, and the goal region Xgoal is an open subset of Xfree. A path planning problem is
denoted by a triplet (Xfree, xinit,Xgoal). A function σ : [0, 1] → Rd is called a path if it is
continuous and has bounded variation, see (Karaman and Frazzoli, 2011, Section 2.1) for a
formal definition. In the setup of this paper, namely, for continuous functions on a bounded,
one-dimensional domain, bounded variation is exactly equivalent to finite length. A path
is said to be collision-free if σ(τ) ∈ Xfree for all τ ∈ [0, 1]. A path is said to be a feasi-
ble path for the planning problem (Xfree, xinit,Xgoal) if it is collision-free, σ(0) = xinit, and
σ(1) ∈ cl(Xgoal).

A goal region Xgoal is said to be regular if there exists ξ > 0 such that ∀x ∈ ∂Xgoal, there
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exists a ball in the goal region, say B(x̄; ξ) ⊆ Xgoal, such that x is on the boundary of the
ball, i.e., x ∈ ∂B(x̄; ξ). In other words, a regular goal region is a “well-behaved” set where
the boundary has bounded curvature. We will say Xgoal is ξ-regular if Xgoal is regular for
the parameter ξ. Such a notion of regularity, not present in Karaman and Frazzoli (2011),
is needed because to return a feasible solution, there must be samples in Xgoal, and for that
solution to be near-optimal, some samples must be near the edge of Xgoal where the optimal
path meets it. The notion of ξ-regularity essentially formalizes the notion of Xgoal having
enough measure near this edge to ensure that points are sampled near it.

Let Σ be the set of all paths. A cost function for the planning problem (Xfree, xinit,Xgoal)
is a function c : Σ → R≥0 from the set of paths to the set of nonnegative real numbers;
in this paper we will mainly consider cost functions c(σ) that are the arc length of σ with
respect to the Euclidean metric in X (recall that σ is, by definition, rectifiable). Extension to
more general cost functions, potentially not satisfying the triangle inequality, are discussed
in Section 5.2. The optimal path planning problem is then defined as follows:

Optimal path planning problem: Given a path planning problem (Xfree, xinit,Xgoal)
with a regular goal region and an arc length function c : Σ→ R≥0, find a feasible
path σ∗ such that c(σ∗) = min{c(σ) : σ is feasible}. If no such path exists, report
failure.

Finally, we introduce some definitions concerning the clearance of a path, i.e., its “dis-
tance” from Xobs (Karaman and Frazzoli, 2011). For a given δ > 0, the δ-interior of Xfree is
defined as the set of all points that are at least a distance δ away from any point in Xobs. A
collision-free path σ is said to have strong δ-clearance if it lies entirely inside the δ-interior
of Xfree. A path planning problem with optimal path cost c∗ is called δ-robustly feasible if
there exists a strictly positive sequence δn → 0, with δn ≤ δ ∀n ∈ N, and a sequence {σn}∞n=1

of feasible paths such that limn→∞ c(σn) = c∗ and for all n ∈ N, σn has strong δn-clearance,
σn(1) ∈ ∂Xgoal, σn(τ) /∈ Xgoal for all τ ∈ (0, 1), and σn(0) = xinit. Note this definition is
slightly different mathematically than admitting a robustly optimal solution as in Karaman
and Frazzoli (2011), but the two are nearly identical in practice. Briefly, the difference is
necessitated by the definition of a homotopy class only involving pointwise limits, as opposed
to limits in bounded variation norm, making the conditions of a robustly optimal solution
potentially vacuously satisfied.

3 The Fast Marching Tree Algorithm (FMT∗)

In this section we present the Fast Marching Tree algorithm (FMT∗). In Section 3.1 we
provide a high-level description. In Section 3.2 we present some basic properties and discuss
the main intuition behind FMT∗’s design. In Section 3.3 we conceptually compare FMT∗ to
existing AO algorithms and discuss its structural advantages. Finally, in Section 3.4 we
provide a detailed description of FMT∗ together with implementation details, which will be
instrumental to the computational complexity analysis given in Section 4.3.
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3.1 High-Level Description

The FMT∗ algorithm performs a forward dynamic programming recursion over a predeter-
mined number of sampled points and correspondingly generates a tree of paths by moving
steadily outward in cost-to-arrive space (see Figure 1). The dynamic programming recursion
performed by FMT∗ is characterized by three key features:

• It is tailored to disk-connected graphs, where two samples are considered neighbors ,
and hence connectable, if their distance is below a given bound, referred to as the
connection radius.

• It performs graph construction and graph search concurrently.

• For the evaluation of the immediate cost in the dynamic programming recursion, the
algorithm “lazily” ignores the presence of obstacles, and whenever a locally-optimal
(assuming no obstacles) connection to a new sample intersects an obstacle, that sample
is simply skipped and left for later as opposed to looking for other connections in the
neighborhood.

The first feature concerns the fact that FMT∗ exploits the structure of disk-connected
graphs to run dynamic programming for shortest path computation, in contrast with succes-
sive approximation schemes (as employed, e.g., by label-correcting methods). This aspect
of the algorithm is illustrated in Section 3.2, in particular, in Theorem 3.2 and Remark 3.3.
An extension of FMT∗ to k-nearest-neighbor graphs, which are structurally very similar to
disk-connected graphs, is studied in Section 5.3 and numerically evaluated in Section 6. The
last feature, which makes the algorithm “lazy” and represents the key innovation, dramat-
ically reduces the number of costly collision-check computations. However, it may cause
suboptimal connections. A central property of FMT∗ is that the cases where a suboptimal
connection is made become vanishingly rare as the number of samples goes to infinity, which
is key in proving that the algorithm is AO (Sections 3.2 and 4).

Algorithm 1 Fast Marching Tree Algorithm (FMT∗): Basics
Require: Sample set V comprised of xinit and n samples in Xfree, at least one of which is also in
Xgoal

1: Place xinit in Vopen and all other samples in Vunvisited; initialize tree with root node xinit
2: Find lowest-cost node z in Vopen
3: For each of z’s neighbors x in Vunvisited:
4: Find neighbor nodes y in Vopen
5: Find locally-optimal one-step connection to x from among nodes y
6: If that connection is collision-free, add edge to tree of paths
7: Remove successfully connected nodes x from Vunvisited and add them to Vopen
8: Remove z from Vopen and add it to Vclosed
9: Repeat until either:

(1) Vopen is empty ⇒ report failure
(2) Lowest-cost node z in Vopen is in Xgoal ⇒ return unique path to z and

report success

A basic pseudocode description of FMT∗ is given in Algorithm 1. The input to the
algorithm, besides the path planning problem definition, i.e., (Xfree, xinit,Xgoal), is a sample

7



set V comprised of xinit and n samples in Xfree (line 1). We refer to samples added to the
tree of paths as nodes. Two samples u, v ∈ V are considered neighbors if their Euclidean
distance is smaller than

rn = γ

(
log(n)

n

)1/d

,

where γ > 2
(

1/d
)1/d (

µ(Xfree)/ζd

)1/d
is a tuning parameter. The algorithm makes use of a

partition of V into three subsets, namely Vunvisited, Vopen, and Vclosed. The set Vunvisited consists
of all of the samples that have not yet been considered for addition to the incrementally grown
tree of paths. The set Vopen contains samples that are currently active, in the sense that they
have already been added to the tree (i.e., a collision-free path from xinit with a given cost-to-
arrive has been found) and are candidates for further connections to samples in Vunvisited. The
set Vclosed contains samples that have been added to the tree and are no longer considered
for any new connections. Intuitively, these samples are not near enough to the edge of the
expanding tree to actually have any new connections made with Vunvisited. Removing them
from Vopen reduces the number of nodes that need to be considered as neighbors for sample x.
The FMT∗ algorithm initially places xinit into Vopen and all other samples in Vunvisited, while
Vclosed is initially empty (line 1). The algorithm then progresses by extracting the node with
the lowest cost-to-arrive in Vopen (line 2, Figure 2(a)), call it z, and finds all its neighbors
within Vunvisited, call them x samples (line 3, Figure 2(a)). For each sample x, FMT∗ finds
all its neighbors within Vopen, call them y nodes (line 4, Figure 2(b)). The algorithm then
evaluates the cost of all paths to x obtained by concatenating previously computed paths to
nodes y with straight lines connecting them to x, referred to as “local one-step” connections.
Note that this step lazily ignores the presence of obstacles. FMT∗ then picks the path with
lowest cost-to-arrive to x (line 5, Figure 2(b)). If the last edge of this path, i.e., the one
connecting x with one of its neighbors in Vopen, is collision-free, then it is added to the tree
(line 6, Figure 2(c)). When all samples x have been considered, the ones that have been
successfully connected to the tree are added to Vopen and removed from Vunvisited (line 7,
Figure 2(d)), while the others remain in Vunvisited until a further iteration of the algorithm2.
Additionally, node z is inserted into Vclosed (line 8, Figure 2(d)), and FMT∗moves to the next
iteration (an iteration comprises lines 2–8). The algorithm terminates when the lowest-cost
node in Vopen is also in the goal region or when Vopen becomes empty. Note that at the
beginning of each iteration every sample in V is either in Vopen or in Vunvisited or in Vclosed.

A few comments are in order. First, the choice of the connection radius relies on a
trade-off between computational complexity (roughly speaking, more neighbors lead to more
computation) and quality of the computed path (roughly speaking, more neighbors lead to
more paths to optimize over), and is an important parameter in the analysis and implemen-
tation of FMT∗. This choice will be studied theoretically in Section 4 and numerically in
Section 6.3.2. Second, as shown in Figure 2, FMT∗ concurrently performs graph construc-

2In this paper we consider a batch implementation, whereby all successfully connected x are added to
Vopen in batch after all the samples x have been considered. It is easy to show that if, instead, each sample x
were added to Vopen as soon as its obstacle-free connection was found, then with probability 1, the algorithm
would make all the same connections as in the batch setting, regardless of what order the x were considered
in. Thus, since adding the samples x serially or in batch makes no difference to the algorithm’s output, we
prefer the batch implementation for its simplicity and parallelizability.
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tion and graph search, which is carried out via a dynamic programming recursion tailored
to disk graphs (see Section 3.2). This recursion lazily skips collision-checks and may indeed
introduce suboptimal connections. In Section 3.2 we will intuitively discuss why such sub-
optimal connections are very rare and still allow the algorithm to asymptotically approach
an optimal solution (Theorem 4.1). Third, the lazy collision-checking strategy employed by
FMT∗ is fundamentally different from the one proposed in the past within the probabilistic
roadmap framework (Bohlin and Kavraki, 2000; Sánchez and Latombe, 2003). Specifically,
the lazy PRM algorithm presented in (Bohlin and Kavraki, 2000) first constructs a graph
assuming that all connections are collision-free (refer to this graph as the optimistic graph).
Then, it searches for a shortest collision-free path by repeatedly searching for a shortest path
over the optimistic graph and then checking whether it is collision-free or not. Each time a
collision is found, the corresponding edge is removed from the optimistic graph and a new
shortest path is computed. The “Single-query, Bi-directional, Lazy in collision-checking” al-
gorithm, SBL (Sánchez and Latombe, 2003), implements a similar idea within the context of
bidirectional search. In contrast to lazy PRM and SBL, FMT∗ concurrently performs graph
construction and graph search, and as soon as a shortest path to the goal region is found,
that path is guaranteed to be collision-free. This approach provides computational savings
in especially cluttered environments, wherein lazy PRM-like algorithms will require a large
number of attempts to find a collision-free shortest path.

3.2 Basic Properties and Intuition

This section discusses basic properties of the FMT∗ algorithm and provides intuitive rea-
soning about its correctness and effectiveness. We start by showing that the algorithm
terminates in at most n steps, where n is the number of samples.

Theorem 3.1 (Termination). Consider a path planning problem (Xfree, xinit,Xgoal) and any
n ∈ N. The FMT∗ algorithm always terminates in at most n iterations (i.e., in n loops
through Algorithm 1 lines 2–8).

Proof. Note two key facts: (i) FMT∗ terminates and reports failure if Vopen is ever empty,
and (ii) the lowest-cost node in Vopen is removed from Vopen at each iteration. Therefore,
to prove the theorem it suffices to prove the invariant that any sample that has ever been
added to Vopen can never be added again. To establish the invariant, observe that at a given
iteration, only samples in Vunvisited can be added to Vopen, and each time a sample is added,
it is removed from Vunvisited. Finally, since Vunvisited never has samples added to it, a sample
can only be added to Vopen once. Thus the invariant is proved, and, in turn, the theorem.

To understand the correctness of the algorithm, consider first the case without obstacles
and where there is only one sample in Xgoal, denoted by xterminal. In this case FMT∗ uses
dynamic programming to find the shortest path from xinit to xterminal, if one exists, over
the rn-disk graph induced by V , i.e., over the graph where there exists an edge between two
samples u, v ∈ V if and only if ‖u−v‖ < rn. This fact is proven in the following theorem, the
proof of which highlights how FMT∗ applies dynamic programming over an rn-disk graph.

Theorem 3.2 (FMT∗ in obstacle-free environments). Consider a path planning problem
(Xfree, xinit,Xgoal), where Xfree = X (i.e., there are no obstacles) and Xgoal = {xterminal} (i.e.,
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xgoal

Vunvisited

Vopen

Vclosed

xinit

z

rn

(a) Lines 2–3: FMT∗ selects the lowest-cost node
z from set Vopen and finds its neighbors within
Vunvisited.

xgoal

Vunvisited

Vopen

Vclosed
y

x
y

xinit

(b) Lines 4–5: given a neighboring node x,
FMT∗ finds the neighbors of x within Vopen and
searches for a locally-optimal one-step connection.
Note that paths intersecting obstacles are also lazily
considered.

xgoal

Vunvisited

Vopen

Vclosed

x

xinit

(c) Line 6: FMT∗ selects the locally-optimal one-
step connection to x ignoring obstacles, and adds
that connection to the tree if it is collision-free.

xgoal

Vunvisited

Vopen

Vclosed

xinit

(d) Lines 7–8: After all neighbors of z in Vunvisited
have been explored, FMT∗ adds successfully con-
nected nodes to Vopen, places z in Vclosed, and moves
to the next iteration.

Figure 2: An iteration of the FMT∗ algorithm. FMT∗ lazily and concurrently performs graph
construction and graph search. Line references are with respect to Algorithm 1. In panel
(b), node z is re-labeled as node y since it is one of the neighbors of node x.
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there is a single node in Xgoal). Then, FMT∗ computes a shortest path from xinit to xterminal

(if one exists) over the rn-disk graph induced by V .

Proof. For a sample v ∈ V , let c(v) be the length of a shortest path to v from xinit over the rn-
disk graph induced by V , where c(v) =∞ if no path to v exists. Furthermore, let Cost(u, v)
be the length of the edge connecting samples u and v (i.e., its Euclidean distance). It is
well known that shortest path distances satisfy the Bellman principle of optimality (Cormen
et al., 2001, Chapter 24), namely

c(v) = min
u:‖u−v‖<rn

{c(u) + Cost(u, v)}. (1)

FMT∗ repeatedly applies this relation in a way that exploits the geometry of rn-disk graphs.
Specifically, FMT∗maintains two loop invariants:

Invariant 1: At the beginning of each iteration, the shortest path in the rn-disk
graph to a sample v ∈ Vunvisited must pass through a node u ∈ Vopen.

To prove Invariant 1, assume for contradiction that the invariant is not true, that is there
exists a sample v ∈ Vunvisited with a shortest path that does not contain any node in Vopen. At
the first iteration this condition is clearly false, as xinit is in Vopen. For subsequent iterations,
the contradiction assumption implies that along the shortest path there is at least one edge
(u,w) where u ∈ Vclosed and w ∈ Vunvisited (since the start node, xinit, is in Vclosed, and the path
terminates at v, which belongs to Vunvisited). This situation is, however, impossible as before
u is placed in Vclosed, all its neighbors, including v, must have been extracted from Vunvisited
and inserted into Vopen, since insertion into Vopen is ensured when there are no obstacles.
Thus, we have a contradiction.

The second invariant is:

Invariant 2: At the end of each iteration, all neighbors of z in Vunvisited are
placed in Vopen with their shortest paths computed.

To see this, let us induct on the number of iterations. At the first iteration, Invariant 2 is
trivially true. Consider, then, iteration i+ 1 and let x ∈ Vunvisited be a neighbor of z. In line
5 of Algorithm 1, FMT∗ computes a path to x with cost c̃(x) given by

c̃(x) = min
u∈Vopen: ‖u−x‖<rn

{c(u) + Cost(u, x)},

where by the inductive hypothesis the shortest paths to nodes in Vopen are all known, since
all nodes placed in Vopen before or at iteration i have had their shortest paths computed.
To prove that c̃(x) is indeed equal to the cost of a shortest path to x, i.e., c(x), we need to
prove that the Bellman principle of optimality is satisfied, that is

min
u∈Vopen: ‖u−x‖<rn

{c(u) + Cost(u, x)} = min
u: ‖u−x‖<rn

{c(u) + Cost(u, x)}. (2)

To prove the above equality, note first that there are no nodes u ∈ Vclosed such that ‖u−x‖ <
rn, otherwise x could not be in Vunvisited (by using the same argument from the proof of
Invariant 1). Consider, then, samples u ∈ Vunvisited such that ‖u− v‖ < rn. From Invariant
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1 we know that a shortest path to u must pass through a node w ∈ Vopen. If w is within a
distance rn from x, then, by the triangle inequality, we obtain a shorter path by concatenating
a shortest path to w with the edge connecting w and x—hence, u can be discarded when
looking for a shortest path to x. If, instead, w is farther than a distance rn from x, we can
write by repeatedly applying the triangle inequality:

c(u) + Cost(u, x) ≥ c(w) + Cost(w, x) ≥ c(w) + rn.

Since c(w) ≥ c(z) due to the fact that nodes are extracted from Vopen in order of their
cost-to-arrive, and since Cost(z, x) < rn, we obtain

c(u) + Cost(u, x) > c(z) + Cost(z, x),

which implies that, again, u can be discarded when looking for a shortest path to x. Thus,
equality (2) is proved and, in turn, Invariant 2.

Given Invariant 2, the theorem is proven by showing that, if there exists a path from xinit
to xterminal, at some iteration the lowest-cost node in Vopen is xterminal and FMT∗ terminates,
reporting “success,” see line 9 in Algorithm 1. We already know, by Theorem 3.1, that
FMT∗ terminates in at most n iterations. Assume by contradiction that upon termination
Vopen is empty, which implies that xterminal never entered Vopen and hence is in Vunvisited. This
situation is impossible, since the shortest path to xterminal would contain at least one edge
(u,w) with u ∈ Vclosed and w ∈ Vunvisited, which as argued in the proof of Invariant 1 cannot
happen. Thus the theorem is proved.

Remark 3.3 (FMT∗, dynamic programming, and disk-graphs). The functional equation (1)
does not constitute an algorithm, it only stipulates an optimality condition. FMT∗ implements
equation (1) by exploiting the structure of disk-connected graphs. Specifically, in the obstacle-
free case, the disk-connectivity structure ensures that FMT∗ visits nodes in a ordering com-
patible with directly computing (1), that is, while computing the left hand side of equation
(1) (i.e., the shortest path value c(v)), all the relevant shortest path values on the right hand
side (i.e., the values c(u)) have already been computed (see proof of Invariant 2). In this
sense, FMT∗ computes shortest paths by running direct dynamic programming, as opposed to
performing successive approximations as done by label-setting or label-correcting algorithms,
e.g., Dijkstra’s algorithm or the Bellman–Ford algorithm (Bertsekas, 2005, Chapter 2). We
refer the reader to Sniedovich (2006) for an in-depth discussion of the differences between
direct dynamic programming methods (such as FMT∗) and successive approximation methods
(such as Dijkstra’s algorithm) for shortest path computation. In an obstacle-free setting, such
a direct approach guarantees only one collision-check per sample. Most importantly, when
obstacles are present, this approach guarantees that FMT∗ performs O(1) collision-checks per
sample, as proven in Lemma C.2. FMT∗’s strategy is reminiscent of the approach used for
the computation of shortest paths over acyclic graphs (Sniedovich, 2006). Indeed, the idea
of leveraging graph structure to compute shortest paths over disk graphs is not new and was
recently investigated in Roditty and Segal (2011)—under the name of bounded leg shortest
path problem—and in Cabello and Jejčič (2014). Both works, however, do not use “direct”
dynamic programming arguments, but rather combine Dijkstra’s algorithm with the concept
of bichromatic closest pairs (Chan and Efrat, 2001).
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xu1

u2

xinit

c(u1) < c(u2)

c(u1) + Cost(u1, x) > c(u2) + Cost(u2, x)

Figure 3: Illustration of a case where FMT∗would make a suboptimal connection. FMT∗ is
designed so that suboptimal connections are “rare” in general, and vanishingly rare as n→
∞.

Theorem 3.2 shows that in the obstacle-free case FMT∗ returns a shortest path, if one
exists, over the rn-disk graph induced by the sample set V . This statement no longer
holds, however, when there are obstacles, as in this case FMT∗might make connections that
are suboptimal, i.e., that do not satisfy the Bellman principle of optimality. Specifically,
FMT∗will make a suboptimal connection when exactly four conditions are satisfied. Let
u1 be the optimal parent of x with respect to the rn-disk graph where edges intersecting
obstacles are removed. This graph is the “correct” graph FMT∗ should plan over if it were
not lazy. The sample x will not be connected to u1 by FMT∗ only if when u1 is the lowest-
cost node in Vopen, there is another node u2 ∈ Vopen such that (a) u2 is within a radius rn
of x, (b) u2 has greater cost-to-arrive than u1, (c) obstacle-free connection of x to u2 would
have lower cost-to-arrive than connection to u1, and (d) u2 is blocked from connecting to x
by an obstacle. These four conditions are illustrated in Figure 3. Condition (a) is required
because in order for u2 to be connected to x, it must be within the connection radius of x.
Conditions (b), (c), and (d) combine as follows: condition (b) dictates that u1 will be pulled
from Vopen before u2 is. Due to (c), u2 will be chosen as the potential parent of x. Condition
(d) will cause the algorithm to discard the edge between them, and u1 will be removed from
Vopen, never to be evaluated again. Thus, in the future, the algorithm will never realize
that u1 was a better parent for x. If condition (b) were to fail, then u2 would be pulled
from Vopen first, would unsuccessfully attempt to connect to x, and then would be removed
from Vopen, leaving x free to connect to u1 in a future iteration. If condition (c) were to
fail, the algorithm would attempt to connect x to u1 instead of u2 and would therefore find
the optimal connection. If condition (d) were to fail, then u2 would indeed be the optimal
parent of x, and so the optimal connection would be formed. Thus, if any of one these four
conditions fail, then at some iteration (possibly not the first), x will be connected optimally
with respect to the “correct” graph. Note that the combination of conditions (a), (b), (c),
and (d) make such suboptimal connections quite rare. Additionally, samples must be within
distance rn of an obstacle to achieve joint satisfaction of conditions (a), (b), (c), and (d),
and Lemma C.2 shows that the fraction of samples which lie within rn of an obstacle goes
to zero as n → ∞. Furthermore, Theorem 4.1 shows that such suboptimal connections do
not affect the AO of FMT∗ .
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3.3 Conceptual Comparison with Existing AO Algorithms and
Advantages of FMT∗

When there are no obstacles, FMT∗ reports the exact same solution or failure as PRM∗ .
This property follows from the fact that, without obstacles, FMT∗ is indeed using dynamic
programming to build the minimum-cost spanning tree, as shown in Theorem 3.2. With
obstacles, for a given sample set, FMT∗ finds a path with a cost that is lower-bounded by,
and does not substantially exceed, the cost of the path found by PRM∗, due to the subop-
timal connections made by lazily ignoring obstacles in the dynamic programming recursion.
However, as will be shown in Theorem 4.1, the cases where FMT∗makes a suboptimal con-
nection are rare enough that as n→∞, FMT∗, like PRM∗, converges to an optimal solution.
While lazy collision-checking might introduce suboptimal connections, it leads to a key com-
putational advantage. By only checking for collision on the locally-optimal (assuming no
obstacles) one-step connection, as opposed to every possible connection as is done in PRM∗,
FMT∗ saves a large number of costly collision-check computations. Indeed, the ratio of the
number of collision-check computations in FMT∗ to those in PRM∗ goes to zero as the number
of samples goes to infinity. Hence, we have a theoretical basis to expect FMT∗ to outperform
PRM∗ in terms of solution cost as a function of time.

A conceptual comparison to RRT∗ is more difficult, given how differently RRT∗ generates
paths as compared with FMT∗. The graph expansion procedure of RRT∗ is fundamentally
different from that of FMT∗. While FMT∗ samples points throughout the free space and
makes connections independently of the order in which the samples are drawn, at each
iteration RRT∗ steers towards a new sample only from the regions it has reached up until
that time. In problems where the solution path is necessarily long and winding it may take
a long time for an ordered set of points traversing the path to present steering targets for
RRT∗. In this case, a lot of time can be wasted by steering in inaccessible directions before a
feasible solution is found. Additionally, even once the search trees for both algorithms have
explored the whole space, one may expect FMT∗ to show some improvement in solution
quality per number of samples placed. This improvement comes from the fact that, for a
given set of samples, FMT∗ creates connections nearly optimally (exactly optimally when
there are no obstacles) within the radius constraint, while RRT∗, even with its rewiring step,
is fundamentally a greedy algorithm. It is, however, hard to conceptually assess how long the
algorithms might take to run on a given set of samples, although in terms of collision-check
computations, we will show in Lemma C.2 that FMT∗ performs O(1) collision-checks per
sample, while RRT∗ performs O(log(n)) per sample. In Section 6.2 we will present results
from numerical experiments to make these conceptual comparisons concrete and assess the
benefits of FMT∗ over RRT∗ .

An effective approach to address the greedy behavior of RRT∗ is to leverage relaxation
methods for the exploitation of new connections (Arslan and Tsiotras, 2013). This approach
is the main idea behind the RRT# algorithm (Arslan and Tsiotras, 2013), which constructs
a spanning tree rooted at the initial condition and containing lowest-cost path information
for nodes which have the potential to be part of a shortest path to the goal region. This
approach is also very similar to what is done by FMT∗. However, RRT# grows the tree in
a fundamentally different way, by interleaving the addition of new nodes and corresponding
edges to the graph with a Gauss–Seidel relaxation of the Bellman equation (1); it is essen-

14



tially the same relaxation used in the LPA∗ algorithm (Koenig et al., 2004). This last step
propagates the new information gained with a node addition across the whole graph in order
to improve the cost-to-arrive values of “promising” nodes (Arslan and Tsiotras, 2013). In
contrast, FMT∗ directly implements the Bellman equation (1) and, whenever a new node is
added to the tree, considers only local, i.e. within a neighborhood, connections. Further-
more, and perhaps most importantly, FMT∗ implements a lazy collision-checking strategy,
which on the practical side may significantly reduce the number of costly collision-checks,
while on the theoretical side requires a careful analysis of possible suboptimal local connec-
tions (see Section 3.2 and Theorem 4.1). It is also worth mentioning that over n samples
FMT∗ has a computational complexity that is O(n log n) (Theorem 4.7), while RRT# has a
computational complexity of O(n2 log n) (Arslan and Tsiotras, 2013).

Besides providing fast convergence to high quality solutions, FMT∗ has some “structural”
advantages with respect to its state-of-the-art counterparts. First, FMT∗, like PRM∗, relies
on the choice of two parameters, namely the number of samples and the constant appearing
in the connection radius in equation (3). In contrast, RRT∗ requires the choice of four
parameters, namely, the number of samples or termination time, the steering radius, the goal
biasing, and the constant appearing in the connection radius. An advantage of FMT∗ over
PRM∗, besides the reduction in the number of collision-checks (see Section 3.1), is that
FMT∗ builds and maintains paths in a tree structure at all times, which is advantageous when
differential constraints are added to the paths. In particular, far fewer two-point boundary
value problems need to be solved (see the recent work in (Schmerling et al., 2015)). Also,
the fact that the tree grows in cost-to-arrive space simplifies a bidirectional implementation,
as discussed in (Starek et al., 2014). Finally, while FMT∗, by running on a predetermined
number of samples, is not an anytime algorithm (roughly speaking, an algorithm is called
anytime if, given extra time, it continues to run and further improve its solution until time
runs out—a notable example is RRT∗), it can be cast into this framework by repeatedly
adding batches of samples and carefully reusing previous computation until time runs out,
as recently presented in (Salzman and Halperin, 2014).

3.4 Detailed Description and Implementation Details

This section provides a detailed pseudocode description of Algorithm 1, which highlights a
number of implementation details that will be instrumental to the computational complexity
analysis given in Section 4.3.

Let SampleFree(n) be a function that returns a set of n ∈ N points (samples) sampled
independently and identically from the uniform distribution on Xfree. We discuss the ex-
tension to non-uniform sampling distributions in Section 5.1. Let V be a set of samples
containing the initial state xinit and a set of n points sampled according to SampleFree(n).
Given a subset V ′ ⊆ V , and a sample v ∈ V , let Save(V ′, v) be a function that stores in
memory a set of samples V ′ associated with sample v. Given a set of samples V , a sample
v ∈ V , and a positive number r, let Near(V, v, r) be a function that returns the set of samples
{u ∈ V : ‖u − v‖ < r}. Near checks first to see if the required set of samples has already
been computed and saved using Save, in which case it loads the set from memory, otherwise
it computes the required set from scratch. Paralleling the notation in the proof of Theorem
3.2, given a tree T = (V ′, E), where the node set V ′ ⊆ V contains xinit and E is the edge
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Algorithm 2 Fast Marching Tree Algorithm (FMT∗ ): Details

1 V ← {xinit} ∪ SampleFree(n); E ← ∅
2 Vunvisited ← V \{xinit}; Vopen ← {xinit}, Vclosed ← ∅
3 z ← xinit
4 Nz ← Near(V \{z}, z, rn)
5 Save(Nz, z)
6 while z /∈ Xgoal do
7 Vopen,new ← ∅
8 Xnear = Nz∩Vunvisited
9 for x ∈ Xnear do

10 Nx ← Near(V \{x}, x, rn)
11 Save(Nx, x)
12 Ynear ← Nx∩Vopen
13 ymin ← arg miny∈Ynear {c(y) + Cost(y, x)} // dynamic programming equation

14 if CollisionFree(ymin, x) then
15 E ← E ∪ {(ymin, x)} // straight line joining ymin and x is collision-free

16 Vopen,new ← Vopen, new ∪ {x}
17 Vunvisited ← Vunvisited\{x}
18 c(x) = c(ymin)+Cost(ymin, x) // cost-to-arrive from xinit in tree T = (Vopen∪Vclosed, E)

19 end if
20 end for
21 Vopen ← (Vopen ∪ Vopen, new)\{z}
22 Vclosed ← Vclosed ∪ {z}
23 if Vopen = ∅ then
24 return Failure
25 end if
26 z ← arg miny∈Vopen {c(y)}
27 end while
28 return Path(z, T = (Vopen ∪ Vclosed, E))
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set, and a node v ∈ V ′, let c(v) be the cost of the unique path in the graph T from xinit to v.
Given two samples u, v ∈ V , let Cost(u, v) be the cost of the straight line joining u and v (in
the current setup Cost(u, v) = ‖v− u‖, more general costs will be discussed in Section 5.2).
Note that Cost(u, v) is well-defined regardless of the line joining u and v being collision-free.
Given two samples u, v ∈ V , let CollisionFree(u, v) denote the boolean function which
is true if and only if the line joining u and v does not intersect an obstacle. Given a tree
T = (V ′, E), where the node set V ′ ⊆ V contains xinit and E is the edge set, and a node
v ∈ V ′, let Path(v, T ) be the function returning the unique path in the tree T from xinit to
v. The detailed FMT∗ algorithm is given in Algorithm 2.

The set Vopen should be implemented as a binary min heap, ordered by cost-to-arrive,
with a parallel set of nodes that exactly tracks the nodes in Vopen in no particular order, and
that is used to efficiently carry out the intersection operation in line 12 of the algorithm. The
set Vopen, new contains successfully connected x samples that will be added to Vopen once all x
samples have been considered (compare with line 7 in Algorithm 1). At initialization (line 5)
and during the main while loop (line 11), FMT∗ saves the information regarding the nearest
neighbor set of a node v, namely Nv. This operation is needed to avoid unnecessary repeated
computations of near neighbors by allowing the Near function to load from memory, and will
be important for the characterization of the computational complexity of FMT∗ in Theorem
4.7. Substituting lines ??–12 with the line Ynear ← Near(Vopen, x, rn), while algorithmically
correct, would cause a larger number of unnecessary near neighbor computations. Addition-
ally, for each node u ∈ Nv, one should also save the real value Cost(u, v) and the boolean
value CollisionFree(u, v). Saving both of these values whenever they are first computed
guarantees that FMT∗will never compute them more than once for a given pair of nodes.

4 Analysis of FMT∗

In this section we characterize the asymptotic optimality of FMT∗ (Section 4.1), provide a
convergence rate to the optimal solution (Section 4.2), and finally characterize its computa-
tional complexity (Section 4.3).

4.1 Asymptotic Optimality

The following theorem presents the main result of this paper.

Theorem 4.1 (Asymptotic optimality of FMT∗ ). Let (Xfree, xinit,Xgoal) be a δ-robustly fea-
sible path planning problem in d dimensions, with δ > 0 and Xgoal being ξ-regular. Let c∗

denote the arc length of an optimal path σ∗, and let cn denote the arc length of the path
returned by FMT∗ (or ∞ if FMT∗ returns failure) with n samples using the following radius,

rn = (1 + η) 2

(
1

d

)1/d(
µ(Xfree)

ζd

)1/d(
log(n)

n

)1/d

, (3)

for some η > 0. Then limn→∞ P (cn > (1 + ε)c∗) = 0 for all ε > 0.

Proof. Note that c∗ = 0 implies xinit ∈ cl(Xgoal), and the result is trivial, therefore assume
c∗ > 0. Fix θ ∈ (0, 1/4) and define the sequence of paths σn such that limn→∞ c(σn) = c∗,
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σn(1) ∈ ∂Xgoal, σn(τ) /∈ Xgoal for all τ ∈ (0, 1), σn(0) = xinit, and σn has strong δn-clearance,
where δn = min

{
δ, 3+θ

2+θ
rn
}

. Such a sequence of paths must exist by the δ-robust feasibility
of the path planning problem. The parameter θ will be used to construct balls that cover a
path of interest, and in particular will be the ratio of the separation of the ball centers to
their radii (see Figure 4 for an illustration).

The path σn ends at ∂Xgoal; we will define σ′n as σn with a short extension into the
interior of Xgoal. Specifically, σ′n is σn concatenated with the line of length min

{
ξ, rn

2(2+θ)

}
that extends from σn(1) into Xgoal, exactly perpendicular to the tangent hyperplane of ∂Xgoal

at σn(1). Note that this tangent hyperplane is well-defined, since the regularity assumption
for Xgoal ensures that its boundary is differentiable. Note that, trivially, limn→∞ c(σ

′
n) =

limn→∞ c(σn) = c∗. This line extension is needed because a path that only reaches the
boundary of the goal region can be arbitrarily well-approximated in bounded variation norm
by paths that are not actually feasible because they do not reach the goal region, and we
need to ensure that FMT∗ finds feasible solution paths that approximate an optimal path.

Fix ε ∈ (0, 1), suppose α, β ∈ (0, θε/8), and pick n0 ∈ N such that for all n ≥ n0 the
following conditions hold: (1) rn

2(2+θ)
< ξ, (2) 3+θ

2+θ
rn < δ, (3) c(σ′n) < (1 + ε

4
) c∗, and (4)

rn
2+θ

< ε
8
c∗. Both α and β are parameters for controlling the smoothness of FMT∗’s solution,

and will be used in the proofs of Lemmas 4.2 and 4.3.
For the remainder of this proof, assume n ≥ n0. From conditions (1) and (2), σ′n has

strong 3+θ
2+θ

rn-clearance. For notational simplicity, let κ(α, β, θ) := 1 + (2α+ 2β)/θ, in which
case conditions (3) and (4) imply,

κ(α, β, θ) c(σ′n) +
rn

2 + θ
≤ κ(α, β, θ)

(
1 +

ε

4

)
c∗ +

ε

8
c∗

≤
((

1 +
ε

2

)(
1 +

ε

4

)
+
ε

8

)
c∗ ≤ (1 + ε)c∗.

Therefore,

P (cn > (1 + ε)c∗) = 1− P (cn ≤ (1 + ε)c∗) ≤ 1− P
(
cn ≤ κ(α, β, θ) c(σ′n) + rn

2+θ

)
. (4)

Define the sequence of balls Bn,1, . . . , Bn,Mn ⊆ Xfree parameterized by θ as follows. For

m = 1 we define Bn,1 := B

(
σn(τn,1);

rn
2+θ

)
, with τn,1 = 0. For m = 2, 3, . . ., let

Γm =

{
τ ∈ (τn,m−1, 1) : ‖σn(τ)− σn(τn,m−1)‖ =

θrn
2 + θ

}
;

if Γm 6= ∅ we define Bn,m := B

(
σn(τn,m); rn

2+θ

)
, with τn,m = minτ Γm. Let Mn be the

first m such that Γm = ∅, then, Bn,Mn := B

(
σ′n(1); rn

2(2+θ)

)
, and we stop the process, i.e.,

Bn,Mn is the last ball placed along the path σn (note that the center of the last ball is σ′n(1)).
Considering the construction of σ′n and condition (1) above, we conclude that Bn,Mn ⊆ Xgoal.
See Figure 4 for an illustration of this construction.
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Figure 4: An illustration of the covering balls Bn,m and associated smaller balls Bβ
n,m. The

figure also illustrates the role of ξ in Xgoal and the construction of Bn,Mn . Note that θ (the
ratio of the separation of the centers of the Bn,m to their radii) is depicted here as being
around 2/3 for demonstration purposes only, as the proof requires θ < 1/4.

Recall that V is the set of samples available to the FMT∗ algorithm (see line 1 in Algo-
rithm 2). We define the event An,θ :=

⋂Mn

m=1{Bn,m ∩ V 6= ∅}; An,θ is the event that each
ball contains at least one (not necessarily unique) sample in V . For clarity, we made the
events’ dependence on θ, due to the dependence on θ of the balls, explicit. Further, for all
m ∈ {1, . . . ,Mn − 1}, let Bβ

n,m be the ball with the same center as Bn,m and radius βrn
2+θ

,

where 0 ≤ β ≤ 1, and let Kβ
n be the number of smaller balls Bβ

n,m not containing any of the
samples in V , i.e., Kβ

n := card{m ∈ {1, . . . ,Mn − 1} : Bβ
n,m ∩ V = ∅}. We again point the

reader to Figure 4 to see the Bβ
n,m depicted.

We now present three important lemmas; their proofs can be found in Appendix A.

Lemma 4.2 (FMT∗ path quality). Under the assumptions of Theorem 4.1 and assuming
n ≥ n0, the following inequality holds:

P
(
cn ≤ κ(α, β, θ) c(σ′n) + rn

2+θ

)
≥ 1 − P(Kβ

n ≥ α(Mn − 1))− P(Acn,θ).

Lemma 4.3 (Tight approximation to most of the path). Under the assumptions of Theorem
4.1, for all α ∈ (0, 1) and β ∈ (0, θ/2), it holds that

lim
n→∞

P(Kβ
n ≥ α(Mn − 1)) = 0.

Lemma 4.4 (Loose approximation to all of the path). Under the assumptions of Theorem
4.1, assume that

rn = γ

(
log n

n

)1/d

,

where

γ = (1 + η) · 2
(

1

d

)1/d(
µ(Xfree)

ζd

)1/d

,
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and η > 0. Then for all θ < 2η, limn→∞ P(Acn,θ) = 0.

Essentially, Lemma 4.2 provides a lower bound for the arc length of the solution delivered
by FMT∗ in terms of the probabilities that the “big” balls and “small” balls do not contain
samples in V . Lemma 4.3 states that the probability that the fraction of small balls not
containing samples in V is larger than an α fraction of the total number of balls is asymp-
totically zero. Finally, Lemma 4.4 states that the probability that at least one “big” ball
does not contain any of the samples in V is asymptotically zero.

The asymptotic optimality claim of the theorem then follows easily. Let ε ∈ (0, 1) and
pick θ ∈ (0,min{2η, 1/4}) and α, β ∈ (0, θε/8) ⊂ (0, θ/2). From equation (4) and Lemma
4.2, we can write

lim
n→∞

P (cn > (1 + ε)c∗) ≤ lim
n→∞

P
(
Kβ
n ≥ α(Mn − 1)

)
+ lim

n→∞
P
(
Acn,θ

)
.

The right-hand side of this equation equals zero by Lemmas 4.3 and 4.4, and the claim is
proven. The case with general ε follows by monotonicity in ε of the above probability.

Remark 4.5 (Application of Theorem 4.1 to PRM∗). Since the solution returned by FMT∗ is
never better than the one returned by PRM∗ on a given set of nodes, the exact same result
holds for PRM∗. Note that this proof uses a γ which is a factor of (d+1)1/d smaller, and thus a
rn which is (d+1)1/d smaller, than that in Karaman and Frazzoli (2011). Since the number of
cost computations and collision-checks scales approximately as rdn, this factor should reduce
run time substantially for a given number of nodes, especially in high dimensions. This
reduction is due to the difference in definitions of AO mentioned earlier which, again, makes
no practical difference for PRM∗ or FMT∗ .

4.2 Convergence Rate

In this section we provide a convergence rate bound for FMT∗ (and thus also for PRM∗),
assuming no obstacles. As far as the authors are aware, this bound is the first such conver-
gence rate result for an optimal sampling-based motion planning algorithm and represents
an important step towards understanding the behavior of this class of algorithms. The proof
is deferred to Appendix B.

Theorem 4.6 (Convergence rate of FMT∗). Let the configuration space be [0, 1]d with no
obstacles and the goal region be [0, 1]d ∩ B(~1; ξ), where ~1 = (1, 1, . . . , 1). Taking xinit to be
the center of the configuration space, the shortest path has length c∗ =

√
d/2 − ξ and has

clearance δ = ξ/
√
d. Denote the arc length of the path returned by FMT∗ with n samples as

cn. For FMT∗ run using the radius given by equation (3), namely,

rn = (1 + η) 2

(
1

d

)1/d(
µ(Xfree)

ζd

)1/d(
log(n)

n

)1/d

,

for all ε > 0, we have the following convergence rate bounds,

P(cn > (1 + ε)c∗) ∈

 O
(

(log(n))−
1
d n

1
d(1−(1+η)

d)+ρ
)

if η ≤ 2
(2d−1)1/d − 1,

O
(
n−

1
d(

1+η
2 )

d
+ρ
)

if η > 2
(2d−1)1/d − 1,

(5)

as n→∞, where ρ is an arbitrarily small positive constant.
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In agreement with the common opinion about sampling-based motion planning algo-
rithms, our convergence rate bound converges to zero slowly, especially in high dimensions.
Although the rate is slow, it scales as a power of n rather than, say, logarithmically. We have
not, however, studied how tight the bound is—studying this rate is a potential area for future
work. As expected, the rate of convergence increases as η increases. However, increasing η
increases the amount of computation per sample, hence, to optimize convergence rate with
respect to time one needs to properly balance these two competing effects. Note that if we
select η = 1, from equation (14) we obtain a remarkably simple form for the rate, namely
O(n−1/d+ρ), which holds for PRM∗ as well (we recall that for a given number of samples
the solution returned by PRM∗ is not worse than the one returned by FMT∗ using the same
connection radius). Note that the rate of convergence to a feasible (as opposed to optimal)
solution for PRM and RRT is known to be exponential (Kavraki et al., 1998; LaValle and
Kuffner, 2001); unsurprisingly, our bound for converging to an optimal solution decreases
more slowly, as it is not exponential.

We emphasize that our bound does not have a constant multiplying the rate that ap-
proaches infinity as the arbitrarily small parameter (in our case ρ) approaches zero. In fact,
the asymptotic constant multiplying the rate is 1, independent of the value of ρ, but the
earliest n at which that rate holds approaches ∞ as ρ → 0. Furthermore, although our
bound reflects the asymptotically dominant term (see equation (15) in the proof), there are
two other terms which may contribute substantially or even dominate for finite n.

It is also of interest to bound P(cn > (1 + ε)c∗) by an asymptotic expression in ε, but
unfortunately this cannot be derived from our results, since the closed-form bound we use in

the proof (see again equation (15)) only holds for n ≥ n0, and n0
ε→0−→ ∞. Therefore fixing

n and sending ε → 0 just causes this bound to return 1 on a set (0, ε0(n)), which tells us
nothing about the rate at which the true probability approaches 1 as ε→ 0.

4.3 Computational Complexity

The following theorem, proved in Appendix C, characterizes the computational complexity
of FMT∗with respect to the number of samples. It shows that FMT∗ requires O(n log(n))
operations in expectation, the same as PRM∗ and RRT∗. It also highlights the computational
savings of FMT∗ over PRM∗, since in expectation FMT∗ checks for edge collisions just O(n)
times, while PRM∗ does so O(n log(n)) times. Ultimately, the most relevant complexity
measure is how long it takes for an algorithm to return a solution of a certain quality. This
measure, partially characterized in Section 4.2, will be studied numerically in Section 6.

Theorem 4.7 (Computational complexity of FMT∗ ). Consider a path planning problem
(Xfree, xinit,Xgoal) and a set of samples V in Xfree of cardinality n, and fix

rn = γ

(
log(n)

n

)1/d

,

for some positive constant γ. In expectation, FMT∗ takes O(n log(n)) time to compute a
solution on n samples, and in doing so, makes O(n) calls to CollisionFree (again in
expectation). FMT∗ also takes O(n log(n)) space in expectation.
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5 Extensions

This section presents three extensions to the setup considered in the previous section, namely,
(1) non-uniform sampling strategies, (2) general cost functions instead of arc length, and (3)
a version of FMT∗, named k-nearest FMT∗, in which connections are sought to k nearest-
neighbor nodes, rather than to nodes within a given distance.

For all three cases we discuss the changes needed to the baseline FMT∗ algorithm pre-
sented in Algorithm 2 and then argue how FMT∗with these changes retains AO in Appen-
dices D–F. In the interest of brevity, we will only discuss the required modifications to
existing theorems, rather than proving everything from scratch.

5.1 Non-Uniform Sampling Strategies

5.1.1 Overview

Sampling nodes from a non-uniform distribution can greatly help planning algorithms by
incorporating outside knowledge of the optimal path into the algorithm itself (Hsu et al.,
2006). (Of course if no outside knowledge exists, the uniform distribution may be a natural
choice.) Specifically, we consider the setup whereby SampleFree(n) returns n points sampled
independently and identically from a probability density function ϕ supported over Xfree. We
assume that ϕ is bounded below by a strictly positive number `. This lower bound on ϕ allows
us to make a connection between sampling from a non-uniform distribution and sampling
from a uniform distribution, for which the proof of AO already exists (Theorem 4.1). This
argument is worked through in Appendix D to show that FMT∗with non-uniform sampling
is AO.

5.1.2 Changes to FMT∗ Implementation

The only change that needs to be made to FMT∗ is to multiply rn by (1/`)1/d.

5.2 General Costs

Another extension of interest is when the cost function is not as simple as arc length. We may,
for instance, want to consider some regions as more costly to move through than others, or
a cost that weights/treats movement along different dimensions differently. In the following
subsections, we explain how FMT∗ can be extended to other metric costs, as well as line
integral costs, and why its AO still holds.

Broadly speaking, the main change that needs to happen to FMT∗’s implementation
is that it needs to consider cost instead of Euclidean distance when searching for nearby
points. For metric costs besides Euclidean cost (Section 5.2.1), a few adjustments to the
constants are all that is needed in order to ensure AO. This is because the proof of AO in
Theorem 4.1 relies on the cost being additive and obeying the triangle inequality. The same
can be said for line integral costs if FMT∗ is changed to search along and connect points by
cost-optimal paths instead of straight lines (Section 5.2.2). Since such an algorithm may be
hard to implement in practice, we lastly show in Section 5.2.3 that by making some Lipschitz
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assumptions on the cost function, we get an approximate triangle inequality for straight-line,
cost-weighted connections. We present an argument for why this approximation is sufficiently
good to ensure that the suboptimality introduced in how parent nodes are chosen and in the
edges themselves goes to zero asymptotically, and thus that AO is retained. All arguments
for AO in this subsection are deferred to Appendix E.

5.2.1 Metric Costs

Overview: Consider as cost function any metric on X , denoted by dist : X×X → R. If the
distance between points in X is measured according to dist, the FMT∗ algorithm requires
very minor modifications, namely just a modified version of the Near function. Generalized
metric costs allow one to account for, e.g., different weightings on different dimensions, or
an angular dimension which wraps around at 2π.

Changes to FMT∗’s implementation: Given two samples u, v ∈ V , Cost(u, v) =
dist(u, v). Accordingly, given a set of samples V , a sample v ∈ V , and a positive num-
ber r, Near(V, v, r) returns the set of samples {u ∈ V : Cost(u, v) < r}. We refer to such
sets as cost balls. Formally, everything else in Algorithm 2 stays the same, except ζd in the
definition of rn needs to be defined as the Lebesgue measure of the unit cost-ball.

5.2.2 Line Integral Costs with Optimal-Path Connections

Overview: In some planning problems the cost function may not be a metric, i.e., it may
not obey the triangle inequality. Specifically, consider the setup where f : X → R is such
that 0 < flower ≤ f(x) ≤ fupper <∞ for all x ∈ X , and the cost of a path σ is given by∫

σ

f(s) ds.

Note that in this setup a straight line is not generally the lowest-cost connection between
two samples u, v ∈ X . FMT∗, however, relies on straight lines in two ways: adjacent nodes
in the FMT∗ tree are connected with a straight line, and two samples are considered to be
within r of one another if the straight line connecting them has cost less than r. In this
section we consider a version of FMT∗whereby two adjacent nodes in the FMT∗ tree are
connected with the optimal path between them, and two nodes are considered to be within
r of one another if the optimal path connecting them has cost less than r.

Changes to FMT∗’s implementation: Given two nodes u, v ∈ V ,

Cost(u, v) = min
σ′

∫
σ′
f(s) ds,

where σ′ denotes a path connecting u and v. Given a set of nodes V , a node v ∈ V , and a
positive number r, Near(V, v, r) returns the set of nodes {u ∈ V : Cost(u, v) < r}. Every
time a node is added to a tree, its cost-optimal connection to its parent is also stored. Lastly,
the definition of rn needs to be multiplied by a factor of fupper.
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5.2.3 Line Integral Costs with Straight-Line Connections

Overview: Computing an optimal path for a line integral cost for every connection, as
considered in Section 5.2.2, may represent an excessive computational bottleneck. Two
strategies to address this issue are (1) precompute such optimal paths since their computation
does not require knowledge of the obstacle set, or (2) approximate such paths with cost-
weighted, straight line paths and study the impact on AO. In this section we study the
latter approach, and we argue that AO does indeed still hold, by appealing to asymptotics
to show that the triangle inequality approximately holds, with this approximation going
away as n→∞.

Changes to FMT∗’s implementation: Given two samples u, v ∈ V ,

Cost(u, v) =

∫
uv

f(s) ds.

Given a set of samples V , a sample v ∈ V , and a positive number r, Near(V, v, r) returns
the set of samples {u ∈ V : Cost(u, v) < r}. Lastly, the definition of rn needs to again be
increased by a factor of fupper.

5.3 FMT∗Using k-Nearest-Neighbors

5.3.1 Overview

A last variant of interest is to have a version of FMT∗which makes connections based on
k-nearest-neighbors instead of a fixed cost radius. This variant, referred to as k-nearest
FMT∗, has the advantage of being more adaptive to different obstacle spaces than its cost-
radius counterpart. This is because FMT∗will consider about half as many connections for a
sample very near an obstacle surface as for a sample far from obstacles, since about half the
measure of the obstacle-adjacent-sample’s cost ball is inside the obstacle. k-nearest FMT∗,
on the other hand, will consider k connections for every sample. To prove AO for k-nearest
FMT∗ (in Appendix F), we will stray slightly from our main proof exposition in this paper
and use the similarities between FMT∗ and PRM∗ to leverage a similar proof for k-nearest
PRM∗ from (Karaman and Frazzoli, 2011).

5.3.2 Changes to FMT∗’s Implementation

Two parts need to change in Algorithm 2, both about how Near works. The first is in lines 4
and 8, where Nz should be all samples v ∈ V \{z} such that both v is a kn-nearest-neighbor of
z and z is a kn-nearest-neighbor of v. We refer to this set as the mutual kn-nearest-neighbor
set of z. The second change is that in lines ?? and 12, Nx should be the usual kn-nearest-
neighbor set of x, namely all samples v ∈ V \ {x} such that v is a kn-nearest-neighbor of x.
Finally, kn should be chosen so that

kn = k0 log(n), where k0 > 3d e (1 + 1/d). (6)

With these changes, k-nearest FMT∗works by repeatedly applying Bellman’s equation (1)
over a k-nearest-neighbor graph, analogously to what is done in the disk-connected graph case

24



(see Theorem 3.2). When we want to refer to the generic algorithm k-nearest FMT∗ using
the specific sequence kn, and we want to make this use explicit, we will say kn-nearest FMT∗.

6 Numerical Experiments and Discussion

In this section we numerically investigate the advantages of FMT∗ over previous AO sampling-
based motion planning algorithms. Specifically, we compare FMT∗ against RRT∗ and PRM∗,
as these two algorithms are state-of-the-art within the class of AO planners, span the main
ideas (e.g., roadmaps versus trees) in the field of sampling-based planning, and have open-
source, high-quality implementations. We first present in Section 6.1 a brief overview of
the simulation setup. We then compare FMT∗, RRT∗, and PRM∗ in Section 6.2. Numer-
ical experiments confirm our theoretical and heuristic arguments by showing that FMT∗,
for a given execution time, returns substantially better solutions than RRT∗ and PRM∗ in a
variety of problem settings. FMT∗’s main computational speedups come from performing
fewer collision checks—the more expensive collision-checking is, the more FMT∗will excel.
Finally, in Section 6.3, we study in-depth FMT∗ and its extensions (e.g., general costs). In
particular, we provide practical guidelines about how to implement and tune FMT∗.

6.1 Simulation Setup

Simulations were written in a mix of C++ and Julia, and run using a Unix operating system
with a 2.0 GHz processor and 8 GB of RAM. The C++ simulations were run through
the Open Motion Planning Library (OMPL) (Şucan et al., 2012), from which the reference
implementation of RRT∗was taken. We took the default values of RRT∗ parameters from
OMPL (unless otherwise noted below), in particular a steering parameter of 20% of the
maximum extent of the configuration space, and a goal-bias probability of 5%. Also, since the
only OMPL implementation of RRT∗ is a k-nearest implementation, we adapted a k-nearest
version of PRM∗ and implemented a k-nearest version of FMT∗, both in OMPL; these are
the versions used in Sections 6.1–6.2. In these two subsections, for notational simplicity,
we will refer to the k-nearest versions of FMT∗, RRT∗, and PRM∗ simply as FMT∗, RRT∗,
and PRM∗, respectively. The three algorithms were run on test problems drawn from the
bank of standard rigid body motion planning problems given in the OMPL.app graphical
user interface. These problems, detailed below and depicted in Figure 5, are posed within
the configuration spaces SE(2) and SE(3) which correspond to the kinematics (available
translations and rotations) of a rigid body in 2D and 3D respectively. The dimension of the
state space sampled by these planners is thus three in the case of SE(2) problems, and six
in the case of SE(3) problems.

We chose the Julia programming language (Bezanson et al., 2012) for the implementation
of additional simulations because of its ease in accommodating the FMT∗ extensions studied
in Section 6.3. We constructed experiments with a robot modeled as a union of hyperrectan-
gles in high-dimensional Euclidean space moving amongst hyperrectangular obstacles. We
note that for both simulation setups, FMT∗, RRT∗, and PRM∗ used the exact same primitive
routines (e.g., nearest-neighbor search, collision-checking, data handling, etc.) to ensure a
fair comparison. The choice of k for the nearest-neighbor search phase of each of the plan-

25



(a) SE(2) bug trap. (b) SE(2) maze.

(c) SE(3) maze. (d) SE(3) Alpha puzzle.

Figure 5: Depictions of the OMPL.app SE(2) and SE(3) rigid body planning test problems.

ning algorithms is an important tuning parameter (discussed in detail for FMT∗ in Section
6.3.2). For the following simulations, unless otherwise noted, we used these coefficients for
the nearest-neighbor count kn = k0 log(n): given a state space dimension d, for RRT∗we
used the OMPL default value k0,RRT∗ = e + e/d, and for FMT∗ and PRM∗we used the
value k0,FMT∗ = k0,PRM∗ = 2d(e/d). This latter coefficient differs from, and is indeed less
than, the lower bound in our mathematical guarantee of asymptotic optimality for k-nearest
FMT∗, equation (6) (note that k0,RRT∗ is also below the theoretical lower-bound presented
in Karaman and Frazzoli (2011)). We note, however, that for a fixed state space dimension
d, the formula for kn differs only by a constant factor independent from the sample size n.
Our choice of k0,FMT∗ in the experiments may be understood as a constant factor e greater
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than the expected number of possible connections that would lie in an obstacle-free ball
with radius specified by the lower bound in Theorem 4.1, i.e., η = e1/d − 1 > 0 in equa-
tion (3). In practice we found that these coefficients for RRT∗, PRM∗, and FMT∗worked
well on the problem instances and sample size regimes of our experiments. Indeed, we note
that the choice of k0,RRT∗, although taken directly from the OMPL reference implementa-
tion, stood up well against other values we tried when aiming to ensure a fair comparison.
The implementation of FMT∗ and the code used for algorithm comparison are available at:
http://www.stanford.edu/~pavone/code/fmt/.

For each problem setup, we show a panel of six graphs. The first (top left) shows cost
versus time, with a point on the graph for each simulation run. These simulations come
in groups of 50, and within each group are run on the same number of samples. Note
that this sample size is not necessarily the number of nodes in the graph constructed by each
algorithm; it indicates iteration count in the case of RRT∗, and free space sample count in the
cases of FMT∗ and PRM∗. To be precise, RRT∗ only keeps samples for which initial steering
is collision-free. PRM∗ does use all of the sampled points in constructing its roadmap, and
while FMT∗ nominally constructs a tree as a subgraph of this roadmap, it may terminate
early if it finds a solution before all samples are considered. There is also a line on the
first plot tracing the mean solution cost of successful algorithm runs on a particular sample
count (1-standard-error of the mean error-bars are given in both time and cost). Note that
for a given algorithm, a group of simulations for a given sample count is only plotted if it is
at least 50% successful at finding a feasible solution. The plot below this one (middle left)
shows success rate as a function of time, with each point representing a set of simulations
grouped again by algorithm and node count. In this plot, all sample counts are plotted for
all algorithms, which is why the curves may start farther to the left than those in the first
plot. The top right and middle right plots are the analogous plots to the first two, but
with sample count on the x-axis. Finally, the bottom left plot shows execution time as a
function of sample count, and the bottom right plot shows the number of collision-checks as
a function of sample count. We choose to plot execution time as a function of sample count
because sample count is the primary algorithm parameter for both FMT∗ and PRM∗ , which
do not operate in an anytime fashion. Note that every plot shows vertical error bars, and
horizontal error bars where appropriate, of length one standard-error of the mean, although
they are often too small to be distinguished from points.

6.2 Comparison with Other AO Planning Algorithms

6.2.1 Numerical Experiments in an SE(2) Bug Trap

The first test case is the classic bug trap problem in SE(2) (Figure 5(a)), a prototypically
challenging problem for sampling-based motion planners (Lavalle, 2006). The simulation
results for this problem are depicted graphically in Figure 6. FMT∗ takes about half and one
tenth the time to reach similar quality solutions as RRT∗ and PRM∗, respectively, on average.
Note that FMT∗ also is by far the quickest to reach high success rates, achieving nearly
100% in about one second, while RRT∗ takes about five seconds and PRM∗ is still at 80%
success rate after 14 seconds. The plot of solution cost as a function of sample count shows
what we would expect: FMT∗ and PRM∗ return nearly identical-quality solutions for the
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Figure 6: Simulation results for a bug trap environment in 2D space.

same number of samples, with PRM∗ very slightly better, while RRT∗, due to its greediness,
suffers in comparison. Similarly, FMT∗ and PRM∗ have similar success rates as a function
of sample count, both substantially higher than RRT∗ . The reason that RRT∗ still beats
PRM∗ in terms of cost versus time is explained by the plot of execution time versus sample
count: RRT∗ is much faster per sample than PRM∗. However, RRT∗ is still slightly slower per
sample than FMT∗, as explained by the plot of collision-checks versus sample count, which
shows FMT∗ performing fewer collision-checks per sample (O(1)) than RRT∗ (O(log(n))).

The lower success rate for RRT∗may be explained as a consequence of its graph expansion
process. When iterating to escape the bug trap, the closest tree node to a new sample outside
the mouth of the trap will nearly always lie in one of the “dead end” lips, and thus present
an invalid steering connection. Only when the new sample lies adjacent to the progress of
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Figure 7: Simulation results for a maze environment in 2D space.

the tree down the corridor will RRT∗ be able to advance. For RRT∗ to escape the bug trap,
an ordered sequence of samples must be obtained that lead the tree through the corridor.
FMT∗ and PRM∗ are not affected by this problem; their success rate is determined only by
whether or not such a set of samples exists, not the order in which they are sampled by the
algorithm.

6.2.2 Numerical Experiments in an SE(2) Maze

Navigating a “maze” environment is another prototypical benchmark for path planners
(Şucan et al., 2012). This section, in particular, considers an SE(2) maze (portrayed in
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Figure 8: Simulation results for a maze environment in 3D space.

Figure 5(b)). The plots for this environment, given in Figure 7, tell a very similar story
to those of the SE(2) bug trap. Again, FMT∗ reaches given solution qualities faster than
RRT∗ and PRM∗ by factors of about 2 and 10, respectively. Although the success rates of
all the algorithms go to 100% quite quickly, FMT∗ is still the fastest. All other heuristic
relationships between algorithms in the other graphs remain the same as in the case of the
SE(2) bug trap.

6.2.3 Numerical Experiments in an SE(3) Maze

Figure 8 presents simulation results for a three-dimensional maze, specifically for the maze
in SE(3) depicted in Figure 5(c). These results show a few differences from those in the
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(a) 2D recursive maze. (b) 3D recursive maze.

Figure 9: Recursive maze environment.

previous two subsections. First of all, FMT∗ is an even clearer winner in the cost versus time
graph, with relative speeds compared to RRT∗ and PRM∗ hard to compare due to the fact
that FMT∗ reaches an average solution quality in less than five seconds that is below that
achieved by RRT∗ and PRM∗ in about 20 seconds and 70 seconds, respectively. Furthermore,
at 20 seconds, the FMT∗ solution appears to still be improving faster than RRT∗ after the
same amount of time. The success rate as a function of time for RRT∗ is much closer to,
though still slightly below, FMT∗ than it was in the previous two problem setups, with both
algorithms reaching 100% completion rate in about three seconds.

A new feature of the SE(3) maze is that RRT∗ now runs faster per sample than FMT∗,
due to the fact that it performs fewer collision-checks per sample than FMT∗. The reason
for this has to do with the relative search radii of the two algorithms. Since they work
very differently, it is not unreasonable to use different search radii, and although FMT∗will
perform fewer collision-checks asymptotically, for finite sample sizes, the number of collision-
checks is mainly influenced by connection radius and obstacle clutter. While RRT∗’s radius
has been smaller than FMT∗’s in all simulations up to this point, the previous two setups had
more clutter, forcing RRT∗ to frequently draw a sample, collision-check its nearest-neighbor
connection, and then remove it when this check fails. As can be seen in Figure 5(c), the
SE(3) maze is relatively open and contains fewer traps as compared to the previous two
problems, thereby utilizing more of the samples that it runs collision-checks for.

6.2.4 Numerical Experiments for 3D, 5D, and 7D Recursive Maze

In order to illustrate a “worst-case” planning scenario in high dimensional space, we con-
structed a recursive maze obstacle environment within the Euclidean unit hypercube. Essen-
tially, each instance of the maze consists of two copies of the maze in the previous dimension
separated by a divider and connected through the last dimension. To be precise the obstacle
set Xobs(d) as a function of dimension d is defined by:

Xobs(2) = [0, 2/3]× [1/3, 2/3]

Xobs(d) = (Xobs(d− 1)× [0, 1]) ∪
((

[0, 1](d−1) \ [0, 1/3](d−2) × [2/3, 1]
)
× [1/3, 2/3]

)
, d ≥ 3.
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Figure 10: Simulation results for a recursive maze environment in 3D.

See Figure 9 for the first two instances of the maze in two dimensions and three dimen-
sions, respectively. This recursive nature has the effect of producing a problem environment
with only one homotopy class of solutions, any element of which is necessarily long and fea-
tures sections that are spatially close, but far away from each other in terms of their distance
along the solution path. Our experiments investigated translating a rigid body from one end
of the maze to the other. The results of simulations in 3, 5, and 7 dimensional recursive mazes
are given in Figures 10, 11, and 12. FMT∗ once again reaches lower-cost solutions in less
time than RRT∗, with the improvement increasing with dimension. The most notable trend
between FMT∗ and RRT∗, however, is in success rate. While both algorithms reach 100%
success rate almost instantly in 3D, FMT∗ reaches 100% in under a second, while RRT∗ takes
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Figure 11: Simulation results for a recursive maze environment in 5D.

closer to five seconds in 5D, and most significantly RRT∗was never able to find any solution
in the time alotted in 7D. This can be understood through the geometry of the maze—the
maze’s complexity is exponentially increasing in dimension, and in 7D, so much of free space
is blocked off from every other part of free space that RRT∗ is stuck between two bad op-
tions: it can use a large steering radius, in which case nearly every sample fails to connect
to its nearest-neighbor and is thrown out, or it can use a small steering radius, in which case
connections are so short that the algorithm has to figuratively crawl through the maze. Even
if the steering parameter were not an issue, the mere fact that RRT∗ operates on a steering
graph-expansion principle means that in order to traverse the maze, an ordered subsequence
of 27 nodes (corresponding to each turn of the maze) must be in the sample sequence before
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Figure 12: Simulation results for a recursive maze environment in 7D.

a solution may be found. While this is an extreme example, as the recursive maze is very
complex in 7D (feasible solutions are at least 43 units long, and entirely contained in the
unit cube), it accentuates FMT∗’s advantages in highly cluttered environments.

As compared to PRM∗, FMT∗ still presents a substantial improvement, but that improve-
ment decreases with dimension. This can be understood by noting that the two algorithms
achieve nearly identical costs for a given sample count, but FMT∗ is much faster due to sav-
ings on collision-checks. However, as the plots show, the relative decrease in collision-checks
from PRM∗ to FMT∗ decreases to only a factor of two once we reach 7D, and indeed we see
that, when both algorithms achieve low cost, FMT∗ does so in approximately half the time.
This relative decrease in collision-checks comes from the aforementioned extreme obstacle
clutter in the configuration space. FMT∗makes big savings over PRM∗when it connects
many samples on their first consideration, but when most samples are close to obstacles,
most samples will take multiple considerations to finally be connected. Both algorithms
achieve 100% success rates in approximately the same amount of time.
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Figure 13: Simulation results for a Alpha puzzle.

6.2.5 Numerical Experiments for the SE(3) Alpha Puzzle

Throughout our numerical evaluation of FMT∗, we found only one planning problem where
FMT∗ does not consistently outperform RRT∗ (FMT∗ outperformed PRM∗ in all of our nu-
merical tests). The problem is the famous 1.5 Alpha puzzle (Amato et al., 1998), which
consists of two tubes, each twisted in an α shape. The objective is to separate the inter-
twined tubes by a sequence of translations and rotations, which leads to extremely narrow
corridors in Xfree through which the solution path must pass (see Figure 5(d)). Simula-
tion results show that the problem presents two homotopy classes of paths (Figure 13(a)).
FMT∗ converges to a 100% success rate more slowly than RRT∗ (Figure 13(c)), but when
FMT∗ finds a solution, that solution tends to be in the “right” homotopy class and of higher
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quality, see Figures 13(a) and 13(b). We note that in order to achieve this high success
rate for RRT∗, we adjusted the steering parameter to 1.5% of the maximum extent of the
configuration space, down from 20%. Without this adjustment, RRT∗was unable to find
feasible solutions at the upper range of the sample counts considered.

This behavior can be intuitively explained as follows. The Alpha puzzle presents “narrow
corridors” in Xfree (Amato et al., 1998; Hsu et al., 2006). When FMT∗ reaches their entrance,
if no sample is present in the corridors, FMT∗ stops its expansion, while RRT∗ keeps trying
to extend its branches through the corridors, which explains its higher success rates at low
sample counts. On the other hand, at high sample counts, samples are placed in the corridors
with high probability, and when this happens the optimal (as opposed to greedy) way by
which FMT∗ grows the tree usually leads to the discovery of a better homotopy class and of
a higher quality solution within it (Figure 13(a), execution times larger than ∼ 25 seconds).
As a result, RRT∗ outperforms FMT∗ for short execution times, while FMT∗ outperforms
RRT∗ in the complementary case. Finally, we note that the extremely narrow but short
corridors in the Alpha puzzle present a different challenge to these algorithms than the
directional corridor of the SE(2) bug trap. As discussed in Section 6.2.1, the ordering of
sampled points along the exit matters for RRT∗ in the bug trap configuration, while for the
Alpha puzzle the fact that there are no bug-trap-like “dead ends” to present false steering
connections means that a less intricate sequence of nodes is required for success.

On the one hand, allowing FMT∗ to sample new points around the leaves of its tree when-
ever it fails to find a solution (i.e., when Vopen becomes empty) might substantially improve
its performance in the presence of extremely narrow corridors. In a sense, such a modifica-
tion would introduce a notion of “anytimeness” and adaptive sampling into FMT∗, which
would effectively leverage the steadily outward direction by which the tree is constructed
(see (Gammell et al., 2014) for a conceptually related idea). This is a promising area of
future research (note that the theoretical foundations for non-uniform sampling strategies
are provided in Section 5.1). On the other hand, planning problems with extremely narrow
passages, such as the Alpha puzzle, do not usually arise in robotics applications as, fortu-
nately, robotics problems tend to be expansive, i.e., they enjoy “good” visibility properties
(Hsu et al., 2006). Collectively, these considerations suggest the superior performance of
FMT∗ in most practical settings.

6.3 In-Depth Study of FMT∗

6.3.1 Comparison Between FMT∗ and k-Nearest FMT∗

Since we are now comparing both versions of FMT∗, we will explicitly use radial-FMT∗ to
denote the version of FMT∗ that uses a fixed Euclidean distance to determine neighbors, and
return to referring to k-nearest FMT∗ by its full name throughout this section. For this set
of simulations, given in Figure 14, the formula for kn is still the same as in the rest of the
simulations, and for comparison, the radius rn of the radial-FMT∗ implementation is chosen
so that the expected number of samples in a collision-free rn-ball is exactly equal to kn.
Finally, as a caveat, we point out that since k-nearest-neighborhoods are fundamentally dif-
ferent from r-radius-neighborhoods, the two algorithms depicted now use different primitive
procedures. Since computing neighbors in both algorithms takes a substantial fraction of the
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runtime, the cost versus time plots should be interpreted with caution, since the algorithms’
relative runtimes could potentially change significantly with a better implementation of one
or both neighbor-finding primitive procedures. With that said, we focus our attention more
on the number of collision-checks as a proxy for algorithm speed. Since this problem has
a relatively simple collision-checking module, we may expect that for more complex prob-
lems in which collision-checking dominates runtime, the number of collision-checks should
approximate runtime well.

While the number of collision-checks in free space is the same between the two algo-
rithms, since all samples connect when they are first considered, some interesting behavior is
exhibited in the same plot for the 5D maze. In particular, the number of collision checks for
k-nearest FMT∗ increases quickly with sample count, then decreases again and approaches
the linear growth rate of radial-FMT∗. This mode in the curve corresponds to when the
usual connection distance for k-nearest FMT∗ is greater than the width of the maze wall,
meaning that for many of the points, some of their kn-nearest-neighbors will be much farther
along in the maze. Thus k-nearest FMT∗ tries to connect them to the tree, and fails because
there is a wall in between. The same problem does not occur for radial-FMT∗ because its
radius stays smaller than the width of the maze wall. This is symptomatic of an advantage
and disadvantage of k-nearest FMT∗, namely that for samples near obstacles, connections
may be attempted to farther-away samples. This is an advantage because for a point near
an obstacle, there is locally less density around the point and thus fewer nearby options for
connection, making it harder for radial-FMT∗ to find a connection, let alone a good one.
For small sample sizes relative to dimension however, this can cause a lot of extra collision-
checks by, as just described, having k-nearest FMT∗ attempt connections across walls. As
this disadvantage goes away with enough points, we still find that, although the difference
in free space is very small, k-nearest FMT∗ outperforms radial-FMT∗ in both of the settings
shown, as the relative advantage of k-nearest FMT∗ in solution cost per sample is greater
than the relative disadvantage in number of collision-checks per sample.

6.3.2 Tuning the Radius Scale Factor

The choice of tuning parameters is a challenging and pervasive problem in the sampling-
based motion planning literature. Throughout these numerical experiments, we have used
the same neighbor scaling factor, which we found empirically to work well across a range
of scenarios. In this section, we try to understand the relationship of k-nearest FMT∗ with
this neighbor scaling parameter, in the example of the SE(3) maze. The results of running
k-nearest FMT∗ with a range of tuning parameters on this problem are shown in Figure 15.
The values in the legend correspond to a connection radius multiplier (RM) of k0,FMT∗ as
defined at the beginning of Section 6, i.e., a value of RM = 1 corresponds to using exactly
k0,FMT∗ , and a value of RM = 2 corresponds to using k0 = 2d · k0,FMT∗ . We point out that
to reduce clutter, we have omitted error bars from the plot, but note that they are small
compared to the differences between the curves.

This graph clearly shows the tradeoff in the scaling factor, namely that for small values,
k-nearest FMT∗ rapidly reaches a fixed solution quality and then plateaus, while for larger
values, the solution takes a while to reach lower costs, but continues to show improvement for
longer, eventually beating the solutions for small values. The fact that most of these curves
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Figure 14: Comparison between radial-FMT∗ and k-nearest FMT∗ .

cross one another tells us that the choice of this tuning parameter depends on available time
and corresponding sample count. For this experimental setup, and for the other problems
we tried, there appears to be a sweet spot around the value RM = 1. Indeed, this motivated
our choice of k0,FMT∗ in our simulations. We note that the curves for 0.7 through 0.9 start
out at lower costs for very small execution times, and it appears that the curve for 1.1 is
going to start to return better solutions than 1.0 before 35 seconds. That is, depending on
the time/sample allowance, there are at least four regimes in which different scaling factors
outperform the others. For a different problem instance, the optimal scaling profile may
change, and for best performance some amount of manual tuning will be required. We note,
however, that RM = 1 is never too far from the best in Figure 15, and should represent a
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Figure 15: Performance of k-nearest FMT∗ for different values of the neighbor scaling pa-
rameter.

safe default choice.

6.3.3 Improvement on Convergence Rate with Simple Heuristics

In any path planning problem, the optimal path tends to be quite smooth, with only a
few non-differentiable points. However, sampling-based algorithms all locally-connect points
with straight lines, resulting in some level of “jaggedness” in the returned paths. A popular
post-processing heuristic for mitigating this problem is the ADAPTIVE-SHORTCUT smoothing
heuristic described in (Hsu, 2000). This heuristic relies only on additional collision checks to
refine a solution path, and no additional sampling is performed. In Figure 16, we show the
effect of applying the ADAPTIVE-SHORTCUT heuristic to k-nearest FMT∗ solutions for the 5D
recursive maze. We use a point robot for this simulation as it allowed us to easily compute
the true optimal cost, and thus better place the improvement from the heuristic in context.
The improvement is substantial, and we see that we can obtain a solution within 15% of the
optimum in under 0.5 seconds in this complicated 5D environment. Figure 16 also displays
the fact that adding the ADAPTIVE-SHORTCUT heuristic only barely increases the number of
collision-checks, which accounts for its speed.

6.3.4 Experiment With General Cost

As a demonstration of the computationally-efficient k-nearest FMT∗ implementation de-
scribed in Section 5.2.3, we set up three environments with non-constant cost-density over
the configuration space. We have kept them in two dimensions so that they can be considered
visually, see Figure 17. In Figure 17(a), there is a high-cost region near the root node and a
low-cost region between it and the goal region. k-nearest FMT∗ correctly chooses the shorter
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Figure 16: Simulation results for a maze configuration in 5D space.
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Figure 17: Planning with general costs.

path through the high-cost region instead of going around it, as the extra distance incurred
by the latter option is greater than the extra cost incurred in the former. In Figure 17(b), we
have increased the cost density of the high-cost region, and k-nearest FMT∗ now correctly
chooses to go around it as much as possible. In Figure 17(c), the cost density function is
inversely proportional to distance from the center, and k-nearest FMT∗ smoothly makes its
way around the higher-cost center to reach the goal region. Note that in all three plots, since
cost-balls are used for considering connections, the edges are shorter in higher-cost areas and
longer in lower-cost areas.

6.3.5 How to Best Use FMT∗?

FMT∗ relies on two parameters, namely the connection radius or number of neighbors, and
the number of samples. As for the first parameter, numerical experiments showed that
k0,FMT∗ = 2d (e/d) represents an effective and fairly robust choice for the k-nearest ver-
sion of FMT∗—this is arguably the value that should be used in most planning problems.
Correspondingly, for the radial version of FMT∗, one should choose a connection radius as
specified in the lower bound in Theorem 4.1 with η = e1/d − 1 (see Section 6.1). Selecting
the number of samples is a more contentious issue, as it is very problem-dependent. A sys-
tem designer should experiment with a variety of sample sizes for a variety of “expected”
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obstacle configurations, and then choose the value that statistically performs the best within
the available computational resources. Such a baseline choice could be adaptively adjusted
via the resampling techniques discussed in Salzman and Halperin (2014) or via the adaptive
strategies discussed in Gammell et al. (2014) and mentioned in Section 6.2.5.

For the problem environments and sample sizes considered in our experiments, the ex-
tents of the neighbor sets (k-nearest or radial) are nontrivial with respect to the obstacles.
The decrease in available connections for many samples when their radial neighborhoods
significantly intersect the obstacle set seems to adversely affect algorithm performance (see
Section 6.3.1). The k-nearest version of FMT∗ avoids this issue by attempting connection to
a fixed number of samples regardless of obstacle proximity. Thus k-nearest FMT∗ should be
considered the default, especially for obstacle-cluttered environments. If the application has
mostly open space to plan through, however, radial FMT∗may be worth testing and tuning.

In problems with a general cost function, FMT∗ provides a good standalone solution that
provably converges to the optimum. In problems with a metric cost function, FMT∗ (as
also RRT∗ and PRM∗) should be considered as a backbone algorithm on top of which one
should add a smoothing procedure such as ADAPTIVE-SHORTCUT (Hsu, 2000). In this regard,
FMT∗ should be regarded as a fast “homotopy finder,” reflecting its quick initial convergence
rate to a good homotopy class, which then needs to be assisted by a smoothing procedure to
offset its typical plateauing behavior, i.e., slow convergence to an optimum solution within
a homotopy class. When combining FMT∗with a smoothing procedure one should consider
values for the connection radius or number of neighbors most likely equal to about 80% or
90% of the previously suggested values, so as to ensure very fast initial rates of convergence
(see Section 6.3.2). Additionally, non-uniform sampling strategies reflecting prior knowledge
about the problem may also improve the speed of finding the optimal homotopy class. Finally,
a bidirectional implementation is usually preferable (Starek et al., 2014).

7 Conclusions

In this paper we have introduced and analyzed a novel probabilistic sampling-based motion
planning algorithm called the Fast Marching Tree algorithm (FMT∗). This algorithm is
asymptotically optimal and appears to converge significantly faster then its state-of-the-
art counterparts for a wide range of challenging problem instances. We used the weaker
notion of convergence in probability, as opposed to convergence almost surely, and showed
that the extra mathematical flexibility allowed us to compute convergence rate bounds.
Extensions (all retaining AO) to non-uniform sampling strategies, general costs, and a k-
nearest-neighbor implementation were also presented.

This paper leaves numerous important extensions open for further research. First, it
is of interest to extend the FMT∗ algorithm to address problems with differential motion
constraints; the work in Schmerling et al. (2015) and Schmerling et al. (2014) presents
preliminary results in this direction (specifically, for systems with driftless differential con-
straints, and with drift constraints and linear affine dynamics, respectively). Second, we
plan to explore further the convergence rate bounds provided by the proof of AO given here.
Third, we plan to use this algorithm as the backbone for scalable stochastic planning al-
gorithms. Fourth, we plan to extend the FMT∗ algorithm for solving the Eikonal equation,
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and more generally for addressing problems characterized by partial differential equations.
Fifth, as discussed, FMT∗ requires the tuning of a scaling factor for either the search radius
or the number of nearest-neighbors, and the selection of the number of samples. It is of
interest to devise strategies whereby these parameters are “self regulating” (see Section 6.3.5
for some possible strategies), thus effectively making the algorithm parameter-free and any-
time. Finally, we plan to test the performance of FMT∗ on mobile ground robots operating
in dynamic environments.
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Appendix A: Proofs for Lemmas 4.2–4.4

Lemma 4.2 (FMT∗ path quality). Under the assumptions of Theorem 4.1 and assuming
n ≥ n0, the following inequality holds:

P
(
cn ≤ κ(α, β, θ) c(σ′n) + rn

2+θ

)
≥ 1 − P(Kβ

n ≥ α(Mn − 1))− P(Acn,θ).

Proof of Lemma 4.2. To start, note that P(Kβ
n ≥ α(Mn − 1)) + P(Acn) ≥ P({Kβ

n ≥ α(Mn −
1)} ∪ Acn) = 1 − P({Kβ

n < α(Mn − 1)} ∩ An), where the first inequality follows from the
union bound and the second equality follows from De Morgan’s laws. Note that the event
{Kβ

n < α(Mn − 1)} ∩ An is the event that each Bn,m contains at least one node, and more
than a 1− α fraction of the Bβ

n,m balls also contains at least one node.
When two nodes xi and xi+1, i ∈ {1, . . . ,Mn − 2}, are contained in adjacent balls Bn,i

and Bn,i+1, respectively, their distance apart ‖xi+1 − xi‖ can be upper bounded by,
θrn
2+θ

+ βrn
2+θ

+ βrn
2+θ

: ifxi ∈ Bβ
n,i and xi+1 ∈ Bβ

n,i+1
θrn
2+θ

+ βrn
2+θ

+ rn
2+θ

: ifxi ∈ Bβ
n,i or xi+1 ∈ Bβ

n,i+1
θrn
2+θ

+ rn
2+θ

+ rn
2+θ

: otherwise,

where the three bounds have been suggestively divided into a term for the distance between
ball centers and a term each for the radii of the two balls containing the nodes. This bound
also holds for ‖xMn − xMn−1‖, although necessarily in one of the latter two bounds, since
Bβ
n,Mn

being undefined precludes the possibility of the first bound. Thus we can rewrite the
above bound, for i ∈ {1, . . . ,Mn − 1}, as ‖xi+1 − xi‖ ≤ c̄(xi) + c̄(xi+1), where

c̄(xk) :=

{
θrn

2(2+θ)
+ βrn

2+θ
: xk ∈ Bβ

n,k,
θrn

2(2+θ)
+ rn

2+θ
: xk /∈ Bβ

n,k.
(7)
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Again, c̄(xMn) is still well-defined, but always takes the second value in equation (7) above.
Let Ln,α,β be the length of a path that sequentially connects a set of nodes {x1 = xinit, x2, . . . , xMn},
such that xm ∈ Bn,m ∀m ∈ {1, . . . ,Mn}, and more than a (1 − α) fraction of the nodes
x1, . . . , xMn−1 are also contained in their respective Bβ

n,m balls. The length Ln,α,β can then
be upper bounded as follows

Ln,α,β =
Mn−1∑
k=1

‖xk+1 − xk‖ ≤
Mn−1∑
k=1

2c̄(xk)− c̄(x1) + c̄(xMn)

≤ (Mn − 1)
θrn

2 + θ
+ d(1− α)(Mn − 1)e 2βrn

2 + θ
+ bα(Mn − 1)c 2rn

2 + θ
+

(1− β)rn
2 + θ

≤ (Mn − 1) rn
θ + 2α + 2(1− α)β

2 + θ
+

(1− β)rn
2 + θ

≤Mn rn
θ + 2α + 2β

2 + θ
+

rn
2 + θ

. (8)

In equation 8, dxe denotes the smallest integer not less than x, while bxc denotes the
largest integer not greater than x. Furthermore, we can upper bound Mn as follows,

c(σ′n) ≥
Mn−2∑
k=1

‖σn(τk+1)−σn(τk)‖+‖σ′n(1)−σn(τMn−1)‖ ≥ (Mn−2)
θrn

2 + θ
+

rn
2(2 + θ)

= Mn
θrn

2 + θ
+
(1

2
− 2θ

) rn
2 + θ

≥Mn
θrn

2 + θ
, (9)

where the last inequality follows from the assumption that θ < 1/4. Combining equations
(8) and (9) gives

Ln,α,β ≤ c(σ′n)

(
1 +

2α + 2β

θ

)
+

rn
2 + θ

= κ(α, β, θ) c(σ′n) +
rn

2 + θ
. (10)

We will now show that when An occurs, cn is no greater than the length of the path con-
necting any sequence of Mn nodes tracing through the balls Bn,1, . . . , Bn,Mn (this inequality
of course also implies cn <∞). Coupling this fact with equation (10), we can then conclude
that the event {Kβ

n < α(Mn − 1)} ∩ An implies that cn ≤ κ(α, β, θ) c(σ′n) + rn
2+θ

, which, in
turn, would prove the lemma.

Let x1 = xinit, x2 ∈ Bn,2, . . . , xMn ∈ Bn,Mn ⊆ Xgoal. Note that the xi’s need not all be
distinct. The following property holds for all m ∈ {2, . . . ,Mn − 1}:

‖xm − xm−1‖ ≤ ‖xm − σn(τm)‖+ ‖σn(τm)− σn(τm−1)‖+ ‖σn(τm−1)− xm−1‖

≤ rn
2 + θ

+
θrn

2 + θ
+

rn
2 + θ

= rn.

Similarly, we can write ‖xMn − xMn−1‖ ≤ rn
2+θ

+ (θ+1/2)rn
2+θ

+ rn
2(2+θ)

= rn. Furthermore, we can

lower bound the distance to the nearest obstacle for m ∈ {2, . . . ,Mn − 1} by:

inf
w∈Xobs

‖xm − w‖ ≥ inf
w∈Xobs

‖σn(τm)− w‖ − ‖xm − σn(τm)‖ ≥ 3 + θ

2 + θ
rn −

rn
2 + θ

= rn,
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where the second inequality follows from the assumed δn-clearance of the path σn. Again,
similarly, we can write infw∈Xobs

‖xMn − w‖ ≥ infw∈Xobs
‖σn(1) − w‖ − ‖xMn − σn(1)‖ ≥

3+θ
2+θ

rn − rn
2+θ

= rn. Together, these two properties imply that, for m ∈ {2, . . . ,Mn}, when
a connection is attempted for xm, xm−1 will be in the search radius and there will be no
obstacles in that search radius. In particular, this fact implies that either the algorithm
will return a feasible path before considering xMn , or it will consider xMn and connect it.
Therefore, FMT∗ is guaranteed to return a feasible solution when the event An occurs. Since
the remainder of this proof assumes that An occurs, we will also assume cn <∞.

Finally, assuming xm is contained in an edge, let c(xm) denote the unique cost-to-arrive
of xm in the graph generated by FMT∗ at the end of the algorithm, just before the path
is returned. If xm is not contained in an edge, we set c(xm) = ∞. Note that c(·) is
well-defined, since if xm is contained in any edge, it must be connected through a unique
path to xinit. We claim that for all m ∈ {2, . . . ,Mn}, either cn ≤

∑m−1
k=1 ‖xk+1 − xk‖, or

c(xm) ≤ ∑m−1
k=1 ‖xk+1 − xk‖. In particular, taking m = Mn, this inequality would imply

that cn ≤ min{c(xMn),
∑Mn−1

k=1 ‖xk+1− xk‖} ≤
∑Mn−1

k=1 ‖xk+1− xk‖, which, as argued before,
would imply the claim.

The claim is proved by induction on m. The case of m = 1 is trivial, since the first step
in the FMT∗ algorithm is to make every collision-free connection between xinit = x1 and the
nodes contained in B(xinit; rn), which will include x2 and, thus, c(x2) = ‖x2 − x1‖. Now
suppose the claim is true for m− 1. There are four exhaustive cases to consider:

1. cn ≤
∑m−2

k=1 ‖xk+1 − xk‖,

2. c(xm−1) ≤
∑m−2

k=1 ‖xk+1 − xk‖ and FMT∗ terminates before considering xm,

3. c(xm−1) ≤
∑m−2

k=1 ‖xk+1 − xk‖ and xm−1 ∈ Vopen when xm is first considered,

4. c(xm−1) ≤
∑m−2

k=1 ‖xk+1 − xk‖ and xm−1 /∈ Vopen when xm is first considered.

Case 1: cn ≤
∑m−2

k=1 ‖xk+1 − xk‖ ≤
∑m−1

k=1 ‖xk+1 − xk‖, thus the claim is true for m.
Without loss of generality, for cases 2–4 we assume that case 1 does not occur.

Case 2: c(xm−1) <∞ implies that xm−1 enters Vopen at some point during FMT∗. How-
ever, if xm−1 were ever the minimum-cost element of Vopen, xm would have been considered,
and thus FMT∗must have returned a feasible solution before xm−1 was ever the minimum-
cost element of Vopen. Since the end-node of the solution returned must have been the
minimum-cost element of Vopen, cn ≤ c(xm−1) ≤

∑m−2
k=1 ‖xk+1 − xk‖ ≤

∑m−1
k=1 ‖xk+1 − xk‖,

thus the claim is true for m.
Case 3: xm−1 ∈ Vopen when xm is first considered, ‖xm − xm−1‖ ≤ rn, and there are no

obstacles in B(xm; rn). Therefore, xm must be connected to some parent when it is first
considered, and c(xm) ≤ c(xm−1) + ‖xm−xm−1‖ ≤

∑m−1
k=1 ‖xk+1−xk‖, thus the claim is true

for m.
Case 4: When xm is first considered, there must exist z ∈ B(xm; rn) such that z is

the minimum-cost element of Vopen, while xm−1 has not even entered Vopen yet. Note that
again, since B(xm; rn) intersects no obstacles and contains at least one node in Vopen, xm
must be connected to some parent when it is first considered. Since c(xm−1) < ∞, there
is a well-defined path P = {v1, . . . , vq} from xinit = v1 to xm−1 = vq for some q ∈ N. Let
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w = vj, where j = maxi∈{1,...,q}{i : vi ∈ Vopen when xm is first considered}. Then there are
two subcases, either w ∈ B(xm; rn) or w /∈ B(xm; rn). If w ∈ B(xm; rn), then,

c(xm) ≤ c(w) + ‖xm − w‖ ≤ c(w) + ‖xm−1 − w‖+ ‖xm − xm−1‖

≤ c(xm−1) + ‖xm − xm−1‖ ≤
m−1∑
k=1

‖xk+1 − xk‖,

thus the claim is true for m (the second and third inequalities follow from the triangle
inequality). If w /∈ B(xm; rn), then,

c(xm) ≤ c(z) + ‖xm − z‖ ≤ c(w) + rn ≤ c(xm−1) + ‖xm − xm−1‖ ≤
m−1∑
k=1

‖xk+1 − xk‖,

where the third inequality follows from the fact that w /∈ B(xm, rn), which means that any
path through w to xm, in particular the path P ∪ xm, must traverse a distance of at least rn
between w and xm. Thus, in the final subcase of the final case, the claim is true for m.

Hence, we can conclude that cn ≤
∑Mn−1

k=1 ‖xk+1 − xk‖. As argued before, coupling this
fact with equation (10), we can conclude that the event {Kβ

n < α(Mn − 1)} ∩ An implies
that cn ≤ κ(α, β, θ) c(σ′n) + rn

2+θ
, and the claim follows.

Lemma 4.3 (Tight approximation to most of the path). Under the assumptions of Theorem
4.1, for all α ∈ (0, 1) and β ∈ (0, θ/2), it holds that

lim
n→∞

P(Kβ
n ≥ α(Mn − 1)) = 0.

Proof of Lemma 4.3. The proof relies on a Poissonization argument. For ν ∈ (0, 1), let ñ
be a random variable drawn from a Poisson distribution with parameter ν n (denoted as

Poisson(ν n)). Consider the set of nodes Ṽ := SampleFree(ñ), and for the remainder of the
proof, ignore xinit (adding back xinit only decreases the probability in question, which we

are showing goes to zero anyway). Then the locations of the nodes in Ṽ are distributed as
a spatial Poisson process with intensity νn/µ(Xfree). Therefore, for a Lebesgue-measurable
region R ⊆ Xfree, the number of nodes in R is distributed as a Poisson random variable with

distribution Poisson
(
ν nµ(R)/µ(Xfree)

)
, independent of the number of nodes in any region

disjoint with R (Karaman and Frazzoli, 2011, Lemma 11).

Let K̃β
n be the Poissonized analogue of Kβ

n , namely K̃β
n := card

{
m ∈ {1, . . . ,Mn − 1} :

Bβ
n,m ∩ Ṽ = ∅

}
. Note that only the distribution of node locations has changed through

Poissonization, while the balls Bβ
n,m remain the same. From the definition of Ṽ , we can see
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that P
(
Kβ
n ≥ α(Mn − 1))

)
= P

(
K̃β
n ≥ α(Mn − 1) | ñ = n

)
. Thus, we have

P
(
K̃β
n ≥ α(Mn − 1))

)
=
∞∑
j=0

P
(
K̃β
n ≥ α(Mn − 1) | ñ = j

)
· P (ñ = j)

≥
n∑
j=0

P
(
K̃β
n ≥ α(Mn − 1) | ñ = j

)
P (ñ = j)

≥
n∑
j=0

P
(
K̃β
n ≥ α(Mn − 1) | ñ = n

)
P (ñ = j)

= P
(
K̃β
n ≥ α(Mn − 1) | ñ = n

)
P (ñ ≤ n)

= P
(
Kβ
n ≥ α(Mn − 1)

)
P (ñ ≤ n)

≥ (1− e−aνn)P
(
Kβ
n ≥ α(Mn − 1)

)
,

(11)

where aν is a positive constant that depends only on ν. The third line follows from the
fact that P(K̃β

n ≥ α(Mn − 1)|ñ = j) is nonincreasing in j, and the last line follows from
a tail approximation of the Poisson distribution (Penrose, 2003, p. 17) and the fact that
E[ñ] < n. Thus, since limn→∞(1− e−aνn) = 1 for any fixed ν ∈ (0, 1), it suffices to show that

limn→∞ P(K̃β
n ≥ α(Mn − 1)) = 0 to prove the statement of the lemma.

Since by assumption β < θ/2, Bβ
n,1, . . . , B

β
n,Mn−1 are all disjoint. This disjointness means

that for fixed n, the number of the Poissonized nodes that fall in each Bβ
n,m is independent

of the others and identically distributed as a Poisson random variable with mean equal to

µ(Bβ
n,1)

µ(Xfree)
νn =

ζd
(
βrn
2+θ

)d
µ(Xfree)

νn =
νζdβ

dγd log(n)

(2 + θ)µ(Xfree)
:= λβ,ν log(n),

where λβ,ν is positive and does not depend on n. From this equation we get that for m ∈
{1, . . . ,Mn − 1},

P(Bβ
n,m ∩ Ṽ = ∅) = e−λβ,ν log(n) = n−λβ,ν .

Therefore, K̃β
n is distributed according to a binomial distribution, in particular according to

the Binomial(Mn− 1, n−λβ,ν ) distribution. Then for n > (e−2α)
− 1
λβ,ν , e2E[K̃β

n ] < α(Mn− 1),
so from a tail approximation to the Binomial distribution (Penrose, 2003, p. 16),

P(K̃β
n ≥ α(Mn − 1)) ≤ e−α(Mn−1). (12)

Finally, since by assumption xinit /∈ Xgoal, the optimal cost is positive, i.e., c∗ > 0; this
positivity implies that there is a lower-bound on feasible path length. Since the ball radii
decrease to 0, it must be that limn→∞Mn =∞ in order to cover the paths, and the lemma
is proved.

Lemma 4.4 (Loose approximation to all of path). Under the assumptions of Theorem 4.1,
assume that

rn = γ

(
log n

n

)1/d

,
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where

γ = (1 + η) · 2
(

1

d

)1/d(
µ(Xfree)

ζd

)1/d

,

and η > 0. Then for all θ < 2η, limn→∞ P(Acn,θ) = 0.

Proof of Lemma 4.4. Let cmax := maxn∈N c(σ
′
n); the convergence of c(σ′n) to a limiting value

that is also a lower bound implies that cmax exists and is finite. Then we have,

P
(
Acn,θ

)
≤

Mn∑
m=1

P (Bn,m ∩ V = ∅) =
Mn∑
m=1

(
1− µ(Bn,m)

µ(Xfree)

)n
=

Mn−1∑
m=1

(
1−

ζd(
rn
2+θ

)d

µ(Xfree)

)n
+

(
1−

ζd(
rn

2(2+θ)
)d

µ(Xfree)

)n
≤Mn

(
1− ζdγ

d log(n)

n(2 + θ)dµ(Xfree)

)n
+

(
1− ζdγ

d log(n)

n(4 + 2θ)dµ(Xfree)

)n
≤Mne

− ζdγ
d log(n)

(2+θ)dµ(Xfree) + e
− ζdγ

d log(n)

(4+2θ)dµ(Xfree)

≤ (2 + θ)c(σ′n)

θrn
n
− ζdγ

d

(2+θ)dµ(Xfree) + n
− ζdγ

d

(4+2θ)dµ(Xfree)

≤ (2 + θ)cmax

θγ
log(n)−

1
dn

1
d
− ζdγ

d

(2+θ)dµ(Xfree) + n
− ζdγ

d

(4+2θ)dµ(Xfree) ,

(13)

where the third inequality follows from the inequality (1 − 1
x
)n ≤ e−

n
x , and the fourth

inequality follows from the bound on Mn obtained in the proof of Lemma 4.2. As n → ∞,
the second term goes to zero for any γ > 0, while the first term goes to zero for any

γ > (2 + θ)
(
µ(Xfree)/(dζd)

)1/d
, which is satisfied by θ < 2η. Thus P

(
Acn,θ

)
→ 0 and the

lemma is proved.

Appendix B: Proof of Convergence Rate Bound

Theorem 4.6 (Convergence rate of FMT∗). Let the configuration space be [0, 1]d with no
obstacles and the goal region be [0, 1]d ∩ B(~1; ξ), where ~1 = (1, 1, . . . , 1). Taking xinit to be
the center of the configuration space, the shortest path has length c∗ =

√
d/2 − ξ and has

clearance δ = ξ/
√
d. Denote the arc length of the path returned by FMT∗ with n samples as

cn. For FMT∗ run using the radius given by equation (3), namely,

rn = (1 + η) 2

(
1

d

)1/d(
µ(Xfree)

ζd

)1/d(
log(n)

n

)1/d

,

for all ε > 0, we have the following convergence rate bounds,

P(cn > (1 + ε)c∗) ∈

 O
(

(log(n))−
1
d n

1
d(1−(1+η)

d)+ρ
)

if η ≤ 2
(2d−1)1/d − 1,

O
(
n−

1
d(

1+η
2 )

d
+ρ
)

if η > 2
(2d−1)1/d − 1,

(14)

as n→∞, where ρ is an arbitrarily small positive constant.
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Proof of Theorem 4.6. We proceed by first proving the tightest bound possible, carrying
through all terms and constants, and then we make approximations to get to the final
simplified result. Let ε > 0, θ ∈ (0,min(2η, 1/4)), α, β ∈ (0, ,min(1, ε) θ/8), and ν ∈ (0, 1).

Let H(a) = 1 + a(log(a) − 1), and γ = 2(1 + η)
(

1
dζd

)1/d
so that rn = γ

(
log(n)
n

)1/d
. Letting

n0 >
(
α/e2

)− (2+θ)

νζdβ
dγd

and such that

rn0 < min

{
2 ξ(2 + θ),

2 + θ

3 + θ
δ,
ε(2 + θ)

8
c∗
}
,

then for n ≥ n0, we claim that3,

P(cn > (1 + ε)c∗) <
1

1− e−νnH(n+1
νn

)
e
−α

2

⌊
2+θ
θrn

c∗

⌋(
log

(
α

⌊
2+θ
θrn

c∗

⌋)
+ζd

(
βrn
2+θ

)d
νn

)
+

⌊
2 + θ

θrn
c∗
⌋(

1− ζd
( rn

2 + θ

)d)n
+
(

1− ζd
( rn

2(2 + θ)

)d)n
.

(15)

To prove equation (15), note that from the proof of Theorem 4.1, equation (4) and Lemma 4.2
combine to give (using the same notation),

P(cn > (1 + ε)c∗) ≤ P(Kβ
n ≥ α(Mn − 1)) + P(Acn,θ).

From Equation (11) in the proof of Lemma 4.3, and a more precise tail bound (Penrose,
2003, page 17) relying on the assumptions of n0,

P(cn > (1 + ε)c∗) ≤
(

1

1− eνnH(n+1
νn

)

)
P(K̃β

n ≥ α(Mn − 1)) + P(Acn,θ).

By the same arguments that led to equation (12), but again applied with slightly more
precise tail bounds (Penrose, 2003, page 16), we get,

P(cn > (1 + ε)c∗) ≤
(

1

1− eνnH(n+1
νn

)

)
e
−α(Mn−1)

2

(
log
(
α(Mn−1)

)
+

νζdβ
dγd

(2+θ)µ(Xfree)
log(n)

)
+ P(Acn,θ).

By the first three lines of equation (13) from the proof of Lemma 4.4 (there we upper-bounded
Mn − 1 by Mn for simplicity, here we carry through the whole term),

P(cn > (1 + ε)c∗) ≤
(

1

1− eνnH(n+1
νn

)

)
e
−α(Mn−1)

2

(
log
(
α(Mn−1)

)
+

νζdβ
dγd

(2+θ)µ(Xfree)
log(n)

)

+ (Mn − 1)

(
1− ζdγ

d log(n)

n(2 + θ)dµ(Xfree)

)n
+

(
1− ζdγ

d log(n)

n(4 + 2θ)dµ(Xfree)

)n
.

Finally, in this simplified configuration space, we can set all the approximating paths σn
from the proof of Theorem 4.1 to just be the optimal path, allowing us to compute Mn−1 =

3Note that the convergence rate bound is slightly different from that presented in the conference version
of this paper, reflecting a corrected typographical error.

48



⌊
2+θ
θrn

c∗
⌋
. Plugging this formula in, noting that µ(Xfree) ≤ 1, and simplifying by collecting

terms into factors of rn gives equation (15).
Grouping together constants in equation (15) into positive superconstants A, B, C, D,

and E for simplicity and dropping the factor of 1

1−e−νnH(n+1
νn )

(which goes to 1 as n → ∞)

from the first term, the bound becomes,

P(cn > (1 + ε)c∗) < e−A( n
log(n))

1/d
(log(B)+ 1

d
log( n

log(n))+C log(n))

+

(
n

log(n)

)1/d

·
(

1−D log(n)

n

)n
+

(
1− E log(n)

n

)n
,

≤ B−A( n
log(n))

1/d

·
(

n

log(n)

)−A
d ( n

log(n))
1/d

· n−AC( n
log(n))

1/d

+

(
n

log(n)

)1/d

· n−D + n−E,

(16)

where the second inequality is just a rearrangement of the first term, and uses the inequality
(1−x/n)n ≤ e−x for the last two terms. As both n and n

log(n)
approach∞, the first term must

become negligible compared to the last two terms, no matter the values of the superconstants.
Now noting that E = D

2d
, we can write the asymptotic upper bound for P(cn > (1 + ε)c∗) as,

(log(n))−
1
d n

1
d
−D + n−

D

2d .

Therefore the deciding factor in which term asymptotically dominates is whether or not
1
d
−D ≤ −D

2d
. Plugging in for the actual constants composing D, we get,

1

d
≤
(

1− 1

2d

)
1

d

(
2(1 + η)

2 + θ

)d
,

or, equivalently,

η ≥ 2 + θ

(2d − 1)1/d
− 1. (17)

However, since θ is a proof parameter that can be taken arbitrarily small (and doing so
improves the asymptotic rate), if η > 2

(2d−1)1/d −1, then θ can always be chosen small enough

so that equation (17) holds. Finally, we are left with,

P(cn > (1 + ε)c∗) ∈


O

(
(log(n))−

1
d n

1
d

(
1−((1+η) 2

2+θ )
d
))

if η ≤ 2
(2d−1)1/d − 1,

O
(
n−

1
d(

1+η
2+θ )

d)
if η > 2

(2d−1)1/d − 1,
(18)

for arbitrarily small θ. By replacing θ by an arbitrarily small parameter ρ that is additive
in the exponent, the final result is proved.
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Appendix C: Proof of Computational Complexity

Theorem 4.7 (Computational complexity of FMT∗). Consider a path planning problem
(Xfree, xinit,Xgoal) and a set of samples V in Xfree of cardinality n, and fix

rn = γ

(
log(n)

n

)1/d

,

for some positive constant γ. In expectation, FMT∗ takes O(n log(n)) time to compute a
solution on n samples, and in doing so, makes O(n) calls to CollisionFree (again in
expectation). FMT∗ also takes O(n log(n)) space in expectation.

Proof of Theorem 4.7. We first prove two results that are not immediately obvious from the
description of the algorithm, about the number of computations of edge cost and how many
times a node is considered for connection.

Lemma C.1 (Edge-Cost Computations). Consider the setup of Theorem 4.7. Let M
(1)
FMT∗

be the number of computations of edge cost when FMT∗ is run on V using rn. Similarly, let
M

(1)
PRM∗ be the number of computations of edge cost when PRM∗ is run on V using rn. Then

in expectation,
M

(1)
FMT∗ ≤M

(1)
PRM∗ ∈ O(n log(n)).

Proof. PRM∗ computes the cost of every edge in its graph. For a given node, edges are only
created between that node and nodes in the rn-ball around it. The expected number of nodes
in an rn-ball is less than or equal to (n/µ(Xfree))ζdr

d
n = (ζd/µ(Xfree))γ log(n), and since there

are n nodes, the number of edges in the PRM∗ graph is O(n log(n)). Therefore, M
(1)
PRM∗ is

O(n log(n)).
For each node x ∈ V , FMT∗ saves the associated set Nx of rn-neighbors. Instead of just

saving a reference for each node y ∈ Nx, Nx can also allocate memory for the real value
Cost(y, x). Saving this value whenever it is first computed guarantees that FMT∗will never
compute it more than once for a given pair of nodes. Since the only pairs of nodes considered
are exactly those considered in PRM∗, it is guaranteed that M

(1)
FMT∗ ≤ M

(1)
PRM∗ . Note that

computation of the cost-to-arrive of a node already connected in the FMT∗ graph was not
factored in here, because it is just a sum of edge costs which have already been computed.

The following Lemma shows that lines 10–18 in Algorithm 2 are only run O(n) times,
despite being contained in the loop at line 6, which runs O(n) times, and the loop at line 9,
which runs O(log(n)) times, which would seem to suggest that lines 10–18 are run O(n log(n))
times.

Lemma C.2 (Node Considerations). Consider the setup of Theorem 4.7. We say that a
node is ‘considered’ when it has played the role of x ∈ Xnear in line 9 of Algorithm 2. Let
M

(2)
FMT∗ be the number of node considerations when FMT∗ is run on V using rn, including

multiple considerations of the same node. Then in expectation,

M
(1)
FMT∗ ∈ O(n).

50



Proof. Note that Xnear ⊂ Vunvisited and nodes are permanently removed from Vunvisited as
soon as they are connected to a parent. Furthermore, if there are no obstacles within rn of a
given node, then it must be connected to a parent when it is first considered. Clearly then,
considerations involving these nodes account for at most n considerations, so it suffices to
show that the number of considerations involving nodes within rn of an obstacle (denote this
value by Mobs) is O(n) in expectation.

Any node can only be considered as many times as it has neighbors, which is O(log(n)) in
expectation. Furthermore, as n→∞, the expected number of nodes within rn of an obstacle
can be approximated arbitrarily well by n · Sobs · rn, where Sobs is the constant surface area
of the obstacles. This equation is just the density of points, n, times the volume formula for
a thin shell around the obstacles, which will hold in the large n limit, since rn → 0. Since
rn ∈ O((log(n)/n)1/d), these combine to give,

Mobs ∈ O(n(log(n)/n)1/d log(n)) = O((log(n))1+1/dn1−1/d) ∈ O(n)

in expectation, proving the lemma.

We are now ready to show that the computational complexity of FMT∗ is O(n log(n))
in expectation. As already pointed out in Lemma C.1, the number of calls to Cost is
O(n log(n)). By Lemma C.2 and the fact that CollisionFree is called if and only if a node
is under consideration, the number of calls to CollisionFree is O(n). The number of calls
to Near in which any computation is done, as opposed to just loading a set from memory, is
bounded by n, since neighbor sets are saved and thus are never computed more than once for
each node. Since Near computation can be implemented to arbitrarily close approximation
in O(log(n)) time (Arya and Mount, 1995), the calls to Near also account for O(n log(n))
time complexity. Since each node can have at most one parent in the graph T , E can only
have at most n elements and since edges are only added, never subtracted, from E, the time
complexity of building E is O(n). Similarly, Vunvisited only ever has nodes subtracted and
starts with n nodes, so subtracting from Vunvisited takes a total of O(n) time.

Operations on Vopen can be done in O(n log(n)) time if Vopen is implemented as a binary
min heap. As pointed out in Theorem 3.1, there are at most n additions to Vopen, each
taking O(log(card Vopen)), and since card Vopen ≤ n, these additions take O(n log(n)) time.
Finding and deleting the minimum element of Vopen also happens at most n times and also
takes O(log(cardVopen)) time, again multiplying to O(n log(n)) time. There are also the
intersections. Using hash maps, intersection can be implemented in time linear in the size of
the smaller of the two sets (Ding and König, 2011). Both intersections, in lines 8 and 12, have
Nx as one of the sets, which will have size O(log(n)). Since the intersection in line 8 happens
once per while loop iteration, it happens at most n times, taking a total of O(n log(n)) run
time. Also, the intersection at line 12 is called exactly once per consideration, so again by
Lemma C.2, this operation takes a total of O(n log(n)) time. Finally, each computation of
ymin in line 13 happens once per consideration and takes time linear in card Ynear = O(log(n))
(note that computing ymin does not require sorting Ynear, just finding its minimum, and that
computations of cost have already been accounted for), leading to O(n log(n)) in total for
this operation. Note that the solution is returned upon algorithm completion, so there is
no “query” phase. In addition, V , Vopen, E, and Vunvisited all have maximum size of n,
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while saving Nx for up to n nodes requires O(n log(n)) space, so FMT∗ has space complexity
O(n log(n)).

Appendix D: AO of FMT∗with Non-Uniform Sampling

Imagine sampling from ϕ by decomposing it into a mixture density as follows. With probabil-
ity `, draw a sample from the uniform density, and with probability 1−`, draw a sample from
a second distribution with probability density function (ϕ − `)/(1 − `µ(Xfree)). If FMT∗ is
run on only the (approximately n`) nodes that were drawn from the uniform distribution,
the entire proof of asymptotic optimality in Theorem 4.1 goes through after adjusting up the
connection radius rn by a factor of (1/`)1/d. This fact can be seen by observing that the proof
only relies on the expected value of the number of nodes in a rn-ball, and the lower density
and larger ball radius cancel out in this expectation, leaving the expected value the same as
in the original proof. This cancellation formalizes the intuition that sparsely-sampled regions
require searching wider to make good connections. Finally, note that adding samples before
running FMT∗ (while holding all parameters of FMT∗ fixed, in particular acting as if n were
the number of original samples for the purposes of computing rn) can only improve the paths
in the tree which do not come within a radius of the obstacles. Since the proof of FMT∗’s AO
only employs approximating paths that are bounded away from the obstacles by at least rn,
the cost of these paths can only decrease if more points are added, and thus their costs must
still converge to the optimal cost in probability. Thus when the (approximately n(1 − `))
nodes that were drawn from the second distribution are added back to the sample space,
thus returning to the original non-uniform sampling distribution, asymptotic optimality still
holds.

In our discussion of non-uniform sampling, we have repeatedly characterized a sampling
distribution by its probability density function ϕ. We note for mathematical completeness
that probability density functions are only defined up to an arbitrary set of Lebesgue measure
0. Thus all conditions stated in this discussion can be slightly relaxed in that they only have
to hold on a set of Lebesgue measure µ(Xfree).

Appendix E: AO of FMT∗ for General Costs

Asymptotic optimality of FMT∗ for metric costs: To make the proof of AO go through,
we do have the additional requirement that the cost be such that ζd, the measure of the unit
cost-ball, be contained in (0,∞). Such a cost-ball must automatically be contained in a
Euclidean ball of the same center; denote the radius of this ball by router. Then just three
more things need to be adjusted in the proof of Theorem 4.1: First, condition (1) in the
third paragraph of the proof needs to change to routerrn

2(2+θ)
< ξ. Second, condition (2) right

after it needs to be changed to 3+θ
2+θ

router rn < δ. Finally, every time that length is mentioned,
excepting cases when distance to the edge of obstacles or the goal region is being considered,
length should be considered to mean cost instead. These replacements include the radii of
the covering balls (so they are covering cost-balls), the ‖ · ‖ function in the definition of Γm,
and the definition of Ln,α,β, for instance. The first two changes ensure that a sample is still
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drawn in the goal region so that the returned path is feasible, and ensure that the covering
cost-balls remain collision-free. The third change is only notational, and the rest of the proof
follows, since the triangle inequality still holds.

Asymptotic optimality of FMT∗ for line integral costs with optimal-path connec-
tions: Because of the bounds on the cost density, the resulting new cost-balls with cost-radius
r contain, and are contained in, Euclidean balls of radius r/fupper and r/flower, respectively.
Thus by adjusting constants for obstacle clearance and covering-cost-ball-radius, we can still
ensure that the covering cost-balls have sufficient points sampled within them, and that they
are sufficiently far from the obstacles. Furthermore, by only considering optimal connections,
we are back to having a triangle inequality, since the cost of the optimal path connecting u
to v is no greater than the sum of the costs of the optimal paths connecting u to w and w
to v, for any w. Therefore we are again in a situation where the AO proof in Theorem 4.1
holds nearly unchanged.

Asymptotic optimality of FMT∗ for line integral costs with straight-line connec-
tions: Assume that we can partition all of X except some set of Lebesgue measure zero into
finitely many connected, open regions, such that on each such region f is Lipschitz. Assume
further that each of the optimum-approximating paths (from the definition of δ-robust fea-
sibility) can be chosen such that it contains only finitely many points on the boundary of all
these open regions. Note that this property does not have to hold for the optimal path itself,
indeed the optimal path may run along a region’s boundary and still be arbitrarily approxi-
mated by paths that do not. Since the Lipschitz regions are open, each approximating path
σn can be chosen such that there exist two sequences of strictly positive constants {φn,i}∞i=1

and {ψn,i}∞i=1 such that: (a) φn,i
i→∞−→ 0, and (b) for each i, for any point x on σn that is more

than a distance φn,i from any of the finitely many points on σn that lie on the boundary of
a Lipschitz region, the ψn,i-ball around x is entirely contained in a single Lipschitz region.
This condition essentially requires that nearly all of each approximating path is bounded
away from the edge of any of the Lipschitz regions. Taken together, these conditions allow
for very general cost functions, including the common setting of f piecewise constant on
finitely-many regions in X . To see how these conditions help prove AO, we examine the two
reasons that the lack of a triangle inequality hinders the proof of AO for FMT∗.

The first is that, even if FMT∗ returned a path that is optimal with respect to the
straight-line PRM∗ graph (this is the graph with nodes V and edges connecting every pair
of samples that have a straight-line connection that is collision-free and has cost less than
rn), there would be an extra cost associated with each edge (in the straight-line PRM∗ graph
too) for being the suboptimal path between its endpoints, and this is not accounted for in
the proof. The second reason is that to ensure that each sample that is sufficiently far from
the obstacles is optimally connected to the existing FMT∗ tree, the triangle inequality is
used only in the first subcase of case 4 at the end of the proof of Lemma 4.2, where it is
shown that the path returned by FMT∗ is at least as good as any path P that traces through
samples in the covering balls in a particular way. This subcase is for when, at the time when
a given sample x ∈ P is added to FMT∗, x’s parent in P (denoted u) is not in Vopen, but
one of x’s ancestors in P is in Vopen. If the triangle inequality fails, then it is possible that
connecting x to the FMT∗ tree through a path that is entirely contained in x’s search radius
and runs through u (which FMT∗ cannot do, since u /∈ Vopen) would have given x a better
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cost-to-arrive than what it ends up with in the FMT∗ solution. Therefore, for the proof to go
through, either the triangle inequality needs to hold within all of the search balls of points
contained in the covering balls (or on a sequence of balls Bsearch

n,m centered at the covering
balls but with an rn-larger radius), or the triangle inequality needs to hold approximately
such that this approximation, summed over all the Bsearch

n,m , goes to zero as n → ∞. We
venture to show that the latter case holds, using the fact that, on each of the portions of X
on which f is Lipschitz, we have an approximate triangle inequality, and the approximation
goes to zero quickly as n→∞.

In particular, for a given optimum-approximating path, there are O(1/rn) of the Bsearch
n,m ,

with radii O(rn), and we can forget about the Bsearch
n,m containing points on the boundary of a

Lipschitz region. Let in = min{i : φi,n > the radius of Bsearch
n,m }. Note that σn can be taken

to converge to the optimal path slowly enough that φin,n
n→∞−→ 0 and rn/ψin,n

n→∞−→ 0. The

boundary-containing Bsearch
n,m can be ignored because φin,n

n→∞−→ 0 ensures that the boundary-
containing balls cover an asymptotically negligible length of the σn’s, and thus connections
within them contribute negligibly to the cost of the FMT∗ solution as rn → 0. Furthermore,
since rn/ψin,n

n→∞−→ 0, we are left with O(1/rn) balls which, for rn small enough, are each
entirely inside a Lipschitz region, of which there are only finitely many, and thus there exists
a global Lipschitz constant L that applies to all those balls, and does not change as rn → 0.
The suboptimality of a straight line contained in a ball of radius r on a L-Lipschitz region
is upper-bounded by its length (2r) times the maximal cost-differential on the ball (2Lr).
Thus the total cost penalty on FMT∗ over all the Bsearch

n,m of interest is O(r2n/rn) = O(rn), and
rn → 0, so we expect straight-line FMT∗ to return a solution that is asymptotically no worse
than that produced by the “optimal-path” FMT∗ in Section 5.2.2, and is therefore AO.

Appendix F: AO of k-nearest FMT∗

Henceforth, we will call mutual-kn-nearest PRM∗ the PRM∗-like algorithm in which the
graph is constructed by placing edges only between mutual kn-nearest-neighbors. Three
key facts ensure AO of k-nearest FMT∗, namely: (1) the mutual-kn-nearest PRM∗ graph
arbitrarily approximates (in bounded variation norm) any path in Xfree for kn = k0 log(n),
k0 > 3de(1 + 1/d), (2) kn-nearest FMT∗ returns at least as good a solution as any feasible
path in the mutual-kn-nearest PRM∗ graph for which no node in the path has an obstacle
between it and one of its kn-nearest-neighbors, and (3) for any fixed positive clearance Υ
and kn = k0 log(n), k0 > 3de(1 + 1/d), the length of the longest edge containing a Υ-clear
node in the kn-nearest-neighbor graph (not mutual, this time) goes to zero in probability.
Paralleling the terminology adopted in Section 3, we refer to samples in the mutual-kn-nearest
PRM∗ graph as nodes.

Leveraging these facts, we can readily show that kn-nearest FMT∗with kn = k0 log(n),
k0 > 3de(1 + 1/d) arbitrarily approximate an optimal solution with arbitrarily high prob-
ability as n → ∞. Specifically, because the problem is δ-robustly feasible, we can take
an arbitrarily-well-approximating path σ that still has positive obstacle clearance, and ar-
bitrarily approximate that path in the mutual-kn-nearest PRM∗ graph by (1). By taking
n larger and larger, since σ’s clearance is positive and fixed, the best approximating path
in the mutual-kn-nearest PRM∗ graph will eventually have some positive clearance with ar-
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bitrarily high probability. Then by (3), the length of the longest edge containing a point
in the approximating path goes to zero in probability, and thus the probability that any
node in the best approximating path in the mutual-kn-nearest PRM∗ graph will have one of
its kn-nearest-neighbors be farther away than the nearest obstacle goes to zero. Therefore
by (2), kn-nearest FMT∗ on the same samples will find at least as good a solution as that
approximating path with arbitrarily high probability as n→∞, and the result follows.

Proof of fact (1): To see why fact (1) holds, we need to adapt the proof of Theorem
35 from Karaman and Frazzoli (2011), which establishes AO of k-nearest PRM∗. Since
nearly all of the arguments are the same, we will not recreate it in its entirety here, but
only point out the relevant differences, of which there are three. (a) We consider a slightly
different geometric construction (with explanation why), which adds a factor of 3d to their
kn lower bound, (b) we adjust the proof for mutual-kn-nearest PRM∗, as opposed to regular
kn-nearest PRM∗, and (c) we generalize to show that there exist paths in the mutual-kn-
nearest PRM∗ graph that arbitrarily approximate any path in Xfree, as opposed to just the
optimal path.

To explain difference (a), where the radius of the B′n,m was equal to δn (defined at the
beginning of Appendix D.2 in Karaman and Frazzoli (2011)), it should instead be given by,

min

{
δ, 3(1 + θ1)

(
(1 + 1/d+ θ2)µ(Xfree)

ζd

)1/d(
log(n)

n

)1/d
}
, (19)

with the salient difference being an extra factor of 3 in the second element of the min as
compared to δn. Note we are not redefining δn, which is used to construct the smaller balls
Bn,m as well as to determine the separation between ball centers for both sets of balls. Thus
this change leaves the Bn,m ball unchanged, and the centers of the B′n,m balls unchanged,
while asymptotically tripling the radius of the B′n,m balls. Note that this changes the picture
given in (Karaman and Frazzoli, 2011, Figure 26), in that the outer circle should have triple
the radius. This change is needed because in the second sentence in the paragraph after the
proof of their Lemma 59, which says “Hence, whenever the balls Bn,m and Bn,m+1 contain at
least one node each, and B′n,m contains at most k(n) vertices, the k-nearest PRM∗ algorithm
attempts to connect all vertices in Bn,m and Bn,m+1 with one another” might not hold in
some cases. With the definition of B′n,m given there, for θ1 arbitrarily small (which it may
need to be), B′n,m is just barely wider than Bn,m (although it does still contain it and Bn,m+1,
since their centers get arbitrarily close as well). Then the point on the edge of Bn,m farthest
from the center of Bn,m+1 is exactly δn − δn

1+θ1
= θ1δn

1+θ1
(the difference in radii of B′n,m and

Bn,m) from the nearest point on the edge of B′n,m+1, while it is 2+θ1
1+θ

δn (the sum of the radii of
Bn,m and Bn,m+1 and the distance between their centers) from the farthest point in Bn,m+1.
Therefore, there may be a sample xm ∈ Bn,m and a sample in xm+1 ∈ Bn,m+1 that are much
farther apart from one another than xm is from some points which are just outside B′n,m,
and therefore xm+1 may not be one of xm’s k-nearest-neighbors, no matter how few samples
fall in B′n,m.

However, for n large enough, our proposed radius for B′n,m is exactly 3δn, which results in

the point on the edge of Bn,m farthest from the center of Bn,m+1 being 3δn − δn
1+θ1

= 2+3θ1
1+θ1

δn
(the difference in radii of B′n,m and Bn,m) from the nearest point on the edge of B′n,m+1, while

it is 2+θ1
1+θ

δn (the sum of the radii of Bn,m and Bn,m+1 and the distance between their centers)
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Figure 18: An illustration of Bn,m and B′n,m in the proof of AO of k-nearest FMT∗ .

from the farthest point in Bn,m+1 (See Figure 18). Therefore, 2+3θ1
1+θ1

δn >
2+θ1
1+θ

δn implies that
any point in Bn,m is closer to every point in Bn,m+1 than it is to any point outside B′n,m.
This fact implies that if there are at most k samples in B′n,m, at least one of which xm+1 is in
Bn,m+1 and one of which xm is in Bn,m (assume xm+1 6= xm or they are trivially connected),
then any point that is closer to xm than xm+1 must be inside B′n,m, of which there are only
k in total, and thus xm+1 must be one of xm’s k-nearest-neighbors. We have increased the
volume of the B′n,m by a factor of 3d, making it necessary to increase the kPRM lower-bound
(used in their Lemmas 58 and 59) by the same factor of 3d. This factor allows for the crucial
part of the proof whereby it is shown that no more than kn samples fall in each of the B′n,m.
On the subject of changing the kPRM lower-bound, we note that it may be possible to reduce
kFMT := 3de(1 + 1/d) to 3de/d by the same ideas used in our Theorem 4.1, since for this
proof we only need convergence in probability, while Karaman and Frazzoli (2011) prove the
stronger convergence almost surely.

For difference (b), note that the proof of Karaman and Frazzoli (2011) states that when
the event A′n holds, all samples in Bn,m+1 must be in the kn-nearest-neighbor sets of any
samples in Bn,m. However a symmetrical argument shows that all samples in Bn,m must
also be in the k-nearest-neighbor sets of any samples in Bn,m+1, and thus all samples in
both balls must be mutual-k-nearest-neighbors. Since this argument is the only place in
their proof that uses connectedness between samples, the entire proof holds just as well for
mutual-kn-nearest PRM∗ as it does for kn-nearest PRM∗. For difference (c), there is nothing
to prove, as the exposition in Karaman and Frazzoli (2011) does not use anything about the
cost of the path being approximated until the last paragraph of their Appendix D. Up until
then, a path (call it σ) is chosen and it is shown that the path in the kn-nearest PRM∗ graph
that is closest to σ in bounded variation norm converges to σ in the same norm.
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Proof of fact (2): To see why fact (2) holds, consider the nodes along a feasible path P
in the mutual-kn-nearest PRM∗ graph, such that all of the nodes are farther from any obstacle
than they are from any of their kn-nearest-neighbors. We will show that for any point x
along P , with parent in P denoted by u, if kn-nearest FMT∗ is run through all the samples
(i.e., it ignores the stopping condition of z ∈ Xgoal in line 6), then the cost-to-arrive of x in
the solution path is no worse than the cost-to-arrive of x in P , assuming the same is true
for all of x’s ancestors in P . By feasibility, the endpoint of P is in Xfree, and then induction
on the nodes in P implies that this endpoint either is the end of a kn-nearest FMT∗ solution
path with cost no greater than that of P , or kn-nearest FMT∗ stopped before the endpoint
of P was considered, in which case kn-nearest FMT∗ returned an even lower-cost solution
than the path that would have eventually ended at the endpoint of P . Note that we are
not restricting the edges in k-nearest FMT∗ to be drawn from those in the mutual-k-nearest
PRM∗ graph, indeed kn-nearest FMT∗ can now potentially return a solution strictly better
than any feasible path through the mutual-k-nearest PRM∗ graph.

We now show that x’s cost-to-arrive in the kn-nearest FMT∗ solution is at least as good
as x’s cost-to-arrive in P , given that the same is true of all of x’s ancestors in P . Recall
that by assumption, all connections in P are to mutual -kn-nearest-neighbors, and that for
all nodes x in P , all of x’s (not-necessarily-mutual) kn-nearest-neighbors are closer to x than
the nearest obstacle is to x, and thus the line connecting x to any of its kn-nearest-neighbors
must be collision-free. Note also that x’s parent in P , denoted by u, has finite cost in the
kn-nearest FMT∗ tree by assumption, which means it must enter Vopen at some point in the
algorithm. Since we are not stopping early, u must also be the minimum-cost node in Vopen
at some point, at which point x will be considered for addition to Vopen if it had not been
already. Now consider the following four exhaustive cases for when x is first considered (i.e.,
x’s first iteration in the for loop at line 9 of Algorithm 2). (a) u ∈ Vopen: then u ∈ Ynear and
ux is collision-free, so when x is connected, its cost-to-arrive is less than that of u added to
Cost(u, x), which in turn is less than the cost-to-arrive of x in P (by the triangle inequality).
(b) u had already entered and was removed from Vopen: this case is impossible, since u and x
are both among one anothers’ kn-nearest-neighbors, and thus x must have been considered
at the latest when u was the lowest-cost-to-arrive node in Vopen, just before it was removed.
(c) u ∈ Vunvisited and x’s closest ancestor in Vopen, denoted w, is a kn-nearest-neighbor of x:
by assumption, wx is collision-free, so when x is connected, its cost-to-arrive is no more than
that of w added to Cost(w, x), which in turn is less than that of the cost-to-arrive of x in
P (again, by the triangle inequality). (d) u ∈ Vunvisited and w (defined as in the previous
case) is not a kn-nearest-neighbor of x: denoting the current lowest-cost-to-arrive node in
Vopen by z, we know that the cost-to-arrive of z is no more than that of w, and since x is a
mutual-kn-nearest-neighbor of z, z is also a kn-nearest-neighbor of x. Furthermore, we know
that since w is not a kn-nearest-neighbor of x, Cost(w, x) ≥ Cost(z, x). Together, these
facts give us that when x is connected, its cost-to-arrive is no more than that of z added to
Cost(z, x), which is no more than that of w added to Cost(w, x), which in turn is no more
than the cost-to-arrive of x in P (again, by the triangle inequality).

Proof of fact (3): To see why fact (3) holds, denote the longest edge in the kn-nearest-
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neighbor graph by êmax
n , let

en :=

(
e k0 µ(Xfree) log(n)

ζd (n− 1)

)1/d

,

and note that

P(êmax
n > en) ≤P(any en-ball around a sample contains fewer than kn neighbors)

≤nP(the en-ball around v contains fewer than kn neighbors),
(20)

where v is some arbitrary sample. Finally, observe that en
n→∞−→ 0 and for en < Υ, the

number of neighbors in the en-ball around any sample is a binomial random variable with
parameters n− 1 and ekn

n−1 , so we can use the bounds in (Penrose, 2003, page 16) to obtain,

P(êmax
n > en) ≤ne−eknH( kn−1

kn
e)

≤n1−ek0H( kn−1
kn

e)

≤n−16 for n ≥ 2,

(21)

where H(a) = 1 + a− a log(a). Thus since n−16
n→∞−→ 0 and en

n→∞−→ 0, we have the result.
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