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Abstract

Many practical applications of online reinforcement learning require the satisfaction
of safety constraints while learning about the unknown environment. In this work, we
study Linear Quadratic Regulator (LQR) learning with unknown dynamics, but with
the additional constraint that the position must stay within a safe region for the entire
trajectory with high probability. Unlike in previous works, we allow for both bounded
and unbounded noise distributions and study stronger baselines of nonlinear controllers
that are better suited for constrained problems than linear controllers. Due to these
complications, we focus on 1-dimensional state- and action- spaces, however we also
discuss how we expect the high-level takeaways can generalize to higher dimensions.
Our primary contribution is the first O (v/T)-regret bound for constrained LQR learn-
ing, which we show relative to a specific baseline of non-linear controllers. We then
prove that, for any non-linear baseline satisfying natural assumptions, OT(ﬁ )-regret
is possible when the noise distribution has sufficiently large support and OT(TQ/ 3)-
regret is possible for any subgaussian noise distribution. An overarching theme of our
results is that enforcing safety provides “free exploration” that compensates for the
added cost of uncertainty in safety constrained control, resulting in the same regret
rate as in the unconstrained problem.

1 Introduction

1.1 Background and Motivation

Recent advances in reinforcement learning (RL) have led to many successes in applying
RL algorithms to a variety of practical online applications, from robotics to personalized
health ([LEDAILG, ILHPT15, [TM17]). A core concept behind online RL algorithms is the
careful balance between exploration (proactively learning about the unknown environment)
and exploitation (using what is already known to maximize reward). In practice, however,
RL algorithms are restricted in the possible actions and states by safety constraints. For
example, a drone using an RL algorithm must have safety constraints restricting possible
states that would result in the drone crashing into a building or injuring a bystander. There-
fore, the drone cannot explore the environment by accelerating directly into a building, and



instead must explore in a safe manner. To deploy more RL algorithms to practical applica-
tions, instead of just balancing exploration versus exploitation, the optimal algorithm must
now balance exploration versus exploitation versus safety. In many applications, the safety
constraints must be obeyed at all time steps (even at the beginning), which does not allow
for any violation of safety even during the initial learning period. Therefore, this component
of “safety” involves both learning safely as well as learning how to be safe in the future.
Studying simple canonical problems in RL can give insights into how to develop safe RL al-
gorithms in more complex practical settings. In this paper, we address safety in the context
of online LQR with unknown dynamics. Online LQR with unknown dynamics can be viewed
as one of the simplest RL problems with a continuous decision space, and this problem has
recently gained significant attention within the RL community both with and without safety
constraints (see e.g. [AYS11, DMM™18, DTMR19]).

1.2 Setting and Motivation

In order to better understand the interaction between safety and the balance of explo-
ration/exploitation, we study the classic problem of controlling a discrete-time linear dy-
namical system with unknown dynamics while minimizing a quadratic cost. In our problem
setting, the position at the next time step depends on the current position, the current
control input, and a random noise. The goal is to choose controls (actions) that keep the
position as close to the origin as possible while using as little control as possible. An exam-
ple application of this problem is controlling a drone around a target ([RSAMIG]). In this
scenario, the goal is to maintain a safe distance from the target while preserving fuel despite
random disturbances from air currents. In this paper, we are interested in the setting where
the dynamics are unknown. When the dynamics are unknown, LQR becomes an online RL
problem of balancing exploration (controls that learn about the dynamics) and exploitation
(controls that minimize the cost). Extending the previous example of controlling a drone
around a target, the dynamics could for example be determined by the weather pattern that
is unknown in advance. The goal in this paper is to design an algorithm that can learn
the dynamics safely while not incurring significantly more cost than the best safe algorithm
when the dynamics are known.

To quantify safety in this setting, we will consider constraints on the position of the
controller which restrict the position to stay within a safe region. Continuing the previous
example, a drone control must be safe in that it must avoid positions that are currently
occupied by walls or other objects. We focus on position constraints rather than control
constraints because position constraints have the added difficulty that, at the time of choos-
ing the control, the next position for any given control is unknown due to the noise and
uncertainty about the dynamics. In contrast, the algorithm has perfect information about
(and control over) the choice of control. We therefore consider the LQR setting with only
position constraints. See Section [5| for discussion on how our results extend to the setting
with control constraints. While the optimal policy with known dynamics and without po-
sition constraints is the well-understood Linear Quadratic Regulator, with constraints the
optimal policy even for known dynamics no longer has a closed-form ([RM12]). Due to the
substantially increased complexity of the constrained LQR problem with both known and
unknown dynamics, we will focus on the setting when both the positions and controls are



one-dimensional. We focus on the one-dimensional setting to highlight the main ways in
which learning unknown dynamics changes in the presence of constraints, without the addi-
tional technical overhead that comes with proving results for higher dimensions. However,
we do predict that many of the results in this paper can be generalized to higher dimensions,
and we discuss this further in Section [5] Other works have also taken the same approach of
first studying only the one-dimensional case of LQR, see e.g. [FPRW21, [AL17]. The one-
dimensional setting of safe LQR does have its own applications, for example maintaining a
fixed temperature of a room ([OJMOS§]). In this application, the goal is to maintain a certain
range of safe temperatures with high probability while using as little energy as possible.
Taking temperature as the position, this problem can be formulated as a one-dimensional
LQR problem with safety “position” constraints on the temperature.

1.3 Owur Contribution

The main theorems of this paper each establish new regret results for safety-constrained LQR
learning. We improve prior works’ regret bounds for this setting along three dimensions, the
regret rate, the regret baseline, and the types of noise distributions. In contrast to prior
works, we focus on one-dimensional LQR with only positional constraints. The following
table summarizes our different results relative to prior works across these three dimensions:

Regret Rate Regret Baseline Noise Distributions
Previous works O (T2/3) Best Safe Linear Controller Bounded

Or(VT) Best Truncated Linear Controller subgaussian

Or(VT) Best General Baseline Controller  subgaussian+Large Support

Or(T?/3) Best General Baseline Controller — subgaussian

The main contribution of this paper is we that show a OT(\/T ) rate of regret is possible
for safety-constrained LQR learning in one-dimension, improving on OT(T2/ 3) regret results
of previous works ([LDSL21, DTMR19]). This rate of regret for constrained LQR learning
matches the optimal regret rate for unconstrained LQR learning ([ZS24]). In addition to
improving the rate of regret, this result is also with respect to a stronger baseline than
previous works. The regret for this result is defined with respect to the best controller
from the baseline class of truncated linear controllers, which consists of linear controllers
corrected to obey the safety constraints. This is a significantly stronger baseline than in
previous works (see Section for more details). To the best of our knowledge, this is
the first work on constrained LQR learning with respect to any baseline stronger than the
best safe linear controller. Therefore, our Op(v/T) regret result is strictly better than the
previous Op(T??3) regret results of [LDSL21, DTMRI9] in both the regret baseline and the
rate of regret. Our result also holds for any subgaussian noise distribution, which is the
(to the best of our knowledge) first safety-constrained LQR learning result for unbounded
distributions. In proving this result, we provide a better estimation bound for estimating
unknown dynamics in the presence of safety constraints, which is a key new technical tool
in achieving Op(v/T) regret.

Moving beyond linear or truncated linear baselines, we also study regret of certainty



equivalence algorithms relative to the best controller from very general classes of baseline
controllers satisfying only minimal regularity conditions. We first show that a certainty
equivalence algorithm can achieve a regret rate of OT(T 2/ 3) relative to the best controller
from these general classes of baseline controllers. Furthermore, for noise distributions with
sufficiently large support (e.g. Gaussian noise), we show that a Op(v/T) regret rate is
possible, which again matches the optimal regret rate. All of the proofs of the regret results
in this paper are constructive and provide certainty equivalence algorithms for achieving the
guaranteed rates of regret.

1.4 Related Work

RL has been recognized as being a powerful tool in a broad array of applications ([SHM™16],
KST™21, [LFDAT6]), but there is still a need to better understand RL in the presence of safety
constraints. There exists a wide array of definitions of safety in RL, many of which focus
on some notion of reachability or stability, see e.g. [GGY 24, IGZST24, IGYD'22, MA12,
WSYOI8, WSS24, [YLC™24|. However, these notions of safety are less directly related to
our problem setting. More related to our problem, there is also a body of literature on
algorithms for RL for control with constraints that maintain safety for the entire trajectory,
see e.g. [FP18, [COMBI9, IMK21l, [FAZT1§|. These works study different broad definitions of
safety in control, which can apply to a wider variety of models and settings than our results.
However, the technical contribution of these works focuses specifically on developing safe
algorithms, without proving theoretical results about the rates of regret or the optimality of
the proposed safe algorithms.

The LQR problem has many applications despite the simplicity of the problem state-
ment ([PCCT14) [CS99, [STKO03]). There has recently been a large body of work focusing
on minimizing regret in the unconstrained LQR setting with unknown dynamics, begin-
ning with [AYSTI] which gave the first algorithm for Oy (v/T) regret for unconstrained LQR
learning. This was followed by many works that study variations of both the infinite and
finite time problem including (but not limited to) [DMM™18, MTR19, MJR20, SMT*18,
CKM19, W.J21l, WJ22, MTR19, [AL17, [Z1.20}, [SOF20, [KS20, [SO22, [FTM18al FTM17, (0019,
YCLG24, AMG™24, 7524, LRM24]. Certainty Equivalence (CE) algorithms estimate the un-
known dynamics and find an optimal policy under the estimated dynamics. Later works on
LQR learning showed that CE algorithms are in fact (rate) optimal for the unconstrained
learning problem ([SE20), [ETM18b, MTR19, WJ22]).

The two works that are most closely related to this paper are [DTMR19] and [LDSL21],
which both study safety-constrained LQR learning with unknown dynamics. Both works
study the regret with respect to the baseline of the best linear controllers of the form u;, =
—Kx; and derive an upper bound of OT(TQ/ 3) on the regret. In [DTMR19], they use system
level synthesis to develop an algorithm that can safely inject noise into the system to give
statistical guarantees on the learning rate. [LDSL21] provide the first adaptive learning
algorithm for constrained LQR learning with unknown dynamics using a CE approach.
While their results hold for higher dimensional LQR, our results improve on theirs in two
ways. First, we are able to show a regret rate of OT(\/T ), an improvement over their regret
rate of OT(T 2/3). Second, our regret results are with respect to a significantly stronger and
more general baseline. These previous works focused on regret with respect to the best safe
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linear controller. However, the class of safe linear controllers is a relatively weak class of
safe controllers, and the best safe linear controller can be far worse than the best overall
safe controller. The class of truncated linear controllers that we study is in fact a superset
of the safe linear controllers, and therefore our results are with respect to a strictly stronger
baseline than in [LDSL21]. See Section for more discussion on the importance of the
choice of baseline. Note that these works allow constraints on both control and positions,
while our results focus only on positional constraints. See Section [5| for more discussion on
control constraints.

There are also some connections between our work and the areas of model predictive
control and system identification, but we defer these to the appendix (Appendix in the
interest of space because the connections to our work are not as strong as the works surveyed
in the rest of this subsection.

2 Preliminaries

2.1 Outline of Preliminaries

In order to formally state our problem, the preliminaries section is organized as follows.
First, in Section [2.2] we outline the dynamics of the system and the notation we will use for
controllers. In Section we define and motivate the expected-position safety constraints
we use to represent safety throughout the paper. In order for it to be possible to learn safely,
we also need some initial information. In Section [2.4] we outline the exact assumptions we
make on the initial uncertainty. Finally, in Section [2.5] we put everything from the previous
sections together with a definition of regret to formally state our problem.

2.2 Problem Dynamics

Denote the state of the system at time ¢ for ¢ € [T] as z; € R and the control at time ¢
as u; € R. For simplicity, we will assume that the system starts at position xqg = 0. The
position at time t + 1 follows dynamics x;11 = a*x; + b*uy + wy, where a* € R and b* € R

determine the dynamics and wy " D is the noise term drawn from a continuous, mean-0
probability distribution D with cumulative distribution function Fp and variance % = 1.
We will consider the quadratic cost at time t as qz? + ru? for q,r € R+, and consider the
sum of cost over the first T" steps. Throughout this paper, we will assume that the dynamics
a*,b* are unknown, while all other problem parameters are known (e.g. D, q,r, etc.). For
simplicity, we will denote the unknown dynamics as 0* = (a*, b*) € R

We will also use the following controller notation. Define H; = (xq, ug, 1, ..., Ut_1, T1),
and F; = o(H;), the sigma algebra generated by H;. We define a (possibly time-dependent
and randomized) controller C' such that the control chosen at time t is u; = C'(H;). Note
that any randomness in the controller C' must be independent of the noise random variables
{w,}=!. Define the T-step cost of a controller C' starting at position o under dynamics 6



with noise random variables W = {w,}7 as

T-1
1
J(0,C.T, 20, W) = = <qx2T + ; gy + W?> : (1)
where uy = C(Hy), x1 = axy + buy + wy, wy Hd-p.
Notice that J outputs an average cost. We will refer to T'- J(0, C, T, xo, W) as the total cost.
We denote J*(0,C, T, xq) as the expectation of J(0, C, T, xy, W) with respect to only the ran-
domness in W. Formally, this means that J*(0,C,T,xo) = E[J(0,C,T,xq, W) | 0,C, T, x|
in case any of #, C, T', and xy are random, but in the typical setting when 6, C, T', and xg

are all deterministic, J*(0,C, T, z() will be non-random. For notational simplicity, we also
define J*(0,C,T) = J*(0,C,T,0).

2.3 Constraints

Now we will formalize our positional constraints. Both [DTMR19] and [LDSL21] formulate
their positional constraints as realized-position constraints of the form

which must be satisfied with probability 1 when the dynamics are known. Realized-position
constraints that hold with probability 1 have the easy interpretation that the realized posi-
tion must never exceed the realized-position boundaries given by the user of the algorithm.
However, in the case of unbounded noise distributions (for example Gaussian noise), having
the realized position never exceed any compact set with probability 1 is impossible even with
known dynamics. This is because with Gaussian noise, there is always a strictly positive
probability that x; will be outside of the safe region [Df, D] for any choice of control wu;_;.
Therefore, in order to allow for unbounded noise distributions, we must relax the requirement
of never exceeding the constraints with probability 1, and instead allow the position x; to
exceed the realized-position boundaries Df and D{; with probability at most d;ysj throughout
the entire trajectory. Using a union bound, one way to achieve this relaxation for 7" steps is
to require that for every t,

T — 5tra' * * T _ 5‘51" j
DL—FDI(zTJ)gaxt+but§DU—Fpl<1—2—;>. (3)
Motivated by this result, we will formulate our problem in terms of expected-position con-

straints of the form
D%m <a*z; + by < DE[I}. (4)

Because D is mean-0, this expected-position constraint has the easy interpretation of con-
straining the expected position, conditional on the history, at every time point (hence the
E[z] superscript). By constraining the expected position, we are also implicitly constrain-
ing the realized position x; to be within the random interval [DEM + wy_1, D%M + wy_q).
Furthermore, if the noise distribution has support [—w,w] and 6,3 = 0 (as in [DTMRI9]
and [LDSL21]), then realized-position constraints are a special case of the expected-position
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constraints: Equation with realized-position boundaries D := (Df, D%) is equivalent to
Equation with expected-position boundaries DE* = (DEM, D%[m]) = (Df +w, DY — w).
For unbounded noise, Equation is impossible to satisfy with probability 1, while Equa-
tion is possible to satisfy and is directly related to the problem of satisfying the realized-
position constraints with high probability. Therefore, the constraints in Equation (4)) can in
some sense be thought of as a generalization of the realized-position constraints in Equation
([2). To maintain that 0 is a safe position, we will also require that D%m <0< D% i (see
Assumption [3).

In order to satisfy the realized position constraints in Equation for all T" steps with
constant probability, the magnitude of the boundaries must scale with the max position,
which scales with the magnitude of the largest realized noise. For an unbounded distribution
D, this means that the realized-position boundaries must be a function of T that grows
with T. Now looking at Equation , the implied expected-position constraints include
both D* (which may be a function of T') and a quantile of the noise distribution (which is
explicitly a function of 7). Therefore, we will allow the expected-position boundary DEl]
of Equation to depend on T'. However, in the typical feasible safe RL problem we will
have expected-position boundaries that are Or(1). The reason for this is that the expected-
position constraints only bound the position in expectation. Therefore, unlike the realized-
position boundary which must scale with the maximum position in order to be feasible, the
expected-position boundary is feasible as long as it scales with the largest product of position
and dynamics estimation error (uncertainty in #). Under the assumptions in this paper, we
will achieve an estimation error that decreases at a rate that is much faster than the rate at
which the maximum position grows. Thus, while we allow the expected-position boundaries
to be functions of 7', the reader should generally think of them as not growing with 7" in a
typical problem, and indeed some of our results will explicitly require the expected-position
boundaries to be Or(1).

Formally, we define safety as follows. Note that when the boundaries (DE[I], D%[x]) are
clear in context, we will drop the constraints and simply refer to algorithms that are safe for
a specific dynamics 6*.

Blx] 1Ele]

Definition 1. A series of controls {u;}/_;" are safe for dynamics 0* and boundaries (D", Dy;
if every control satisfies Equation . Similarly, a controller C' is safe for dynamics 0* and
boundaries (Di:[x],D%EJ[I}) if the resulting controls {C(H,)}=y' under true dynamics 0* are
safe for dynamics 6*.

2.4 Initial Uncertainty Assumptions

Without any prior knowledge about the unknown dynamics 6%, it is impossible to choose a
first action that is guaranteed to be safe for all 8* € R?. Therefore, to learn anything about
the unknown dynamics while maintaining safety, we require some initial information about
the unknown dynamics. Before getting into our main results, we will therefore formalize our
assumptions about the initial uncertainty in our problem. As is standard in previous works
([AYS11l, ILDSL21]), we will assume the following:

Assumption 1. The algorithm has access to some © = O, x Oy, = [a,a] X [b,b] such that
*c©® andb>b>0anda>a > 0.

)



© can be thought of as the initial uncertainty set for 8*. Define the size of such a set O as
size(©) = max(a—a, b—b). Note that depending on the size of ©, maintaining safety with re-
spect to the expected-position boundaries for any #* € © may be infeasible. Infeasible in our
setting means that there does not exist any adaptive controller C' such that for all * € ©, the

controller is safe with high probability, i.e. P (Vt <T: D}]::[m] <a*r; +b0"C(Hy) < D%[w]> >

1 — 6. Clearly feasibility of © (for some appropriate choice of §) is a necessary condition for
our problem to have a solution. The assumptions we make are only slightly stronger than
just feasibility, which we discuss further in Appendix[M.3] As described in Section many
previous works have developed algorithms that maintain guaranteed safety, but to the best
of our knowledge the exact amount of prior information needed has not been quantified.

The assumption that a*,b* > 0 is for algebraic convenience, and the same results can be
shown for any constant a*,b* € R. The assumption that a,b > 0 can actually be removed
given the next assumption, and we discuss this more in Appendix [M.1]

The other main assumption about prior information that we make is that we have suffi-
cient information to not violate the safety constraint for some initial period of the algorithm.

Assumption 2. There is a known controller C™* such thatVz € [Dfm + Fp' (), DI 4 o1 —

@ b* * % vini x br

DE[]%—@Sax%—th(x)gD%H—@. (5)

To get a sense of how strong Assumption [2] is, note that if we ignore the vanishing log

terms in Equation , then Assumption [2|is equivalent to assuming that we can identify any

safe controller. If this is not the case, then safe learning is clearly impossible. We further

discuss Assumption [2] and how it relates to the concept of feasibility in Appendix In

Appendix [M.2] we also provide further interpretation of Assumption [2]in the case of bounded
noise.

2.5 Problem Statement

We define C?" as a baseline class of controllers if every controller C' € C?" is safe with respect
to dynamics 0* with probability 1. If #* were known, then the safe LQR problem with C?%
as the baseline would simply be to minimize the expected total cost for all controllers in this
baseline, i.e. to solve

Juin T-J0,CT). (6)
We will use the expression in Equation @ as the baseline cost to which we compare the cost
of our algorithms. We will often consider families of controller classes {C%}gco such that for
any dynamics @, every controller in the class C? is safe for dynamics # with probability 1.
For example, the baseline class C? could be the class of linear controllers that are safe for
dynamics @, the class of affine controllers that are safe for dynamics 6, all controllers that
are safe for dynamics 6, etc.

The regret of an algorithm with corresponding controller Uy, with respect to baseline
C?" is the random variable

Regret =T - Jp(0, Cyy,T,0, W) — min 7' JHO,CT). (7)
cect”

)|,



Note that this regret random variable compares the realized cost of the algorithm with the
expected cost of a controller from the baseline class, and this definition of regret is typical
in the LQR learning literature (e.g. [AYS11), [LDSL21]). We also could have defined regret
comparing the realized cost of an algorithm to the realized cost of the best (in expectation)
controller from the baseline class. Due to standard concentration inequalities, the realized
total cost of the baseline controller will be within O(v/T) of the expected total cost of the
baseline controller. Therefore, considering a realized total cost for both terms in the regret
would change our regret bounds by at most O(\/T ) and therefore not change any of the
results.

The overarching goal of this paper is to find a controller Cy, that achieves low regret as
defined in Equation ((7]) and such that for any true dynamics 6* € O, the controller C* is safe
for 6* with probability 1 —or(1/T). Note that we only require that the algorithm C, is safe
with probability 1—or(1/7), while we require the baseline to be safe with probability 1. This
(slightly unfair) mismatch is necessary to allow the algorithm to use information “learned”
from historical observations when trying to satisfy the safety constraints. For example, if
D is an unbounded distribution, then it is impossible to conclude anything with probability
1 based on any amount of historical information. We want to allow our algorithm to use
information about #* learned from previous time steps to choose better future safe controls,
and therefore we only require safety with respect to 8* with probability 1 — or(1/7). We
chose 1 — or(1/T) for the safety probability because this is strictly stronger than 1 — op(1)
or 1 — ¢ for constant 6 > 0, and therefore our results hold for these larger probabilities of
satisfying safety as well. In principle, we could also compare to a baseline that allows some
probability of error. However, because the baseline does not need to learn 6*, allowing it to
be safe with probability slightly less than 1 would not significantly impact its cost, while it
would significantly increase the mathematical complexity of the analysis.

Finally, we will make the following assumptions about the problem specifications through-
out this paper.

Assumption 3 (Problem Specifications). The noise distribution D is mean-0, variance 1,
and subgaussian with bounded density. The boundaries DEM, D%M (which may be functions

of T) satisfy that —log*(T) < D%m <0< Dg[m] < log*(T) and that D%M _ DEM > logl(T)'

For exposition purposes, we also assume that log,(T'/12) is an integer. The assumption
of variance 1 gives a simpler uncertainty bound, but as in J[AYS11] this can be relaxed. We
assume that max(|D§[w} |, Dﬁ[z]) < log?(T') because if the constraints are greater than log?(T),
then the constraints have very little impact on the optimal controller. This is because with
subgaussian noise, with high probability the noise random variables have magnitude less than
o(log(T")), and so reasonable controllers will with high probability never hit the constraint.
Therefore, if both boundaries are greater than log®(7T) then the problem becomes similar
to the unconstrained problem, and if one boundary is large, then the problem becomes one
sided which is an easier version of our problem. The assumption of mean-0 and subgaussian
noise is also standard in the LQR literature [AYST11], DTMR19, [LDSL21].

Putting everything together, the formal problem we are considering is the following.

Problem 1 (Safe LQR Learning). Suppose we are given D, D,O,T that satisfy Assumption
J@ and a set of baseline classes of controllers {C%}oce. Then the goal of safe LQR learning
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is to find an algorithm C*8 that achieves a regret with respect to baseline C?" that is as low
as possible, while also satisfying supyeg P (Calg is safe with respect to 9) =1—op(1/T).

Note that supycg P (C’alg is safe with respect to 6) =1—or(1/T) is equivalent to requir-
ing that there exists some probability p = 1 — op(1/7) such that for any 6 € ©, if the true
dynamics 6* = 6 then the controls used by C*# will be safe with respect #* with probability

p.

2.6 Notation

To simplify notation, we use § = (a, b) to represent an arbitrary set of dynamics and 6* =
(a*,b*) to represent the true (unknown) dynamics. We will also use D := (Dy, Dy) =
(DEM, D%m) (i.e., drop the superscripts). We will use Or and O notation to represent
O and O with respect to T, where the values of the hidden constants and log terms may
depend on the values of problem inputs such as ¢,r, D, D,©. Because the nature of our
problem requires us to define a significant amount of notation in this paper, we have a table
in Appendix [A] that lists the common notation used throughout the paper that the reader
can use as a reference if needed.

3 Theoretical Results

We will first present our main result on truncated linear controllers in Section [3.1} In Sec-
tion [3.2] we introduce a more general class of baselines satisfying certain regularity conditions
and present two further results for these general baselines.

3.1 Or(V/T) Regret for Truncated Linear Controllers

In order to present our main theorem, we first need to specify a baseline class of controllers
C” to define the regret in Equation (7). In both [LDSL21] and [DTMRI9], the regret
baseline for the OT(T 2/3) results is the cost of the best stationary linear controller of the
form u; = — Kx; that is safe for 6* with probability 1. We will refer to the class of stationary
linear controllers that are safe for 6* with probability 1 as the class of safe linear controllers.
Since not all linear controllers are safe for dynamics 6%, this is restricted to K that will
maintain safety for #* for any realization of the noise, and therefore can be a very weak
baseline. Linear controllers are not always well-suited for safety constrained LQR because
linear controllers only have one degree of freedom (K'), but in safety constrained LQR the
controller must balance keeping regret low with being safe. For example, when Dy and
Dy, are not symmetric, the best linear controller must still behave symmetrically. However,
symmetric behavior may be far from optimal for Dy and Dy, that are not symmetric, and
linear controllers lack the flexibility to behave non-symmetrically.

One goal of this paper is to improve on these previous results by bounding regret with
respect to a stronger baseline class of controllers. The main result of this paper is Theorem
[1, which bounds the regret on top of the baseline class of truncated linear controllers, a

a—1

significantly more powerful baseline than the class of safe linear controllers. Let K! = e

and K = ¢. Define the class of truncated linear controllers for dynamics 0 as C, =
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{04} Ke[K? K8)> where the controller C% is defined as the time invariant and Markovian
controller
—Kz if DL <(a—bK)x < Dy
Ch(x) = ¢ 2=t if (o — bK)z > Dy (8)

Diar if (q — bK)z < Dy,

This class of controllers for dynamics 6 is always at least as large as the class of linear
controllers that are safe for 6, as any linear controller that is safe for # is also in this class.
Furthermore, this is a natural extension of linear controllers that remains non-trivial even
for unbounded noise distributions. Finally, we note that truncated linear controllers are
computationally tractable and require the same amount of computation as linear controllers
in each time-step. We can now state our main result.

Theorem 1. In_the setting of Problem [1] when ||D| = Or(1), there exists an algorithm
C?ls (Algomthm that with probability 1 — op(1/T) achieves Op(v/T) regret with respect to
baseline CJ, while also satisfying supgee P (C™ is safe with respect to ) =1 — op(1/T).

We present a proof sketch of Theorem [I] in Section [4.3] and the full proof in Appendix [[}
Theorem [I]and the corresponding Algorithm 4] improve on previous results in two significant
ways, both with a better regret bound (O7(v/T) versus Op(T?/3)) and with a stronger regret
baseline (truncated linear controllers versus safe linear controllers).

The intuition of Algorithm [4] is relatively simple and is outlined in Algorithm [Tl The
algorithm first explores for O7(v/T) steps using the controller from Assumption . Using
the data from this exploration, the algorithm calculates a regularized least-squares estimate
of 0* (denoted f,) that is accurate up to O(T~'/*). Based on this least-squares estimate,
the algorithm then decides if the support of the noise distribution D is small relative to the
constraint boundary D or large relative to the constraint boundary D. In the small noise
case, the algorithm uses the best unconstrained controller for dynamics Oy, with small mod-
ifications to the control as needed to guarantee constraint satisfaction with high probability.
Because the noise is small in this case, the modification is only needed a small fraction of the
time. Therefore, in this case the regret of the algorithm is only slightly more than the regret
of the optimal unconstrained controller for Qwu, which can be shown to be OT(\/_ ) using
standard certainty equivalence results. In the large noise case, the algorithm uses a modified
form of Algorithm [5| (which is outlined in Algorithm [2). Intuitively, in this case the noise
is large enough to force the algorithm to a constant fraction of the time be non-linear by a
constant amount. This non-linearity allows the algorithm to learn the unknown dynamics
at a faster rate of 1/4/¢, which in turn leads to regret of O7(v/T) in this case as well.

Before moving on to the rest of the results, we want to highlight two key technical
contributions of the proof of Theorem [I| that go beyond just the stated result.

As discussed above, truncated linear controllers are computationally tractable and are a
natural extension of linear controllers better suited for problems with safety constraints. In
Section [H], we show that the class of truncated linear controllers has two desirable properties,
namely that this class satisfies Assumptions [7] and [§l These proofs and results may be
independently interesting in that non-linear controllers have not been well-studied in this
setting and therefore little was previously known about properties of such controller classes.
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Algorithm 1 Outline of Algorithm [4] for proof of Theorem

1: Explore for ©7(v/T) steps using controller C™¢ from Assumption .

2: éwu <+ regularized least-squares estimate of 6*.

3: Using éwu, determine if support of noise distribution D is large or small relative to
boundary D.

4: if support of D is small relative to D then

5: For the rest of the steps, use the optimal unconstrained linear controller for dynamics
éwu with small modifications to the control as necessary to enforce constraint satisfaction
w.h.p.

6: if support of D is large relative to D then
7 For the rest of the steps, use a variation of Lines of Algorithm [2]

The second key aspect of Theorem [1] is that the result relies on a new estimation bound
for the unknown system dynamics 6* (Lemma . Informally, this estimation bound shows
that simply by obeying safety constraints, the unknown dynamics can be estimated at a rate
of 1/4/t without injecting any additional randomness into the controller. This faster rate of
learning is because in order to be safe, the controller must frequently be non-linear, which
in turn helps learn the unknown dynamics. This result of safe behavior leading to faster
learning rates may also be of independent interest in other safe RL problems.

3.2 Regret Rates for General Baselines

While the result in Theorem [1|is with respect to a natural baseline, the best truncated linear
controller for #* is still not the overall lowest cost controller that is safe for 6*. Therefore,
there exist even stronger baselines with respect to which the algorithm in Theorem [1| may
achieve regret of more than Op(v/T). To address this, we present two results that hold for
a wide range of baseline classes of controllers. Before stating the theorems, we will outline a
few assumptions on the controllers in these general baseline classes.

Let {C%}yco be the set of baseline classes of controllers for dynamics § € ©. For the rest
of this paper, we will assume that the baseline class of controllers satisfies Assumption [4]

Assumption 4. All of the controllers in the baseline class C° for all @ € © are stationary,
Markovian, deterministic, and safe for dynamics 0 with probability 1.

Note that the assumption that every controller in C? is safe for dynamics 6 with prob-
ability 1 is consistent with the baselines of [LDSL21] and [DTMRI9]. Additionally, this
means that the baseline class of controllers could change depending on the dynamics 6, as
the class of controllers that is safe for one dynamics will not necessarily be safe for a different
dynamics. One option is to construct the baseline class from another class of controllers C
(for example the class of linear controllers), as follows:

{C € C: C is safe for dynamics 6}. (9)

If C is a rich enough class of controllers (e.g. all controllers), then Equation ([©) would result
in a good safe baseline. However, if C is a relatively small class of controllers (e.g. linear
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controllers), then the restriction in Equation @D to only controllers in the class that are safe
for 6 may result in a weak safe baseline. Therefore, instead of simply subsetting the class
of controllers C as in Equation @ we will preserve the complexity of the function class C
by transforming every controller in C into a controller that is safe for 6. We generalize even
further by allowing the starting class of controllers C? to be different for each 6.

Assumption 5 (Truncation). For any 6, there exists a controller class C° of deterministic
controllers such that the baseline class C? consists of all controllers of the following form for
Cect:
C(z) if DL <az+bC(z) < Dy
C(x) = % if ax +bC(x) > Dy (10)

Diarif qx + bC(z) < Dy

By this construction, every controller C? € C? is safe for dynamics 6. We will also assume
that C? is parameterizable by a scalar parameter K € R. This allows us to choose the optimal
controller in C? in terms of the parameter K.

Assumption 6 (Parametrization). For any 0, there exists K¢, K¢ € R such that the C? in
Assumption @ can be parameterized as C® = {C% : K € [K!, K§]}. Furthermore, for any 0,
T there exists a Ko (0,T) satisfying

Kopi(0,T) =arg min  J*(0,0%,T).

KelK? KE)

There are two more key assumptions on the class of controllers that are required for our
results.

Assumption 7 (Average Cost Lipschitz in Optimal Controller). There ewists exg = Qp(1)
such that for any |0 — 0*||cc < eamand t < T,

%/ % * [ )% * 3 * 1
|J (0 CKO ot (0,8)2 )_ J (9 ’CY§(01>t(‘9*’t)’t)| = OT (He -0 ||OO - TTQ) .

Assumption [7] relates the expected cost under dynamics 6* of the optimal controller for
dynamics 6* to the expected cost of the optimal controller for some other dynamics 6 close
to 6*. Intuitively, this is a form of Lipschitz continuity which implies that the performance
of the optimal controller is not too sensitive to the choice of 6. Some sort of continuity
assumption is intuitively required for any form of certainty equivalence algorithm to achieve
low regret guarantees.

Assumption 8 (Total Cost Lipschitz in Initial Position). There exist exg, oag = Qr(1) such

that for any 0 satisfying ||0 — 0*||oe < €ag the following holds. Fort < T, let W' = {w;}|Z}

Then for any K € [K{, K¢, there exists a set Yag € R? that depends only on CY% such that the

following holds. Define Exg (C%, W') as the event that W' € Yag. Then P(Eag (Ch, W')) >

1 —op(1/T') and for any |z|, |y| < 4log®(T) such that |z — y| < éag, conditional on event
a8 (Cle, W),

|t J(07,Ch t, 2, W) —t - J(07, Clet,y, W)| < Or(|lz — y| + |0 — 6%[|oo)- (11)
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Assumption [§relates the random variables of cost when starting at two different positions,
x and y, but with the same noise random variables W’. Intuitively, this implies that making
a small non-optimal control will not have significant long-term impact on the total cost.
Therefore, this assumption can be thought of as assuming the total cost is Lipschitz in the
initial position.

The final assumption we consider is an assumption that the noise distribution has suffi-
ciently large support, which we require for Theorem 2] but not for Theorem [3] Note that we
only need the noise distribution to have large support relative to one of the two boundaries
(Dy or Dy). We will wlo.g. state Assumption @ relative to boundary Dy, however an
equivalent assumption swapping Dy, and Dy would also be sufficient for Theorem [2]

Assumption 9. For any z, define P(0, K, z) as the largest x such that ax + bC%(x) < z.
There exists a constant exg > 0 such that the following equation holds for all t > /T for
sufficiently large T':

Pyp (w > P(Q*,Kopt(g*,t), DU) — DL) > €AQ > 0. (12)

The quantity P(6*, Ko (0%, 1), Dy) will often be proportional to and greater than Dy (for
example as we will show with truncated linear controllers). Because D is constant relative to
T, Assumption [J] implies that the boundary D must satisfy ||D||s = Or(1). When || D]/ =
O7(1), Assumption @ is a strong assumption if Dy and Dy, are far apart, as we are effectively
requiring the noise distribution D to have more than a constant probability of spanning the
distance between Dy, and Dy. On the other hand, Assumption [J]is automatically satisfied for
any ||D|/s = Or(1) when the noise distribution is Gaussian, unbounded, or bounded with
a high enough variance. This assumption will be necessary to achieve regret of OT(\/T )
in Theorem [2] as the variance from the noise distribution of Assumption [9 provides the
controller with a source of exploration that leads to better parameter estimation. We will
also provide a result for general classes of controllers that does not require this assumption,
but achieves a worse regret rate (Theorem [3)).

The goal of this section is to provide a general framework for studying the regret of
non-linear baselines of controllers that satisfy the above assumptions. We are now ready to
present our first theorem for general baselines.

Theorem 2. In the setting of Problem 1| and under further Assumptions @J@ there exists
an algorithm C¥& (Algorithm @ that with probability 1 — op(1/T) achieves Op(vV/T) regret
with respect to baseline C*" while also satisfying suppee P (C’alg is safe with respect to 6) =
1-— OT(]_/T)

Theorem [2 achieves the same regret rate of Theorem [T} but for much more general classes
of baseline controllers. However, Theorem [2| only applies to certain error distributions,
specifically distributions with sufficiently large support.

The most general result of this paper is Theorem which achieves a weaker regret
rate of Op(T?/3) but applies for any subgaussian noise distribution (in particular, it drops
Assumption @[)

Theorem 3. In the setting of Problem [1] and under further Assumptions [{|{8, there ewists
an algorithm C*¢ (Algorithm |9) that with probability 1 — op(1/T) achieves Op(T?/3) regret
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with respect to baseline C% while also satisfying supyee P (Calg 15 safe with respect to 9) =
1—orp(1/T).

Similar to Theorem [I] Theorem [3|is an improvement on existing results in that it bounds
the regret of constrained LQR learning for any subgaussian noise distribution. See Section
and Section [4.2] for the proof sketches of Theorem [3|and Theorem [2|respectively. Previous
works focus on linear controller baselines, and linear controllers have properties that allow for
easier regret analysis. Theorems [3and [2] reduce these “useful” properties of linear controllers
to Assumptions[7]and [§] Therefore, many classes of non-linear controllers can be constructed
as described in this section, and all that needs to be done to show that the result of Theorem
[ holds with such a class of controllers as a baseline is to show that this class of controllers
satisfies Assumptions[7] and [§] Both of Assumptions 7] and [§| are simply Lipschitz conditions
on the cost function (one with respect to the optimal controller and one with respect to
the starting position), and therefore are likely to hold for many classes of controllers. In
particular, we show that both of these assumptions are satisfied for the class of truncated
linear controllers (Section . In fact, the properties in Assumptions [7| and |8 are the main
tools that allow us to analyze the regret of truncated linear controllers, and therefore these
properties may be of independent interest outside of these theorems.

The algorithms that achieve the regret bounds of Theorems [2] and [3] follow the same
general form. We outline the algorithm that achieves Theorem [ below in Algorithm 2]

Algorithm 2 Outline of Algorithm [3] for proof of Theorem

1: Explore for ©7(T?/3) steps using controller C™* from Assumption [2 with random noise.
2: for s € [0 : log(T"/?) — 1] do

3: 0, < regularized least-squares estimate of 6* using data seen so far

4 ¢; < high probability bound on [|6* — 6,

5: C¥¢ « optimal controller from baseline class for dynamics 6,

6 For next T2/32% steps, use controller C*¢ modified at each step to be safe for all

dynamics 0 satisfying [0 — 0,]/c < €5

This algorithm mostly behaves like a standard certainty equivalence algorithm, first cal-
culating the regularized least-squares estimate of 8* and then finding the best controller for
this estimated dynamics. This algorithm deviates from standard certainty equivalence in the
final line, where the algorithm enforces safety by modifying the controller C*'%. Because
with high probability satisfies ||0* — ,||sc < €5, the modification in the final line guarantees
safety for dynamics 6* with high probability. The bulk of the theoretical work in proving
Theorem (3] is upper bounding the regret contributed by these safety modifications. In the
setting of Theorem [2], the large support of the noise distribution leads to the controls used
by controller C®'% being non-linear by a constant amount for a constant fraction of the steps.
This non-linearity allows the algorithm to learn at a faster rate than in Theorem (3| and
results in the lower regret bound of OT(\/T ). Note also that the length of the exploration
period and the number of steps in each round of the loop are chosen differently for Algorithm
than for Algorithm 3] See the proof sketches in the following section for more details.

15



4 Proof Sketches of Main Results

We will present the proof sketches (and formal proofs) of the main results in reverse of the
order in which they were stated in the previous section. We present the proofs in this manner
because the result of Theorem [3|is a weaker result in a more general setting. We therefore
build off of this proof in the subsequent proofs of Theorems [2| and [1] by strengthening the
result of Theorem [3]in less general settings.

4.1 Proof Sketch of Theorem (3

The full proof of Theorem [3| can be found in Appendix [C]

First we state Algorithm [3] which is the algorithm that achieves the guarantee of The-
orem [3] But before presenting the algorithm, we need some additional notation. Fix a
constant A > 0. Define 2, = (24, u;)" and V; = M\ + Zz;é 2z , where I is the identity ma-

trix. Define X; as the column vector (1, ...,7;)" and Z; as the matrix with rows zJ , ..., 2, ;.

Define B, = ay/log(det(V;)) + log(A2) + 21og(T2) + VA(@® + %) = Or(1) where « is the
subgaussian parameter of D. The algorithm that achieves the regret bound of Theorem (3] is
given as Algorithm

Algorithm [3| Intuition Algorithm [3] can be broken into two phases: a warm-up explo-
ration phase (Lines and a safe certainty equivalence phase (Lines . In the warm-up
phase, the controls are random which allows for sufficient exploration and learning of the
unknown dynamics. In the certainty equivalence phase, 6 is the regularized least-square
estimate of #* based on the data seen so far. €, is an upper bound on the distance between
6, and 0* that holds with high probability. C?# is the optimal controller from the baseline
class for dynamics 6,. Because C? is not guaranteed to be safe for dynamics 6%, we calculate
useV and u$et which are respectively the largest and smallest possible controls that satisfy
the constraints for all dynamics # within €, distance of 0, (which will with high probability
include 0*). We then censor the control C##(x;) with these two controls to guarantee with
high probability that the final chosen control is safe with respect to dynamics #*. In order
to show Theorem [3, we must show that with probability 1 — or(1/T), Algorithm [3is safe
with respect to 6* and that Algorithm (3] has Op(7?/?) regret. To show the latter, we will

decompose the regret into four main components and consider each separately.

Safety of Algorithm We begin with analyzing the safety of Algorithm [3] The first
loop (warm-up exploration) of Algorithm [3|is safe with respect to dynamics 6* as a result
of Assumption [2| In the second loop (safe certainty equivalence), the control in Line [13|is
chosen to enforce safety relative to all @ satisfying ||6 — 0,]|cc < €,. By the choice of €, the
true dynamics 6* satisfy [|6* — 0]/ < €, for all s with probability 1 — op(1/T) (Lemma.
Therefore, the control applied in Line [13]is safe with respect to 8* for all ¢ with probability
1—o0r(1/T). Therefore, Algorithm [3|is safe with respect to 6* with probability 1 — o (1/T).

Regret from warm-up period The first component of regret (Ry) is the cost of the warm-
up exploration phase, which is the first 1/v2 steps of the algorithm. Using Assumption ,
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Algorithm 3 Safe LQR for General Baselines

Input: D,D,0,C"* {C}yeo, T, A
1: vp < T3
2: for t < 0 to V% —1do > Safe warm-up exploration phase
3: r ~ Rader;acher(O.E))

b Usecontolus = "4 (a)

5: for s < 0 to log,(T¥2) — 1 do > Safe certainty equivalence phase
6: T, + 3—;
T
7
8

0 < (Zf Zr, + N) 7' Z] X,

alg 05
CS <_ C\'[(opt (éSaTs)

22 1711
max(VT5 ,VTS )

9: €s < BTS W

10: for ¢t < T, to 27, — 1 do

11: wU «— max<wu:  max  am +bu < DU}
10—6 oo <es

12: wl «— min<w:  min  aw, + bu > DL}
10—05 |0 <es

13: Use control u; = max (min (C28(z;), u;*®V) | u*el)

we can show that the positions and controls during this phase are with high probability
bounded by OT(l) (Lemma . Therefore, the cost during this phase can be bounded by
Or(1/v2) (Proposition. Importantly, after this initial exploration phase, ¢, = Op(vr) with
probability 1 —or(1/T) (Lemma[2). This is a result of the Rademacher random variables in
the warm-up phase.

Regret from certainty equivalence The second source of regret (R;) comes from the
certainty equivalence aspect of the algorithm. In other words, R; is the regret from the fact
that K. Opt(és, T) is the optimal controller for dynamics és and not for dynamics 8*. By Lemma
and Lemma , with high probability [|0; — 6%||- < €; = Or(vr), so by Assumption [7 the
expected cost of using controller Cf;opt 6.1 for T, steps is at most Op (T} |0, — 0%||se + 1/T)
more than the expected cost of using Cf;opt(e*js) for T steps. Using the aforementioned bound

comparing 0, and 0*, this source of regret can therefore be upper-bounded by OT(TVT) with
probability 1 — o7(1/T) (Proposition [f)).

Regret from deviation from expectation The third source of regret (Ry) comes from
the fact that we defined regret as the difference between the cost of the algorithm (which is a
random variable) and the expected cost of the best controller in the baseline class (which is
nonrandom). To bound this regret term, we show that the cost of the algorithm concentrates
within Op(v/T) of its expectation with probability 1 — op(1/T) (Proposition @) For this
result, we use a variant of McDiarmid’s Inequality that applies to high probability events
combined with Assumption [§] (Lemma [f)).
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Regret from enforcing safety The final source of regret (R3) is a result of the times
the algorithm “enforces safety” on the controls by sometimes using controls u§**V and w5l
With probability 1 — or(1/7), when the algorithm enforces safety, the chosen u; differs from
C¥2(z,) by Op(e,) (Lemma@ﬁ. By Assumptionand Lemma , the small differences between
C?2(z,) and wu, each increase the cost by at most Op(vp) with probability 1 — op(1/T).
Therefore, the total cost of enforcing safety with these controls is éT(VTT) with probability

1 — or(1/T) (Proposition [7)).

Combining Regret Terms Putting these four sources of regret together, the total regret
can be upper bounded as follows with probability 1 — op(1/7):

. - 1 -
T-J(0", Cag, T,0,W)=T-J*(6%, Cﬁ(opt(e*,T), T) < Ry+R1+Rs+R3 = Orp (\/T+ Tvr + y—z) = Op(T?73),

T

(13)
where the last line comes from the fact that vy = T3, See Appendix and Equation
for a formal description of these four sources of regret.

4.2 Proof Sketch of Theorem [2
The full proof of Theorem [2] can be found in Appendix [F]

Algorithm and Intuition The algorithm that achieves the regret result of Theorem [2] is
Algorithm [5], which is very similar to Algorithm 3| Rather than restating the entire algorithm
here, we defer the full algorithm to the appendix and instead highlight the main differences
between Algorithm [5] and Algorithm [3] The first modification is that for Algorithm [5] we
choose vy = T~'/4, which affects the lengths of the exploration and certainty equivalence
periods. The second major difference is that we change how 6, is defined. Recall that in
Algorithm 6, is the regularized least-squares estimate of #*. For this algorithm we instead
denote the regularized least-squares estimate as

0 = (Z1, Zr, + M) Z1 Xr,. (14)
Recall the function P defined in Assumption @ We choose 6, as
0, = argmin min  P(6, Kopt(és,Ts), Dvy). (15)

1165 —08" | oo <es 1005 lloo <es

The choice of , described above is a technical way of ensuring that C®# will do a sufficient
amount of exploration, which in turn guarantees a faster learning rate of the unknown
dynamics. The key difference between the proof of Theorem [2] and the proof of Theorem
is a new upper bound on €, which is stronger than Lemma. Instead of ¢, = OT(VT)

with probability 1 —op(1/T), we can show that e, = Oy (%) with probability 1 —o7(1/T)
(Lemma . Informally, this means that with high probability, the estimated dynamics at
time ¢ are at most Or (\/%) different from 6*, and this is a faster learning rate that we had

in Theorem [3] This faster learning rate gives better upper bounds on the regret terms than
in Theorem [3|
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Faster Learning Rate Showing the faster learning rate requires two main results. The
first result is that the uncertainty e, can be upper-bounded by Or(1/+/]St.|), where |St.|
is the number of times Algorithm [5| uses the control u$**V before time 7, (Lemma . To
prove this result, we prove a more general uncertainty bound in Lemma [26] The key insight
is that in order to maintain safety, the control u5*¢V will with high probability be sufficiently
non-linear. This non-linearity combined with the variance in the position leads to a faster
convergence rate of the upper bound in Lemma 23] The second result is that Algorithm
uses the control w5V at least Q7 (T,) times before time T}, (Lemma 20)). The key insight to
this result is that every time the position exceeds P(6*, Kop (6%, T5), DU) Algorithm [5| will
use control uf*eV, Assumptlon @ says that the noise is large enough that (due to the choice
of 6, in Equation (I (15)) the position will exceed P(6*, Kopi (0%, T5), Dy) in each round with
constant probability. This implies that with probability 1 —op(1/T), for every s, the control

w3V is used a constant fraction of the times before time 7,. Combining these two results,

we have for all s that with probability 1 — op(1/T), €, = Op(1/+/]Sr.|) and |Sp,| = Qp(Ty).
Therefore, we can conclude that with probability 1 — op(1/T), we have e, = Oy ( ﬁ)

Regret Proof Changes Equipped with this tighter upper bound on €5, we can bound

Ry (the regret of using controller C’f{opt 6..1) rather than Cf () and R (the regret of

enforcm safety at every time step with controls u*°Y and uiafeL) by Or(V/T) (Proposition
and |1 , respectively). Because vy = T4 Ry is Op(v/T). Therefore, we can conclude
as in the proof sketch of Theorem |3| that the regret of Algorithm [5] is upper-bounded by
Ro+ Ry + Ry + Rz = Or(VT).

4.3 Proof Sketch of Theorem [

The full proof of Theorem [I] can be found in Appendix [I|

Before presenting the algorithm that achieves the regret bound of Theorem [I, we need
some additional notation. For the rest of this proof sketch, CY will always refer to the
truncated linear controller as defined in Equation (§). Define C"™ = {C}}ker as the
class of untruncated linear controllers, therefore Cj*°(z) = —Kxz. For any controller C' and
dynamics 6, define J*(0,C) = limy_,o, J*(0,C,T). Define Ko (0) = argsupy J*(0,C%)
and F,p(0) = argsupg J*(0, CE¢). Finally, define Cyiten = @?é]% where cpp = OT(l)
and is from Equation and crgg = Q(1) from Lemma [50] The algorithm that achieves
the regret bound of Theorem [1]is given as Algorithm [4]

Algorithm [ Intuition The main intuition behind the proof of Theorem [I] is to design
an algorithm that combines the results of Theorem [2| with the observation that Op(v/T)
regret is possible in unconstrained LQR learning with unknown dynamics. The warm-up
period of Algorithm [4] is the same as the warm-up period of Algorithm [3] The key new
idea of Algorithm [ is to split the choice of C® into two cases (Line depending on
the estimated dynamics (éwu) at the end of the warm-up period. The first case in Line
corresponds to when the support of the noise is sufficiently small so that we can bound
the regret of the algorithm using the observation that OT(ﬁ ) regret is possible in the
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Algorithm 4 Truncated Linear Controller Safe LQR

Input: D,D,0,C™t T, )\
1: vp < T-1/4
2: fort(—OtoV%—ldo
3: r ~ Raderﬁacher(O.L’))
4 Use control u, = C™(z,) + —2

log(T)
7 T —17T
5 Oy <ZI/V%Zl/V% + )\I) 121/V%X1/1,%
6: for s <0 to logy(Tv2) — 1 do
T T, + 3—2
T
max 22 11
8: €s BTS <VT5 7VT5)

0: 0P« (Z] Zp, + N) V2] X,

~

> Safe warm-up exploration phase

> Safe certainty equivalence phase

10: 0, < arg mMax,_gere <., @ — bK ot (0)
unc. ifw+Dy— —2Lu < Cien M4
11: Calg . }Topt(ewu) _|_ U dwu_bWuFopt(ewu) - switch
: s 05 .
C Koo (02) otherwise
12: for ¢t < T, to 27, — 1 do
. e — i _Dy . —1/4
13: if w+ Dy o oo ) < Cuwiten then
14: wU «— max<{wu:  max  azp+bu < DU}
[[6—0""]|oc <eo
15: us*el < min {u : min  awmy +bu > DL}
[
16: else
17: uﬁaer < max {u : max axy+bu < DU}
[10—05 [loo <es
18: uiafeL <—minqu: min ax; +bu > DL}
10—05 lloo <es
. 1 f feL
19: Use control u; = max (min (C2¢(z;), u;**®V) | u*el)
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unconstrained setting. More specifically, this case is when the boundaries are far enough
away from the origin compared to the magnitude of the noise, and therefore the algorithm
can use a controller very close to the optimal unconstrained controller. The second case in
Line [11] corresponds to when the support of the noise is sufficiently large so that we can use
a proof technique similar to that of the proof of Theorem 2] More specifically, in this case we
argue that the uncertainty bound e, will decrease at a rate of Op(1/+/T;) (Proposition .
Note that in order to use similar logic to Theorem [2| we also must show that the truncated
linear controllers satisfy Assumptions . We give more details on the OT(\/T ) regret of
these two cases separately below. Note that Algorithm {4 satisfies the safety constraints with
probability 1 — o7(1/T) by the same logic as in Algorithm [3]

Sufficiently small noise case In this case, we let Cle = Cune i.e. the optimal

Fopt(éwu)’
unconstrained controller based on the data in the warm-up period. First, we show that the

controller € () has Or(v/T) more expected total cost for T, steps than the baseline
opt\VYwu

controller C%

o

unc
Fopt (éwu)
similar expected cost as the best infinite time unconstrained controller for 6*, and the best

infinite time controller and the best finite time controller for 7 steps have similar expected

cost. Because C;nc (o) is an unconstrained linear controller, we can also show that the
opt\Vwu

realized total cost of using this controller concentrates to within O(\/T ) of the expected

total cost with high probability (Lemma [23)).
The last (and most subtle) part of this case is to show that enforcing safety in Line
only contributes Op(v/T) regret (Lemma . This is where we use the fact that w 4 Dy —
Dy < CiwitenT~Y*. When this equation holds, the probability that the algorithm

Gwu—bwuFopt (Owu) —

uses control u; = uf*eV or u; = uSl is at most OT(T ~1/4) for any t. Furthermore, each
time these controls are used, the extra cost compared to using control u; = C8(z;) is
Op(T~'*). Combining these two facts, the total extra regret from using controls uf**V or
we is Op(v/T) with probability 1 — op(1/T). As in the proof of Theorem , the warm-up
period has regret of Or(v/T) with probability 1—or(1/T). Putting this all together, we have
that with probability 1 — o7(1/7), the total regret of the algorithm in this case is O (v/T).

(o) (Lemma . Intuitively, this follows from the fact that has

Sufficiently large noise case In this case, we have that C%& = o . To prove that

Kopt (0s)
the regret is Op(v/T) in this case, we will show as in Theorem [2| that with probability
1 — op(1/T), the uncertainty bound satisfies e, = Op(1/y/Ty) for every s. Recall from the
proof sketch of Theorem |2that Lemma is the key result that shows that e, = Op(1/+/T}).
Importantly, this result relies on Lemma 26 Lemma [26] says that €, is upper bounded by
Or(1/+/]Sr,]) with probability 1 — op(1/T), where |Sr,| is the number of times t < T}, that
the algorithm uses control 4V and such that the probability of using the control w5V
conditional on the history up until that point is lower-bounded by a constant. To use this
lemma, we show that with probability 1 —or(1/T"), we have |St,| > Qr(T%) for all s (Lemma

15).

In this case, the key observation is that when using the controller C’f{s 6.)’
opt\Us

constants €, d, > 0 such that at every time step ¢ when the control is not u;*U there is

there exist
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an € probability that the position increases by d. (Lemma . Informally, this says that
at every step, either u; = u$*®V or the position will increase by a constant amount with a
constant probability. Therefore, because D is a constant relative to T', we have that high
probability, every Q(1) steps the position will exceed P(6*, Kopt(és),DU) or there will be
a t such that u; = u™®Y. The control at any time ¢ where z; > P(G*,Kopt(és),DU) is
u; = uieV. Therefore, with high probability every (1) steps there will exist a ¢ such that
the algorithm uses control u; = u$*¢Y, and we further show that this happens with constant
probability. This implies that [Sr,| > Q(T%) for every s with high probability. Combining
with Lemma [26| gives that with probability 1 — o7(1/T), €, < Or(1/+/T). Finally, we can
finish this case as in the proof sketch of Theorems 3] and 2] As in Theorem [2] the faster
learning rate described above leads to Op(v/T) regret for all of the components of regret
outlined in the proof of Theorem [3| with probability 1 — or(1/T). Note that there is one
additional component of regret in this proof, as we are using the best infinite time controller
rather than the best Ti-step controller in round s. However, we can show that this only adds
at most Op(v/T) extra cost, and therefore the total regret is with probability 1 — op(1/T)

still Op(v/T) (Lemma .

Truncated linear controllers satisfy assumptions in Theorem 2] In order to conclude
the second case in the same way as the proof sketch of Theorem [3 and [2 we must show
that the class of truncated linear controllers satisfies Assumptions [IH8 By construction,
Assumptions are satisfied by this class of controllers. Therefore the key results that
need to be shown are that the class of truncated linear controllers satisfies Assumptions
and |8 (see Propositions and , respectively). While both of these assumptions are
relatively easy to show for the class of linear controllers, proving them for the class of
truncated linear controllers is significantly more complicated. We first outline the proof of
Proposition [12], which is that truncated linear controllers satisfy Assumption [§] Assumption
E compares the cost of two trajectories when using truncated linear controller C?(Opt (0,4)> One
trajectory starting at position x and the other trajectory starting at position = + 6. In
the proof of Proposition (12, we show that the difference in positions of the two trajectories
will decrease at most (but not all) time steps. The difference does not decrease at all time
steps because the difference between 0 and 0* leads to low probability events where the
difference between the positions of the two trajectories increases (Lemma . We are able
to bound the probability of the event that the difference in position increases, and this leads
to Assumption (8 holding (Lemma . For Proposition , we first show that the truncated
linear controller CY (6, under dynamics 6 has only Or([|6) — 6"[|o) more cost than the

pt

truncatd linear controller C’fgopt( ) under dynamics 8*. We then show that for any K, the

o+t
truncated linear controller CY% under dynamics 6* for ¢ steps has only Or(||§ — 0*||) more
cost than CY% under dynamics @ for ¢ steps. Combining these two results directly gives the

desired result of Assumption [7] For more details on these two proofs, see Section [H]
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5 Discussion

In this paper, we have presented new results for the safety-constrained LQR problem includ-
ing lower rates of regret with respect to stronger baselines than previous works. We conclude
by discussing some possible extensions of our work and remaining open questions.

While our results focus on positional constraints, we also expect that similar results would
hold for algorithms similar to Algorithms [3 [ and [5] when there are also constraints on the
controls. While we leave the formal derivations of results for control constraints to future
work, we provide a brief discussion of how the algorithm and proofs would change. With
the addition of control constraints, the algorithms can no longer use u$**®V or uf**l as these
constraints may not satisfy the control constraints. To address this, we believe that a slight
modification to the way the algorithm chooses the controller C*8 will allow the algorithms
to satisfy both control and position constraints with high probability and achieve the same
regret results as in Theorems |1 l l andl We propose choosing C?& = Cfg, where K is
chosen such that it satisfies positional constraints and control constraints Op(e,) tighter
than the actual constraints. As long as |0, — 0*[c < Or(e,), this will guarantee both types
of constraints are satisfied. The main additional result that needs to be assumed (and proven
in the case of Theorem 1)) is that choosing this C? will not have significantly more regret
than in the existing proofs. See Appendix for more discussion on the generalization of
our results to the setting with both position and control constraints.

Our results also focus on one-dimensional LQR, but we expect that many of the same
results will generalize to higher dimensions. In higher dimensions, a natural generalization
of our constraints is to consider a compact safe region that is defined as the intersection of
a finite number of half-planes. Therefore, the goal would be to choose controls such that
the expected position stays within this safe region. We expect that the uncertainty bounds
proven in this paper will generalize naturally to higher dimensions, as our bounds are based
on results in [AYS11] that hold for higher dimensions. Therefore, we expect that the result
of Theorem [3| will directly generalize to higher dimensions by replacing the controller C?#

with C% where K is chosen as the optimal control for constraints that are O7(e,) tighter
than the true constraints. Whether or not Theorems [If and [2] generalize to higher dimensions
(and more broadly whether Op(v/T) regret is always possible in higher dimensions) is an
open question we leave for future work, though in Appendix[N.2] we discuss stylized settings
in which we expect that the OT(\/T) regret bounds from Theorems |1| and |2| will generalize
to higher dimensions.

We also note that our algorithms require knowledge of 7" in advance, as the value of T’
determines the length of time spent in the warm-up exploration period. We expect that
similar results will hold when 7' is not known in advance, however this would require periods
of exponentially growing length that alternate exploration versus exploitation (similar to as
done in, e.g. [LDSL21]). Because this greatly increases the complexity of the algorithm and
analysis, we state and prove our results for 7" known in advance.

Finally, because the algorithms assume infinite computational power, the results in this
paper are all information theoretical. Another interesting future direction is developing a
computationally efficient algorithm that is able to achieve the same regret results. Further-
more, while the class of truncated linear controllers is more powerful than just safe linear
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controllers,

the question of whether we can achieve Op(v/T) (or even Op(T?3)) regret on

top of the cost of the best possible among all safe controllers is still open.
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A Notation

A.1 Big O Notation
Throughout this paper, we use notation such as or(-), Or(+), wr(+), Qr(-).
o f(T) = Or(g(T)) if there exists Ty and M € R such that for T > Ty, f(T) < M -g(T).

-9(T).

M- g(T) og"(T).

Note that € is defined in the same way. While this is standard notation, we want to highlight
exactly how we are using this notation in our proofs. First, we note that the subscript T is
included to indicate that we will always be using this notation with respect to the variable T'.
Furthermore, we note that the constant M that is “hidden” by the big-O notation will always
be a function of known problem specification parameters, such as ¢, 7,0, D, D. Therefore, if
an expression includes an Or(1) term, this constant does not depend on any other variables
in the expression. For example, suppose we state that for all K,

F(K) < Or(VT).

Then this means that there exists Ty and M (where M is a function of known problem
specification parameters) such that for all K and T > Tj,

fIK) < M-VT.

Furthermore, we will use notation such as f(7) = Or(¢) to mean that there exists Ty and
M such that f(T) < M - € for T > Tj, where M does not depend on € and only depends on
the problem specification parameters {q,r,©,D, D}.

Finally, note that we will use the computer science notation of Or(), in that the functions
f(T) and ¢(t) will always be non-negative.
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A.2 Miscellaneous Notation

Throughout the proofs, any inequalities or equations involving random variables will repre-
sent inequality or equality almost surely unless otherwise stated.

Throughout the paper, we will use the notation {z;}! ; to represent the unordered but
indexed set of x1, xo, ..., T,,.

A.3 Problem Specifications

Note that the notation below will be used throughout the appendix, however the variables
may depend on the algorithm being studied within a section. For example, the event F is
defined slightly differently for each of the three algorithms, and therefore the reader should
note which algorithm each section addresses. The notation will never change within a single
section.

e q,r : coefficients for the cost at time ¢ of gz? + ru?.
e W = {w}/2;' : The noise random variables for the T-length trajectory.
e D : Distribution of wy

— Bp : Upper bound on the density of D
— Fp : Cumulative Density Function (CDF) of D
— w: the bound of D when the distribution is bounded.

X [b,0] : The given initial set of dynamics such that 6* € © and size(©) =
min(a — a,b — b)

e 0* = (a*,b*) : The true (unknown) dynamics.

e O™t : The initial safe controller satisfying Assumption [1}

e D = (Dy, Dy) : the expected-position boundary for the safety constraint.

e A set of controls {u;} are safe for dynamics {6;} if for all ¢, Dy, < a;zy + byuy < Dy.
o Hy = (x0,up, 21,1, .., u—1,2¢) and Fy = o(Hy).

e J(0,C,T,x,WW) : The random variable cost of using controller C' starting at position
xo = x for T time steps under dynamics ¢ with noise random variables W.

o J*(0,C,T) = J*(0,C,T,0) = E[J(0,C,T,z,W) | 0,C,T,z] and J*(0,C, T) = J*(8,C,T,0).

o J(0,C) = J*(0,C,0) = limp_,o0 J*(8, C, T, 0).

o O = {C%} Kelk? ko) © a class of controllers that are safe for dynamics 6 that are
parameterized by K € [K?Y, KY]

e Koi(0,T): The K that maximizes J*(0,C%, T,0) for K € [K?, K¥].

30



A4

A.5

opt(0) © The K that maximizes J*(,CY%) for K € [K{, K?).

Cpre : The unconstrained linear controller with parameter K, i.e. such that C*¢(z) =
—Kuz.

wpt(0) © The K that maximizes J*(0, C32).

Algorithm Notation

vr - Algorithm specific parameter that is either 7-1/4 or T-1/3,

Se : The number of the last round of the safe exploitation phase.

T, = 3—2 : The length and starting time of round s of the safe exploitation phase. Note
T
that Ty = 1/v2.

€s : Uncertainty bound for 8* used throughout the algorithm.

~

0, : An estimate of #* that is with high probability within ¢, distance of 6*

us?V : Largest u such that  max  ax; + bu < Dy
[160—05lcc <es

uiafeL : Smallest w such that —max az; +bu > Dy.
[10—05 [l o <es

C?8(x;) : the controller that the algorithm uses in round s of the safe exploitation
phase with additional safety modifications, i.e. the algorithm in round s of the safe

exploitation phase uses control u; = max (min (Cglg (x4), uﬁaer) ,ufafeL).

C¥8 : The actual controller of the corresponding algorithm as described in the previous
point.

P(#,K,z) : See Assumption 9]

Proof Notation

W, = {wz};[:}i_l : Noise random variables in the round s of the safe exploitation phase.

<C§;*, {Cf;s* }210) : The expected cost minimizing set of controllers to use if the con-

troller CY. is used for the first Ty steps and for time ¢t > Ty, the controller used is
CY% , where s = [log, (tv2)]. The sequence (zf, z},...) are the corresponding positions
of using these controllers.

(xg, 2!, ...) and (ug, u},...): Unless otherwise specified, these are the positions and con-
trols of the algorithm being discussed in the current proof.

(T, T1y41, ---) : Unless otherwise defined in the theorem/lemma statement, i1, T141, -

is the sequence of positions if the control at each time t > Ty is C (xy) for

Kopt (é.s 7Ts)

s = |log, (tv})] and starting at &7, = a7, .
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Egre = {Vt < T : Dy, < a*z} + b*u; < Dy} : The event that all of the controls satisfy
the safety constraints.

Ey = {Vt <T:|w| <log*(T)} : Event that all noise values have magnitude less than
log*(T)

Ey= {Vs < st ||0F — éSHoo < es} : The event that all of the estimates of 8* are within
€, of 0%,

Ey = Ey() {maXSG[O:se] €s < OT(VT)}-

ES = {Hés — 0o <€ < er- VT}, where cr is the coefficient in the OT(VT) of the
definition of event Es.

E = Esafe N El N E2

B, = log®(T) : Used throughout the appendix to simplify notation.

w : The maximum magnitude of the noise distribution when the noise distribution is

bounded.

K}, : the value of K that satisfies the equation — Dy = w.

Dy
N7
a bKDU
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B Additional Related Work

The constrained LQR problem is closely related to the problem of model predict control
(MPC) with constraints. For example, there is a large body of work on robust model
predictive control with known dynamics ([BMO07]). This is further extended to MPC with
model uncertainties in robust adaptive MPC (RAMPC) in works such as [KAST19, LCKR21].
There have also been significant work on stochastic MPC with soft constraints, for example
[Mes16l, [OJMOS], which are closely related to the expected position constraints we use in
this paper. In the context of constrained LQR with no noise, [BMDP02] derive the optimal
controller as a piece-wise affine function. In a different MPC setting with deterministic
dynamics and noisy observations, [MYKK22] provide an algorithm that also achieves O(T%/3)
regret. Learning based MPC using an initial safe controller was also studied in [KBTKI1S].
MPC results on learning constraints include e.g. [LCAT9, [KAST19]. While these works
provide algorithms to solve constrained optimization problems such as LQR, these works
do not compare the asymptotic performance of their results to the optimal algorithm. In
contrast, our work studies a similar problem but focuses on algorithmic regret analysis from
an RL perspective, comparing our algorithm to some baseline representation of the “best”
algorithm.

The results in this paper are also closely related to general system identification, the
idea of being able to (in any way) asymptotically estimate the unknown dynamics. There
have been multiple works in this area including [SMTT18, [ZL.22, [MJR20]. A recent work
closely related to the results of this paper is [LZD'23], which describes learning rates for
non-linear controllers in a similar setting. The results in [LZD™23], however, require i.i.d.
noise excitation in every step, while our uncertainty bounds after the warm-up phase actually
require no such excitation. These works are most similar to our work in that our results rely
on identifying the system dynamics to a high accuracy. However our focus is not simply on
learning the system, but also on achieving provably low regret results. The new uncertainty
bounds we use to achieve our results also apply to nonlinear controllers as in [LZD™23], but
our uncertainty bounds apply specifically to the setting with safety constraints.
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C Proof of Theorem [3

Before proving Theorem |3, we will extend Definition (1| to account for time-dependent dy-
namics.

Definition 2. A control u; and position x; are safe for dynamics 0; if
DL S Ty + btut S DU.

Similarly, a (possibly time-dependent) controller Cy is safe for T steps for dynamics {0;} if
when the dynamics at time t is 0y, the sequence of controls Co(Hy),Ci(Hy), ..., Cr—1(Hr_1)
and the resulting positions xg, ..., xr_1 are safe for dynamics 0; at all times t.

Note that in general, a controller being safe is a random event.

Theorem (3| makes two claims: the first is that Algorithm (3] is safe for dynamics 6* for
all T' steps with high probability and the second bounds with high probability the regret of
Algorithm [3] In Appendlx 1] we will prove the result about the safety of Algorithm [3 and
in Appendix [C.2] we will prove the result about the regret of Algorithm [3]

C.1 Proof of Safety of Algorithm

Lemma 1. Under Assumptions[IH§ , Algorithm[3 is safe for T steps for dynamics 6* with
probability 1 — or(1/T7?).

proof. We will first analyze the warm-up exploration phase (the first loop in Algorithm |3[in
Lines [2H{4)). If the control at time ¢ — 1 was safe for dynamics * as in Definition [2] then with
probability at least 1 — Or(7), the next position satisfies

e {DL (- Dot Ey -

By Assumption [2{ on the controller C™*, Dy, + (T) < a*r + 0*CMY(z) < Dy — & for
all z € [Dy, — Fp' (1 — &), Dy + Fp'(1 — 2)]. In Lines 2 H of Algorithm |3| the control is

CMit(z,) + 105( 7y and |¢e| = 1. Therefore, if at time ¢ — 1 the algorithm’s control was safe,

then with probability 1 — Oy ( ) the control at time ¢ will satisfy Dy, < a*z; + b*u, < Dy
and be safe. Furthermore, at time 0, the position is xq = 0, therefore the first control is safe.
Using this as a base case in a proof by induction with a union bound over all 1/v2 time steps
t in this loop, with probability 1 — O7(1/T?), the first 1/v2 steps will be safe for dynamics
0*.

Now we will analyze the second loop in Algorithm[3] (Lines[5}{L13). Define s, = log,(Tv3)—
1. Define the event Ej as

Ey= {‘v’s <ot |07 =Byl < es}. (16)

These €, are less than the right hand side of the equation in Lemma and therefore by
Lemma 23], under Assumptions [3 and

P(Ey) > 1 —op(1/T?). (17)
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Informally, the next event we define is the combination of event Ey and the event that the
¢s (defined in Line @ of Algorithm [3|) are decreasing at a sufficiently fast rate, which we will
prove in Lemma [2] Define

B, = E, ﬂ{ max €, < OT(VT)} . (18)

$€[0:5¢]
Lemma 2. Under Assumptions[1H8, with probability 1 — or(1/T?)

max €g S OT(VT>-
s€[0:s¢)

The proof of Lemmal[2] can be found in Appendix[G.2] Combining Lemma [23]and Lemma
with a union bound gives that

P(Ey) > 1—op(1/T?). (19)
Define the event £, as
Ey={Vt <T:|w| <log*(T)}. (20)

By Assumption (3| the noise is sub-Gaussian, and therefore there exists a constant o such
that for any ¢ and z, P(w, > x) < 2exp(—2%/a). Taking 2 = log*(T") and a union bound
over all w;, we have that

B(E) > 1- Y 2exp (—log!(T)/a) =1 - or (ﬁ) | (21)

We need one last lemma before concluding the proof.

Lemma 3. Under Assumptions[IH8, conditional on Ey N Ey and for sufficiently large T, if
ug,—1 18 safe for dynamics 0%, then for all t € [Ty, T1,

uiafeL S uiaer.

The proof of Lemma [3 can be found in Appendix [E.1]

Under event Ey, 0, satisfies ||60* — 0,0 < €, for all s € [0 : s.] (which recall are the s in
the second for loop of Algorithm [3). Therefore, by the choice of u§**®V and w5l in Lines
and , it must be the case that a*z; —I—b*uiaer < Dy and a*z; + b*uiafeL > Dy,. By the choice
of u; in Line (13| of Algorithm , if uiafeL < u;?aer then u?afeL <y < uiaer. This implies that

Dy, < a*zy + b*uy < Dy. (22)

Therefore, by Lemma , under Ey N EyN{ug, 1 is safe for dynamics 6%}, all controls used in
the second for loop (Lines 5H13|) in Algorithm [3] are safe for dynamics #*. By a union bound
combining Equations and and the first paragraph of this proof, we have that

P(Ey N By N {ug,_; is safe for dynamics 6*}) = 1 — op(1/T?).

Because all of the steps in Algorithm (3] are part of either the first or second loop, and the
first loop steps are safe for dynamics 6* with probability 1 — op(1/7?) and the second loop
steps are safe for dynamics 6* with probability 1 — or(1/T?), a union bound gives that the
overall algorithm is safe for dynamics 6* with probability 1 — op(1/72). O
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C.2 Proof of Regret Bound of Algorithm

proof. Define the event Fg.p as the event that the controls used by the algorithm are safe
at all times. If zf,x],... and ug,u],... are respectively the positions and controls of the
algorithm, we have that

FEge = {Vt < T : Dy < a*x} +b*u, < Dy}, (23)
and by Lemma [1] we have that P(Fg¢.) = 1 — o7(1/T?). Now, define the event E as
E = Egpe N Ey N Es. (24)
A union bound combining Equations and gives that
P(E) = P(Eut. N E1 N Ey) > 1 — op(1/T?). (25)

The rest of the proof of Theorem [3| will focus on proving that the regret of Algorithm
is Op(T??) with conditional probability at least 1 — op(1/T) given E. Let C*¢ be the
(time-dependent) controller of Algorithm Then the total cost of using Algorithm [3] is
T - J*,C¥ T 0,W), and the regret we are trying to bound is (as in Equation @ using
the notation Koy from Assumption [6),

T-J(0,C",T,0,W) =T J0",Ck. 017, T)- (26)
Define W as the noise random variables from time T to T, 1 — 1, so
W, = {wikioi (27)

* * K {Ks}o<s<se KA{Ks}o<s<se

For any tuple (K, { K, }o<s<s, ) Where K, K, € (K¢, Kf), define xg {Hedoges ),xg {Hetoses ),
as the random variable sequence of positions that result from starting at zy = 0 and using
the controller that at each time ¢t < Ty uses controller Cf(* and at each time ¢t > Tj uses the

controller C% , where s = [log, (tv7)]. Define (K*, {K?}o<s<s.) as follows:
(K" { K o<oss.)

= argmin [E
(Kv{KS}Oﬁsgse)

1 * sf0<s<s
J(G* o 2,o {w,) s 1) +ZTJ6* o T, 20 e),ws)] .

VT

Here the expectation is taken over both w; and W, (and recall that zr, is a deterministic

function of the w; and W, because C% is non-random for all K, #). We then define z, 27, ... as

K*v K; s<se .
the random variable sequence of positions such that z} = :ct( (K3Yosesec) . By construction,

we could choose K, K; = K, (6%, T) for every s, and therefore it must be the case that

1 > . .
E | J(e* Y. 2,o {w,} o5 1) +Y T, Ck. To iy, W) | < T (0*,0%0“(0*7T),T>.
T

s=0
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Therefore, upper bounding the cost of Algorithm [3] minus the cost of using K* for Tj steps
and then using the sequence of controllers {09 .} each for T steps is sufficient for upper
bounding the regret in Equation (26]). Now we will bound

T-J(6*,C T,0,WW)—E

1 1 > .
5 <9* cY., 2,o {w,} o5 1) +ZTSJ(0*,C%;,TS,x}Q,WS)]
T

s=0
(28
Note that we will upper bound the cost in terms of the parameter vy = T~'/3 in Line [1|
In order to bound the quantity in Equation (28], we will break this component of regret
into four sources: the regret from the warm-up period (Lines [21H4)), the regret from using the
estimates 6, instead of using 0*, the regret induced by the randomness of the trajectory, and
the regret from enforcing safety.

The first source of regret is the regret incurred in the warm-up period of Algorithm
(Lines . Recall that C?## is the controller used in Algorithm (3] in the s iteration of the
second for loop. We will use Proposition 4] to bound the cost incurred during the warm-up
period.

Proposition 4 (Regret from Warm-up Period). Define xy, 2!, ... as the sequence of random
variables that are the positions of the controller C*™® defined in Algorithm @ Define Ry as
the cost of the first 1/v2 steps, i.e.

Ry=T-J(0",C",T,0,W) =Y T, J(0",C¥ T, 2l , W,). (29)

Then under Assumptions [IH§ and conditional on event E,

a.s. ~ 1
Ry < Or <—2) .
vp

The proof of Propposition [4] can be found in Appendix [D [D.1 The second source of regret

in Equation is that Algorithm |3| uses a controller C’f{ 6.T) instead of the controller
opt\Us,

CY.. This source of regret (denoted R;) can be interpreted as the “estimation cost” of using
the estimated controller instead of the optimal controller, but without enforcing safety. We
will use Proposition |5 to bound this source of regret.

Proposition 5 (Regret from Non-optimal Controller). Define R; as

Ry = iE [TSJ(Q* o Ty, 0,W,) ] és]

Kopt(957Ts) ZT J 9* OK*7T57$;57 WS)

Note that Wy is independent of és by construction. Then under Assumptions @ and con-
ditional on event FEs,

R < Op (Tvy) . (30)

The proof of Proposition [5 can be found in Appendix [D.2] It may appear odd that the
starting positions of the two terms do not match in the definition of Ry (or in the definition
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of Ry below), but we do account for this difference in the proofs of Propositions [5{and |§| The
third source of regret (which we will denote Ry) comes from the fact that in Equation (28]
we are comparing the random variable T - J(6*, C?8 T 0, W) to an expectation. In order to
show that this source of regret is small, we need to show a concentration inequality for the

cost of repeatedly using controllers of the form o

s (00T)" which we do in Proposition |§|
opt\Us,ls

Proposition 6 (Regret from Randomness). Define Zr,, Z1,41,... as the sequence of ran-
dom variables representing the sequence of positions if the control at each time t > Ty is

b (z¢) for s = |log, (tv2)| and starting at @7, = x. . Define Ry as
Kopt(657Ts) 0

L - * 05 A - * s N
Ry = 3 TJ(0°,Cl o T, W) = S E|TJ(0°,C o TL0W) | 6]
s=0 s=0

Then with conditional probability 1 — or(1/T') given event E,
Ry < Or(VT). (31)

The proof of Proposition [6] can be found in Appendix [D.3] The final source of regret in
Equation is the extra cost incurred by enforcing safety in Algorithm 3| (Line rather

. . 98
than using the control given by C Koos (B T3)

an extra cost, but Proposition [7| bounds this extra cost.

. Each time we enforce safety we potentially incur

Proposition 7 (Regret from Enforcing Safety). Define &1, Z1,41,... as the sequence of
random variables representing the sequence of positions if the control at each time t > T
b,
i CKopt(é57Ts)
variable)

(z:) for s = |log, (tv})] and starting at Ty, = a7, . Define Rs as (the random

Ry i= 3T (0, O T W) = DT (0, C g o Torms W),
5=0

Kopt(é57Ts)
s=0
Then under Assumptions [IH8, with conditional probability 1 — op(1/T) given event E,
R3 S OT(VTT).

The proof of Proposition [7] can be found in Appendix Now we are ready to combine
all of the sources of regret. To summarize, we have bounded and broken down the regret
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into
T- J(9*7 Calg’ T> 07 W) -T- J*(e*’ C % Kopt (0%,T)>

T)
.1

<T-JO,C* T,0,W)-E —J (9* co., 5
T

T s=0

<T-JO,C" T,0,W)—-E ZTSJ*(G*, Cles Ts, 27, WS)]

L s=0
=SB [LI0CY 4 T0W) [ 0] B ZTSJ<9*,O%>TM*T~WS>]
s=0 s=0
R
- * 05 * N
YT Cl T, W ZE [TJ (0°.Cl 3y Tos 0, W) 95]
s=0
Rs
- * al / * 6 P
+Y T, C8 Ty 2t W ZTJ 0", Cle oy Tor 01, W2)
s=0
R3
+T - J(0°,C7 T,0,W) = > T,J(0°,C, T, aly , W) (32)
;{,0 s

Now we will use Propositions [, 5| [6, and [7] to bound the above quantity. Conditional
on event F, Proposition |4| and Proposition |5| respectively imply that Ry < OT(l Jv2) and
R < OT(VTT ). Proposfmon@and Propo&twnrespectwely imply that conditional on event
E with conditional probability 1 — op(1/T), Ry < Op(V/T) and Rs < Op(vyT). Therefore,
applying a union bound gives that the bounds on Ry, R;, Rs, R3 all hold conditional on
event E with probability 1 — op(1/T). Putting these bounds into Equation (32), we have
that conditional on event F with probability 1 — or(1/7T),

. - 1
T-J(0°,C¥,T,0,W)=T-J*(0", Ck. 917, T) < Ri+Ra+Rs+Ry < Op (\/T + 5+ TVT) .
vp

Choosing vy = T-/3 (as in Algorithm ' will minimize this regret upper bound giving a
total regret upper bound of Op(T%3). Because the probability of event E is 1 — op(1/T),

by a union bound the regret bound holds with unconditional probability 1 — or(1/T).
[

D Proofs of Propositions from Appendix [C|

D.1 Proof of Proposition 4| (Regret of Warm-up)

proof. To bound the cost of the warm-up phase, we need the following lemma. Informally,
Lemma [4] shows that when the noise is relatively small and the controller is “close” to being
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safe with respect to dynamics 6%, the position stays relatively small. Note that in this
lemma we define B, := log®(T"), which we will use throughout the proofs in the rest of the
appendices.

Lemma 4. Let |zo| < 4log®(T). Suppose for all t < T, the control used by controller C; at
time t is safe for fived dynamics 0; and for allt < T,

1
log(T)’

167 = Ol < (33)

Then under Assumptions [IH8, for sufficiently large T and conditioned on event Ey, using
this controller Cy with dynamics 0* for T steps starting at xo will give positions (xq, ..., x1)
and controls (ug, ..., ur_1) satisfying the following equations.

@] < 410g%(T) < log*(T) = B, (34)

u| < Or(log?(T)) < log*(T) := B,. (35)

Furthermore, if xo and the controller Cy are deterministic, then the positions (xo, ..., x7) and
controls (ug, ...,ur_1) satisfy

E[|2|] < 41log*(T) < log*(T) := B, (36)
E[|w|] < Or(log*(T)) < log*(T) := B,. (37)
The proof of Lemma [ can be found in Appendix [E.2]

Now we will use this lemma to bound the total cost of the warm-up phase of the algorithm.
The controller for the first 1/v2 steps is safe for dynamics 6* under event E as shown in
Lemmall] This means by Lemmald] conditional on event F, the position and controls during
this warm-up period are both bounded in magnitude by B, (defined in Lemma {]) almost
surely for sufficiently large T'. Because the cost at time ¢ is gz? + ru?, this implies that the

total cost of the first 1/v2 steps is upper bounded by Or((q + T)f—g’%) = Op(1/V2). O
T

D.2 Proof of Proposition [5| (Regret of Non-optimal Controller)

proof. First, we will use Lemma [5| to rewrite the expression in Proposition [f| in a form
amenable to Assumption [7]

Lemma 5. Under Assumptions @ , for every s € [0 : s¢| the following hold.
E [T.J(07,CF., To, . Wo)] — B [T0J(6%,CF., T, 0, W) | < Or(1) (38)

The proof of Lemma [5] can be found in Appendix By Lemma [2| there exists a
cr = Or(1) such that under event E,, maxses < or - vp. For s € [0 : 5., define

E; = {||és —0")|loe < € <op- VT} : (39)

Informally, the event Ej is the event that the bounds in event 5 hold at time s. Note that
because E5 C Es, by Equation ((19),

P(E5) > P(Ey) > 1 —op(1/T7). (40)
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We will also use the following application of Assumption [7] that holds under event E3.
Conditional on event E3,

‘E |:TJ 9* CQS (QST)7TS707WS) _TSJ(Q*aof(*;‘;TSJO; Ws) és]
(0%, C’f{opt(e 2y T = T.J* (6%, Ck., T.)
~ T,
< Or (T €s + T2) ) Assumption[7]  (41)

We can now use the triangle inequality with Equation to rewrite the left side of Equation
and apply Equation . Formally, conditional on event F,

* 03 N - * 0* *
ZE TI(07,C o T 0 W) 6] —E |3 T ,CK;,TS,xTS,WS)]
s=0

— ZE [TJ (0 Cf(opt(a 2y T 0, W) ‘ és} — iE [T, (6%, Ce Ty, 2, , W)

s=0

< Or(1) +ZE [TSJ(H* Cl: iy T 0. W) ‘ és} - SZeE [1,J(6%,C%., T,,0,W,)] By Equation
s=0 s=0
= Or(1) +iﬂz TI(0",Cl T 0. W) = TJ(0°, C T, 0,1) | |
[T JOCl T 0, W) = T (07, CF T, 0, W) ‘ és}
< Or(1)+ Oy <Z_; Tyes + %) By Equation ([{41)
< OT(TVT)~ _

D.3 Proof of Proposition [6] (Concentration of Cost)

proof. The following lemma is a result of McDiarmid’s inequality and shows that the random

variable corresponding to Ts.J (6%, C’?{S 6.1y’ Ts,0, W) concentrates around a conditional ex-
opt\Us,Ls
pectation.

Lemma 6. Under Assumptions @ , for every s € [0 : se]Athere exists an event EM such
that EM depends only on the random wvariables in W, and 0, such that EM C {Vt € [T,
Torr — 1], |wy| <1og®(T)}, and such that conditional on E5, P(EM | ;) > 1 — op(1/T®) and
for e > 1/T and for sufficiently large T,

EX 0, > | 6,)

(]

L e
ex
] P\ o1

(6, O 7,,0,W,) — E [T J(67, O 7,,0,W,)

Kopt(és Ts)’ Kopt(e Ts)’
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for some ¢ = Op(1).

The proof of Lemma [6] can be found in Appendix [E.4l We also want that taking expec-
tation conditional on EM does not significantly change the expected cost.

Lemma 7. Under Assumptions H if EM C {Vt € [Ty : Topq — 1], |wy| < log*(T)} and
conditional on event E5 we have P(EM) > 1 — op(1/T®), then conditional on event Ej,

* 05 N * 05 M 5 A
E [T JO.Cl T 0, W) ( 98} SR [T JOCl T 0, W) ’ E! ,95] — Op(1),
(42)

where the term Op(1) does not depend on s.

The proof of Lemma [7] can be found in Appendix [E.5] Combining Lemma [f] for € =
cy/T,log(T) and Lemma [7| for sufficiently large 7', we have the following conditional on

event F3:
* 05 * s ) A N
P (T JOCh o T 0, W) — [T JOC T 0. W) ) 95] > ¢y/T, log(T) + Or(1) 98)
1 log®(T)

Now applying a union bound over all s € [0 : s.] gives the following result:

(ZTJG*OOOpt(QT),TS,O,W ZJE[TJ@*C‘)OP(QT),TS,OW) 6, = Z(\Flog )+ Or( )))

s=0 s=0 s=0

_IP’(EISE [0: 5] : T J (67, COON(Q oy T 00 = [T J(0°,C oy T 0. W) } > /T, log(T) + O ))
<X P(TLI(0°,C o T O W) = [TJ(0°,Ch o T 0,W,) | 6] = ey/Tilog(T) + Or (1))
/1 log?(T
< (TS +2exp <—Og2()) + JP’(—E;)) Equation
s=0
~ 1 .
< Or <T2> . Equation (44)
Note that

3" ev/Tiloa(1) = Os(VT), (15)

s=0

therefore combining Equations and , we have that

<ZTJ (O0°,C% 5y Tor 0, W) ZE [TJ (O0°,C% 5y Tor 0, W) ’ 08} >

< Or (;2) . (46)

Equation differs from the desired result of Proposition @ in that the first summation is
over trajectories starting at position 0 as opposed to Zr,. Therefore, the last part of this

Ez
3
SN—
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proof is to bound

Se

* A * 0
ZTJQ KoptesT),Ts,ng,Ws)—Z LJ(0,C T, 0, W5)]

Kopt (93 s
s=0

To do this, we will use the following lemma that is a consequence of Assumption [§]

Lemma 8. Under Assumptions [IHf| and [§, if |0 — 6*|oc = € < eag, then for any K €
(KS,K%), t < T, and |z|,|y| < 41og*(T) and any noise random variables W', conditional
on event Exg(C% W),

‘t-J(@*,C?(,t,x,W’) —t-J(Q*,C%,t,y,W’)‘ = OT(|x—y| +e€).

The proof of Lemma [§ can be found in Appendix [E.G|

In order to use Lemma , we must show that |27,| < 4log®(T). Recall that &7, is the
position at time 7 if the position at time Tj is 27, = 27, , where a7, is the position of the
controller C*# at time Tp. Because Fap C E, under event E we have that C*# is safe for
dynamics 6*. Therefore by Lemma , |2/, | < 4log®(T). Because B, C E, under event E we

also have that ||, — 0%||s < OT(VT) for all s € [0 : s.] and sufficiently large T'. Therefore,

since 7, = 7, and the control CIG(SON ( 03,T3)<x> is safe with respect to 0, for any x, again by

Lemma [4{ we have that under event £ and for sufficiently large T, |27.| < 4log*(T). Now

we can apply Lemma [§[ to get that, conditional on event EN ()", E A@(C’e Kope(0s.T2)’ W),
* 65 * 0s
ZTJ (0".C% ooy Ton T, Wi ZTJ (0".C% ooy Ter 0:W)
9 A~ * 9

Z O oy T, W) = TJ(0%, O T, 0, W)
<3 0r (ér. + 16, — "))

s=0
< Og(1). (47)

A union bound gives that P(() EA@(CG ) W) =1 —or(1/T?). Combining Equa-
tion with Equation (47) with a unlon bound gives that conditional on event E with
probability 1 — or(1/7T),

Kopt(é Ts)’ Kopt(O Ts)

SZeTSJ(G* o T, ir, W, ZE [TJ (0%, O ,T,,0,W,) \ és] < Or(VT),
i (48)

which is the desired result of Proposition [6]
O
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D.4 Proof of Proposition [7| (Regret of Enforcing Safety)

proof. Intuitively, R3 is the regret caused by enforcing safety and deviating from the con-
0s 0,

troller CKOpt 6.1 Lemma [9) bounds the cost of deviating from C”* Koop (6, 1y) S & SUILL OVer all

times the algorithm deviates.

Lemma 9. Recall ui*®V and us**®Y defined in Algorithm@ Lmes and. Let XU and X! be
the indicators for the events that at time t, C¥8(z}) = us*™V or C8(z}) = usaL | respectively.

Under Assumptions[IH§ and conditional on event E, with probability 1 — or(1/T)

S T, CME Ty ah W ZT JO",C oy Tor 81, Wo)
s=0
B e s+1— 1
<or(%- )+z S (N B (P
s=0 s=0 t=Ts

The proof of Lemma [J] can be found in Appendix [E.7] We also remind the reader that
the coefficients of the Op(-) terms in Lemma 9 do not depend on ¢ or s, and are a function
of known problem parameters and log(7T") factors. The next tool we need is to be able to
bound the difference in control when applying safety in Algorithm [3|compared to the control
when not applying safety. We can do that as follows.

Lemma 10. Under Assumptions I@ and conditional on event E, for any t such that 1/v2 <

t < T, if s = |log, (tv2)] and uf*V < C’?{ @ T)(x;) (which is equivalent to C*8(x}) =
opt\Us,Lls
us?eV ) then,

st Clegopt(es,Ts)@;)l < Or(es). (49)
Similarly, if u$*et > C’Ie; 6T )( xy), then conditional on event E,
opt\Us,1ls
safelL B / S
@) < Onle). (50)

The proof of Lemma [10] can be found in section [E.8] Combining Lemmas [J] and [I0] we
have that conditional on event E, with probability 1 — or(1/7),
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Se

Ry =Y T.J(O",C% T, , W) — Y T.J(6%,C% T,, ég,, W)
s=0

Kopt(es Ts),
s=0
Se 5+1 1
A U A safeU 0 /
<0r(Sem) + 55 B (3800 (1 -l 0,4
s=0 s=0 t=Ts
+ X% Oy < safelL Cﬁ(sopt( . TS)(x;) >> Lemma [
Se se Tst1—1
< Or (Z 65T5> + Z Z XY Or (&) + XF - Or (e) Lemma, [T0l
5=0 s=0 =T
) T-1 ) )
<Or(Tvr)+ Y X/ -Or(vr) + X/} Or(vr) E,CE
t=1/v2
< Op(Tvy) 4+ Or(Tvr)
= Op(Tuvr).

The key application of event F in the above result is that Fy C E implies that under event
E7 MmMaXse(0:s.] €5 = OT(”T)-

]
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E Proofs of Lemmas from Appendix D]

E.1 Proof of Lemma [3

Recall the notation that z} is the position at time ¢ when using the controller C?8. We will
prove the following. For sufficiently large T and any t € [Ty : T}, if C¥2(x}_,) is safe for
dynamics 0%, then conditional on E; N E,, we have that both u$el < sV and C2l8(z})
is safe for dynamics 6*. Because we assume in this lemma that ugp 1 = C’alg(x'TO_l) is safe
with respect to dynamics 6*, this will prove by induction the desired result that conditional
on E; N Ey and for sufficiently large T, uf* < u5V for all ¢ € [Ty : T).

Fix a given ¢, and define s = |log,(t/v2)|. Assume C?&(x} ,) is safe for dynamics 6*.
Then under event E;, we have that |z}| < ||D||OO + |wi—q| < B,. Let v = w
We will show that usaer > v. Note that a*z} + b*v = Dy — 4¢,B,.. For sufficiently large T,
because Dy — Dy, > —( (Assumption D and s = Op(vr) = op(1/log(T)) under Ey N Es,
this implies that

DL S a*xé + b*v S DU.

Therefore v is safe for dynamics 6%, which implies by Lemma {4| that under event F; and for
sufficiently large T,
lv| < B,.

Under event By N By, [|0* — 0|0 < €., therefore by the above results we have that under
E1 N E5 and for sufficiently large T,

“max ax; + bv < a*x) + v + 2¢5|ay] + 2¢,|v|
(165 =000 <es
< a*r; +b*'v + 4e,B, |v] < By, |7y < B,
= Dy. Def of v

This implies by the definition of u**V that

Dy —a* 4€SB

uiaer Z v =
b*

By the same logic, we also have that

safel, < Dy, — a*x) + 4€,B,
uj < o )

For sufﬁciently large T' under event Fs, 86;5" = OT(VT) < m. Therefore, using that
Dy = Dv+ (T) by Assumption , we can conclude that under event E; N Ey for sufficiently
large T,
Dy, — a*2, + 4e,B,
uiafeL S L bi +

< Dy — a*x}, — 4e: B,

< b

S u:aer.
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This implies that wf*l < C28(z}) < w5V which by construction under event E; N E,
implies that Dy, < a*z} + b*C%#8(z}) < Dy. Finally, this gives that C*8(z}) is safe for
dynamics 6*. Therefore, we have shown the two desired results that w§*l < 52U and
C?e(x}) is safe for dynamics 6.

As mentioned above, this implies by induction the desired result that el < y5%U for

all t € [Ty, T| conditional on Ey N Ey as long as C*#(af, _,) is safe with respect to 6*.

E.2 Proof of Lemma |4 (Bounded positions and controls)

proof. Define vp = maxycpr]]|0* — 0¢]|oo, and we know that vy < @ by assumption. At

time ¢, the control used by controller C} is safe for dynamics 6; by assumption of the lemma,
so by Definition 2| for all ¢, if u; = Cy(z;) then
Dy, < ayxy + bouy < Dy. (51)
By definition of vz, this implies that
Dy, — yr|ze] — yrlug| < @y + 0wy < Dy + yr|ze] + yr|ue. (52)
The right inequality in Equation implies that

b uy — yr|u| < Dy + yr|z:| — a*ay,

which for u; > 0 implies that |u;| < ”DH”’L;*_'?THVT‘“'. The left inequality in Equation (52)
implies the same for u; < 0, and therefore we have that Equation implies that

[Dlloo + a*|ai] 4+ yrlz:]

<
|Ut| o b* —r

(53)

First we prove Equations (34)) and by induction.
Base Case: At time t = 0, we have by assumption that |zo| < 4log?(T). Furthermore,
Equation implies that

[ Dlloc + a*[o| 4+ ~rlzo|

luo| < Equation (53]
b* — vyr
Do + (a* 41og*(T
< 1Dl +(:l +71T) og™(T) Equation (33))
b* — log(T)
log®(T) + (a* + 0;)4108;2(T)
< : ! f(T) Assumption
b~
log?(T * 4+ b*/2)4log?(T
< og (T) + (a” + b"/2)4log™(T) Sufficiently large T'
b /2
2(1 + 4a* + 2b*) log*(T
ENESTEL TGS 1)
< By,
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for T sufficiently large such that 2(1 4 4a* + 2b*)/b* < log(T') and 1/log(T) < b*/2.
Induction Hypothesis: Assume Equations and are true for all times less than

or equal to t.

Induction Step: Now we will prove that Equations and hold at time ¢ + 1.

|zi1| = @™z + b uy + wyl

= |at1}t + btut ‘I— Wt + (CL* — at)l't + (b* — bt)ut|

<apzy + bywy| + |we| + |(a* — a¢)ze| + |(b° — be)uy| Triangle Inequality

< [IDlloe +10g*(T) + || + |l
[1Dlloo +

IA

1 2
Tog(T) (Joe] + |ue]) + log™(T)

2
< |ID||loo + —— B, + log®(T
< 1Dl + 1oy B+ 108°()

< [ Dllss + 3log*(T)
< 4log*(T)

< log*(T)

= B,.

Equation , Equation , event F
Equation ({33])

Ind. Hyp.

Assumption [3]

Above we need T large enough such that log(7) > 4. Since we showed that |z;11]| <
41og*(T), this also implies by Equations and that for sufficiently large T,

‘/U/tJrl’ < B,.

Therefore we have shown Equations and for time t + 1, completing the induction

proof.

Now we will prove Equations and with a similar proof by induction. If the
controller C; is non-random and g is not random, this implies that E[|z|] = |zo| < 41log®(T)

and E[|ugl] = |ug| < 25+4a”) log*(T) by Equation (54]). This proves the base case. For the

b*
inductive step, we have that

E[[241]]
= E[|la*x; + b uy + wy]

< El|lagze + byue|] + EfJwe|] + E[|(a* — ag)a4]] + E[|(b* — b)wy|] Triangle Inequality

< [[Dllos +10g*(T) + 7 Ef|z:]] + vr Efu]
< [[Dlloo + (Ellzel] + Effuel]) + log™(T)

_
log(T')

2
< |ID||oo + —— B, + log?(T
<1 Dloe + ooy Be +10g™(T)

< || Dl|os + 310g*(T)
< 4log*(T)

< log*(T)

= B,.

48

Equations , , w; sub-Gaussian
Equation

Ind. Hyp.

Assumption



We have shown that E[|z,,1|] < 4log?(T), therefore by Equation (53)) and the same algebraic
steps as used in Equation , we have that for sufficiently large T,

[Dlloe + a” Ellze 1] + yr Ellzei]]

E

sl < —

< D]l + (a” + vr)4log*(T)

b — Ty

< 2(1 + 4a* + 2b*) log*(T)

< b

< B,.
This completes the second proof by induction, proving Equations and (37)). ]

E.3 Proof of Lemma [5

proof. For this proof, we need the following version of Lemma [§| that applies for expectations
rather than with high probability.

Lemma 11. Let z,y be two random variables independent of noises W' = {w!}!.Z} such that
for some L = Op(1), both ]P(|ZE| > L)E[z? | |z| > L] = or (75) and ]P’(|y| > L)E[y? | |y >
L] = or (#5) and P(|z| < 41og*(T)) = 1—or(1/T") and P(|y| < 410g*(T)) = 1—or(1/T™).
Then under Assumptions [1He] and [8, if |0 — 60*||c = € < eag, then for any K € (K¢, Kf)
andt < T,

TQ

The proof of Lemma [I1] can be found in Appendix We also need the following
generalization of Lemma [ which bounds the positions for any starting position .

E [t J(0",Ch t,x, W) —t- J(O,Cl t,y, W]| = Or <E[|x —yl] +e+ i) . (55)

Lemma 12. Let xg,xq,...x7 be the sequences of positions when starting at position xo = x
and using contmller Cy at time t. Suppose that the control Cy(x;) is safe for dynamics 6,
and ||0; — 0*|| < log for allt <T. For sufficiently large T under Assumption @

Wt < T, fol = Or(la] + D]l + max [

V< T, |Cila)] = Orfe] + | Dl + ma ).

The proof of Lemma [12| can be found in Appendix [E.11
Because CY.., {C’a }ie , are safe for dynamics 6*, the sequence zf, 7, ... starts at o = 0,

and || D||s < log*(T) by Assumptlon I, Lemma [12] implies that
* | _ ' 2
|v7.| = Or (ig}?i(l |w;| + log (T)) : (56)

Lemma 13. Suppose w; fort < T are sub-Gaussian and F' is an event such that P(F) =
1 —op(1/T'Y). Then

1
E[rrzlgtxw | =F|P(=F) = or <ﬁ) :
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The proof of Lemma [13| can be found in Appendix [E.12| Define F' = {|z%, | < log*(T)}.
Event E; implies ' by Lemma [ and therefore P(F) > P(E;) = 1 — op(1/T*!). Therefore,
we have by Equation that

P(~F)E[|z7,|* | ~F]

1<Ts—1

=Or (]P’(ﬂF)IE {max w?

ﬁF}> + Or (P(=F)) [Eq. and (a + b)? < 2a* + 2%

= or ( L > : Lemma [13] P(=F) = op(1/T") (57)

710

Also, note that Lemma [4] implies that P(z5, < 4log®(T)) > P(E;) = 1 —op(1/T™). We can
therefore apply Lemma (11| with = 27,y = 0,L = log®(T),e = 0. Applying Lemma
gives the following desired result.

E [|T.J (0, Cle., Ty, w7, We) — ToJ (0%, Ce., Te, 0, W) ||
= OT <E U%;«S

Or(1). Lemma [ for sufficiently large T

1
} + ﬁ) Lemma [11]

Note that we can apply the expectation form of Lemma [4 in the second inequality above
because (CY%.,{C%.}%,) are non-random controllers. O

E.4 Proof of Lemma [6 (Concentration of Conditional Expected
Cost)

proof. We will use the following form of McDiarmid’s Inequality for high probability events.

Lemma 14 (McDiarmid’s Inequality [Com15]). Let f be a function such that f : X1 X Xs... X
X, > Rand let Y € X1 X X,... X X,, be a subset of the domain such that for some c, if
(X1, ey Tn), (2, oy h) € Y, then

|f(x1a 7xn) - f(l‘ll, ,CC:Z)| < Z c.

Let X1, X5, ..., X,, be independent random wvariables and X; € X; for all i. Define p =
1-P(Xy,...,X,) €Y) and let m = E[f (X1, ..., X,,) | (X1,...,X,) € V]. Then for any e > 0,

2 0.¢ — 2
]P(|f(X1, 7Xn) — m| > 6) < 2p+ 2exp (_ maX( , € pnc) ) ‘

nc?

Define the function f; (W) as

£5. (W) = Tod (9*, O

Kopt (éa ,Ts)

T 0, Wi ).

We want to apply McDiarmid’s Inequality to f; conditional on 6, when E3 holds, which
requires the following bounded difference result.
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Lemma 15. Under Assumptions|] IJ@ given 0, there exists a fized Y € [— log?(T), log?(T)]™
such that the event EM = {W, € V,} satzsﬁes P(EM | 6,)>1— oT(l/TS), and conditional
on 0, and E, if EM holds when W, = {w l}i;}i Y and when W! = {w/} =571 then

Toy1—1

(W) = f,V) < > e

. ) !
i=Ts,w; #w;

for some ¢ = Op(1).

The proof of Lemma [15] can be found in Appendix [E.9] We will now apply Lemma,
for the function f; conditional on 0, and E3 using Lemma (15| Conditional on Ej (where ¢
is from Lemma D the following holds for € > 1/T and T Sufﬁ(nently large.

P (145,(W,) — L, V) | EY)| > €| 4.)
2 max <0, € — cT,P(~EM | és)>2

< 2P(~EM | 6,) + 2exp | —

1502
= 0 + exp € - = 0 Sull. large
Ve 2T c? - ’ s ’ ’ &
3 exp ] B . ulil. arge

]

E.5 Proof of Lemma (7| (Unconditional Cost vs Conditional Cost)
proof. By the Law of Total Expectation,

* 0 A
E[TJ0,CY G T 0W0) | 6]
—E[TJ0°,Cl o T 0 W) | EXLO PR | 6,) + B [T0(07,C 0 T, 0,W) | BN 0, PEY | 6))
>E [T J(0", C?{O (BT’ , Ts, 0, Ws) Ey,és} P(EM|A,) Cost is non-negative
_ * s M j ] * 0 M A MipH
_E TJ(0 Clr T 0 W) | EML,] —]E[T JOCE g T 0 W) | L ,93} P(-EM|4,)
~ 1 ~
_ * 0, M - * 0, M
—E[LJ0.Cl o TL0.W) | BYG —or (T) ([1I07.C T 0 W) | EMLG]
=E[TJ(0°,C0 o T 0 | EN6,| —or((a+1)B2)
~E TJ(@* cl: oy Tor 0 W2) EM.4,] — Or(1).
To see the step from the 5th to the 6th line, note that EM C {Vt € [Ty : Tyyy — 1], |wt| <

log?(T")} by assumption and that Ej implies that for sufﬁClently large T, [|0* — 0, < log ik
therefore by Lemma [4] we have that the magnitudes of the positions and controls are all
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bounded by B, conditional on events E5 and EM. Therefore, the cost at each time step
conditional on these events is at most (q + r)B2, which gives that conditional on event Ej,

* 0 M g
B[T.0(07,C o T 0 W) | BN

< Tq + 1) B B, M C {Vt € [T, Tupr — 1], wi] < log¥(T)}, Lomma ]
<T(q+r)B2

E.6 Proof of Lemma

proof. If |z — y| < dag then this follows directly from Assumption . Now for the rest of
this proof assume |z — y| > dag and WLOG assume = < y. Choose 0 to be the largest real

number satisfying § < dag such that mf;y‘ is an integer. Because dag < |z — y|, there must
exist an integer in the range [%, 2'%;;‘] Therefore, § > dag/2 = Qr(1) by definition of

Sag - Because |z], |y| < 4log®(T) and = < y, we know that for all i € [0 : @], we have

|z 4+ 46| < 41log®(T). Fori € [0 : wf;y‘ — 1], by Assumption , under event Eag(CY%, W)
it J(O%,C% t,x +id, W) —t- J(O,Co% t,x+ (i +1)6, W')| = Op(6 + €).
By the triangle inequality, this implies that conditional on event Eg(C%, W'),

|t J(O", Che,t, x, W) —t- J(0",Che, t,y, W)

le—yl_4
4
< Y |t IO, Chota+is, W) =t J (0%, Ch tx + (i 4 1)5, W)
=0
- 8log*(T
= 0r (o -+ SEE) o], 9] < 410g*(T)
:OT(|x—y|+e). 6:QT(1)

E.7 Proof of Lemma [9 (Cost of safety controls)

proof. The first tool for this proof is the following lemma, which informally states that being
off by a small amount of control has a small impact on the overall cost.

Lemma 16. Under Assumptions[1H8, with conditional probability 1 — or(1/T) given event
E, forall s € [0: s.],
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T, - J (6, Cf?opms py Tos @, Wo) = Ty - J(07, C25, Ty oy W)

Top1—1

=Or ( 2 10 o,y (80 - cslg<x;>r> +Or(Ties).
=T,
The proof of Lemma [I6] can be found in Appendix

The control Cﬁ(s 6o )(x;) is safe for dynamics 6, and conditional on event E, ||, —
opt E]

0*||oo < Or(vp) < 1/log(T) for sufficiently large T. The controller C?!# is safe for dynamics
0* for all T steps conditional on event E by definition of E. These together imply by Lemma
that, conditional on event F and for sufficiently large T, for all t € [T, Ty — 1],

|23, |2, < 410g*(T) < B,. (58)
By Lemma [§] and [16, we have that conditional on event E, with probability 1 — or(1/T),
SZeTJ(H* C8 Ty, aly , W, ZTJ (0* Cf&pt 5.1y Tor s Wo)
s=0
1)+ iTSJ(H*, C’?lg,TS,x'T , ZT J (0" C’f;opt Gy T, , W) Eq. (58), Lemma§]
1) +i <TSJ(9*,C’§1g,T5,$’TS,W) T,J (0%, Of(opt(a 7y’ Ts,:Bi[S,WS)>

Se Tey1—1
Or(1) + Or (Z (Tses + ) [CE(a)) - Cf?optw TS)(J;;)O) Lemma 10

s=0 t=Ts
Se se Tsy1—1
N S U . saer s L safeL 05 /
=Or (Z EsTS) +Or (Z Z Xy CKopt(e TS)( )|+ X; CKopt(e TS)<xt) ) :
s=0 s=0 t=Ts

We applied Lemma [§ for every s € [0 : s.], so Op(1) times. Since Lemma [§ holds with
probability 1 — op(1/T'), a union bound gives the first inequality holds with probability
1 —0:(1/T?). Another union bound combining this with the single application of Lemma
gives that the probability of the above result is 1 — or(1/7T). The final line simplified using
the fact that the two controls are equal if X} = X = 0. O

E.8 Proof of Lemma (Difference in Safety Controls)

proof. By symmetry, it is sufficient to show the first part of the lemma statement for u}
Because C?# is safe for dynamics §* under event £ and E C E;, we have by Lemma
that under event F,

saer

|z} < 41og*(T). (59)

Under event E and for sufficiently large 7', ||6* — éSHOO < e < @. This implies by

construction of uf**V that under event E and for sufficiently large T', a*x} + b*us*®V < Dy.
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By Lemma , we also have that under event E and for sufficiently large T, us*feU > gsafel,

Therefore, by construction of uf**" we have that under event E and for sufficiently large 7,
a*z} + b useY > g*x) + b*usel > Dy . Together, this shows that u**V is safe for dynamics
0*. By Lemma {4 and Equation , this gives that under event E and for sufficiently large
T,

|u;* | < B,. (60)

O
Because any control used by controller CKopc 6.7

also have that under event E for sufficiently large 7T,

is safe for dynamics és, by Lemma |4 we

IOfgopt(éS,Ts)(xé)l < Bs. (61)

Also, note that by Algorithm (3| Line , us?eV satisfies, for some @ such that ||6 — ésHoo < e,
ax} + bui*Y = Dy. (62)

Under event E, ||0* — 0,o < €,, which implies that ||0* — ]| < 2¢5 < Op(vr) < 1/log(T)
for sufficiently large T'. Therefore, applying Lemma 4| gives that under event FE and for
sufficiently large T,

Dy > a*z} + b*us*eY us™eV safe for 0*
/ f f !
> ax} 4+ buseY — [useV|2¢, — |2 |2¢, 10" — 0|00 < 26

> Dy — 4Be,. Equations ,, and (63)

If u;aer < Ct‘)s

Kopt(ést)(ac;), then there must exist some @ such that Hés — 0|0 < €5 and

az) + bC’f{Sopt 6.1, = Du. (64)

Under event E, [|6* — 0| < 26, < Op(vy) < 1/log(T) for sufficiently large 7', therefore
under event F and for sufficiently large T,

* * 0
a*r, + b OKopt(és,Ts)(x;)

/ O / / 05 /
> azy + bCKopt(és,Ts)@t) — 2¢,|zy| — 2€ CKopt(és,Tg)<xt)

> Dy — 4B,¢,. Equations ,, and
(65)

Finally, because C 0,

/ . . N
Koo és,Ts)<xt> is safe for dynamics 6,

gty + 0,0y o (@) < Dy, (66)

Using that under event E, ||0* — 0,]|oc < €, < Or(vr) < 1/log(T) for sufficiently large T,
Equations , , and imply that under event E and for sufficiently large T,

'z, + b*cfi,pt 6.1 (@) < Du +2B.c. (67)
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Combining Equations and (67), if ug*U < C’f(opt @, Ts)( x}) then under event E and for
sufficiently large T,

DU — 4Bx€3 < a*xt + b*Ci(sopt(@s TS)(SC;) < DU + 2Bx65.

Combining this with Equation gives that under event E and for sufficiently large T,

|(a*2} + b us™eV) — (a*2) + b*09 z;))| = 6B,és.

Kope (072

This implies the desired result that under event E and for sufficiently large T',

|usaer 00 ( )| GB € /b*

Kopt (9 Ts)

E.9 Proof of Lemma (15 (McDiarmid’s Condition)

proof. First, we will construct the event EM. Define
Eli\/[ == {Vt € [TS : Ts+1 - 1]; |wt| S logz(T)} N ﬂ EAE (Ca {wt}Ts+1 1)

Note because P({Vt € [T} : Tyr1 — 1], |w;| < log*(T)}) > P(E;) = 1 —or(1/T*) and because
under event Ej, P <EA|3| (Cf( 6T Aw e 1) és> =1 — o7p(1/T'°) we have by a union

bound that P(EM | §,) = 1 —OT<1/T9). Suppose EM holds for W, and W.. For i € [Ty, Ts41],
define W as follows.

i / /
W' = {wr,, wr 41, ..., wi—1, W, Wi, z‘+2=-~wTS+1—1}'

In other words, W* includes noise w; for ¢ < i and includes w} for t > i. Fori € [Ty, Ty1q —1],
we will first bound ' '
| fo,(W?) = fo, (W]

First, note that if w; = wj, then W* = W' and therefore f; (W*) = f; (W'*'). Now,
assume w; # w.. Let x}, .. xT be the series of positions when the noise random variables

are W', zi = 0, and the controller used is C’f{ 6.1.)" Conditional on E3, ||0; — 0%||s <
opt

O(vr) < 1/log(T) for sufficiently large T. Because EM holds for W, W/, we have that F,
holds for W* for all 4. Therefore by Lemma 4| for sufficiently large T, |z%| < 4log?*(T) for
all i,t. For any t <4, 2! = zi™'. Therefore, the difference in the two trajectories {z¢} and
{x?l} only occurs at and after time 72 + 1. The first difference occurs at time 7 + 1 when

zi, = 2 — w; +w]. For the next Ty 11 — i — 1 steps, the difference in cost of the two
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trajectories {z!} and {xi*'} is

(Tepr =i = DJO.Cp: G Topn =i = Ll {wt}ﬁm
— (T =i = DJO,C o T =i = Laf, {wp} 20
=Or (|$iﬁ wiq |+ 105 — 0*|> Lemma |zt < 4log*(T)
=Or (leity - xiii + w; — wi| + vr) Event B3, zi,, = x;ﬁ — w; + W)
= Or (lw; — wj| + vr)
= Or (21og*(T) + vr) W, W’ satisfy event EM
= Or(1). (68)

We have therefore shown that for some ¢ = Op(1),
[f5, (W) = [, (W <e.
Because W, = W1 and W/ = W7+ we have by the triangle inequality that
[f5,(We) = fo, (WOl = | fo, WE+) = f5 (WT)

s+1 1

< D, (W) = f5, (WY
=T
T5+1—1

= D (W) = fy (W)
i=Ts ,w; #w,
Tsp1—1

S o

. i ,
1=Ts,w; #wz

IN

E.10 Proof of Lemma [11]

proof. Define E* = {|z|,|y| < 4log*(T)} N Exg(CY%,W’). By assumption of the lemma,
we have that P(|z| < 41log®(T)) = 1 — op(1/T™) and P(|y| < 4log*(T)) = 1 — op(1/T).
Because || — 0*||oo < g, P(Eag(C%, W) = 1 — op(1/T°). Therefore, by a union bound
we have that P(E*) =1 — op(1/T°). By the Law of Total Expectation,

E(|t- J(6", Ch t, x, W) —t- J(0,Ch, t,y, W')|]
=E[|t-J(O",Ch t,x, W) =t J(O,Ch,t,y, W)| | E*] P(E")
+E[[t- J(0", Ch, t,x, W) — t- J(0%,Ch, t,y, W)| | ~E*] P(~E")

—E [Or (jz —yl+¢) | E*| P(E")

+E[|t-JO,Ch,t,a, W) —t- J(0%,Cl t,y, W')| | ~E*] P(~E") Lemma [§
OT(EHQ: —y| | E¥]P(E) —i—e)

+E[|t- J(0", Ch, t,x, W) — t- J(0%,Ch, t,y, W)| | ~E*] P(~E")
()T(E e — yl] + e) FE[[t-J(07,CO t, 2, W) —t- J(O°, Clht,y, W)| | ~E*] P(<E") LoTE
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Therefore, all we must show is that
E[|t- JO, Ch t,z, W) —t- J(O°,Clh,t,y, W)| | ~E*] P(=E") = Or(T?).

Define w,, = max,ew- |w|. By Lemma we can bound the position and controls at every
time step in terms of w,, to get that

|t J(OF, Cle,t, x, W) —t- J(0°,Ch, t,y, W')|
=T(q+7r)Or ((wm +x+ ||D||oo)2 + (wm +y+ ||D||oo)2) Triangle Inequality, Lemma
= Or (T ((wm + 2 + || D]|so)? + (wnm +y + [ Dll)?))
= Or (T (w}, + w2 + |2* + walyl + [y + wm + 2] + [y + 1)) . Assum B (|| Do < log*(T))
Therefore, we have that
E Ht : J<9*7016(at7I7W/> -t J(e*a Cle{?tay7 W/)| | ﬁE‘*] P(ﬁE*)
=Or (T(E[w?n | ~E*|P(~E*) + E[wy, | ~E*]P(=E*) + E[|y|lwy, | ~E*|P(~E*) + E[|y|* | ~E*]P(—~E*)
+ Eljz|wy, | ZE*|P(=E*) 4+ E[|z|* | ~E*]P(~E*) + E[jz| | ~E*]P(~E*) + E[|y| | ~E*|P(—~E") +]P’(ﬁE*))>-

(69)

Therefore, it is sufficient to show that E[w,, | =E*|P(=E*), Elw?, | =E*|P(=E*), E[|z| |
SEP(~F"), E[z? | ~E[P(-F") , Elly| | ~E'JP(<E"), By’ | ~EJB(~E"), Ellaluy |
—E*|P(=E*), E[|lylwy, | ~E*|P(=E*) are all Or(75). We will use the following probability
result.

Lemma 17. Suppose X is a non-negative random variable. Then for any L > 0 and any
event E, we have that

EX | E]P(E) <P(E)L+P(X >L)E[X | X > L]
proof. For any events A, B such that A C B, we have that

E[X | BIP(B)

E[X | A, BJP(A | B)P(B) + E[X | A, B]P(~A | B)P(B)
[X | AJP(A) + E[X | =A, B]P(=A | B)P(B) ACB
X | AJP(A). (70)

E =

>
Therefore, we can conclude that
E[X | E]P(E)
=EX|EX<LZLIPX<L|EPE)+E[X|E,X>L|P(X>L|E)PE)
<PE)L+E[X|E,X>LIP(X>L|E)PE)
<PE)L+EX |E,X>LIP(E,X > L)
<PE)L+E[X|X >LIP(X >1L). Eq ([70)
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Now, note that by the assumption on = and definition of £* (where L is from the lemma
statement),

E[z? | ~E*|P(=E*) < P(=E*)L* + P(|z| > L)E[|z|? | |2| > L] Lemma [I7]
1 1
+ () + 0 (7w)
1
T ﬁ .
This also implies by the Cauchy—Schwarz inequality that

Ellz] | ~EP(=E") < VE[z? | ~E*|P(=E7)

= VE[2? | ~E*[P(-E*)y/P(-E*)
~ 1

Or T5)

By Lemma [13] because P(E*) = 1 — op(1/T") we have that

Eluw?, | ~E*JP(~E") = Or ( ! )

T10

I
Qz

I
@)

Once again, by the Cauchy-Schwarz inequality this implies that E[w,, | ~E*] = Or (%)
By the subgaussian assumption on D and a union bound, we have that

P(wy, > log?(T)) < > P(Jw| > log*(T))
weWw’
<t- 26—QT(10g6(T))
<or(1/T). (71)
Finally, we have by the independence of x and w,, and the assumption on z that
Ellz|wn, | ~E*|P(~E")
< P(=E*)Llog*(T)
+P(|lz| > L, wy, > logg(T))E Hx\wm | |z| > L,wp, > logg(T)}
+P(|z] < Lywy, > 1og? (1)) Ef|z|wn, | 2] < L, wy, > log*(T)]
+P(|z| > L, wy, < 10g3(T))EH:z:|wm | |z| > L, w, < 10g3(T)] Lemma [I7]
< P(=E*)Llog*(T)
+P(|z] > L)P(wy, > log®(T)) E[|z] | 2| > L] E [wp | wpn > log(T)]
+ LP(w,, > 1og*(T)) E[wy, | wm > log®(T)]

+log*(T)P(|z| > L)E[|z| | |z| > L] [Ind of 2 and wy,]

- 1 1 ~ 1 ~ 1
Or <T10> +Or (TQO) + Or <T10> + Or <T10> [Def of E*, Lemma Eq , Assum on z

O (7m).
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Note that by symmetry, all of the above results also hold for y. Returning to Equation ,
we have that

E [lt ) J(Q*,Cﬁ(,t,$,wl) —t. J(Q*’C’?{’t’y’ W’)‘ | —|E*] ]P’(ﬁE*) — OT (%) .

This completes the proof that

~ 1
Ew-ﬂmxﬁxwwvw¢-ﬂwx&¢wwvm=*%(Mu—yu+ﬂﬁﬁ>'

E.11 Proof of Lemma [12

proof. Define vp = maxi<r_1(|0; — 0*[|0c < @. Because the control at time t is safe for

dynamics 6;, we have Dy, < a;x; + byuy < Dy for all t. By the triangle inequality,
[e1| = "z + b e + we| < Jwi| + ([ Dlloc + yr([me] + [ue])-
As in Equation (53]),

[Dlloo + @[] + yrlze] || D]loo + (@ 4 yr)|4|
b* —r b* —r

For sufficiently large T', yr < b*/2, and therefore for sufficiently large T,

[Dlloc + a*|ae| 4+ 72|
b* — YT

Using z¢y = x as the base-case, this recursive relationship implies that for all ¢,

|Ut| <

|mmsmwwm&+w0m+ )—OAMmeu+wmw

~+

1

2l <O | Q_(lwil + [ Dl + M)%”)
0

1

~

< 0r ( (smwg ol + 1] + o] vﬂ

—0
1

t— i
1
< Or | | max [wi] + [ D] + ||
i<t-1 — \log(T)
1

T
z@v(g§WWW9M+W0TjﬁT>-

This implies that for sufficiently large T,

2] = Or (mass x| + D]l + J2])

and
Dl + (a* + Or(max;<i—1 |lw;| + || Do + |2
— T i<t—1
which are exactly the desired bounds. O
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E.12 Proof of Lemma [13

proof. Define w,, = max;<; |w;|. Because w, is sub-Gaussian, there exists o > 0 such that
for any w > 0, P(|Jw| > w) < 2e~w?/(20) Therefore, we have for any w > 0,

P(wl, > w) =1—-P (Vi <t,|w;| < Vw)
<1— (1—2e/CY
= OT(tB_w/(2a)).

This implies by the Law of Total Expectation that

E[w?, | =F|P(=F) < P(=F)1og®(T) + P(w,, > log*(T)) E[w?, | wy, > log*(T)] Lemma

1
=or| =]+ P(w?, > w)dw
(TlO) logb(T)
1 oo
=or | =] +0O7 (/ te_w/(2"“)dw>
(TlO) log®(T)
1
= Or (ﬁ) + OT (Qt()ée_lOgG(T)/(za)>
1
= Or ﬁ .

E.13 Proof of Lemma [16

proof. Fix a value of s. For i € [0 : T}], define the controller C} as the controller that at time

t < i uses controller C?!8 and at time ¢ > i uses controller c . We will compare the

. Kopt (é57Ts)
cost of controller C? versus controller ;™' over T}, steps starting at position w7 . Note that
the cost of the first i steps is the same, as Cf = C;t! = C28 for ¢ < 7. Therefore

i+ (07, O il {wi o) — i J(07, Cfdyaty,, {wy 25 )] =0,

The position at time ¢ when using either Cj or C{™" is #/, ;. Conditional on event E and
] a. és

for sufficiently large T, by Lemma 4| we have that |C#8(z/, )], |CKopt(és,Ts)($érs+i)| < B,.

Therefore conditional on event E and for sufficiently large T,

a fs
T (Cslg(x/:rSH)Q _ Ckopt(és,Ts)(x/Tsﬂ)Q)
A A 2
0s 0s
< 2T|C§Ig($/Ts+z‘) - CKopt(és,T5)<x/Ts+i)| +r (C;ﬂg@,nﬂ‘) - CKopt(gs,Ts)(xlTsﬂ))

< (24 2B,)|C¥%(a, ) — C%

Kopt(éS7Ts)(x/Ts+i)|‘ (72)
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. . o . o . / . al /
The difference in the next position when at position 27, ; and using control C38(x7, ;)
05 / :
Versus C’Kopt ( 95,T5)(st 1) 1s

Ew/ *valg ./ *, ./ * 0 /
o +0 Os (‘rT +i) + W44 — (CL Lryti + b CKopt(GS,TS)(ng"'i) + wTs‘i‘i)

= b*|C8(a, ) — Czopt(es,n)(x,?“ﬁi”‘ (73)

Under event E, the controls C’Ie{sopt ( 03,T3)<I/TS i) and C'8(af, ) are safe for dynamics 0, and

0%, respectively and ||6* — GSHOO <€ < OT(VT). Therefore, by Lemma , conditional on
event E and for sufficiently large T, we have that |2/, ;| < 4log*(T) and that

|a*$£fs+z‘ + b*cjlg($éfs+i) + w4l ‘a*xlTs-i-z‘ + b*cﬁ(opt(987Ts)($%s+i) + wr, 44| < 410g2(T).

Conditional on event E and for Sufﬁciently large T, we therefore have by Lemma 8| that

conditional on EA@(C;’(S 6. {w; ) P +11 +1), we can bound the difference in future cost of
opt s S

the next T, — i — 1 steps starting at time T + ¢ + 1 when using control C*'8(a/, ,,) versus
b 6o )(x’TSH) as follows.

Kopt
* . x 1 * valg /. / Tsy1—-1
(T, —i—1) ‘J (0 KOPE(QS,TS) T —i— 1,0, + 0" CT8 (w7, 1) + wri, {ws}; 27 i)
* s . * 1 * 0 s+1—1
—J(, CKopt(@s,Te) To—i-La'wp, +b CKopt(es,Ts)(xT i) T WT s {wJ}J Totit1)

=Or (b*|C§1g(sz+z> Cfe(opt(es TS)(xlTs+i)| + €s> : [Eq (73), Lemmals]  (74)

Therefore, the difference in total cost between C! and C;™' conditional on event E with
- iy Tsi1—1 .
probability P(EAE(CZON(@STS)’ {w;};50 ) =1 —op(1/T") is

Ty - J(0, Cy T Ty, 2l W) — T - J (0%, CF, T, alp, , W)

< ’z J(0* C’”‘l,z,xT 7{w]}T J”)—z J(0", CZ,Z’ J:T 7{w]}T J”)

al 2 65 2
+r(Cah, )P =l @)’

* * va Ts
+(T—i-1) ‘J (0 Caom(e rypls—i-La T4 0O (2 ) + wr g, {w; )5 B i)

x O, * 0, Ts+1—1
- J(0", C Ko (0,,T2)° Ts—i—1,a"wy ; +0b CKc,pt(és,Ts)(x/TS“) + wr, 44 {U’j}j:JrTleriH)
<0+ (24 2B)ICF i 1) = O ) (@)

+Or (V1085 10) = O @)l +e:)  Ea @,

_ OT (|C§dg($/Ts+i) — Cf;opt(éS)TS)(l'/Teri)‘ + 63) . (75)
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We can use Equation for all i € [0 : T, — 1], the triangle inequality, and a union bound
to get that conditional on event F, with probability 1 — or(1/7T?)

(T T, O s Tos i Wa) = Ty - J(07, C2%, Tl W)

Ts—1
< DT O CEL T 2t W) = T J (67, CL T, 2, W)
i=0
- Ts—1 A
= OT <Z |C§‘1g($gfs+i) - C?;opt(és,Ts)<w’/TS+i>| + T568> . (76)
1=0

The above was for a fixed value of s. Taking a union bound over all s € [0 : s.], we have

that with conditional probability 1 — or(1/T) given event E, the desired result holds for all
s€[0: s O
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F Proofs of Sufficiently Large Noise Case

F.1 Proof of Theorem 2

First, we present the algorithm which is used to prove Theorem [2]

Algorithm 5 Safe LQR for Large Noise
proof. Input: D, D,0,C™ {C%)yco, T, A\
1. vp < T71/4
2: for t < 0 to V% —1do > Safe warm-up exploration phase
3: Oy ~ Radergacher(Oﬁ)
4:  Use control u, = C™¢(z,) 4 2

log(T')
5: for s < 0 to logy(Tv2) — 1 do > Safe certainty equivalence phase
6: T, + 3—;
T

(V)
8: v < (Zf Zr, + N ) ' Z] Xr,

9: 95 <— arg minne,iégre minllgiégre”ooges P(e, Kopt(e/’ TS)? DU)

T €g BTS

Hooges
. alg 0s

10: Ce CKopt(és,Ts)

11: fort < T, to 27, — 1 do

12: uiaer — maxiu: max  az; + bu < DU}
1605l oo <es

13: us?el < min {u : min  ax;+bu> Dy,
1605 || oo <es

14: Use control u, = max (min (C8(z), us*V) | ugtel)

Importantly, we note that Algorithm [5| fundamentally only differs from Algorithm [3] in
two ways. The first is that vy changes from 7-'/3 (in Algorithm [3)) to T-!/* (in Algorithm
, which changes T as well. The second is that the definition of 6, changes between the
two algorithms. Note that the definition of égre in Algorithm |5 is equivalent to the definition
of 6, in Algorithm . This means that the definitions of u$*€V and u*L are the same in
both Algorithm |3| and Algorithm . Of course, the changes in vy and the definition of 0,
change the entire trajectory of the algorithm, which affects all of the other variables as well.
However, all other differences in the algorithm trajectory can be derived from these two
changes.

For the rest of Appendix , let C®8 be the controller of Algorithm . Because Algorithm
and Algorithm [3|differ, we will now redefine the important events and lemmas from Appendix
with respect to Algorithm (and the corresponding és), and use this notation for the rest
of Appendix [F} Define s, = log,(Tv2) — 1, and let

Ey:= {vS < s ||0F — 07| < es} . (77)
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By Lemma 23| we have that with probability 1 — o7(1/T2), ||6* — 6°™¢|| < €,. Therefore,
P(Ey) =1 —op(1/T?).

Also note that because ||és — ég’reHoo < €5 by construction, we have by the triangle inequality
that under event Fy, ||0* — 0s]|c0 < 2.
For the rest of this section, define

By :=Ey( ) { max e, = OT(VT)} . (78)

s€[0:s¢]

We also have the following equivalent result to Lemma [2 but with respect to the ¢, in
Algorithm [5]

Lemma 18. Under Assumptions[1H8, with probability 1 — or(1/T?)

max €g = OT(VT)-
s€[0:s¢]

The proof of Lemma [2] relies only on the first v steps and is written agnostic to the
choice of v, and therefore the result of Lemma [18| follows directly from that proof. Lemma
implies that we have

P(E;) =1 —op(1/T?).

For this section, E; will still refer to the same event as in Equation . We also define
the event Eg, the same way as in Equation except with respect to the positions and
controls of Algorithm [5| and finally we define the event £ = F; N Ey N Egue (the same as in
Appendix [C.2). Therefore by a union bound we still have that P(E) = 1 — op(1/T?). Using
this new notation and Lemma (L8, we can proceed to the main proof.

The safety of C*® follows from an equivalent version of Lemma (1| except stated for
Algorithm [5] instead of Algorithm [3] The proof follows as in the proof of Lemma [I] except
using Lemma [1§] instead of Lemma [2, and using the above definitions of Ey, £ and Fy with
respect to Algorithm An equivalent statement of Lemma [3| holds except for the u;*eV
and w3 coming from Algorithm . Note that the only place that the proof of Lemma
relies on vy is that it requires that e, = Op(vp) and that Op(vr) = op(1/log(T)) at multiple
points in the proof, which still holds under the new definitions of Fy and vp. Finally, as
noted above, the u5*°V and u$**l are constructed in the same way for both algorithms, and
therefore the rest of the proof of Lemma [I] follows directly.

The rest of this section will focus on bounding the regret of Algorithm |5/ to be OT(\/T )
with probability 1 —o7(1/7). Informally, the key idea behind the regret bound of Algorithm
is that with high probability, the uncertainty upper bound e, will decrease at a rate

proportional to 1/4/T. This is formalized in Lemma .
Lemma 19. Under Assumptions[1H9, given event E with conditional probability 1—or(1/T),

max e,\/T, = Op(1).

s€[0:s¢]
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The proof of Lemma [I9 can be found in Appendix [F.2]
Define event E5 as the event

Es = { max 65\/_ OT }

s€[0:s¢]

By Lemma [19] P(F3) = 1 — o7(1/T). We can decompose the regret of Algorithm [f]into the
same components of regret as in Appendix [C.2] The first two propositions stated below are
exactly equivalent to their counterparts in Appendix [C.2]

Proposition 8 (Regret from Warm-up Period). Define xj, 2!, ... as the sequence of random
variables that are the positions of the controller C*# defined in Algorithm @ Define Ry as
the cost of the first 1/v2 steps, i.e.

Ry=T-J(0°,C*",T,0,W) =Y T, J(6",C Ty, oy, , W,). (79)
Then under Assumptions[IH8 and conditional on event E,

a.s. ~ 1
R % 0y (_2) .
vr

The proof of Proposition [§] can be found in Appendix [F.3]

Proposition 9 (Regret from Randomness). Define Zr,, Z1,41,... as the sequence of ran-
dom variables representing the sequence of positions if the control at each time t > Ty is

Cf;opt(e T )(:Ut) for s = |log, (tv3)] and starting at &z, = 2’y . Define Ry as
Ry —ZTJ 0, C% oy Todn, W) = S B [TJ(0°,Ch T 0w, | 4]

Then with conditional probability 1 — or(1/T') given event E,
Ry < O7(VT). (80)

The proof of Proposition [9] can be found in Appendix The next two propositions
have different regret bounds than their counterparts in Appendix [C.2]

Proposition 10 (Regret from Non-optimal Controller with Sufficiently Large Noise). Define
R, as

—E ZTsJ(9*> i, To iy, W)

s=0

Ry = sZeE [TSJ(G* ol T3, 0,W,) ] és]

Kopt (95 s)
s=0

Note that W is independent of 0, by construction. Then under Assumptions @ and con-
ditional on event Ey M Ej,

Ry < Or (VT). (81)
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The proof of Proposition [I0] can be found in Appendix [F.5]

Proposition 11 (Regret from Enforcing Safety with Sufficiently Large Noise). Define &1, T1,+1, -.-

as the sequence of random variables representing the sequence of positions if the control at
each time t > Ty is Cleéopt(és,TS)(jt) for s = |log, (tv7)] and starting at &g, = 2’y . Define Rs
as (the random variable)

Kopt éS 7Ts)

RS = Z Ts‘](e*v legv Tsa xél“sv Ws) - Z TSJ(H*a Cés ( 7Ts> -%Tm WS)
s=0 s=0

Then under Assumptions [IH9, with conditional probability 1 — or(1/T) given event E N Es,
Rs < Op(VT).

The proof of Proposition [11] can be found in Appendix [F.6]
Using Equation combined with Propositions , |§|, and , the total regret is

upper bounded by the following conditioned on event E N E3, with conditional probability
1 —op(1/T)

T-JO,C*" T)—T. - J(0*,C%

~ 1
w0 T) < Ro+ Ry + Ry + Ry = Or (y—z + ﬁ) .
T
Because vy = T~/* in Algorithm |5 this gives total regret of OT(\/T ) conditional on F3NE.
Since P(E3) =1 —or(1/T) and P(E) = 1 — or(1/T), a union bound gives that the regret of
Algorithm [5|is Op(v/T) with unconditional probability 1 — op(1/T). O

F.2 Proof of Lemma[19(Uncertainty bounds using boundary times)

proof. To prove this lemma, we will show that the controller C*# uses the control us*eV

“sufficiently frequently”. Let S; be the set of times ¢ < t when the control used by Algorithm
is u$eV. Formally, if uf, v}, ...u/,_ | are the sequence of controls used by C?#, then

Sy ={i <t:u, =uV}). (82)

Lemma 20. Under Assumptions[IH9 and conditional on event E with conditional probability
1 —or(1/T),

se[lise] T

The proof of Lemma [20[ can be found in Appendix . Equipped with the fact that |S;|
scales linearly with ¢ from Lemma |20, we need the following result that will lower the upper
bound for e,.

Lemma 21. Under Assumptions[IH9 and conditional on event E with conditional probability

1- OT<1/T)7
max] €s\/ ‘STS = OT(l)

$€[0:s¢
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The proof of Lemma can be found in Appendix To see that eg\/Ty = éT(l),
note that v/Ty = 1/vr and Lemma |18 imply that conditional on event E, €y = OT(VT). For
s > 0, a union bound combining Lemma with Lemma gives the desired result that
conditioned on event £ with conditional probability 1 — or(1/7),

max e,\/T, = Op(1).

s€[0:s¢]

F.3 Proof of Proposition

proof. The proof of Proposition [§] follows the same as the proof of Proposition [d The proof
of Proposition [ relies on the fact that the controller is safe for dynamics 6* conditional
on event F. This is still true by construction of event F, and therefore the result follows
directly. O

F.4 Proof of Proposition [9

proof. Note that this statement is exactly the same as the statement of Proposition [6] except
for Algorithm [5] The proof of Proposition [f| relies on Lemmas [6] and [7} Define the event E3
as

B = {||é5—0*||oo§2-65§2@T-VT}, (83)

where the ¢; = Op(1) from Lemma |18 Note that we still have P(E5) > P(E,) > 1 —
or(1/T?). An analogous version of Lemma [6] holds with this new definition of E3 for Algo-
rithm . Examining Lemma @ the proof relies on 6, and vy through Lemma . A version
of Lemma [15| holds with the exact same statement with the new definition of Ej. Exam-
ining the proof of Lemma (15, we must have that under event E3, |0, — 0*||oc < Or(vr) <
min (€, @) in order to apply Lemmas [8 and and this holds for vy = T—'/4. Therefore,
we have shown the equivalent version of Lemma[6] for Algorithm

Similarly, an analogous version of Lemma [7 holds for Algorithm [5] Lemma [7] depends on
0, and vy only in that it uses [|0* — 0,]|c < 1/log(T) conditional on event E, which still
holds by construction of Ej for vp = T~/* and sufficiently large T

Now that we have shown that equivalent versions of Lemmas [6] and [7] still hold, we can
return to the proof of Proposition [6l Outside of the two lemmas discussed above, the only
places in the proof that depend on the choice of vy and 0, is that s, = OT(l) is still true in
Equation and that conditional on event E, ||0, — 0*||sc < Or(vr) < min(eqg, @) in
order to apply Lemmas [ and [§] As both of these still hold for the new definition of £ and
for vp = T~*, we are done. O

F.5 Proof of Proposition

proof. The proof of Proposition [10] will mostly follow as in the proof of Proposition [5 The
proof of Proposition [ relies on Lemma [5] An equivalent version of Lemma [f holds for
Algorithm [5] where the only difference is that the T, are now defined differently. To see
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this, note that the proof of Lemma |5 works for any Ty < T, and therefore the proof follows
exactly the same.

Returning to the proof of Proposition [5 we can still apply Assumption [7] under the event
E5 as defined in Equation . Looking at the last block of equations in Proposition , we
can follow the logic exactly and pick up from the second to last line. Applying Lemma [19]
conditional on £ N Ej,

Y E [T J (607, P 1,0, W) ‘ és]

Kopt (03 Ts)

ZTJ@* Cle, Ty, iy, W)

= Or(1) + Or (Z T,0r (\/1T) + %) Lemma [IJ

F.6 Proof of Proposition

proof. The proof of Proposition [I1] will mostly follow as in the proof of Proposition [/} The
proof of Proposition [7] relies on Lemmas [9 and [10} We will show that equivalent versions of
these lemmas hold for Algorithm [5]

Starting with Lemma @7 an equivalent version holds for the uf**Y and uf**°" defined in
Algorithm [5] and C*# as the controller of Algorithm [5} Looking at the proof of Lemma [9)]
the main tool is Lemma [I6l An equivalent version of Lemma [16] holds for Algorithm
Looking at the proof of Lemma |16} the dependency on 6, and vr is that we must have that
conditional on event E, ||f, Q*HOO < Or(vr) < min(eag, bg( )) in order to apply Lemmas

and I The union bound at the end of the proof also relies on s, = Op(1), which also does
still hold. Returning to the proof of the equivalent of Lemma [J] for Algorithm [5, we again
need that conditional on event E, ||6; — 0*||s < Or(vr) < min(eqg, ﬁ) in order to apply

Lemmas 4| and I Once again using that s, = OT( ), the rest of the proof of Lemma @ can
be directly applied.

An equivalent version of Lemma [10] also holds when C®# is the controller of Algorithm
with vp = T—/4. We defer the proof of this to Appendix .

Now we can return to the proof of Proposition [7] and show that a slight modification
gives the desired result. Looking at the last set of equations, we can pick up from the third
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line and apply Lemma [19|to get that, conditional on event £ N Ej3,

Se T5+1 1

R < Or (ZT68> +> > X/ Or(e) + X/} Or (e)
s=0 t=Ts
S OT <Ze Ts€s>
s=0

SZTS'OT( ! ) Lemma [19]

The last line follows from the fact that for all s, T, < T and that s, = Op(1). O

F.7 Proof of Equivalent Version of Lemma [10 for Algorithm [5]

Examining the proof of Lemma [I0] the main change when using Algorithm [l is that we now
have that under event E and for sufficiently large T, [|6* — 0,||o0 < 2€, (while for Algorlthm
there was no factor of 2). Because vy = T~1/4, this still allows us to apply Lemma Picking
up the proof of Lemma directly before Equation , the extra factor of 2 mentioned
above will result in the following changes.

By the construction of Algorithm [5| 45V satisfies, for some @ such that || — 02|, < e,

ax; + bui*V = Dy. (84)

Under event E, [[0* — 0,)|00 < 26, and [|6, — 0P™||o < €, which implies that [|§* — 0]|o <
des < Or(vr) < 1/log(T) for sufficiently large T'. Therefore, applying Lemma 4| gives that
under event F and for sufficiently large T,

Dy > a*z} + bruseV uf*eY safe for 6*
> ax) + busaer |5V |4, — |2 |4e, 0% — 0|00 < 4e,
> Dy — 8B,¢,. Equations (59)),(60), and (85)
If u5afeU < Cf;opt ., Ts)( x}), then there must exist some 6 such that |]é§re — 0|0 < €5 and
axy + bCf(Sopt(e TS)(xQ) > Dy. (86)

By the same logic as above, under event E, [|6* — 6| < 4e; < Op(vp) < 1/log(T) for
sufficiently large T, therefore under event E and for sufficiently large T,

* * ~0 /
a*r, +b CKopt(es TS)(:Ct)
> ax) + bC’f{opt(o - )(xi) — de,|x}| — de C’f{opt(a TS)(LE;)

> Dy — 8B,e,. Eqs (59)),(61)), and (87)
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Finally, because C' 9

/ . . N
o és,Ts)(xt) is safe for dynamics 6,

P 7 ~0
asry + b,C7
57t s Kopt(087TS)

(x}) < Dy. (88)

Using that under event E, ||6* — 0o < 2¢, < Or(vr) < 1/1og(T) for sufficiently large T,
Equations , , and imply that under event F and for sufficiently large T,

@'+ b 1y(@) < Du + 4Be,. (89)

Kopt(

Combining Equations and (89), if ug*U < s ( é&TS)(a:Q) then under event E and for

Kopt
sufficiently large T,

Dy — 8B,¢, < a*z) + b*cfépt(ésm(x;) < Dy + 4Bye,.

Combining this with Equation gives that under event FE and for sufficiently large T,

% 1 * safeU * ! *f
("} + 0"up™") — (a"z; + b Cﬁom(és,Ts

)(x;))| < 12B,¢s.

This implies the desired result that under event E and for sufficiently large T,

safeU 6
U - C7% .
| t Kopt (9.5 7Ts )

(x})] < 12Bge,/b".

F.8 Proof of Lemma

proof. In this proof, we will use the following result about the times the algorithm chooses
control w5V,

Lemma 22. Let z}, u} be the positions and controls of controller C*& at time t. Fort > Ty,

~

let sy = |logy(tvr)|. Then under Assumptions J@ there exists a Py, (0s,, €s,) such that

{37:5 > PSt(ésw €s,)} C {u; = uiaer}v

~

and such that conditional on event E, we have P, (0;,,€s,) < P(6*, Kopi (6%, T,), Dy).
The proof of Lemma 22) can be found in Appendix [F.9] Recall that {i € Sy} = {u} =
us?UY. Therefore, for i € [T} : Tyyy — 1], Lemma [22 implies that
{27 = P(0", Kope(07,T5), Du)} N E C {z] > Pst(ésﬂ €) NE
C{u,=u™ynE
={ieSn}NE. (90)
By Assumption 9} for any x}_,,uj_, satisfying a*z}_, + b*uj_, € [Dy, Dy], we have that
P (l’; > P(Q*v Kopt(e*a TSt)? DU) | nglv ugfl)
Z ]P (wl Z P(G*, Kopt(e*a TSt), DU) — DL)
> €AQ Assumption [9] (91)
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Because P(E) > 1 — op(1/T), this implies for sufficiently large T and for any z |, ul_,
satisfying a*x}_, + b*u}_, € [Dy, Dy],

P (.1'; 2 P<9*>K0pt(9*7TSt)>DU> ’ x;‘—bug—lvE) 2 €A — ]P(_'E)
> exg— or(1/T)
€AQ

> .
-2

(92)

Also, recall that conditional on event £, C*8 is safe for dynamics 6* for all T steps, therefore
conditional on event F, for all i > 1, Dy, < a*z,_, +b*u,_, < Dy. Therefore, for T} < i < T}
and sufficiently large T,

P (Z € S,
> P (2 > P(0*, Kope (6%, T), DU)|ZE6, Ty, ey Ty, U, U, o uf_y, E) Equation
> P (2} > P(0", Kope (0%, T}), Du) | @} _y, uj_, E)
€Al

5

ro / Y !
Loy L1y w5 Ti1, Ug, Up,s "‘7ui*17E)

> Equation (92)) (93)

Defining X; = lics,, , the above equation is equivalent to

€AQI
/ / / / / /
E[XZ ’ ZEO,JZI,...71',L»_1,U07U1,...,Ui_l,E} Z 7.

Ts—1

Therefore, we can conclude that conditional on event F, > *" X; is stochastically domi-

nated by ZTg_l Y;, where Y; are i.i.d. Bernoulli random Varlables that are equal to 1 with
probability eA@/ 2. By this coupling argument and Hoeffding’s inequality, for s > 1, condi-
tional on event E with conditional probability 1 — op(1/T?),

Ts—1 Ts—1
Sel=Y x> Y Vi > T 1) log(T)VT, —To > B (1.~ To) > 2273, (94)
=Ty =Ty 4 8

where the second to last inequality comes from for sufficiently large T and s > 1, T, —
Ty > /T and therefore /T, — Ty > Z“Z%AI;T). The last inequality comes from the fact that

T, — Ty > % by the definition of T for s > 1. A union bound over all s € [1: s.] gives that
conditional on event F with conditional probability 1 — or(1/T),

. ’ST €AQI
WIL S, 2
wlin] T, =8

F.9 Proof of Lemma 22|
proof. Defining Ps(és, €s) as

Ps(émes) = min P(Q, Kopt<é57Ts>7DU>7

1665 |oo <es
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we have by definition of u$*¢U in Algorithm that

{2, > Pi(fs,6,)} = {x; > min P(97Kopt<és,T5),DU>} C {ul = uU),

16—05" 0o <es
Under event E, ||0* — 0P| < €5, therefore

min P60, Kope (67, T,), Dy) < P(6%, Kopo(67,Ts), Dy).

16—65"loo <es

Therefore, we can conclude that conditional on event F,

Ps(émes) - Amin P(Q, Kopt<é57Ts>7DU)
10—62"[loo <es
<  min  P(6, K. (0%,T,), Dy) Choice of 0,
[10—65" [l <es
< P60, Kopt (0", T5), Dy). Equation
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G Uncertainty Bounds

G.1 Tools for Uncertainty Bounds
The proofs of uncertainty bounds will rely on the following result from [AYSTI].

Lemma 23 (Derived from Theorem 1 in [AYS11]). Suppose x; and u; are respectively the
position and control at time t when using an arbitrary controller C starting at position
g = 0. Define zz = (xy,uy) and let X > 0. Let Z, € R”?2 where the ith row is z;_1, let
X, € R where the ith element is z;, and let I € R?*? be the identity matriz. Then under
Assumptions J@ with probability 1 — op (%) the following holds for all 1 <t <T —1 and
for any S C[0:t—1]:

Vi), (ViF)22)
det (V%)

160" — (2] Z, + A7 Z) X, || < \/max(( B, (97)

where VS = M 4+ Y120 202 1ees, By = a\/log <det (‘/;[O:tfl])) +log(A2?) 4+ 2log(7?) +

\/X(EL2 +b%), and « is from the subgaussian assumption on the noise distribution D, which
implies that there exists an « such that Byplexp(yw)] < exp(v2a?/2) for any v € R.

Lemma 23| can be directly derived from Theorem 1 in [AYSTI] as shown in Appendix|G.5|
The other tool that will be shared by the proofs in the following sections is the following
anti-concentration inequality of the sum of non-negative random variables.

Lemma 24. Forp € (0,1] and 1 <n < T, suppose X, ..., X,,_1 are non-negative random
variables such that (Xg, ..., X;_1) is a deterministic function of the random variable set F;
for all i € [1 : n] and F; C F;iy. Let the set S,, C [0 : n — 1] be a random variable such
that the event {i € S,} is a deterministic function of Fiyy. For i € [0 : n — 1], define
S; =4k <i: k€ S,}, therefore S; is a deterministic function of F;. Let E* be an event
such that for all i € [0:n — 1],

E[X; | F,,E*i€S,] > c-|Si, (98)

where ¢ > 0 is non-random. Furthermore, assume that conditional on E*:

IS}
vl

o
ING

a.s. C’Szl
2

ING

X, : (99)

i

Then conditional on event E*, with conditional probability 1 — op(1/T?),

—_

n—

X, = 7 (max((plS| —og(D)/[51], 1)) (max(Lp]S,| — log(7)V/IS,1). 1) — 1).

Il
=)

%

The proof of Lemma [24] can be found in Appendix [G.6|
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G.2 Proof of Lemma [2

proof. For the rest of this proof, x; and u; are respectively the position and control at time
t of controller C*# that corresponds to Algorithm [3|starting at zq = 0. Recall that Lemma
was stated and used in Appendix [C] with respect to Algorithm [3], therefore all events and
variables in this subsection refer to those defined with respect to Algorithm [3] To prove
Lemma , we will use Lemma 23| applied to S = [0 : é — 1]. The goal will be to bound the

right side of Equation for this choice of S. Consider any fixed arbitrary s € [0 : s.] and
the corresponding matrix V7. Define N as the event that for all ¢ < 1/v2, the control u; is
safe for dynamics 6*. Note that we showed in Lemma [1| that P(N) > P(Eug) = 1 — or(73).
Under event N N Fy, we can apply Lemma [4] to get the following equations for sufficiently
large T

1
(Vi =A+ > a2l <A+ 5B (100)
i=0 T
%271
< 1
i=0 T
0\
Vi =| D i | (102)
i=0

We can now compute (V32 )a2 (V3 )11 — (V2 )3,. Recall that for the first 1/v2 steps of Algorithm
3, the control is u; = Cinit(xi) + 10§T) where ¢; is i.i.d. from the Rademacher distribution
and independent from the noise random variables.

(Vi)aa (Vi )i — (V)i

1 1
41 -1 |

YT YT
A L A RS A N IR Equations (T00) (101)) (102)
=0 =0 1=0
19 1 _q 1 2
> u? a:f — U X5
=0 =0 =0
—
vr
= > (way —umy)?
1<J
L1
YT ¢ 2
_ e __ (Yinit ) ) J .
- ; (u,x] C™ () z; + og (T>xl) : (103)



Conditional on N N By, for all i < 1/v2, we have |u;, |;| < B, by Lemma [ Define the
random variable X; as

—

.

Xj = (u,-:vj — U]’ZL’Z')Q
i=0
i—1
_ X Cinit ij 2
= Z uixj — (l’])l’z + log(T) ZT;
i=0
< 4jB%. Conditional on N N E; by Lemma []

(104)
We will use the following lemma to lower bound the conditional expectation of X.

Lemma 25. Under Assumptions J@ let g, 1, ..., x7 be the positions of the controller C*#
starting at xo = 0. Then there exists an event Ergg such that P(Egg) = 1 — op(1/T?) and
for sufficiently large T conditional on Eigg, for all j > log®(T),

j—1 :

P — 105
ZZ_; "7 2log*(T) (105)

The proof of Lemma [25 can be found in Appendix [G.7} Now define E* = NN Ey N Ejpg.
Note that P(E*) = 1 — or(1/T?) by a union bound. Because ¢; is a Rademacher random
variable, we therefore have that P(¢; = 1 | E*) = 1/2 — op(1/T?) and P(¢; = —1 | £*) =
1/2 — op(1/T?). This implies that |E[¢; | E*]| = or(1/T?), and therefore for sufficiently
large T', we have Var[¢; | E*] > 1/2. Then we can bound the conditional expectation
of X, under event E* as follows for all j > log®(T) and for sufficiently large T. Define
F; ={xo,uo,...,xj_1,uj_1,2;}. Then we have

Jj—1 2
* ini ?; *
E[X; | F};, E] = ZE <Uil’j — O™ (xy); + <log(jT) T Fj, E
i=0
i1
> ]E:Var [uixj — C"™Y(xj)x; + < 0; ) x; | Fj, E*]
par log(T")
7j—1
= x? Var [ 2 ‘ F; *}
; log(T) | 7
j-1
= 2V % | g ¢, is ind. of F;
Lt log(T) ! ’
1=0
-1
_ Var[o; | BT
log*(T) <=
1 =
> 2
= 210g2(T) ZO‘T
J *
> E*CFE 106
~ 4log(T) = Fum (106)
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Therefore, we can apply Lemma 0 Xiogs (1)) Xiogs (1) 415 -+ X1/02-1 With n=1/v2—log®(T),
p = m, F; = {xo,ug, .., i1, 2}, S, = [0 :n—1], and ¢ = m Note that this
choice of p is less than 1 for sufficiently large T'.

We will also use that for sufficiently large 7', n = 1/v2 — log®(T') = T?/* — 1log®(T) >

41og*(T)/p?. This implies that for sufficiently large T,

Lvg —log(T) _ | (107)

— log(T > 2=
pn —log(T)/i 2 pn/2 = < o >

Recall by Equation (104) that under event E*, the X; are bounded by 0 < X; < 4jB} =
2%) - 7. Lemma [24] gives that for sufficiently large T" and conditional on event E* with condi-

tional probability 1 — op(1/T?),

(Vi)aa (Vi )1 — (V)i

1
1
T

<

= X Equation (103))
=0
-1
T
> X; X, >0
j=log®(T)
> —— 161 ( (Lpn —log(T)v/n),1) — 1) (max( |pn — log(T)v/n], l)) Lemma [24]
og
1/v7 — log™( )J ) Ql/y% - log8(T)J> .
- -1 Equation (07
- 1610% Q 6483 log(T) 6484 log*(T) quation
1
A
- " ' 108
<38 log"*(T) > (108)

Finally, we need to bound the quantity Br, from Lemma [23] The only non-constant term in

T, 18 \/log det(A + 32501 2i27)) + 21og(T2). Define Vi, = AT + 3.2 ;2. Conditional

on event N N Ey, we have by Lemma I that (Vz,)2e < A+ TB? and (VTs)ll < A+ TB:
Therefore, conditional on event N N £},

log (det </\] + Z_ z,zj)) + 210g(T?) < /log((V,)11(Vir,)az) + 21log(T?2)

< \Jlog (A +TB2)?) + 2log(T?)
= Op(1). (109)

Now, combining Lemma [23| and Equations (100)), (101)), (10g]), and (109) gives that condi-
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tional on event E* with conditional probability 1 — op(1/T?), for all s € [0 : s,

sV, V) L, Ot () BIO:)
= det(V;?) Br, = (L)Q =Or (VT) .

Qr

B log"*(T)

Because P(E*) = 1 — op(1/T?), this gives the desired result with unconditional probability
1—or(1/T?). O

G.3 Proof of Lemma 21]

proof. Recall that Lemma [21] was stated and used in Appendix [F| with respect to Algorithm
[, therefore all events and variables in this subsection refer to those defined with respect to
Algorithm 5] We will prove a more general result in Lemma [26]

Lemma 26. Let x;,u; respectively be the position and control of C*& (the controller of
Algorithm @) at time t starting at xg = 0. Define G; = (zo,ug, ..., Ti—1,ui—1). For constant
v > 0, define S; as

Sy = {Z <t:u; = w3V and P(u; = vV | Gy, E) > 'y}, (110)
where E is the event defined in Appendiz[F. Then under Assumptions[IH8 and for sufficiently
large T, with probability 1 — op(1/T),

max €,4/]S5 | = Or (1),
s€[0:s¢] s
where € is from Algorithm [5,

The proof of Lemma [26] can be found in Appendix We will now prove that Lemma
is a direct consequence of Lemma . By Equation (93]), we have that for all 1,

P (uz = uf-aer | Gi,E) > %@

Therefore, we have that

{i <ty = u™®Y and P(u; = vV | Gy, E) > %@} = {2 <t:iu = u?aer}. (111)

Lemma [26| for v = 3 gives that with probability 1 — or(1/T),

max e, - \/Hz <t:u; =V and P(u; = ui™eV | G4, F) > %@H =O0r(1). (112)

s€[0:s¢]

Combining Equation (111]) and Equation (112)) gives that with probability 1 — op(1/T),

max 65\/‘{i <t:u; = u?aerH =07 (1),

s€[0:s¢]

which is the desired result of Lemma 211 O
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G.4 Proof of Lemma [26]

Lemma [20] is stated above to be used in Appendix [F] with respect to Algorithm [5] therefore
all events and variables in this subsection refer to those defined with respect to Algorithm [5]

proof. The first step of the proof will be to prove that conditional on event E for all ¢ > Ty,

upe = g Dote (113
where |e;| = Op(vr). Let s; = |logy(iv2)|. Recall that w3V is the largest u such that
max  ax; + bu < Dy.
16—05s, lloo <es,
For sufficiently large T" and conditional on event F,
€, = Or(vr) < min(a*, b*) — €,, < min(as,, bs, ).
This implies that a,, — €,, > 0, giving the following equations of casework for u5eV:
W, if x; > 0 and (as, + €5,)x; > Dy
ustel — w, if x; > 0 and (as, + €5,)x; < Dy (114)
which implies
I ésvb:s. + az;(af)z, if z; > 0 and (as, + €5,)z; > Dy
I = § PG SR 2 0and (@ 6 )n S Do (1)

which implies

DU—a*xi _|_ b*_l;si""ESi DU—a*xi + (a*—&si—esi):pi

if z; > 0 and (as, + €5,)x; > Dy

b* bsi\fﬁsi b* bsifesi ! -
safeU __ Dy—a*z; b*—bs; —€s; Dy—a*x; (a*—as; —€s;)Ti : A
; = . - if x; >0 and (a,, + €,,)x; < D
U, b + bsi+ﬁsi b= + e, tes, s i Z ( Si + 31> i > U
Dy—a*z; b*—bs;—€s; Dy—a*z; (a”—as; tes;) s ;
. . . if x; <0.
b* + b5i+65i b* + bsi"’esi v =

(116)
Under event E, |a* — a,,| < €5, [b* — bs,| < €s,, and |z;| = Or(1), therefore in all three cases
we have that

safeU a’ L UTté
: =——x;+ —, 117
u; b Zi + b (117)
for some e; satisfying
\ei] = O~T(€si) = (N)T(VT). (118)

We now define

Sy = {2 <t:u; =u*Y and P(y; = w5V | G;, B) > vy and P(E | G;) >

3

NO|
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Lemma 27. Using the same notation and assumptions as in the proof of Lemma for
any constant ¢ < 1,

IP’(W cl0:t—1,PE|G) > c> —1— op(1/T).
proof. Consider any fixed ¢ € [0 : t—1]. We will show that IP’(IP’(E | G;) > c) = 1—o7r(1/T?).

Suppose this is not true, i.e. suppose that ]P’(]P’(E | G;) > c) =1-Qp(1/T?), or equivalently
that IP’(]P)(ﬂE |G;) >1— c> = Qr(1/T?). Note that by the law of total expectation,

P<ﬂE|IP>(ﬁE|Gi) > 1—c> :E[P<ﬁE|G,~,P(ﬁE|GZ~) > 1—c> | P(-E | G;) Zl—c]
>E[1— (|

=1-—c
This implies that
P(-E) = P<ﬁE IP(~E|G;)>1— c)IP(IP’(ﬁE Gy >1- c) = (1 - &)Qp(1/T?).

This would then imply that P(E) = 1 — P(=F) = 1 — Qz(1/T?), which is a contradiction
with the fact that P(E) = 1 — op(1/T?). Therefore, we must have that for all fixed 4,

]P’(]P’(E |Gy > c) —1— op(1/T?).

Taking a union bound gives that

—_

IP(W cl0:t—1,PE|G)) 26) >1— 3 (1-P(P(E|Gi) > c))

1=

[en]

1—-o0

=
—_
~
~
~

which is exactly what we want to show. O

IftVie[0:t—1], P(E | G;) > 1/2, then |S]| = |S/|. Using Lemma 27 with ¢ = 1/2, this
means

P(S) = |S/) > B(Vie 0t~ 1P| G) > 1/2) = 1—op(1/T).  (119)
Therefore, if we can show that with probability 1 — or(1/7),

max €,4/]5% | = Or (1), (120)
s€[0:s¢] s

then a union bound combining Equation (120 with Equation ((119) gives that with proba-

bility 1 — op(1/T),
max €,4/]54 | = Or (1),
s€[0:s¢] s
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which is our desired result. Therefore, the rest of this proof will focus on proving Equation
(1120)).

Fix any s € [0 : s.]. We will use Lemma [23| with S = S7 . Under event E, we have by
Lemma {4 the following three equations:

T,—1
S//

(Vi )u = A+ Y allicsy <A+ |S7,| B (121)

i=0

S/ Ts—1
(Vi) = A+ Y wilicsy < A+ 57| B2 (122)

i=0

S Ts—1 2
Ts\2 __
Vi, ™)1z = (Z Ui%’heSi) : (123)
i=0

S// S// S// . L.
We can now lower bound (V™ )22 (V; ™ )11 — (V4,™)3, for sufficiently large 7" conditional on

event F.

1" 1 1
ST, ST, Sty

(Ve )a2 (Ve ™ i — (V™ )3a

To—1 To—1 To—1 2
2 2
= )‘+§ u; Liesy, A+ E riliesy | — E uiilicsy
i=0 i=0 i=0
Ts—1 To—1 To—1 2
2 2
> E u; Liesy, E Tiliesy | — E wiZilicsy
=0 =0 i=0

Ts—1
2
= > (wiry — uzs) L jesy,

1<j

To—1 2
-3 ((_Z_I p Dot ) . <—Z—*xj y Doty ) ;U) Lijes;, Bquation (IT3)

1<j

1 Ts—-1

2
= W Z (DUiL'j +ex; — Dyx; — esz-) 12'0‘65%3
1<j

To—1
1

N (b)2 Z (2;(Dy + &) — (Dy + €j);)° Lijesy
i<j

1 Ts—1

- o & Kb, 120
§=0

Above we defined the random variable X as

j—1
X = Z((DU + ej)l’z‘lieS&Ls — (Dy + ei)leiesg;sy
=0
< |S7|4(Dy + 1)*B2, Equation (T8 (125
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where the last inequality holds by Lemma@ and because e; < 1 under event F for sufficiently
large T by Equation ([118). We need one last lemma to help lower bound the conditional
expectation of Xj.

Lemma 28. Using the same notation and assumptions as in the proof of Lemma (and
recall that Bp is the upper bound on the density of the noise random variables), if P(u; =
eV | Gy, E) >y and P(E | G;) > 1/2, then

2
Var (wj 1 ’ G, B u; = usaer) > GSZ—BP'

The proof of Lemma [28| can be found in Appendix . By definition, j € S7, implies
three events: {u; = SV}, {P(u; = vV | G;,E) > ~}, and {P(E | G;) > 1/2}. Note
that the second and third events are deterministic functions of G;. Therefore in the algebra
below, the information in {j € S7,} that tells us that P(u; = vV | G;,E) > v and
P(E | G;) > 1/2 will be absorbed into the conditioning on G; in the first equality, i.e.,
starting in the second line below, the G; being conditioned on should be understood to be

one for which P(u; = w5V | G;, E) > v and P(E | G;) > 1/2. For sufficiently large T,
E[X; | Gj, E,j € 57

=E[X; | Gj,E,u; = ujaer]

J—1
=E lZ((DU + ej)xiliesgs — (Dy + ei)leiesgs)Q | G4, B, uj = ujach
=0

<.
|
—

E[((DU + ej)xiliESéis — (DU + ei)(aa:j_l + buj—l)liesais — (DU + 6i)wj—11iES§is)2 | Gj, Eou; = u;aer}

S
[l
= O

M

Var ((DU + ej)zzlzes” — (Du + ei)(azj—1 + buj— 1)1165” — (Du + ei)w;— 11163” | Gy, E,uj = ujafEU)

S
Il
= O

(]

Var ((DU +e)wj—1 —ejz;|Gy, B uj = ujafEU) 1165%;

i=0
- ji(D +e;)? Var (wj_1 — G G, E,u; = usafEU 7
v U i j—1 DU Iy VR g 765
- saer €jLi safeU
ZZ(DUJFQ) Var (w;—1 | Gj, E, u; =uj Dot w1 | Gj, B uj = uj Liesy,
i=0 i .
j—1
> (Dy +e)? (Var (wj—1 | Gy, E,uj = usafEU log > iesy, Suff large T' (see below)
i=0
> (DU B OT(VT))2 . ‘S;/| . (Var (wj 1 | GJ, E Uy = usaer) 1Og( )> Equation "
2
_ ~ 2 Y 1 _ safeU
= (Dy — Or(vr))* - 157 - (64Bp — log(T)) P(u; = uj | Gj, E) > ~, Lemma
DRIy
—_— Suff 1 T 126
> 98B, uff large (126)

Note that we are able to divide by Dy + e; for sufficiently large 7" by Equation (|118§)).
The for-sufficiently-large-7" bound on the covariance comes from the fact that under event
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E, we have |w;_;| = Op(1) and Deljfe = Or(vp), and therefore for sufficiently large 7' the

covariance has magnitude less than ——.
2log(T)
D%'y2

We can now apply Lemma 24f to {X;}/g" withn =T}, S, = 5%, p = 0715, (Do TP 52
F,=G;, E* = FE, and ¢ = 1[2)2;13 (where Equations (125)) and (126)) imply Equations
and (99)). Because Dy < log*(T), B, = log®(T), and 7 is a constant, this choice of p is less
than 1 for sufficiently large T

Applying Lemma gives that for sufficiently large 7', conditional on event E with
conditional probability 1 — op(1/T?),

S// S//
(Vi )22 (Vi )i — (V™)1
1 Ts—1
> )2 Z X; Equation ((124)
j=0

1 D%f)/Q 1 \/7
> v’ o " .
> Gsnag, (e[ PISE] = /1% log(T) |, 1) 1)
X (max( {p|5’%s| — /|57, log(T)J ,1)) Lemma 24] (127)
Define E’ as the event that Equation (127) holds (therefore P(E’ | E) = 1 — op(1/T?)). If

S| > 4log*(T)/p?, then MST/TI‘*' > log(T)+/|S7.], and therefore

1! . 17 p|S§Cs|
plSz,| = 1og(T)y/157,| =2 == = 1. (128)

Therefore, conditional on E N E. N {|S.| > 4log*(T)/p},

i 1 i
St St Sty

(Vi )22 (V™ )i — (V")

> (bi)Q 5[1)32; <max( {p[SH — \/@log(T)J 1) — 1)
X (max( {p|S{,’,s| — \/@log(T)J ,1)) Equation ([127))
1

D2 2 . . ‘
(b*)2 51;;}) (LP‘STS /2J - 1) (LPISTJ/QJ) Equation
QO

(IS%.17) - (129)
Because E C Fi, we have by Equation (109) that By, = Op(1) conditional on event E N N.

Therefore, by Lemma [23| and Equations (121)), (122)), (129)), and (109)), we have conditional
on event E N E. NN N{|S%| > 4log*(T)/p*} and for sufficiently large 7,

v

A+ |SL|B2Or(1) - (1
63 S ’~ Ts’ T T( ) S OT <T) . (13())
Ql5z,1%) 157,
Taking E' = Ngejo:s. By, Equation (130) implies that conditional on EN E' NN N {|S7.| >
4log*(T)/p*},

15| < Or(1). (131)

82



Under event E, because Ey C E, ¢, = Op(vyp). Therefore, conditional on ENE'NNN{|ST | <
4log*(T) /p*},
IS4 < € 41og!(T) /1 = Op(12) = Or(1). (132

Because Equations and hold for all s € [0 : s, the right hand sides do not
depend on s, and the equations hold almost surely, these two equations together imply that
conditional on ENE' N N,

max €2|S% | = Op(1).

s€[0:s¢] s
Because P(E) > 1 —op(1/T), P(N) > 1 —or(1/T), and P(E' | E) > 1= [P(E. | E) =
1 —o7(1/T), by a union bound we can conclude that with probability 1 — or(1/7),

max €2|Sh | = Op(1).
s€[0:se] s

This completes the proof of Equation ((120]), and therefore completes the proof of this lemma.
]

G.5 Proof of Lemma 23

Recall that Lemma applies to all algorithms as defined in the lemma statement, and
therefore this lemma is not specific to a previous appendix section.

proof. First, we restate the theorem from [AYST1] in the notation and setup of this paper.

Lemma 29 (Restatement of Theorem 1 in [AYSTI]). Let 6* € R? and C be a controller.
Fort € [0: T —1], define zz = (x4, C(x)) and x4 = 0% - 2, + wy where wy ~;;4 D and
D a subgaussian distribution with mean 0 and variance 1, and ||0*||; < a* + b%.  Define
Vi= A+ Zi;t zsz4 , Zy as the matriz where row i € [1:t] is 2", and X; as the matriz
where row i € [1: 1] is z;. Finally, let 0, = (Z] Z,+ X)) Z] X, and A, = 0 — 0*. Then with
probability 1 — op(1/T?), for all 1 <t <T.

Tr(A/ ViA,) < BY, (133)

where By = a/log(det(V;)) + log(A2) + 21og(T2)+VA\(@*+b?) and o satisfies Eyplexp(yw)] <
exp(v2a?/2) for any v € R.

Now define V;% = Al + 32'_ 2,2 1,¢5. Then by Lemma ,
By > Te(A ViA) = Te(A] (V7 + V7)A) = Te(A] VA, + Tr(A VT A).
Because both traces are non-negative, this implies that
Tr(A VA, < BE.
Suppose A; = (Ayq, Ayy). Then expanding the trace gives that

(VAL + (V22 Af + 280 Ap (V)12 < B;.
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The left side of the above equation is a quadratic in Ay, with minimum occurring at Ay, =

_A(’;‘;g—‘)/i)lz. Therefore, plugging this in gives the following inequality.
t

AQ (VS)Q
VS A2 _ "ta\Vt )12 <B2.
( t )11 ta (‘/25)22 = Dy
Simplifying, we have the desired result that

VS)22
AQa S ( t
T (VAORVE ) — (V)L

The proof follows symmetrically for Ag. m

B2

G.6 Proof of Lemma [24]

proof. By the law of total expectation, for all k& € [0,n — 1],

c|Sk| S E[Xy | Fi, B,k € S,) Eq (98)
) [Xk Fo E* k€ Sy, X, < @] P <Xk < @ Fo E* ke Sn>
S S
+E {Xk x> A3 g opege Sn] P (Xk > C';' Fo E* ke Sn>
S S S
§C|2k|+c|2k|P(X>c|2k| ’Fk,E*,keSn>. Eq (99)
p

For i € [0:|S,| — 1], define ; as the (i + 1)th smallest index in the set S,,. This implies
that |S,| =i and ; € S,. By Equation (99), for all £,

c|Sk| c[Skl/2

cSl/2p ¥
(134)

p(x. > co
F="9

Fk,E*,k < Sn,/i‘sﬂ = k) =P (Xk 2

FkaE*>k€Sn) 2

Note that the first equality comes from the fact that by definition, x5, = &k if k € S,,, and
|Sk| is a deterministic function of F.

Let Ag, Ay, ..., A,_1 be a sequence of i.i.d. Bernoulli random variables with probability
p of being 1 that are independent of all other random variables in this lemma, including
E*S,, X;, F; for all i. For i € [0:n — 1], define the random variable A} as

A;:{1XM_ZC; if i <9, —1

A; otherwise.
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Define FA := F,, U {Ay, ..., Ai_1}. By Equation ((134)), we have that for all i,

Kmin(i,|Sp|—1)

P(A;=1|FA E*i<|S,]—1)
n—1
=Y P(A;=1|F*E*i<|[Sp| =1,k =k)P (ki =k | F* E*,i < |S,| — 1) LoTE
k=0
n—1
=> P( X > FAE* i <|S,| - 1/%kz>IP’(mk|FiA,E*,i§5n|1)
k=0
5|
:Z[P’ X, > £ il ‘F;“,E*,igSn|—1,mi:k)P(mi:k‘FiA,E*,igSn|—1)

c |5k\

Fi.,E* k€S, ki = k) ]}D(m =k ] FiA,E*,i < |Sn| — 1)

C- |Sk

:ZIP’(XK > & kil |S |‘FM,E*,F%esn,m:k>P(m:k|FiA,E*,z‘<Sn|—1)

Fi, E*k € Sp, k)5, = k) P (ki =k | FA E*i < [S,|—1) i =S| = | Sk

> p-P(ki=k|F E*i<[Sy]—1) Eq (134)

k
=, (135)

P(A;=1]F"E*i>|S,|-1)
=P (A =1|F!E"i>|S,)—1) Independence of A;
=D (136)
Putting together Equations and and the Law of Total Probability,
P(A;=1|F EY)
=P(Aj=1|F/Ei<|S,|—1)P (i <|S.| — 1| F/ E¥)
+P (A =1 FEi> (S, = 1) P (i > [S,| — 1| F/ E¥)
> p. Eqgs (135)) and (136]).
(137)

Because A} is a deterministic function of Fy}, and F* C Ff},, Equation (137) implies

that M, = Zf:ol (AL — p) is a submartingale conditional on E* with increments bounded in
magnitude by 1. For any non-random m € [1 : n], the Azuma—Hoeffding Inequality therefore
gives that

P (Z(Aé —p) > —log(T)vm

1=0

E*> >1— e—logQ(T)m/(Qm) —1— OT(l/Tg).
Taking a union bound over all m € [1 : n| (because n < T'), we have that

P(Vme [1:n] mz —log(T)v/m

E) >1—op(1/T?).
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Define E' as the event that for all m € [1 : n], 37 ' A > pm — log(T)y/m. Because
|Sy| € [0,n], we must have that conditional on event E’,

S| -1
> A2 plSal = 10g(T) /15l (138)
1=0

Therefore, conditional on event E’, we have

n—1
X
§=0
n—1
> X; X;>0
JZOjESn
‘Snl_l .
C-1 / /
2
=0

> 2 > k. Eq
— < (max(LpIS,| — 1og(T)V/IS,1J, 1)) (max(p|Sa| — 1og(T)y/IS,1J, 1) ~ 1)

Because we already showed that P(E' | E*) > 1 — op(1/T?), this is exactly the desired
result. O

G.7 Proof of Lemma 25

Recall that Lemma [25 was stated to be used in Appendix [C] with respect to Algorithm [3]
therefore all events and variables in this subsection refer to those defined with respect to

Algorithm [3

proof. Define A; = 1\%5@

are respectively the position and control at time ¢t = ¢ — 1. The probability that A; is equal

to 1 is the probability that w;_; € [—(a*z;_1 + b*u;—q1) — @, —(a*z;—q + b u;q) + @]

Because D has a bounded density function (bou2aned by Bp) as assumed in Assumption ,
P

the conditional probability given G; is at most Toa(T) " Therefore, we have that

. Recall that xT; = a*xi_l + b*ui_l + W;—1, where Ti—1 and Ui—1

2Bp

P(A=1|G) < Tog(T)’

Therefore, M; = Y2770 (A; — lzgfé’;)) is a submartingale with differences bounded in magni-
tude by max(1, 13;%) < 1 for sufficiently large T. By Azuma—Hoeffding’s inequality, with

probability 1 — op(1/7%),
Mj < log(T) \/5
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Define EﬂZEI as the event that this bound on M, holds. By construction of M;, under event
Elrm,

1 A 2iBp 4jBp
z'<j:x,~s—}’= A; < + log(T)+/j <
(i< b < gy | = 2o sy sV < i

for j > log®(T) assuming T is large enough that log?(7") > ﬁ. As long as log(T') > 8Bp,

this implies that under event EVr=

o 1 . 4Bp _J
2

< . i > > 9 — > =,
H Sz 1og2<T>H =7 log(T) < 2
Finally, we can conclude that under event E’ps,

Jj—1 j

2
Sete T
— 2log™(T)

We have shown that Equation (105]) holds for any fixed j under event Eﬂm for sufficiently
large T. Therefore, the same result holds for all j > log®(7T") under event Eigg = N i>1068(T) Pl

By a union bound and because P(Efm) =1—op(1/T?) for all j, we have that P(Figg) =
1—or(1/T%). O

G.8 Proof of Lemma 2§

Recall that Lemma [28] is defined to be used in Appendix [F] with respect to Algorithm [3]
therefore all events and variables in this subsection refer to those defined with respect to
Algorithm [5]

proof. By assumption of this lemma,
P(u; = i, E'| Gj) = P(u; = Y | G}, E)P(E | Gj)

> (139)

b |2

We also note the following result:

Lemma 30. For any event E* such that P(E*) > 0,

]P)(E*)2
) >
Varlw | B) 2 565

proof. First, we will show that any continuous distribution D’ with density function bounded
by B must have variance at least 16%. Let fp be the probability density function of D’.
First, we can assume WLOG that D’ has mean 0 (this is without loss of generality because
variance is invariant to shifts in mean). If D" has mean 0, then by the law of total expectation

ED,[Z‘ | 2 > 0|Ppp (x> 0) = — ED,[Z‘ | 2 < O|Ppup (z < 0).
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Note that we can have non-strict inequalities because D’ is continuous. Furthermore, either
Poop(z <0) > 1/2 or Ppop(z > 0) > 1/2. Because variance is invariant to multiplying
by —1, we can assume WLOG that P,op(z > 0) > 1/2. If Poop(z > 0) > 1/2 then
I fp/ )dz > 1/2. Define f*(z) = 55 for z € [0, B] and f*(2) = 0 otherwise. Note that
f = f achleves the minimum possible value of [“x - f(x)dx subject to the constraints
fo z)dr > 1/2 and 0 < f(x) < B for all . This is because f* puts as much weight as
pOSSlble close to 0 without violating the bounded by B constraint. Furthermore, any f such
that flo/oz 5 f(x)dr > 0 puts non-0 weight on values of = greater than B and therefore has a

larger value of fooo x - f(x)dx than f*. Using this, we have that

o0 1/2B 1
E E [z]x>0Ppp(z>0)= /0 x - fp(z)dr > /0 x - Bdr = 3B
Therefore, we must have (again by the law of total expectation) that
1
E el = E [o]o> 0Prn(e20)~ E o] o< 0Prn(e <0) 2 o5

By Jensen’s inequality;,

2 2
/ = = >
Varp() = E "] = E [l2["] > E [l2]]* > 17

We have therefore shown that any continuous distribution D’ With probability density func-
tion f such that f(z) < B for all # must have variance at least 555 .

We know that the condltlonal distribution of w given E* has a probability density function
that is bounded by =2 0] E* . Therefore, we must have that

o < P(E)?
Var(w | E*) > 1657,
O
Recall that w;_, is independent of G;. Therefore, Var (w] 1 | G, E,u; = usaer) is simply

the variance of w;_; conditional on an event that has probability P(E,u; = uV | G;).
Therefore, we can apply Lemma 30| and Equation ((139 - to get that for some event E’ such
that IP’(E’) > /2,

Var (w;_1 | Gj, B u; = u**V) = Var (w;_1 | E')

72

> .
= 6482
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H Truncated Linear Controller Satisfaction of Assump-
tion [7| (Proposition [13)) and Assumption [8| (Propo-

sition |12

In this section, we prove that the class of truncated linear controllers satisfies Assumptions
and Therefore, unless otherwise noted CY will refer to a truncated linear controller
as defined in Equation (§). Recall that for this class of controllers, we defined (K{, K{) =

(%5 5):

H.1 Satisfaction of Assumption

Proposition 12. In the setting of Problem |1|, the class of truncated linear controllers CP.
satisfies Assumption@ with dag = % ok In other words, for any 0
satisfying |0 — 0" < eam, t < T, W' = {w;}\2y, K € (%31, %), there exists a Yag € R’
that only depends on K and 0 such that the event FEag(K, 9 W’) = {W' € Vag} satisfies
the following. P(Exg(K,0,W")) =1 — op(1/T"°) and for any |z|,|y| < 4log*(T) such that
|z — y| < dag and, conditional on event Exg(K,0,W'),

and eA@ og . —

|t J(0",Cht,x, W) —t- J(O, Cl t,y, W)| = Or(|lz — y| + |0 — 6%[|o0)- (140)

proof. Define € = || —60*|| and § = |x—y|. In order to bound the cost difference in Equation
, we will first bound the differences in positions and controls of the two trajectories. We
begin with the following lemma bounding the difference in future positions when starting at
two different initial positions.

Lemma 31. In the settmg of Problem for any 6 € © such that € ;= ||0 — 0%||oc < W,

t < T, W = {w}iZy, and any K € [*3, %], there exists Yigy € R' that only depends on
K and 0 such that the event Eupgn(K,0,W') = {W' € Vign} satisfies P(Egn(K,0,W')) =
1 — op(1/T"°) and the following holds. Suppose that |z|,|y| < 4log*(T) and d := |z — y| <
m. Define d; as the difference in position at time i when starting at o = x versus
starting at xo =y and using controller CY% € C8 with noise variables W'. Then there exists
an L = Op(1) such that for sufficiently large T, conditional on Eygn(K,0, W),
26! L<i<t
4 < { § - for L <1< (141)

4d+OT() fOTOSiSL,

where £ 1= (1 - m>

The proof of Lemma [31] can be found in Appendix
We can also bound the difference in control in terms of the difference in position.

Lemma 32. In the setting of Problem for any 6 € © such that ||0 — 0%|| < @%, any

K € [%2, 4], and any x,y such that d := |y — x| <

1
) log!®(T)’

|Ck(2) = Ci(y)| = O (d). (142)
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The proof of Lemma [32) can be found in Appendix [H.4]
We also will need the following event, which is a subset of the event E; applied only to
times ¢ < t.

Definition 3. Define the event E! as the event that for alli <t — 1, |w;| < log*(T).

We can proceed by bounding the difference in total costs conditional on the event
Eign(K,0, W) N EL. Let dy,dy,...,d; and d, ...,d¥ ; respectively be the absolute difference
in positions and controls when starting at o = x versus starting at zo = = + ¢ and using
controller C% with noise W’. Let xq, ..., z; and ug, ..., u;_; be the positions and controls when
using controller CY starting at xy = z with noise W’. Then we have the following result
conditional on Eigq(K, 0, W') N E! for sufficiently large T

|t J(O", Cle t, x, W) —t- J(0",Che, t,x+ 6, W)
t—1
< 2qdy|vy| + qd + Y 2qdil| + qdf + 2rfus|dy +r ()’

i=0
t—1
< 2qd; || + qdf + Z 2qd;|x;| 4 qd? + 2r|us|Op(d;) + rOr (d;)? Lemma
i=0
t
= Or ;(di + d?) <|x| + || D||oo + max |w|)> Lemma [[2]
~ t
=Or Z(d@ + d?)) [Event B, ||Dl|e < log*(T), |z| < 4log®(T)]
i=0
) L ) ) t
=0r (> ((45 + Or(€)) + (46 + OT(e))2) + Y (266 + 4@52)) Eq (T41)
i=0 i=L+1
=Or 6+e+52§2+52252’>
i=0 i=0
= OT<5 + 6).
The last line comes from the fact that ¢ = 1— m and the formula for the sum of a geomet-

ric series. The above result holds conditional on event Eag(K, 0, W') := Eigg(K, 0, W')NEY,
and by a union bound and Equation (21),

P(Exg(K,0,W") = P(Exgn(K,0, W) N EY) =1 —op(1/T").

H.2 Proof of Lemma [31]

In order to prove Lemma we will use the following lemma that has a similar result but
holds conditional on an event that depends on .
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Lemma 33. There exists an L = Op(1) such that the following holds. Suppose that |z, |y| <
410g*(T) and d := |$ —y| < % In the settmg of Pmblem 1}, for any 0 € © such that
€= 10— 0o < 1 46(T) t<T, W ={w}, and any K € [%1, 2], there exists Yigg € R
that only depends on x, K and 6 such that the event Em(x,K,H,W’) = {W' € Vigg}
satisfies P(Exgg(z, K,0,W")) = 1 — op(1/T?°) and the following holds. Define d; as the
difference in position at time © < t when starting at xo = x versus starting at xo = y and
using controller CY% with noise variables W'. Then for sufficiently large T, conditional on

Ergy(x, K,0,W"),

_ 1 i. ifa
i, < (1 1~0g10(T)> d, if1>1L (143)
2d + Or(e) if 1 < L.

The proof of Lemma [33] can be found in Appendix
Now we need to find a single event Eygg(K, 0, W’) such that Equation (141]) holds for all
|z|, |y| < 4log*(T) under this event. Define the set

l

G = {—410g2(T)+—} ’
10g10(T) i€[0:81log!2(T)]

i.e. G is a grid of points evenly spaced apart. Note that |G| = Or(1). Now, take

1
log'?(T)
Exgn(K,0,W') = () Exmlg, K,0,W").

geG

First, we note that because P(Egg(g, K,0,W’)) = 1 — op(1/T*) for all g and because
|G| = Or(1), by a union bound P(Eigg) = 1 — or(1/T"0).

Now, consider any |z|, |y| < 4log®(T) such that |z — y| < _gi%T Then there must exist
some g € G such that max (|z — g|, |y — ¢g|) < og ——. For this g, let d%, d?, ... be the sequence

(1)
of differences of positions when starting at p051t10n g versus x and using controller C% with

noise W', and likewise let d, dY, ..., be the sequence of absolute differences of positions when
starting at position g versus y and using controller CY% with noise W’. Conditional on event
Eign(K,0,W'), we have by Lemma 33| that {d7} and {d?} both satisfy Equation (143)). Since
{d?} and {d?} are both distances comparing to the same set of positions starting at position
g, we have by the triangle inequality that

d; <di +d.
Therefore, for i <t we have the following, where L is from Lemma

2(1-@) d, ifi> L

d; < )

(144)

This is exactly the desired result, and therefore we are done.

91



H.3 Proof of Lemma [33

proof. The main tool we will use for this proof is the following lemma that bounds the
difference in future positions in three different cases.

Lemma 34. For any z,y, define d = |y —x|. In the setting of Problem and for sufficiently
large T, suppose € O, K € [“;bl,%}, and ||0 — 6*]| = € < @%. Then for some
p = la* = b* K|+ Op(e),

min (20d, pd + Or(e) (o] + | D)) if 2

"z +b"C () —a*y —b"Cle(y)| < Or(e)d ifw (145)
pd otherwise
. DL DU _DL . DU
Z = < < < < < <
{mm(a:,y) SRS max(z,y) < — ok T Tk S min(z,y) < K S max(.:z:,y)}

DL DU .
w {max(x,y) S Ok T AR S mln(m,y)}

The proof of Lemma [34] can be found in Appendix [H.4]

The rest of this proof will be structured as follows. First, we will introduce some addi-
tional definitions that we will use to construct event Figg(z, K,0,W’). Then, we will prove
Lemma B3] in two cases.

Define xg,x1, ...,z as the sequence of positions when starting at position xry = = and
using controller C% with noise W’. For i < t, define the event

T; — Do )<L}
" a—bK|) T log(T) )"

Note that whether the event X (i, x, K, 6, W') occurs depends on wy, ...,w;_1. For 0 < j <t
and = € R, define the event H(j,x, K,0,W’) as

Dy,
a—bK|’

Tr; —

X(i,z, K,0,W') := {min(

24Bp1q
H(joo, K0, i {|{o <i< X (i KO, WY < log?(T) + 2P }

log™(T)

Define
E*(x,K,0,W'):= () H(j,z,K,0,W).

0<ji<t

Now we will show that P(E*(z, K,0,W')) = 1 — or (7). Fix any j < t. If j < log®(T),
then H(j,z, K,0,W’) holds with probability 1 by definition. Now suppose j > log®(T).
Because D has a density bounded by Bp and z; = a*z;_1 + b*u;_1 + w;_1, we must have
that P(X (i, 2, K,0,W")) < % for all . Define M, = Zf:_ol LX (i, K0,W7) — %. For
sufficiently large T, M}, is a supermartingale with differences bounded in magnitude by 1.
Therefore, by the Azuma-Hoeffding inequality, with probability 1 — op(1/T?!),

24Bpj

{0<i<j: X(,o K 6w} < 2Brb+1) < 2B
log™(T)

< “oeb@ * log(T)/j
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where the last inequality holds for sufficiently large T and j > log®*(T'). Therefore, P(H (j,z, K,0,W')) >
1—op(1/T?"). Taking a union bound over all log®*(T') < j < t gives that P(E*(x, K,0,W')) =
1 —op(1/T%).

- L s T
To prove Lemma|33], will split the range of potential K into two parts, K € {b—g, 3

* 1
“Hoem

a
and K € [ﬂ, =

7 } . We will also use the following bounds.

Lemma 35. For any 0 € © such that ||0 — 0%, < W’

* 1
a—1_ @ —1-0r (o)

b b*

a a* +OT <log (T ))

and

b b
The proof of Lemma [35] can be found in Appendix
Now we are ready to proceed with the two cases for K.

a*—1+——
. log?(T) a
Case 1: K e = 74
For i < 't, define

D D Dy D
Z; = {min(xi,yz-) . —2K < max(z;,y;) < . —ZK or % S min(z;, y;) < j < ma’x(‘rhyi)}

and define
k(1) =H0<i<j:Z}.

1
10g9(T) «a

« a*—1+
Because Lemma 35(implies that § = % +Or (—11%>, we have for K € lb—* 3] that

la* =0 K| < 1—+ o T Because € < 46 thls implies that la* —0*K|+Or(e) < 1—
This will allow us to bound the p in Lemma 4by 1 -+ Q(T

, we have the following piece-wise upper bound (note that we combined the W and the
“otherwise” case using that Op(e) <1 — for suff large T'),

2log ( )’
Combining this with Lemma

219

o[ (2 (1= gubzs) oy + Ol + 1Dl ) if 2
B 1
<1 T 210g”(T)

(146)
d; otherwise.

Conditional on event EY, for all j < ¢, |z;| < Oz(log®(T)) by Lemma [12] because ||D||o <
log?(T) and |z| < 4log*(T). Starting with the base case that dy = d, this with Equation
(146)) implies the following two relationships both hold for d;;; conditional on event E! for

sufficiently large 7. Equation (147) holds because (1 — m < 1 for sufficiently large

T and using the second term in the min of Equation (146]). Equation (148) holds using the
first term in the min of Equation ((146]).

dis1 < d+ 5(j) - Or(elog?(T)) (147)
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and

1 Jj+1 )
dig<|(1-——) 2700 ).4a. 148
ah (( 2 logg(T)) ) (148)

Equations (147) and (148) look almost like the desired result, and the remaining step is to
show that (j) is sufficiently “small”.
Next, define the event A; as

. . . ) ] 1 Z
Ay = {¥i < min(j,10g™(T)) : d; < 2d-+elog™(T) | ) {v1og33(T) <i<jidi< (1 - W> d} -

By this construction, A; is exactly what we are trying to show in Lemma with L =
log®*(T'). We will now prove that A, holds for sufficiently large T conditional on E*(z, K, 6, W' )N

For sufficiently large T and any j < t, by construction of A; and because d < and

1
log(T)

e < we have that

1
— log?t (T)’

3
A Ccdvo<i<ij:d<—o 4 149
]—{ S1>7 _logw(T)} ( )

Note that for event Z; to hold, it must be the case that x; is within d; of either al_)# or
Drp

—F=. Therefore, conditional on E*(z, K,0,W') N A;, we have for j > log®(T),

k() =H{0<i<j:Z}

N Dy Dy,
<|W0<se<yg: i — s | — < d,
—'{ == mm(m a—ok| [ a—bKD }'

R Dy Dy, 3 :
S'{OSZS]mln(l‘,—a_bK,xl—a_bK‘)Sm}’ Equatlon 149

24Bpj
<1og®(T) + 2L E*(z,K,0,W'
— Og ( )_I_ lOglO(T) ('I )
j+1
-0 150
' <log1°(T)) (150)

We will now use Equations and to show that A;;; holds conditional on
EINE*(z, K,0,W')NA;. In order to show that A, holds conditional on A;, we must show
that d;,, satisfies the necessary inequality in the definition of A; ;. Consider the following
two cases for j > 0.

If j + 1 <log®(T), for sufficiently large T conditional on A; N B! N E*(x, K,0, W'),
dj1 < d+ K(j) - Or(elog*(T)) Equation ((147))
= d+ Or(jelog*(T)) R(j) <j+1
< d+ Or(elog®™(T))
< d +log®(T)e
< 2d + log®®(T)e. (151)
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This is the necessary inequality that needs to be shown in order for A;,; to hold given that
A; holds if j + 1 < log®(T).
If j + 1 > log®(T), for sufficiently large T conditional on A; N B! N E*(z, K, 0, W'),

1
1- —) 280 . g Equation ([148])

1 T (it
1— —) 207l . g Equation (T50)

1 Jj+1 1 Jj+1
1 — 1+0 _— -d
210g°(T) ( o (bgwm))

" m ror <1og$<T>> - 2log19<T> o (ﬁ)) B

(
(
( | ,
R e A R N () D PO P
(
(
(

1 J+1
< (1 — W) - d. for sufficiently large T’
(152)

This is the necessary inequality that needs to be shown in order for A;,; to hold given that
A; holds if j + 1 > 1og®(T).

Equations and together imply that for sufficiently large 7', A;;; holds con-
ditional on A; N Ef N E*(x, K,0,W'). Note that Ay always holds by definition because
dy = d. Therefore, we can conclude by induction that A; must hold conditional on E! N
E*(xz, K,0,W’) for sufficiently large T'. Finally, by definition of A;, this implies that condi-
tional on E*(z, K,0,W') N E! for sufficiently large T, for all 0 < j < t,

J o
. (“W) -d, if j > log®(T) (153)
" | d+0r(e), if j < log™ (7).

Taking Figg(x, K,0,W') = E*(z, K, 0, W)NE!, by a union bound we have that P(Eigg(x, K,0, W') >
1 — op(1/T?°). This completes the proof of Lemma [33| for Case 1.

R
Case 2: K € [“71,%@}
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Define

DU DL
— i OF max(z;,y5) < m}

and
Ay) ={0 <i<j: Wi}

1
0g9(T)

a*—1
For any K € [“—;1, b—l}, we have that |a* — b*K| —1 < Or (W) by Lemma |35

A& ]

This with the fact that ¢ < @% implies that (a* — b*K) + Or(e) < |a* — b* K| + Op(e)

14+ Or %ﬁ) This allows us to bound the p in Lemma 34| to be 1 + Or (W) By

Lemma [34] and plugging this bound in for p, this gives the following bound.
Or(e) (14 Or (1ozber ) ) 4 If W,
d;41 < { min (2 (1 + 07 (ﬁ)) d;, (1 + 07 (ﬁ)) (dj + Or(e)(|zj] + ||D||oo))) If 2;
(1 + Or (W)) d; Otherwise

(154)
Similar to in the proof of Case 1 above, by Lemma [12| and the assumption that || D] <
log?(T), we have that conditional on event E!, Equation (I54) implies the following two
relationships. The first relationship comes from using the first term in the min of Equation

(154]) and recursing.
1 J+1 0 "
djs1 < (1407 | —q5— 29 Op () - d. 155
1 S ( T (loglO(T)>) r(€) (155)

The second relationship comes from using the second term in the min of Equation (154)) and
bounding <1 + Or (W)) (|7;] + | Dllso) = Or(log?(T)) under event Ei. This gives the

recursive relationship of
1
dj+1 S (1 + OT (T)) (OT(E))le . dj + OT(E log2(T))12] (156)
log (T

In other words, at every step there is a multiplicative factor of (1 + Or (W)) When

W; holds, there is an additional multiplicative factor of Or(¢). When Z; holds, there is an
additive factor of Op(elog?(T)). Unwrapping Equation (I56) gives that, at time j+1, any ad-

ditive factor contributed at time ¢ < j will be scaled by OT(E)’\ 7)=A (1 + Or (m>)J_Z.
This gives that

1 Jj+1 1 Jj—t
di<(1+0p —r— Op(e)M9).d+0p (el 12,0 (1 o()) )
J“( " T<log10(T)>> (e Or(elog Z 20r( O log™ ()

(157)

Again this almost looks like the desired result, except we need to show that the additional

terms involving x(j) and A(j) are not “too large”. We will use the following lemma that
lower bounds A(j) using the same event A; as defined above in the first case. Similar to
Case 1, we will then use this to show that for sufficiently large T', A; holds conditional on
E!'N Eigg(x, K,0,W') N E*(z, K,0,W’).
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Lemma 36. Suppose |1 — (a* — b*K)| = Or <@> Then in the setting of Problem

and using the notation and assumptions of Lemma there exists a Vigg € R' that
only depends on x,K,0 such that the event Eigg(xz, K,0,W') = {W' € Yigg} satisfies
P(Frgg(w, K,0,W")) = 1 —op(1/T?°) and that for all t, < ty <t satisfying ty —t, > log®(T),
the following is true conditional on event Ay, N Egg(x, K, 0, W') for sufficiently large T':

1 to+1—t1 1 to+1—t1
14+0p [ ——— O At2)=At) « (1 -~ )
( ! <log10(T))) r(e) N 21og”(T)

The proof of Lemma [36] can be found in Appendix

We will now show that the event A;;; holds conditional on Eigg(x, K, 8, W )NE*(z, K,0, W')N
EiNA;.

For j < log®(T), conditional on E! N Egg(x, K,0, W) N E*(z, K,0,W') N A; and for
sufficiently large T,

dj1 |
< (1 + 07 <log1ﬁ(T)>)JH Or(e)*?) - d
+ O7(elog*(T)) - g 12,07 ()X =30 <1 +Or <pg1%)(ﬂ)>j_i Eq.
< (1 +Or <10glﬁ(T)>)log8(T)H -d + Or(elog*(T)) - g (1 + Or (loglﬁ(T)>>j e < Op(1)
< <1+0T <10g21(T))> ~d+ Op(elog*(T)) - (j+1) - <1+OT (bglf)m))] 8 Lemma 37
< (1 L Or <1og2‘1(T) )) - d+ Op(elog?(T)) - (log® (T) + 1) - (1 4+ Or (k)glﬁm))log .
< (1 +Or ( Og;@))) (d+ Or (elog"(T))) Lemma [37]
< 2d 4 Op(elog'®(T)) Suff. large T
< 2d + €elog®®(T). Suff. large T
(158)

Above, we used the following result:

Lemma 37. Suppose g(T') is a non-negative function of T such that g(T') > 1 for sufficiently
large T. Furthermore, suppose f(T) is a non-negative function of T that satisfies f(T)g(T) <
1/2 for sufficiently large T. Then we have that

L+ f(T)g(T) < (1+ f(T)* < 1+ 2f(T)g(T).

This implies that
(1+ f(T)*T) =1+ Or(f(t) - 9(T)).

proof. First, we note that for any z > 0 and r > 1, (1 + x)" > 1 4 rz. This implies that for
sufficiently large T', we have that

(L+ f(T)*T > 1+ f(T)g(T).
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This proves one direction of the desired equation. For the other direction, note that for r > 0
and = € [0,1/r), we have (1 +z)" < 1% This implies that

re’

o(T) 1
W+ SO < T Fpygmy
D))
Ty

<1+ 2f(T)g(T).

This proves the other direction of the desired equation. Therefore we have that (1 +
F(T)T) =14 0(f(T)g(T)). —~

For log®(T) < j < log*(T), conditional on event !N Epg(x, K, 0, W)NE*(z, K, 0, W)
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A; and for sufficiently large T,

dj1
1 J+1 o
<[(1+0r <)> Or(e)*V) - d
< log'*(T)
j—i
+O 1 1z.0 14+ 0 Eq (15
7 (elog?( Z z,07( ( T(log O(T)>> q (157)
1 i (7)=A(0)
<|(14+0r | —— Or(e)*)=20) . g
—< ! <1og1°(T))> ()
J 1 j—i
+ Or(el 1z.0 1+0
T € og Z Z; T ( T(log O(T)>>
1 Jj+1
<(1-——) d
21og”(T)
j—i
+ Or( elog Zlg Or(e (1+OT (log%)(T)>> Lemma [36]

K] IO%TN 1 ‘ ‘ 1 j+1—i
< d+ Or(elog*(T)) 12,07 (e)}D=A0) (1 + Or (10))
= log™(T)

+ Or(elog?(T)) i: <1+OT<log1})(T))>ji

i=[j—1log®(T)]

[j—log®(T)]—1 1\
<d+Or(elog’(T))- > <1Zf ' (1 - 9(T)) )

Pt 2 log

+ Orp(elog(T)) - 2]: (1+0T<10g1£(T))>j_i Lemma [36]

i=[j~log®(T)]
[i—log®(T)]~1

<d+Or(clog®(T)- Y. (1z-0r(1))

=0

+Or(elog (T)) i (HOT(logl})(T)))ji

i=[j—log®(T)]
[i—log®(T)]—1

<d+Or(elog®(T)- Y. (1z-0r(1))

=0

+ Or(elog*(T)) - Zj: (1 +0r <1og1£ (T)>>log "

i=[j~log®(T)]
[j—log®(T)]~1
<d+Op(elog®(T) - > (lz,-0r(1))

i=0

+ Or(elog?(T)) - o ig <1 +Or <10g21(T)>) Lemma 37
i=[j—log®(T)]

< d+ Op(elog®®(T)) + Or (e loglo(T))

< d+ Or(elog®™(T))

< d+ elog®(T). Suff large T’
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Finally, for j > log®(T), conditional on event E! N Exgg(z, K, 0, W') N E*(z, K,0,W') N A;
and for sufficiently large T,

1 J+1 ) )
dip1 < (1 + Or (W)) - 2°0) L Op ()9 . d Equation (T55)
0g
1 j+1-0 ' '
< (1 + Or (W)) - Op(e) 2O L 98i) . g
1 Jj+1 '
S (1 — 21—9(7_')) 2H(J) -d Lemma
0g
1 Jj+1
< (1 — W) - d. As in Equation ((152))
0g

Combining all three cases, we have that for all j > 0, conditional on EiNEgg(z, K, 6, W')N
E*(x, K,0,W’)N A;, Aj+1 holds. As in Case 1, we can conclude by induction using A, as
the base case to get that conditional on Figg(z, K,0,W') N E*(z, K,0,W’') N EY, the event
A; holds, which implies that

_ 1 I . e 33
i < <1 1£>g10(T)> d, if j >log™(T) (159)
2d + Or(e), if j < log®(T).

Taking Eigg(z, K,0,W') = Eigg(z, K,0,W') N E*(x, K,0,W') N EY, we have by a union
bound that P(Eigg(z, K,0,W’)) = 1 — op(1/T?°). This completes the proof of Lemma
for Case 2.

[

H.4 Proof of Lemma [32 and Lemma [34]

proof. We have four cases depending on the values of x,y. We will prove the results of
Lemma |32/ and Lemma [34] for each of these cases separately. WLOG assume that = < y.
. _D D
Case 1: —l= <x<y< =
In this case, C%(z) = —Kz and C%(y) = — Ky, and therefore the following two equations
hold. Case 1 Lemma [34

"z + b Ch(x) — a*y — b*Ch(y)| = [a* — b*K|d = (Ja* — b*K]| + Or(e))d.
Case 1 Lemma 32}
Ck(z) — Ci(y)| = Kd <

d< = d=0r(d).

IS~ QI

a
b

Case 2: al—)l[)JK <z<yorx<y< al_)bLK (which is W of Lemma .
First, assume the former is true. Then C%(z) = 2% and likewise C%(y) = 2=,

b
Therefore the following equations hold.
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Case 2 Lemma 34}

la*z + b*CY(x) — a*y — b*Ch(y)| = d |a* — %b*
a*b — ab*
pu— d —_—m
b
o gmax ((a+€)b—a(b—e¢),[(a—e€)b—a(b+e)|)
- b
eb +ea
=d
b
eb+ ea
d
- b
S OT(€>d
Case 2 Lemma [32} . .
Chly) ~ Ch(a)l = 5 - d < 5 - d=0r(d).
The same logic holds for when x <y < af)bLK.

. D D
Case 3: 2 < —f- and y > =

In this case, C%(z) = 222% and O (y) = 2L=% We will use the fact that |a — bK|d =
a—bK||ly — x| > |Dy — Dy in this case.
)
Case 3 Lemma 34

a*z + b*Ch () — a*y — b*Ch(y)]
b* * a,
" 5y~ () ]

b* a
<Dy - D « Yl g

b*
< ~la—bK|d+ a — bl d

b* * * b* * * * a *
< Slat =V Kld+ T la—a (0 - )E|d+ |a" — 55| d

b b

<o =¥ Kld+ |5 =1 |a" = b K|d+ -la—a" + (5 = b)K|d + R

< (la” = b"K| + Or(e)) d. (160)

In the last line we used that |a* — b*K| < a* + b*|K| < a+ b5 = Op(1), that |% —
1| < £ = Og(e), that |a — a* + (b* = b)K| < e(1 + |K]) < (1 + ) = Op(e), and that
la* — 0" < e+ fe < e+ fe = Ople). )

Case 3 Lemma[32:

SISIeal
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1 a
CA(0) — Cha)| = [+ (Dy = D) + 2w — )
1 a
—5|DU_DL|+3’I_:U’
< %\a—b[(|d+gd

b
1 a
<1i4 9y
=307

— Or(d).

Case 4: If a? e <x < a? t=and y > a? =. Note that by symmetry, this is equivalent

to a? e <y < a? i and z < a?bLK. We will first assume the former. For Lemma , this
case is equivalent to Z.

Case 4 Lemma [34

In this case, C%(z) = —Kxz and C%(y) = 2% Furthermore, in this case |y — z| >
}y — al_) |- Therefore, in this case we have

|a*z + b*Cl(2) — a*y — b*Ch(y)|
= |a*z + b"Ch(z) — a’y — b Ky + b" Ky — b"Ch(y)|

Dy —
<|(a*=b"K)x — (a* —b"K)y| + b* —Ky—UTay
—bK)y—D
§|(a*—b*K)x—(a*—b*K)y|+b* (a b 2y U
bla — bK]| Dy
<l|(a*=b0"K)x—(a" = b"'K —_— |y —
< (o — 0K — (0~ Kyl + 10 'y D

N “ . . b*la — bK
<o =5 Kye— (o — v Kyl + DOy

=la* = b"K|d+ |a—bK|%d

*

< |a*—b*K|d+|a—bK|d+‘1—% la — bK|d

< 200" — b K|d+ |a— bK — (a* — b'K)|d + ‘1 - % la — bK|d
<2(Ja* = b"K|+ Op(e))d. As in Equation
Alternatively, note that in this case,
(" = b"K)|z| < (a — bK)|z| + Or(€)|z| (161)
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and

(a —bK)x < Dy < (a —bK)y. (162)
Therefore,
|(a* — b"K)x — Dy| < |(a — bK)x — Dy| + Or(e€)|z]| Equation (161))
< |(a—bK)x — (a — bK)y| + Or(e)|z| Equation ((162))
<|a — bK|d + Or(e€)|z]|
< la* = b"K|d + Op(e)(d + |z|). (163)

Therefore we can find an alternative bound on |a*z + b*C%(z) — a*y — b*C%(y)|, using
Equation (163)) and that |y| < |x| + d.

ja*z + b Cr(z) — a’y — b"Ci (y)]

b* ab*
= (@ = b'K)x — —Dy — (a* -
(" = b"K)x ; Du <a A )y‘
b* b*

< \<a*—b*K)x—DU\+‘1—3 Dy + |a* — “b 1yl
b* *

<l|a* = b"K|d+ Or(e)(d+ |z|) + ’1 -3 Dy + |a* — ; [y Equation (163))
b* *k

<l|a* = b"K|d+ Or(e)(d + |z|) + ‘1 -3 Dy + |a* — ; (|| + d)

< (la" = b"K[ 4 Oz(€))d + Or(e)(|z| + D)
< (loa" = 0" K|+ Or(e))d + Or(e)(|z] + [| Dll)-

= Or(e) and |a* — | = Or(e).

where in the last line we once again bounded |1 — %
Therefore, we have shown in this case that

|a*z + b* Ch(z) — a*y — b*Ch (y))|
< min (2(|a* = b* K|+ Or(e))d, (|a* — 0" K| 4+ Or(€))d + Or(€)(|z| + || D||o0))
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Case 4 Lemma 32}

Dy —
Ch(o) = Chly)] = | -1 - 2
Dy —a
< Kl = ]+ |-y - 2
< |K ey + | @ = Do
|(l—bK| DU
< K|z — _
< |K e ] + L=V - Do
a—bK
< IKfle —yl + L=y g
—bK
a+1 1
< d+ —d
=Ty T
— Os(d).

Equation ((162)

Because these four cases cover all possible situations, we have shown the desired two

lemmas.

H.5 Proof of Lemma 35

O

proof. For sufficiently large T' we have the following two results, using that ||§ — 0%, <
1

Tog (T "
a=1_ O~ gy ~ !
> — T
b Ve

a1 b* 1
br bt loglﬁm log™®(T) (b* + _logl%(T))

Car—1 . 1 1

- PR - - 10 N 1
b loglO(T) (b* + m) log (T)(b + W)

B a* —1 a* —1 1
b* b*log™*(T)(b" + jomby)  Log™ (D) (V" + oty

b*

104



a1 g (1)
b= b~ log'(T)
B a* b* n 1
— 7x 7 1 10 N
B a* 14 1 . 1
e 10 r_ 1
B a* " a* n 1
b (b — o) 108" (1) log™(T) (b — ko)
a* + Op(1/1og™(T))
— = )

H.6 Proof of Lemma [36]

proof. The first step to this proof is to construct event Ergg(z, K,0,W’). For any to > t;
and to — t; > log®(T), define the event Efjg a

G+ Mog®(T)]
Etl iy = El] - [tl . tg — I_IOgS(T)-I - 1] : Z w; Z 710g2<T)
i=j
Define
Eugg(x, K,0,W') := E' N N Eig.

t1<to<t,to—t1>log®(T)

First we will show that P(Frgg(x, K, 0, W')) = 1 —op(1/T*). Consider any pair ty > t; such

that ty — t; > log®(T"). Divide the interval [t; : ty — 1] into Lﬁj consecutive disjoint

mtervals of length [log’(T)] + 1. Consider one such interval [s;, s5]. Then the distribution
w; converges in distribution to N(0,03) as T grows, where we recall o2
/—ﬂog o i

is the variance of distribution D. The rate of this convergence depends on D. Therefore, for
sufficiently large T', we have that

1 Zw > op/2 | =P (|N(0,0p)| > 0p/2)| < 0.1. (164)
\/[log®(T)] + 1 i=,

This implies that

sz > op/2 | >P(IN(0,0%)] > op/2) — 0.1 > 0.5. (165)
ﬂOg +17, S1
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For sufficiently large T', we have that —W > Tlog?(T), and therefore this implies
that for sufficiently large T,
P (

2
D

1=81

> 7log2(T)) > 0.5. (166)

Because the random variables in each disjoint interval are independent, we have that each
interval independently satisfies Equation (166|) with probability at least 1/2. Therefore, for

sufficiently large 7', the probability tlhat Equation - ) fails to hold for all L%J >

|
log?(T) intervals is at most (1/2) st < 0.5°8°(T) = 0(1/T22). Therefore, we have
shown that
P(Egg) > 1 — op(1/T%).

Since there are less than T2 pairs (f1,t3) and P(EY) > P(E;) = 1 — op(1/T%°) by Equation
(21]), we have by a union bound that

P(Ergg(w, K,0,W')) > 1 — op(T?/T??) — 0p(1/T?°) = 1 — op(1/T%).

Lemma 38. Using the assumptions and notation of the proof of Lemma for all pairs
t1,ty such that ty —t; > log®(T), conditional on event A, N Ergg(z, K,0, W',

A(t2) = A(t1) = Qr (|lf)2g8_(;1)|) : (167)

By Lemma [38] conditional on Ay, N Eigg(z, K, 0, W’), we that:

1 to+1—11
(1+0r (5 <)) Or(e) )30

(1 + Or ))t2+1_t1 O (1/ log(T))N2) =2 e =Or(1/log(T))

1 . E i 1
( + Op (log )) Or <log(T)) quation ({167)
1

(ta+1—t1)/log®(T) QT(‘tQ*tl‘)
1 1 103 (7)
( O log®(T) >) Or <log(T)> emma (37
1 (1‘228_ (tT1>‘ )
<0 1+
T(<1OgT ( log®(T )>)

\2 1\

: ( <log T )) o
(@ <>>

to+1—t1
< ( (168)
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This is the desired result. In the last line we used that for sufficiently large T,

(OT <10g1(T>>)“T(mgslm) § G) o (o)
()"

2
<(1-——— Lemma
- ( 10g9(T)))
Note that the first inequality above is a very loose bound, however it is what we need to
prove the desired lemma. O

H.7 Proof of Lemma [3§

To show Equation (167), we will show that for all t, > [log®(T)], conditional on event
Ay, N Ergg(w, k, 0, W), for every j < to— [log®(T)]+1 there exists some i € [ : j+ [log®(T)])
such that W; holds, where we recall that

D D
W; = {min(zi,yi) > a—ZK or max(z;,y;) < a—ZK}'

This in turn implies Equation because we can divide [t; 41 : t5] into QT(K;Q&E‘)) disjoint
intervals of the form [j : j + [log®(T")]) where each interval contains an 7 such that W; holds.

For the rest of the proof, we will prove by contradiction that conditional on event A;, N
Ergglx, k, 0, W), for every j <ty — [log®(T)] there exists some i € [ : j + [log®(T)]) such
that W; holds. Assume that this is not the case, and there exists j such that there are no
i €[j:7+ [log®(T)]) such that W; holds.

By definition of W, if y; ¢ [af)bLK —d;, af) =+ di}, then W, must hold. Recall that

conditional on event A,,, d; < m for all i < t5. Therefore, conditional on event A,, if
Yi & af’ e — log1% Gk af) =+ logl% (T)] then W; must hold. Because we assumed that there are

no i € [j : j + [log®(T)]) such that W; holds, this implies that for all i € [j : j + [log®(T)]),

Dy, 3 Dy 3
i - ) + 169
Y {a —bK  log(T) a—bK  log"(T) (169)
We also have that for sufficiently large T,
Dl Do .
1Pl Pl 10— 6" | < 1/108(T)
a* — b K — OT (m)
D« 1
< || || |1—(a*—b*K)|§ ;
1-Or (ﬁ) log”(T)
< 2[[Dllo
< 2log*(T). Assumption (170)
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Therefore, if |y;| > log*(T) > 2log?(T) + g 10 for sufficiently large 7', then W, must

hold. For the rest of the proof, we will Show that if Equation ({169 - holds for all i € [j :
§ 4 [log®(T)]), then at least one such i must satisfy |y;| > 3log?(T), which implies that W;
will hold which is a contradiction.

Lemma 39. Using the notation and assumptions of Lemma conditional on Ay, NErgg(x, k,0, W'),
i € | Pk — by 22 + ity | then visi—yi € [wi—Or(1/10g"(T)), wi+Or(1/ log"(T))].

proof. The control at time i is either — Ky;, DU wi or P 2. If the control is —Ky;, then
under event EX,

Yir1 — yi — wi| = |(a" = 0" K)y; — yil
= |yil[1 — (" = b"K))|

=Or <%) Assumed in Lemmas [36], B8] and
1
= Orp (m) . Under event E} by Lemma .

The control at position y; is 2 i only when y; > aj_j#. Because y; < aDI?K + logfg Gk

this implies that |yz — a?{?fK| < logl%(T)’ and because (a — bK) < 1 this implies that |Dy —
(a — bK)y;| = Op(1/1og'(T)). Therefore, under event E!, when the control at position

o Du—ay;
18 =

* *D -
Yis1 — yi —wi| = |a"y; + b U——in

D — ay;

<|(a" = b"K)y; — yi| + b* -

* * b
<|l(a” = "K) = Ulyil + 5 |Dv — (a = bK)yil

<o () o ()

1
< Op <log7 (T)) ) Under event E’{ by Lemma

A symmetric result holds if the control at position y; is % (which happens when y; <
= K) This exactly implies the desired result.

[
Using Lemma (39, for j < i; < 45 < j + [log®(T)] such that iy —i; < [log®(T)] and
sufficiently large T, if y; € [af)bLK — logl%(T)’ Lu 4 logl‘g(T)] for all i € [j : j + [log®(T)]),
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then

ia ) .
|ig — 11
ist1 = Yir | = E wj| — O
|y 2+1 y1| - J T (10g7(T)

Jj=u

2z 1 o
> j;wj — loa(T) 1o — 11 < ﬂog‘r’(Tﬂ (171)

(
By construction, event Ergg(z, K, 0, W’) directly implies that for sufficiently large T, there
exists some i € [j : j + [log®(T)] — [log”(T")] — 1] such that

i+log®(T)] 1
| > Tlog®(T) > 2 - 3log*(T . 172
Z wj| 2 Tlog*(T) 2.2 310g’(T) + {7 (172)

Combining this with Equation for 4y = i and iy = i + [log’(T)], conditional on
Ay, N Ergg(x, k, 0, W),

’yiz-i-l - yi1’ > 610g2(T)
This implies that either |y;| or [y, 10457y 11] I8 greater than 3log?(T). However, as argued
above this implies that W; or W, 16457741 holds, which is a contradiction. This completes
the proof by contradiction.

H.8 Satisfaction of Assumption

Proposition 13. Under Assumptions [IH3, the class of truncated linear contmllers satisfies
Assumptwnljfor €AT = 1o 46( . In other words, for any € :== (|0 —0*||o < - 46(T andt < T,

* * * * 1
0, Ol t) = 70, .01 = Or (4 7).

proof. We will combine the following two results.

Lemma 40. Under Assumptions for any 0 such that || — 6*||oc = € < @%, the
following holds for the class of truncated linear controllers fort < T

J*<9:C§){opt(0,t ) J*(Q* CKopt 0*t)> ) OT( )
The proof of Lemma [40| can be found in Appendix

Lelinma 41. Under Assumptions ﬂ for any ||0 — 6% = € < W t<T, and K €
5= 81,
* ()% * 1
|J*(0%,C%,t) — J*(0,C% t)| = Or (€+ T2>' (173)

The proof of Lemma [41] can be found in Appendix [H.10}
Putting together Lemma [40| and Lemma (41| with K = K,.(6,t), we have the desired
result that

* * [ )% 2 1
J (9 Cﬁ{opt(et ) J (6 Cf{opt 0% ) t) OT (6 + _> .
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H.9 Proof of Lemma

proof. First, We will prove some results about a*, b*, Ko (0*,t). Because b, b* > b and || —
0| =€ < oz 46 7 < b/2 for large enough T', we have that

2
a* a\ 2 (a*)?0* — (b*)%a?| _ €*b? + 2eab® + 2¢ba® + 2a?
) —(2) | = < =0 : 174
<b*) (b) b2 (b7)2 = B2(b— c)? r(e) (74
a a a'b—b*a eb+ea
Z - = ) 1
b b | S p—o| =9 (175)

Let K’ be the solution to a* — b* Kop (0*,t) = a — bK’. Then
(@ —a*) + b K (0%, 1) (b* = b)Kopt(6%,)  a—a*
+ .
b b b
Since Kopi(0*,t) < % by definition, we have the following two equations:

‘(b — DKo (61) a—a| _ (;b +%> e=0r(e).  (176)

K' =

- Kopt(e*, t) +

|K/ - Opt<9* )‘ - b b

[(K)? = (Kop (07, )] < [K' = Kop (07, 6)] - | K" + Kope (67, 8)] = Or(e).  (177)

By the choice of K’, using the controller C% (6% 1) under dynamics 6* results in the exact

same sequence of positions as using the controller CY%, under dynamics 6. This is because
a—bK' = a* — b* K, (0%,t), which by construction of truncated linear controllers implies
that azx + bCY%.(x) = a* + b*Cf(:pt(e*,t) for all . The controls will however be different, and
we will now bound that difference in controls.

Define z¢, x1,...,x; as the sequence of positions when using controller C (0% 1) under
dynamics 6* starting at position o = 0. Then we have the following result.

: D D
|ra? (Kope(07,1))% — (K')?)|  ifa; € [a*fb*KoLpt(H*,t)’ aub*K(it(o*,t)]
2
. Dy—a*z; Dy—az;\2| D
Ok om0 1 w?| = 4|7 (2522 —r (B522)’) i o> R

D

1 . [ FE—
it < oo

(e -y

(178)
By Equation (177)), this implies the following.

’TC%M(@*@ (2:)* = rC% (Ii)Q‘

2 ; D D
Or(zje) if x; € [a*—b*KoLm(a*,t)’ a*—b*Kol;t(G*,t)]
2 * 2 2 . D
< rD ‘(bi) ’ +2Dyr|z;| | § ‘Z— + ra? (‘g—) — (%) if z; > TR
2 * A\ 2 2 . D
TD%‘(Z}*) ’+2|DL\ | |2 — 2| 4 ra? (7) — (%) ’ e

By Equations (174)) and (175]), we get the following result.
Or(x2)e if z; € [ 1

Dy ]

a* —b*Kopt (0%,t) 7 a*—b*Kopt (6*,t)

)TC (0" t)(l’z) TC?{/(%)Z‘ < { Op(D?e + Dylzile) + Op(z2e)  if oy > 20—
Or(D%e + |Dpl||xile) + Or(a?e) if z; < W{fpt(w

(179)

110



Using that || D||o < log?(T), in all three cases we have that

rC’fgopt(g*7t)(xi)2 —rC% ()% = Or (1 + |z;| + |xl]2) €. (180)
The last fact we need is to note that x; is a sequence of positions for the controller C%- e (6%0)
under dynamics 6*, which by construction will always satisfy that D, < a*z;40*CY, (6" t)( x*) <

Dy. Therefore, since E[|w;_;|] and E[w? ,] are constants relative to T' that depend on D, for
all 7,
E[lzi[] < [IDlloc + ElJwi-1]] = Or(log*(T)).

Ell2il*] < ID]1% + Elw;_y] + 2] Dlloo EfJwi-1[] = Or(log"(T)).

Therefore, we can upper bound the difference in cost as follows:

JH(0,C%, t) — J*(0%,CY%

opt 9* —

Z ‘TC?; oo (071) (Z4) ) - TO?«(%)Q‘]

t—1

1 ~ :
i Z Or (L+ E[jz;|] + E[|z:]*]) € Equation (180))
i=0

IN

< %; Or (log*(T) + log*(T)) €
= Or(e).
Finally, by definition of K, we know that
T0,C 00 t) < 50, Cor, 1),

therefore we can conclude that

J0,Ch oy t) = T (07, Ck -1y 1) = Or(e).

H.10 Proof of Lemma (41l

proof. For a set of time varying dynamics {6, ;;%) where 0; € © for all j, we define the
expected total cost for varying dynamics as

t—1

T {032, Clert) o= qa + > qz} + rCh(w;0)°,

J=0

where 7o = 0 and z; = a;_yz; 1 + b;_10%(x;_1) + wj_1. In other words, this is the total
cost if the dynamics at time j <t are 0;.

For i € [0 : ], let {6:}'_{ be a time varying dynamics with ¢ = ¢ for all j < 7 and
0; = 0* for 7 > 7. We will now compare the costs under dynamlcs {91 ¢ versus under
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{0;“};;%. Let g, 71,...7; be the positions when using controller C% under time-varying
dynamics {9; ;;%) and z7, ...} be the positions when using controller C% under time-varying
dynamics {657 }72f (both starting at zg = x§ = 0). Up until time 7, the dynamics of these
two trajectories are the same (both equal to ), and therefore the positions and controls
of the two trajectories are equivalent up until time i. Because (% is safe with respect to
dynamics 0, |z¥| = |2;| < ||D||es + |wi—1|. Because ||D||o < log?(T), this implies that

Ellz}]] = Ellz]] = Or(1). (181)

Also note that by construction of the truncated linear controller, |C%(z;)| < K|z +

Mbﬂw. Therefore, we have that

D 00 %
T =2 | = |azi+bO% () —a 2 —b" Cle ()| < €|as|+e|Ch(2;)| < € (|x1] + K|z;| + LIW) .
(182)
Combining Equations (181]) and ((182)) gives that
E|zis1 — f4]] = Or(e). (183)

Consider x;;;. Define the event F' = {|x;,1| < log®(T)}. As argued above, |z;] < ||D||s +
lw;_1| < 2log?*(T) under event E;. Furthermore, the control C% ;) is safe with respect to
dynamics 0 and [|0} — 6*||oe = [|0 — 0*||oe < 1/10g™(T) < 1/log(T) for sufficiently large T'.
Therefore, we can apply Lemma [4] for one step to get that for sufficiently large T’ |x;11| <
41og*(T) under event E;. Therefore, for sufficiently large T, P(F) > P(E}) = 1 —op(1/T").
By Lemma [13] (using the same logic as in Equation ), this implies that

P(|2i41| > 10g*(T)) Ellwira]* | |2ina] = log*(T)] = or(1/T).
The same logic holds for xj,,. We already showed that Assumption [§ holds for the class of
truncated linear controllers in Proposition 12 and Assumptions hold for truncated linear
controllers by construction. Furthermore we showed above that P(|z;,1| < 4log*(T)) =

1 —or(1/T"") (and the same equation holds for z7, ). Therefore, we can apply Lemma
to get that

|t T ({03}=0, Chr t,0) — t - J*({077' Y124, C, £, 0)]

- 1
=Orp (EH%‘H —:L‘:_HH +€+ﬁ> Lemma [11]
~ 1
= Or (6 + ﬁ) . Equation (183]) (184)

Now, we conclude by noting that

It JH0F,Ch t) —t- T (0,C% 1) =

t
ot T O t,0) — t- ({850, Ck 1, 0)
1=0

o (1(c+7))

and dividing both sides of the equation by ¢ gives the desired result. O]
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I Proof of Theorem [

For the proof of Theorem , we will use the following notation (which was also defined

in the proof sketch of Theorem [l)). Define C"™ = {C}°}ker as the class of untrun-
cated linear controllers, where Cj*°(z) = —Kux. For any controller C' and dynamics 6,

define J*(0,C) = limr_,, J*(0,C, T). Define K, (0) = argsupy J*(0,C%) and F, () =
argsupg J* (0, Cpre).

Recall that we showed in Propositions (13| and [12| respectively that the class of truncated
linear controllers satisfies Assumptions [7] and [§f Furthermore, the class of truncated linear
controllers satisfies Assumptions by construction. If D has infinite support and || D||o =
O7(1), then Assumption |§| is satisfied. Therefore, under Assumptions , if D has infinite
support and ||D|« = Or(1), then Algorithm {4 with the baseline class of truncated linear
controllers has regret of OT(\/T) by Theorem . Therefore, Theorem [2| directly proves
Theorem [I| in the case when D has infinite support. For the rest of this proof, we will
focus on proving Theorem (1| when D has bounded support, therefore making the following
assumption.

Assumption 10. The distribution D has bounded support, i.e. there exists w > 0 such that
wap(|w| S w) =1.

For the rest of the proof of Theorem [1 we will also assume WLOG that Dy < |Dy|.
Definition 4. Define K%U as the value that satisfies the equation

Dy _
a— bK%U DU =w.

For the rest of Appendix , let C®# be the controller of Algorithm {4 and C?. be the class
of truncated linear controllers for dynamics 6 as in Equation ({8)).

We will now redefine the important events and lemmas from Appendix [C] with respect
to Algorithm (and the corresponding és), and use this notation for the rest of Appendix .
For vy = T4 let s, = log,(Tv2) — 1, and let

Ey = {‘v’s €10 s ]|6F — 07| < 65} : (185)

By Lemma 23| we have that with probability 1 — op(1/T2), for all s, ||6* — 67, <
€s. Therefore,
P(Ey) =1 —op(1/T?).
By construction we also have that 16, — 6P™|| < €,. This implies by the triangle inequality
that under event Ey, ||0s — 0% |00 < 2¢s.

We also have the following equivalent result to Lemma [2, but with respect to the €, in
Algorithm [4

Lemma 42. Under Assumptions @ there exists a cigy = OT(l) such that with probability
1 —op(1/T?) .

n%ax] €, < cu;gT’l/4 = Or(vr).

s€(0:s¢
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The proof of Lemma [2 relies only on the first vy steps and is written agnostic to the
choice of vr, and therefore the result of Lemma 42| follows directly from that proof. Note
that we explicitly named the constant in Lemma |42 as we will use this constant later in the
proof. For the rest of this section, define

E, .= E, ﬂ { max e, < eyl "Vt = OT(I/T)} : (186)

s€[0:s¢]
Lemma [2] implies that we have
P(E;) =1 — op(1/T?).

Define )
ES = {eo < cuml "} N {]160" = 05|« < €0} C Eo.

Recall Oy, which is defined in Line |5 of Algorithm 4| Because 6y, = 65, by the same logic
as above, under EY we have that ||6* — Oy lee < 260 < 2c1mml /4

For this section, F; will still refer to the same event as in Equation . We also define
the event Eg. the same way as in Equation except with respect to the positions and
controls of Algorithm 4] and finally we define the event £ = F; N Ey N Egue (the same as in
Appendix [C.2). Therefore by a union bound we still have that P(E) = 1 — op(1/T?). Using
this new notation and Lemma we can proceed to the main proof.

The safety of C*® follows from an equivalent version of Lemma (1| except stated for
Algorithm [] instead of Algorithm [3] The proof follows as in the proof of Lemma [I] except
using Lemma [42] instead of Lemma [2, and using the above definitions of Ey, £ and Fy with
respect to Algorithm An equivalent statement of Lemma 3| holds except for the u*eV
and w3 coming from Algorithm . Note that the only place that the proof of Lemma
relies on vy is that it requires that e, = O7(v7) and that Op(vr) = or(1/log(T)) at multiple
points in the proof, which still holds under the new definitions of Fy and vp. The rest of the
proof of Lemma [1] follows directly.

The rest of this section will focus on proving that the regret of Algorithm {is Oz (v/T)
with probability 1 — op(1/T).

Let Cuwiteh = @E%.ég—“ = Oz(1) where cggrg = Op(1) and is defined in Equation
and cipg = (1) defined in Lemma [50} Equation and Lemma [50| will both appear in
Appendix [K:2] Note that Csyiten s used in Line [I1] of Algorithm [d] Define the event Eyrgz
as

Dy
Bz = qw+ Dy — - ~
{ dwu - bquopt(ewu)
We will study the regret of Algorithm {4 separately under event Eygg and under event
- Fyrgg. Informally, if Fgrgg holds then the optimal linear controller is close to being safe for
dynamics 6*. If —FEpxrgg, then the magnitude of the noise is large relative to the constraints,
and therefore an argument similar to that of Theorem [2] will bound the regret.

< CowitenT ™"/ 4} : (187)

Proposition 14. Under Assumptions [1H3 and there exists an event Epgg such that
Epmg € —FByrgg, such that P(Epm) > P(—=Eumn) — or(1/T), and such that conditional on
event Eprg, Algorz'thm has Op(V/T) regret.
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The proof of Proposition [14] can be found in Appendix [[.1}

Proposition 15. Under Assumptions [1H{3 and there exists an event Epgg such that
B C Eren, such that P(Epry) > P(Eumg) — or(1/T), and such that conditional on event
Eprs, Algorithm has Op(V/T) regret.

The proof of Proposition [15| can be found in Appendix |[.2] )
Combining these two propositions gives that the regret of Algorithm 4| is OT(\/T ) con-
ditional on EpgU Furg. Because Eprg N Eprg = (0 by construction, we have that

P(Erm Brrm) = P(Erm) +P(Ermm) > P(Eqgmn) —or(1/T)+P(Ergn) —or(1/T) = 1-0r(1/T).

Therefore the desired result holds with unconditional probability 1 — or(1/T"), completing
the proof of Theorem [1]

I.1 Proof of Proposition

proof. Similar to the proof of Theorems 2] and 3}, we can decompose the regret in the following
manner (where K* and K} are defined as in Appendix |C.2)). Define 2} as the position of the
controller of Algorithm {4 at time ¢. Define Zr,, 7,41, ... as the sequence of random variables

representing the sequence of positions if the control at each time t > Tj is C'f; 6 )(it) for
opt\Us

s = |log, (tv})] and starting at &7, = a7, .
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T-J0*,C,T,0,W)—T- J*(e* Clepnoer) T)
L1

<T-JO,C% T,0W)—E —J (9* o, 5
vy

5 0, {uwr 2/?‘1) + Y TJ(0, Chy, T, W»]
T s=0

<T-J(O°,C",T,0,W) —E | Y T.J* (0", Cf;;,TS,x}S,WS)]

| s=0

Tk ZTSJ*w*,of:;,Ts,xa,wg]

s=0

- ZE [TJ (0°,Cf gy T O, V) \ és}

-~

Ry

Se

+ R [TI0°,C T 0, 0,]
s=0

(. J/

Ry
- Ry . A
+ 3T C T, W ZE L0, CF T 0, | 6]

} ZE [TJ o+, 0 T,,0, W)

Kopt (9 Ts )

R2

+ 3 T, O Tyl W) = Y T (00,C% T, W)

Kopt (ée) ’
s=0

7

TV
R3

+T-JO, 0% T,0,W) =Y T, JO,C¥ T, . W,). 188
s Ts

N J/
-~

Ry

_ Informally, as in the proof of Theorem 2, we will show that with high probability €5 =
Or(1/+/Ty) for all s.

Lemma 43. Under Assumptions[IH3 and there exists event Eygg such that P(Eygg) =
1 —or(1/T) and such that conditional on —ExmgaN E N Egg,

max € \/_ OT

5608e

The proof of Lemma [43] can be found in Appendix [J.I} Define event Ej as

Eg—{max 65\/— OT }
s€[0:s¢]

Lemma [43] implies that ~ExggN E N Eygg C Es. Note that compared to the regret decompo-
sition in Theorems 2] and [3] there is an extra regret term Ry,. This extra regret term can be
thought of as the extra regret caused by choosing the best infinite horizon controller instead
of the best finite horizon controller. The following lemma bounds the regret of this term by

Or(VT).
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Proposition 16. Define Ry as
o - * s N * s N
Riy= Y E|TJ0.CL o T,0,W,) | 6] - ZE T, Cl TR0 W) | 6]

(189)
Under Assumptions [IH3 and conditional on event E N Es,

Ry, = Or (ﬁ) .

The proof of Proposition [16| can be found in Appendix As in the proof of Theorem
2, we will need the following propositions.

Proposition 17 (Regret from Randomness). Define Ry as

R, —ZTJ (6%, Kopt(e),Ts,sz, ZE [TJ (0, C%

s=0

) | 6]

Then under Assumptions [IH3 and [10] there exists an event Eprn such that P(Exrm) = 1 —
or(1/T) and conditional on EprgN —~ExmaN E,

Ry = Or(VT). (190)

The proof of Proposition [I7] can be found in Appendix [J.3] The next two propositions
have different regret bounds than their counterparts in Appendix [C.2]

Proposition 18. Define Ry as

R, = iE [TSJ(Q* Cl gy T 0WV) ] és]

—E|) T.J0",CL., To, x5y, W,)
s=0

Under Assumptions[IH3 and[10, conditional on event Es N E,
R = Or (ﬁ) . (191)

The proof of Proposition [I§ can be found in Appendix [J.4]
Proposition 19. Define R3 as (the random variable)

Ry _ZTJ 0, C8 Ty Wo) = D TLJ(0°,C T, W),

s=0

Then under Assumptions [IHg and [10 there exists an event Epgg such that P(Eprg) = 1 —
or(1/T) and conditional on EpmgN —ExmaN E N Ejs,

Ry = Or(VT). (192)

The proof of Proposition [19| can be found in Appendix [J.5]
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Proposition 20. Under Assumptions[IH3 and[10, conditional on event E,
T-J(0°,C",T,0,W) = > T,J(0",C, Ty, o, W,) = Or(VT). (193)
5=0

The proof of Proposition 20 can be found in Appendix [J.6
Using Equation (188 combined with Propositions , , and , conditional on

event " Fpggg N Es N E N Epg N Eppg the total regret is upper bounded by
T-J(",C".T) =T J(0",Ck,o-1)» T) < Ro+ R + Ry + Ro + Ry = O <ﬁ> :
Combining Propositions [17 and [19} P(EpmN Ewxra) = 1 — or(1/T). Therefore, we have that

P(E3; N EN—EgggN Erm N Errm)

=P(E; N EN—FEumgy) — or(1/T) Remark 21]
> P(EigmN E N —Exgg) — or(1/7) Lemma (43
> P(=FEyrgg) — or(1/T). Remark 2]

Above, we twice used the following remark:

Remark 21. If two events & and & satisfy that P(E,) =1 — op(1/T), then
P(gl N 52) == P(gl) + P(gg) — P(gl U 52) Z P(gg) — OT(I/T)

Taking Fpmg = Es N E N By N BN Eprg gives the desired result.

1.2 Proof of Proposition

Informally, Emrgg implies that the optimal linear controller for * is close to satisfying the
constraints. Therefore, we will bound the regret by approximating both the best constrained
controller and the controller of Algorithm 4| by the optimal unconstrained linear controller.

We will decompose the regret as follows. Define C*2" to be the controller of Algorithm
after the warm-up period, i.e. starting at time t = Ty. Therefore, C} ls" — C’figTO. Define
x), 2}, ... as the series of positions when using algorithm C®#. Define W’ = {wi};fr:_j}o . Recall
that C¥° is the linear controller such that C*¢(z) = —Kxz. We can decompose the regret
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as follows:

T-J(0",C",T,0,W)—=T-J0",Ck. o7, T)

<T-J(O°,C",T,0,W) — (T = To) - J* (0", Ck. . o-7: T — To)

= (T —Ty) - J* (6", Cp T —Ty) — (T =To) - J*(0", Ck ooy T — To)

Fopt (fwu)’
i3
+ (T =Ty) - J(O7,Cpe 5 T = To,0,W') = (T = To) - J'(0",Cp T = Ty)
R,
(1 =To)- IO, O g o = ool W) = (T =To) - (0, O3 5 0T = To, 0, W)
+ (T =Ty) - J(0,C™ T = Ty, , W) = (T = T) - (0", O 5 T = T,y , W)
7,
+T - J(O,C¥, T,0,W) — (T —Tp) - J(0*,C™", T — Ty, oy, ,W'). (194)
Ry

We will now individually analyze each of these components of regret. The first component
of regret (R}) is the extra expected cost of using C;i::t () VETSUS Cgopt(e*,T)- We will bound
that regret with the following proposition.

Proposition 22. Under Assumptions @ and conditional on event EY,

(T =Tp) - J* (0", R 5. T = T0) = (T = To) - J*(0", CF. g rys T = To) = Or(VT). (195)

The proof of Proposition [22] can be found in Appendix [L..1]
The next source of regret (R}) is the variation in the realization of the T'— Tj time step
cost versus the expected cost. We will bound this regret with Proposition

Proposition 23. Under Assumptions [1H3 and there exists an event Epggy such that
P(Epmg) = 1 — or(1/T) and such that conditional on event Epgg,

(T —Tp)- J(O",C™ - T —Tp,0,W') — (T —Tp) - J*(§*,C2 . T — To)’ = Or(VT).

Fopt (ewu) Fopt (0 )
(196)
The proof of Proposition [23] can be found in Appendix [L..2]
The next source of regret (R}) comes from the starting position of the controller C’;ﬂnc (o)’
opt

We will bound this regret with Proposition [24]

Proposition 24. Under Assumptions[IH3 and[10, conditional on event E,

(T —Tp) - J(6",C™™

Fopt Awu) ’

T =Ty, W) = (T = T) - J(O%, O T = Ty, 0,W)| = O (1),
(197)
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The proof of Proposition 24] can be found in Appendix [L..3]
The next component of regret (R}) is the additional cost of enforcing safety on top of

the controller C’;zl:t ()’ Define event E% as the event that the first 1/v7 controls used by

controller C?! are safe for dynamics 0.

Proposition 25. Under Assumptions [1H3 and there exists an event Epgg such that
P(Frgg | ExmmaNESNEYS ) = 1—o07(1/T) and such that conditional on Egmgg\ESNEYS N Frgg,

safe safe

(T —Tp) - J(0",C™ T — Ty, alp, W) — (T —Tp) - J*(6", W ey T = Tos 2, W’)’ = Op(VT).
(198)

The proof of Proposition [25[ can be found in Appendix |L.4]

The last source of regret is the regret from the warm-up period. By Proposition 20} this
source of regret is O(v/T)) conditional on event F, because by definition 7-J(6*, C*&, T, 0, W )—
(T—Tp)-J(6%,C¥" T T, alp W) =T-J(0F,C8, T,0, W)= T,J (0%, C¥8, Ty, aty, , W).

Recall that E C EYNEYY . Therefore, conditional on FpggN FpggN E N Exrgg, by Equation

safe*

(194) and Propositions , , , , and , we have that
T-J(0°,C¥,T,0,W) =T - J(0*,C% o1, T) = Or(VT).
Furthermore, because P(EI N EYY) > P(E) > 1 — or(1/T), we have that

safe

P(Emm N Epgg N E N Exggn)
=P(EmgN Ey N EYS N EN Eyrgg) — or(1/T) Remark 21
=P(EpgN EY N EYYE N Eyggn) — or(1/7) Remark 21

= P(Frzy | Eg NEY N Em)P(Eg N EYE N Exggg) — or(1/7)

safe safe

> (1 —op(1/T))P(EY N EX% N Eyggg) — or(1/7)

safe

= P(E; N Egt, N Eyren) — or(1/7)

safe

= P(Fwrzz) — or(1/T). Remark [21]
Taking Fpmg = Ermm N Ergg N E N Eygy gives the desired result.

J Proofs from Appendix

J.1 Proof of Lemma 43|
proof. We will use the following equivalent version of Lemma [26] for Algorithm [4]

Lemma 44. Let x;,u; respectively be the position and control of C¥& (the controller of
Algorithm at time t starting at xg = 0. Define G; = (zo,ug, .., Ti—1,u;i—1). For constant
v >0, define Sy as

Sy = {z <t:u; = w3 and P(u; = w5V | Gy, F) > 7}. (199)
Then under Assumptions @ and for sufficiently large T, with probability 1 — or(1/T),
max esV/|Sr,| = Or (1) (200)
s&€|0:se
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The proof of Lemma [44] can be found in Appendix [K.1]
While we have not yet explained the significance of Lemma [45] we state it here because
the definition of €* is needed for other definitions below.

Lemma 45. Define

Dy
=0 — — Dy |. 201
e ( — 0" Kope (07) > 20

Then event ~Eymgg N E can only hold if € > 0.

The proof of Lemma [45| can be found in Appendix [K.2]

Define 7, = P““ND(wZ;'_g’E*/ ® (which is a constant) and define S/ as

Sy = {z <t = w3V and Pu; = u$*™Y | Gy, E) > fye}. (202)

Note that this is the same as the definition of S; in Lemma 4] except with v = ~..

Lemma 46. Under Assumptions[1H{3 and[10, there exists an event Eygg such that P(Eigg) >
1 —op(1/T) and such that conditional on event Eygg N —Ewza,

T
max Tar 1 =
s€[1:se] STS ‘

Or(1).

The proof of Lemma [46] can be found in Appendix [K.3]
Define Eigg as the event that Equation (200]) holds for Sy, = S7,. Then P(Eigg) =
1 — or(1/T) by Lemma [44] By Lemma [46] conditional on event EiggN Ergg N —Ewga,

T. .
—2 A /IS5 ] = Op(1).
51 (g eisi) = 0nc0

Under event Ey, we also have that egv/T = OT(VT)% = 0T(1). Because £ C E5 this implies

that conditional on F, we have egv/Ty = OT(l).
Therefore, conditional on EyggN Eigg N —Eamg N E,

max eg\/ 15 = OT(l).

s€[0:se]

max e/ 1, </ max

s€[l:se] s€[l:se]

Taking Figg = ErggN Eigg gives the desired result because P(Eygg) = 1 —or(1/T) by a union
bound. 0

J.2 Proof of Proposition

proof. The goal of this proposition is to show that using the infinite horizon controller is not
significantly worse than using the finite horizon controller. This proof will use the following
lemma.

Lemma 47. Under Assumptions @ cmd for any 6 € © and K € [*F, 4],
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The proof of Lemma [47] can be found in Appendix [K.4]
We can apply Lemma [47] to get the following two equations:

1
* fs * 0s —
* t9g * 93 — 1
J(0,Cl T =T 0, ) Or (Ts (204)

By definition, we also also have the following two inequalities.

195 * 05
T 0 Cl g T ST 0,C T (205)
* 05 * 05
J (087 CKopt(9 )) < J (087 CKopt(9 Ts)) (206)
Combining Equations (203)—(206)), we have that
* 2 1 .
J (OS,C’IO(ON(Q T JTs) > J (HS,CZON(O T)) — Or —S) Equation ([204))
* 2 1 .
> J*(0,, Cf{opt(e )) Or (7—; Equation ([206])
~ 1
> J*(@s,Cﬁ( 0.’ ,Ts) — Or (—) ) Equation (203)).
Combining this with Equation (205 gives that
1
* 9; * 09
J (GS,CKOM(OS ) Ts) —J (GS,CKOM(G), )| = Or (Ts> (207)

This is almost the desired result, but to bound the regret term R, we need to bound the
difference under dynamics 6*, not under ;. Conditional on event E, |05 —0*||oc = Or(vr) <
m for sufficiently large T', and therefore Lemma 41| implies the following inequalities for
sufficiently large T

~ ~ 1
* 0 * [ N)* 0 *
PO, Ch o T =0 O T =0 (||95 0 ||oo+ﬁ> (208)
* 05 % [ % 05 A N * 1
F (0,00 T e C T =0 <Hes Ot ) (209)

Putting together Equations (207)), (208)), (209), and the fact that T, < T?, we have

JH 67, CP T,) — J* (67, C% T)| <

Kopt (0s,T5)’ Kopt(0s)’

- R 1
Or (||95 — 0|00 + ?) . (210)
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Now we are ready to use Equation (210)) to bound R;, conditional on event F N Ej:

Ry

_ZE[TJQ* Cl 4y T 0, ) ‘9} ZE[TJ@* % iy T )

0,]

s=0
- - * * 03 * * 08
o ZTsJ 9 CKopt 6, )’ ZT J 6 CKOpt(e Ts)’ TS)
. 0, % [ ()% 0
< ZT J 9 C opt(é )7T) J (0 CKopt(e TS) TS)

- « . 1
. (Z 7. (10, - 1 + 7)) . Eq (10)
s=0 s
= OT (se + g Tses> Event £

= Or(VT) Event Fj

The last line follows from the fact that s, = Or(1) and that under event Ej, Tse, =

VT (e/T5) = Or(VT2) = Or(VT), =

J.3 Proof of Proposition

Because the events F and Ej are defined equivalently to the events in Appendix [F] and vr
is the same for Algorithm 5] and [4 this proof is very similar to the proof of Proposition [J]
with the events and variables with respect to Algorithm [ instead of Algorithm [5] There
are two differences between this proof and that of Proposition O The first difference is that
the subscript on the controller is Kopt(H ) rather than Kopt(Qs, Ts). The proof of Proposition
[ follows the proof of Proposition [6] and primarily relies on analogous versions of Lemmas
(6] and [7] Examining the proofs of these lemmas, the proofs (and analogous results) hold

for any controller C’e where K € [KE , K{ 2 *]. This is because the value of K is not used
anywhere in the proof Therefore, analogous versions of these lemmas hold for Algorithm [4]
with Kopt(ﬁs) instead of Kopt(es, T)

The second major difference is that Propositions [0] and [J] state that the result holds
conditional on £ with high probability, while Proposition [17] holds conditional on £ N Epry.
In the proof of Proposition |§| (specifically Equation (46))), we can define the event

Kopt(es Kopt(e

_ {SzeTSJ @, C% T, 0, W) ZE [TJ @, C% T, 0, W) ‘ és] > OT(\/QF)}.
s=0

~

Note that we replaced Kopt(és, Ts) with Kqp(0s) for reasons discussed in the previous para-
graph. Equation implies that P(Eggg) = 1 — or(1/T). Looking at the last sentence of
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the proof of Proposition |§|, we have that conditional on E N Eggg N (., EA@(C’f(S 0. W),
opt\Us

T,0,W,) | 4] < Or(VT).

(211)
Furthermore, because by construction P(Fag(C?% W) =1 — or(1/T"°), we have by a

I(opt(és)7 s

union bound that P(Ewg N (2, EA@(CéS Ws)) =1—or(1/T). Therefore, we can take

N Kopt(és)’ s
Euvmn= EamN (i, EA@(C’% 0.y W) to get the desired result of Proposition .
opt\Us

DT O g0 T W) = D [0, O
s=0

opt(és)
s=0

J.4 Proof of Proposition

Because the event F and Ej are defined equivalently to the events in Appendix [F] and vr is
the same for Algorithm [5] and [4], this proof is exactly identical to the proof of Proposition
with the events and variables with respect to Algorithm [ instead of Algorithm [5]

J.5 Proof of Proposition

Because the events F and FEs5 are defined analogously to the events in Appendix [F| and vp
is the same for Algorithm [5] and [} this proof is very similar to the proof of Proposition
with the events and variables with respect to Algorithm [ instead of Algorithm [5] Other
than this redefining of events and variables, there are just two differences.

The first difference between Proposition [19|and Proposition|11is that the subscript on the
controller is Kopt(és) rather than Kopt(és, Ts). The proof of Proposition (11| follows the proof
of Proposition [7 and analogous versions of Lemmas [9 [10}, and [T6] The results of Lemmas [J]

and [16/all hold when the controller C% s replaced with C% for any K € [KIG:S, K]

opt(0s,Ts)
because throofs do not depend on the value of K). Therefore, analogous versions of

A~

Lemmas |§|, , and |16 hold for Algorithm {| with Ko (s, Ts) replaced with Kope(6s).

The second difference is that Proposition [I[1s bound holds with high probability condi-
tional on EN Es, while Proposition [I9s bound holds conditional on ENE3N Eprg. Examining
the proof of Proposition [7| (which is used in the proof of Proposition , the high probability
event comes from Lemma [0 and that high probability event comes from Lemmal[I6 Looking
at the proof of Lemma/[16], the final result is proven conditional on event E with conditional
probability 1 — or(1/T?). However, this “with conditional probability” is coming from the

event [, EA@(CéS , Wy). Therefore, by Equation and the last sentence in the
proof of Lemma 7 for Algorithm ,conditional on ENN3, EAIE(Cf; W), for all s,

Kopt (ée 7T€)
(6s)’

Ty J(6°, O o Tl W) = T J(6°, %, T, W)

(9s)

Ts—1 A
=Orp (Z |C8 () — Cﬁgopt(és)@éfsﬂ” + Ts€3> _
1=0
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Note that we replaced Kopt(és, T) with Kopt(és) for reasons discussed in the previous para-
, W) gives the desired result because by a union

. Ws)> —1— op(1/T).

graph. Taking Epmg = (32, EAE(CIG(SOpt(éS)

. Se fs
round and Assumption , we have P <ﬂ520 EA@(C’KOpt @

J.6 Proof of Proposition

The proof of Proposition 20| follows exactly the same as the proof of Proposition |8l This is
because the controller of Algorithm [4]is safe for dynamics 8* under event F, and the result
therefore follows directly.
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K Proofs for Appendix

K.1 Proof of Lemma [44]

Note that by construction and Propositions|13|and the truncated linear controllers satisfy
Assumptions [4H8] Therefore, the proof of Lemma [44] follows exactly as the proof of Lemma
26}, except for Algorithm [4] instead of Algorithm [3|and with the analogous definition of event
E.

K.2 Proof of Lemma 45|

proof. The following lemma shows that Fyp(0*) and Fyp(0yy) are similar under event E.

Lemma 48. Under Assumptions ﬁ cmd conditional on event EY, there exists cigg =
O7(1) such that for sufficiently large T,

|F0Pt(9*) - FOpt(éwu)| S C[@T_l/4.

The proof of Lemma [4§] can be found in Appendix [K.5]

Conditional on E (because E C EY), we have that |0y — 0*|ec < 2¢0 < 2c1ggl /. This
combined with Lemma [48] implies that there exists cpgrg = Or(1) such that under event E
for sufficiently large T,

~ ~

i — bF i (On) < a* — 0" Fop(07) + el 4. (212)

Now we will proceed with a proof by contradiction of Lemma Assume event ~FyrggN E
holds and €* < 0, the latter of which implies

— Dy > w, (213)

which in turn implies that Ko (0%) > K, (recall K}, was defined in Definition . A key
result is the following relationship between Ko (0*) and Fip(6%).

Lemma 49. Under Assumptions ﬁ and for any 0 € ©, if Kou(0) > KY, . then
Foe(0) > KY, .

The proof of Lemma [49] can be found in Appendix [K.6]
We also will need the following result.

Lemma 50. Under Assumptions [1H3 and[10, there exists cigg = Or(1) such that cigg > 0
and for all 6 € O,
1 —cpg > a — bFp(6) > cipn,

a— bKp(0) > cipn.
The proof of Lemma [50] can be found in Appendix [K.7]
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Lemma combined with Equation (213) give that Fi(6*) > K7, , or equivalently that

w+ Dy — a*_bgﬂm < 0. Therefore, we have that for sufficiently large 7" under event

BN E,

D
w~+ Dy — = v =
a — bFopt (Byon)

<w+D Dy Equation (212)

w — uation
= U b Fope(0%) + cogal /" d
- gl Dy + 1+ Dy — Dy

a*_*ot* a*_*ot*+c_ a*_*ot*

(a7 = b Fope(0)) (@ — b Fope(67) + cagmal /%) v b* Fop (67)

CHmT_l/4DU
< L 49, Eq (213
= (a* = b Fope (07)) (" — b* Fop (0%) + crgmgl /%) emma 7 q ‘-’
< (CE]Z?.;%]) T4 Lemma [50l
1510)

- switchT_1/4'

However, this contradicts event —Fgrgg and therefore we have a contradiction. This implies
the desired result that if =" Fggga N E holds, then €* > 0.
O

K.3 Proof of Lemma 46

proof. Define the event ES := {||é§re — 0o < €5 = OT(VT)}. Define G; = (xq, ug, ..., Ti—1, Ui—1)
and define

Sy = {z <t:u; = u™Y and P(u; = u*™*Y | G;) > Pyup(w > w0 — 36*/8)}.

Lemma 51. Under Assumptions[IH3 and[1( there exists a constant p. such that the following
holds. For sufficiently large T and any s € [0 : se — 1] and any Ts < j < Tg1q — [log(T)],
there exists an event X; that depends on {wt}f;[log(Tﬂ_l such that P(X;) > p. and such
that conditional on event X; N ES N —Eyga, there exists an { € [j : j + [log(T')]) such that
teSy, ..

The proof of Lemma [51] can be found in Appendix [K.§|
Define

[Ts/[1og(T)|] =1

Note that ZIZZO (1 Xttt llos(r)] — p€> is a submartingale. Therefore, by the Azuma—Hoeffding

inequality, we have that P(£%) = 1 — op(1/T?). Define & = N;'€%. Then by a union bound
P(&) =1—o07p(1/T).
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Conditional on € N E N = Eyggg, we have that

|Ts/[og(T) ] =1

1
ST5+1 | = Z 1XTs+euog<T)J
=0

> e hlogTT)JJ _ hbgTT)JJ log(T) Event &

pel’s T
Tlog(T) hlongJ log(T)

De
T Suff. 1 T
Tlog(T) uff. large

De
= . TS . TS - 2Ts 214

>

>

Define Eygg = {Vi € [Ty : T — 1|,P(E | G;) > 1 — Le=n203/8}  Recall Lemma [27]
which is stated and proven with respect to Algorithm [5] Note that the proof of this lemma
does not depend on Algorithm [5| and only uses that P(E) = 1 — or(1/T?). Therefore,
an analogous result holds for the event E defined with respect to Algorithm 4] instead of
Algorithm [f| By this analogous version of Lemma 27, P(Eign) = 1 — or(1/T). For any
i € [Ty : T — 1], conditional on Egg N {P(u; = usV | Gy) > Pyp(w > w — 3¢*/8)}, by the
law of total probability

P(u; = uf*®V | G;) = P(u; = u*™®Y | G;, E)YP(E | Gi) + P(u; = u§**Y | G;, ~E)P(=E | G;)
Pyp(w > w — 3€*/8)

< Plu; = us™*V | Gi, E)P(E | Gy) + 5 .

Rearranging terms gives

P(u; = uieV | G;) — Pw~D(w22w—3e*/8)
P(E | Gy)
Pyp(w > @ — 3¢*/3)
2

]P(’U/Z = 'U,iaer ‘ Gi, E) 2

> Pu; = u™V | G;) —

o Pup(w > @ — 3¢'/8)

- 2
Therefore we have shown that conditional on Eigg N {P(u; = vV | G;) > Puop(w >
w — 3¢*/8)}, we also have P(u; = vV | Gy, E) > PMD(WZ;"_?’G*/S). This implies that
conditional on Fygg, for all t € [0 : T],

S C S,
Combining this with Equation (214)), conditional on EypggN &€ N E N —Ewga,
T 8log(T ~
g(T) _ 45

< = 1).

g S - o)
We therefore take Figg = EipgNENE to get the desired result because P(Eigg) = 1—or(1/T)
by a union bound. O

128



K.4 Proof of Lemma

proof. Let zr be the position after starting at zo = 0 and using the controller CY for T
steps under dynamics 6. Therefore, because C% is safe for dynamics 6, we must have that
|z7| < max(Dy, |Dyp|)+w < 2log?(T) for sufficiently large 7. Therefore, there must exist an
L < 2log*(T) such that P(|x| > L)E[2? | |z| > L] = or(1/T™). Define W’ = {w;}-,. B
construction and Propositions[12|and[I3] the truncated linear controllers satisfy Assumptions
and therefore we can apply Lemma [11]in the sixth line below to get that

J*(0,C%.2T) — J*(0,C%, T)|
T-J0,C%,T)+T-E[J(0,C% T, a7)]

— o — J*(6,0%.T)
_|E[, Cj(,T, or)] %J*(970%7T)
% |E [TJ*(0,CL, T, x7)] — TJ*(0,C%,T)|
%‘ E [T.J(0,C%, T, xp,W') — TJ(6,C%, T,0,W")] (
%O (EuxTH +0+ %) Lemma [[1]
<or () o1] < D + 0 = Or(1)

The last line follows from the fact that C% is safe for dynamics . Finally, we have that

> JH0,C5,2'T) = J*(0,CF, 2'T)

1=0

|‘]*<87 CIGOT) - J*(‘gv C?()‘ -

< 0.0 2T) - (0. CY 2T

°:° ~ 1
>0 (75)

)

I
@)

T

N[ =

K.5 Proof of Lemma (48

proof. By Lemma , the optimal unconstrained controller for dynamics € is C’IEL:; ) where

q+rE?

Fopt(ﬁ) = argmmT J (8 C ) = argm}%n'm.

(215)
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We show in the proof of Lemma [50] that

a’r — Vg —r ++/(b2q +r — a®r)? + 4a2b2%qr
2abr '

F0pt (9) =

Note that this is a differentiable function in both a and b for § € ©. Under event E.
16 = Oyulloe = Or(vr) = Op(T~Y4) where 6y, is the estimate from Line I of Algorlthmi
Therefore, a first order Taylor expansion of F(#) around 6 = 6* gives that for sufficiently

large 7', | Fope (0%) — Fope ()| = O7 (10" — Oyulloo) = Op(T~Y4) = cyggT—"/* for some cipg =
Or(1).
L]

K.6 Proof of Lemma [49

proof. We will prove the contrapositive, which is that if Fo(0) < K}, then Ko (0) < K9, .
The first tool we need is the following result about Fyp(6).

Lemma 52. For any 0 € © and K € (K{, K?],

_ oplg+rK?)

This function is convex and twice differentiable for K € (K¢, K?]. Furthermore z'f 1—(a—
bK) > 0, then | 7= J*(6,C32)| and ‘ @ J (0, C"mc)‘ are finite and -L5.J*(0, C0) >

K2
Finally, if K = K?, then J*(0,C%°) = oco.

The proof of Lemma [52] can be found in Appendix [K.9]
Lemma [52| implies that the function J*(0, CE°) has a unique local minimum (F,u(6))
and is convex. Therefore, if Fiu(#) < K9, , then for any K’ > K}, |

dK2

J(0,C5 ) < JH(0, ). (216)

For any K’ > K,%U, the unconstrained and constrained controllers are the same, i.e. CR° =
C%,. This is because for K’ > K}, the unconstrained controller will always satisfy the
position constraints because we assumed WLOG that Dy < |Dy|. This implies by Equation
that for any K' > K},

J*(@,qu_) ) < JH6,C%).

Therefore, to prove that Ko (0) < KJ, it is sufficient to find some K’ < K}, ~such that

J*(Q,Cf(% ) > J*(0,0%). (217)
U
Let K' = K}, — €, where
. 4Bp min(w, DU)/2
< : 21
0<6_m1n((w+DU)2, (@ + Do) (218)
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We will show that J*(0, C%,) < J*(0,C%, ) which proves the desired contrapositive result.
Dy
Because a — bK), = 7%= = 1 — 52—, by Lemma [52| the function J*(§, C}*) has a

DU+’J) DU+’1D7
finite derivative at K = K7, . Furthermore, if Fypi(f) < K7, , then Lemma 52 implies that
the derivative of J*(0, Cp™) is positive at K = K}, . Therefore, we can take a first order
Taylor expansion around the point K = K,%U to get that for sufficiently small e,
JH(0,C%°) — J(0,C% ) < —Qr(e). (219)

K},
unc __ Y0 : : :
Because C’K% o= C’K% X Equation (219)) implies that
J(0,C5°) — J*(@,Cf(% ) < —Qp(e). (220)
U

Note that in Equations and , the LHS is not a function of T'. We use the notation
—Q7r(€) to indicate that the LHS is upper bounded by —ce for some constant c.

Now we will compare the cost of 3¢ and C%, using the following lemma. Note that this
lemma is stated very generally so that it can also be used in future results.

Lemma 53. For 9,@1153] € 0, suppose [ < m satisfies that 6 € émi B. Also, suppose

K’ satisfies K%U — K' <€ for some € > 0. Furthermore, suppose

W=wﬁﬂ+wﬂ®§mm( 4Br mmWDmm)

@+ Do (@ Do) (221)

Define the controller C as follows. For any t, define vi*®V as the largest u such that for all

VS émj: G,
az, +bu < Dy,

and define v;¥°Y as the smallest u such that for all ' € ém + 5,
D <dxy +Vu.
Define the controller C' as
C(2;) = max (min (CR° (), v}V , vj*e") .
Let |zo| < ||D|oc + w. Then under Assumptions[1{3 and[10),
|J*(0,C, z0) — J*(0, O35, 20)| < Op(v?). (222)

Furthermore, with probability 1 — op(1/T?), for any 7 < T,

J(0,C, 20, W) — J(0,C22¢ 7. 30, W) < Of (v log(1/v) <U + 10%(; ) )) o (223)

The proof of Lemma [53] can be found in Appendix [K.10]

131



We will use Lemma |53 with the e defined in Equation (218), K’ = K,%U —€ 0 =0,
ém =0, o = 0, and § = 0. Choosing ém = ¢ and f = 0 makes the C' in Lemma
equivalent to a truncated linear controller. Then, Equation (222]) of Lemma [53| gives that

[J5(0,Clr) = T*(0, C°)| < Or(€). (224)
Putting together Equations and , for small enough ¢ we have that
JH(0, Cler) = (6, Cy )
= J0,C%) — J*(H,Cl’]”ric) + J*(0,CK°) — J*(@,C’f(% )
< Or (62) —Qr(e). ) Equations ,

< 0. For small enough €

We have shown that C}, has lower cost than C%, , and therefore we can conclude that
Dy

Ko (0) < K ,%U, proving the contrapositive and our desired result. O]

K.7 Proof of Lemma 50

proof. By Lemma , Fopi(0) is the value of K € (“—_1, %} that minimizes the function

b
% (note that we ignore the constant 0% as this is a positive constant and does not

change the minimization problem). Taking the derivative of this function and equating to
0, we have that F,,(6) is the solution to

9Kr(1 — (a — bK)?) — 2b(a — bK)(q + rK?)

- (a— bK)2P -0

Simplifying, we have
abrK* + (bq+7r —a’r)K —abg =0

Applying the quadratic formula, we get that the positive root is

a’r — Vg —r ++/(b2q +r — a®r)? + 4a2b2%qr

Fopt (0) = 2abr

We also observe that

2
(a>r +b2q+7)° — <\/(bzq + 7 —a?r)? + 4a2b2qr> = 4a’r?,

which implies that

(a2r + b2q + 7“) — <\/(b2q +7r—a’r)?+ 4a2b2qr)
4a%r?

(a?r +b%q+7r) + <\/(62q +7r—a’r)? + 4a2b2qr> .
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Because ¢ > a > a, b >b>b, and r > 0, this implies that there exists a constant Cﬁl'ilﬁl >0
such that

“« 5 (0) a?r + g +r —\/(b2q +r — a®r)? + 4a2b2qr
b opt a 2abr
B 4a?r?
2abr (a2r +b3q+7r+ \/(bzq +r—a’r)?+ 4a2b2qr>
4@27‘2
> — = — -
2abr (dzr +b%q+r+ \/(bzq +r—a’r)?+ 4a2b2qr)
= cﬁ%m
> 0.

Similarly, we have that

2
(r(a—1)+ qu)2 — (\/(b2q +r—a’r)?+ 4a2b2q'r’> = —dar ((a — 1)*r + b%q) .
which implies that
(ra— 1)+ %) — (VA
—dar ((a — 1)*r + b%q)
(r(a —1)24+b%q) + <\/(62q +r—a’r)?+ 4a2b2qr) '

b2q+r —a?r)? + 4a2b2qr>

Because a > a and r > 0, this implies that there exists a constant cﬂ% > 0 such that

a—1_ Fop(0) = r(a— 1)+ 02q — /(BPq + r — a®r) + 4a®B2qr
b e 2abr

—4ar ((a — 1)%*r + bq)
2abr (r(a —1)2+b%q+ \/(62(1 +7r—a’r)?+ 4a2b2qr>

<~

< 0,
where the constant C{i depends on @, a, b, b. Taking cfpy = min(c/gg, cfy), we have that
cipg < @ — bFope(0) < 1 — cipg (225)
To bound K, (0, T) away from 0 we need the following lemma:
Len(lma 54. Under Assumptions «@ for any 0 € ©, if Fop(0) > K3, , then Kop(0) =
Fopt(0).

proof. If Fop(0) > K7, , then Cho) = C%opt(e)’ i.e. the unconstrained linear controller
for Fop(0) is the same as the constrained linear controller for Fop(6). Therefore, Cp¢ 4 is
in the set of constrained controllers. Because the optimal unconstrained controller is linear
[AMOT], C’I‘fﬂz‘; (0) 18 the lowest cost unconstrained controller, and therefore it is also the lowest

cost constrained controller. O
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By Lemma 54| and the contrapositive of Lemma 9] either Ko (0) = Fup(6) or Kopy () <
K}, . By Equation (225) and the fact that a — bKp, = Du_ e can conclude that

" Dy+w’
. Dy
a— bKqpi(0) > min (DU n w,cfm) > 0.
Therefore, taking cigg = min ( DS gt cFIm> we have the desired result. O

K.8 Proof of Lemma [51]

proof. The structure of this proof is as follows. The bulk of the proof is split into two key
lemmas. We then combine these two lemmas to show the desired result. Define

2
T = [8 ( +Cm||D||m +2w> /E*-‘ )
C1E0

where €* is from Lemma [45] Now, we will define

X;j={Vtelj:j+7],w,>w—€/4}.

Note that P(X;) = (Pyp(w > @ —€/4))"" = p, and for sufficiently large T, 7 <
[log(T")], therefore this X; has the desired properties.

Lemma 55. Using the assumptions and notation of Lemmal[51], conditional on E3N—ExmgaN

X, there exists an { € [j : j + 7] such that u, = ui*Y.

proof. We will first show that conditional on E§ N —FEygg, for any value of x satisfying

D —w<zxz< #"(é), and for sufficiently large T, if w > w — €*/4, then
a”— opt(Us

*

(@ — b Kope(0,))z +w > + % (226)

Under event E5, [|0* — 0,]|cc < Or(T1/4), therefore under event E5 we have the following
results:

0 — 0 Ko (05) > g — by Kopt (0) — Op (T4 16 = 04|00 < Op(T~Y4)
> cipg — Op(T7Y%) Lemma
> TIJBIEI suff large T' (227)
and
a* — b Ko (0,) < G5 — bsKope(05) + Op(T74) 16" = Oslloc < Or(T~1/*)
< 14 Op(T7Y4. Lemma [50) (228)

Equation (227)) implies that for sufficiently large T,

D 2D
T <22 —04(1). (229)
a* — b Ko (6;)  ciEm

To prove Equation (226]), we will need the following result.
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Lemma 56. Under Assumptions [1{3 and conditional on event E5 N —Eygy and for
sufficiently large T,
Dy
a* — b Kop(0)
The proof of Lemma [56] can be found in Appendix [K.11]

Conditional on event F3 N —FEyrgy, for sufficiently large T, and for any D, —w < o <
Dy
a* —b* Kopt (65s) °

(a* = b* Kopt(0:))x + 0 — €* /4

SDU—F@—E*/Q.

Dy 5 _
=Dp+|zv——————](a*— opt(0s)) + w0 —€" /2 4+ € /4
v ( a* — b*Kopt(95)> ( Pt( )) / /
D D .
>— v |- —0 (@" = b"Kopi(0s)) + € /4 Lemma 50
a* — b*Kopi (05) a* — b*Kopt(Gs)
Dy 5 pe1/4
> ——F |- — | (14O (T~ V4) + ¢ /4 Eq.,x<—A
a* — b* Kopi (05) < a* — b* Kopt (05 > — b*Kopt (65)
=240 | T V4 (0 = ———— +e*/4
a* — b Kopt
A —-1/4 * — DU
>z—0r|T |DL|+w+—A +e"/4 Dp—w<zx< ————
— b Kopt(ﬁs) a* — b*KOpt(GS)
>z—Or <T_1/4> +e"/4 Eq (229), Assumption [I0]
>x+€"/8. For sufficiently large T

This in turn implies the statement containing Equation (226]).
Recall that u; is the control at time i of Algorithm 4| and 2 is the position of Algorithm
at time ¢. Under event = Eggz, for any i € [Ts+ 1 : Tsyq], if uj—q # ufafo, then the control

at time ¢ — 1 is either u;_; = — Opt(és)xz L or ug = utt > — K (9 )zi_,. Therefore,
under event —Fyrgy, if u;_; # ui*Y then
Uit > =Ko (6s)a)_y. (230)

Combining Equations (226]) and (230]) gives that for any ¢ € [T + 1 : 27;], conditional on

_ D
the event {u;_; # usV} N {DL —w<zxz_ < Wipt(es)} N ES N —=ExmaN X,

/ /
X, = a*xi L0 U+ wiy

>a* — b Kope (B5) 2| + wiy Equation ([230))
(a - b* Kopt (0))}_y + wi—y
>+ %. Equation (226) (231)

If the control at time j — 1 is safe (which is guaranteed by construction of the algorithm
under event Ej), then x; > D;, — w. Therefore by Equation ([229)),

Dy o Dy
a* — b*KOpt<é ) J a* — b*Kopt(és)

< 2+ cpg
c

| D]|otw = Or(1).
(232)

2D
+|Dp|+w < =4 Dy |+w <
CiEg
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By Equation (231)), conditional on E3 N — N X, the position will increase by €*/8 at

each step £ if D, —w < z, < #’fﬁ(é) and u, # u™®V. Furthermore, by Equation
a”— op s

(232), if the position Dincreases by at least %?HDHOO + 2w from ', then the position will
U
a* —b* Kopt (0s)

§( 2B || oo +2@
€*/8 takes at most [ Copm | v

be greater than Increasing zt—fégﬂHDHoo + 2w position in increments of at least

= 7 steps. Putting this all together, conditional on

e*

Dy f
——— = I0I some
a* 7b*Kopt (93)

¢ € [j:j+7]. Both of these alternatives imply that u, = Y for some ¢ € [j : j + 7],

E5 N =Emman X;, either uy = u§**Y for some ¢ € [j : j + 7] or 2, >

because if x} > m’ then by construction of the algorithm, u, = u*V. This is the
- opt\Us
desired result for this lemma. O]

The next key result is the following lemma.

Lemma 57. Using the notation and assumptions of the proof of Lemma for sufficiently
large T and any £ € [j : j+7|, conditional on {u, = u§™™*Y} N Ey N—=FEmmaN X;, (+1 € STiy-

proof. Suppose ¢ € [j : j + 7]. Under event Ej the control at step £ — 1 is safe, and therefore
by the same logic as in Equation , for sufficiently large T" we have that

Dy — € /8 < Dy — Og(vr) < Dy — 4Bpe, < a*x) + brusey. (233)
Therefore, if u, = u3*°Y, then
a*zy +b*u, > Dy — €*/8. (234)
Therefore, conditional on {u, = vV} N E5 N = nX;,

/ L *
Ty = a’'wy+ b ug + wy

> Dy —€*/8+wy Equation (234)
D
> Y 43¢ /8 4w —w Lemma [56]
a* — b*Kopt(QS)
D
= Y w— (0 — 3¢"/8)
a* — b*Kopt(QS)
Dy

> i Event X, (235)
a* — b*Kopt(QS)

safeU

We also recall again that if 7, > Dy then w,y = w7 . Therefore, we have

= a*—b*Kopt(0s)’
shown that conditional on {u, = w;**V} N E5 N = EummaN X;, werr = w5V, Furthermore, we
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have for any Gy that satisfies {u, = vV} N B3 N = Fygg,

Gz+1>

Dy

a* — b Kop (65)
Dy

a* — b* Kopi (0)

P (g1 = 257 | Gopn)
Dy

>P| 2 > ~
= LT b Ko (0,)

=P | a"x)+ b up + wy >

Ge+1>

G g+1) Equation ([234))

>P DU—E*/8+MZZ

Dy
=P | w,> — — Dy +€/8|G
" kgl T ‘“)
>P(we>w—€/2+€/8] Gpya) Lemma [56]
= Pyop(w > w — 3€*/8). (236)

By Definition of S}, Equations (235)) and (236]) imply the desired result that conditional
on {u, = u§*Y} N E5 N —EgmaN X;, we have that £+ 1 € 57

T5+1'
O
Putting together the two lemmas, we have that conditional on E5 N = Ewga N X, there
exists an ¢ € [j : j + 7] such that u, = u$**Y, and for any ¢ € [j : j + 7], conditional on

{ue = u*V} N E5 N = Eumg N X;, (41 € S7_ . Combining these two lemmas gives that
conditional on E3 N —Exmg N Xj, there exists an ¢ € [j : j + 7 + 1] such that £ € Sy . For
sufficiently large T', 7 4+ 1 < [log(7T)], and therefore this is exactly the desired result. ]

K.9 Proof of Lemma 52

proof. Let xg, z1, ..., be the series of positions when using controller C'*° under dynamics 6
with zy = 0. Then we have the recursive relationship that zo = 0 and z;,1 = (a —bK)x; +w;
for all ¢+ > 0. Using this recursive relationship, we have that

t—1

T, = Z wi(a — b)) (237)

If K = K?, then a—bK = 1. This implies that 7 — oo, and therefore J*(0, C¢, T) = oo.
For the rest of this proof, assume K € (K{, KY]. Recall that u; = —Kuz; for all i > 0.
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Define p = (a — bK)?. Using the above expression for x;, we have that

T-1

qx?p + Z qxf + Tuf
t=0

-7 (m[x%} +Y rK?)E[a:f]) v =y =0

:_ﬁi%5ﬂ+%<zywukamﬁo.

1
0,0, T) = —E

Furthermore, we have

— Z(q +rKHE [< i w;(a — bK)t_l_’)Q] Equation (237)

t=1 1=0
2 ) T t—1
op(q+rK?) 3 i
= p
T t=1 i=0
_ ohlg+rK?) Z 1—pf
T 1—p
t=1
T-1
o4 (q+rK?) TS
T(1-p) —
_ 0%(q+TK2)( =0 )
1—p T(1-p)

By the same logic, we have that

T
rK?E[X3] riKPopTt

T T
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Therefore,

J*(0,CY) = lim J*(0, Cyre, T)

T—o00
= lim —TKQU%IT_‘%T + op(a + T i) <1 — i)
T=500 T 1—p T(1—p)
_ oplg+rK?)
~1—(a—bK)*

Now, we note the following derivatives:

d 1 ~ 2b(a - bK)
dK (1— (a—bK)2> T (1= (a—bK)?)?

and

d K? _ 2aK(1— (a—0bK))
dK \1—(a—bK)2) (1 —(a—bK)??2 '

For K € (K{,K?],if 1 — (a —bK) = ¢ > 0, then 1 — (a — bK)? > ¢ > 0, and therefore these
derivatives imply that

d E3 unc
‘d_KJ 6. Cx)| = |ar 1= (a — bK)?
5 2b(a — bK) 2aK(1 — (a — bK))
“D(%l—«w—wa%2+r a—wa—ww%Z)‘

<o? <q2b(a—bK) +T2a|K|(1 — (a—bK)))

_ ‘ d op(qg+rK?)

c? c?

< 00.

For all K € (K¢, K], we also have that

2 ,
dK? (1— (al—bK)Z) =0 ((1— (al—bK))3 * (1+(a1—bK))3> >0

and

d2 KZ -1 2 1 2
_p(eV )y,
dK? \1— (a —bK)? (1—(a—0bK))? (14 (a—0bK))3
This implies that
d2 * unc
W‘] (0,C%°) > 0.
Ifa—bK =1—-c<1, we also have that

di@ (1— (al—bK)Q) :b2<(1— (al—bK))3 * (1+(a1—bK))3> <V (?1?’“) =

and

di@ (1 - (aK— bK)Q) - b2<(1 —(C(La_—ll))K))3+(1 +(C(La+—1z))K))3> 4 ((a ;31) Tlet 1)2) = o
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These two equations imply that for K € (K¢, KY],

d2
WJ*(H’ C}l(nc) < Q0.

K.10 Proof of Lemma 53l

proof. We first note the following bounds on K ’A that we will use throughout this proof that
come from the assumptions on €. For any 0" € Oigg =+ 5,

a —VK' =a—bK} +(a'—a)+b(K}), —K)+ K @b-1V)
<a—bK}, +be+p+ K

§w+DU+U Def of K,
D 0/2
< % Equation ([221))
<1 (238)

a —VK' >a—-bK}, —be—f—BK'

Z’LD—}-DU_U Def of K7,
Dy /2
> = _f_f é) Equation ([221])
w U
> 0. (239)

Let y; be the position at time ¢ when using controller C' and starting at position yy = xg
and z; be the position at time ¢ when using controller C})¢ and starting at position .
Define d; := |y; — x¢|. Define

O :=arg max da —VK' (240)
16— OrzEll oo <5

Importantly, note that 6,, = argmin,, ., g % = argmaxy g . s %. By construc-

tion this means that C(y;) = v;**V is used if and only if 3, > and similarly viafel is

Dy
am—bm K’

used if and only if y < — ?bfﬂ 7

Lemma 58. Define Hy = (yo, Y1, -, Ys—1). Using the notation and assumptions in the proof
of Lemmal53, for any H,,

P (C(y) = vj*" | H)) = Or(v) - 1 (241)

K/_K%US(\K’\Z)-H)I?-

Furthermore,

P (C(y) = vi**" | Hy) = Or(v) - 1 (242)

KliK%US(\qu‘Fl)ﬁ .
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The proof of Lemma 58| can be found in Appendix[K.12] Because the equations in Lemma
hold for any H;, this lemma implies that

P (C(y) = v**Y) = Or(v) - 1, Ko, <Uslins (243)

and
]P)(C(yt)—vfafeL) Or(v) -1 K'-K}, <(\K’H—1)B- (244)

By Lemma , if K/ — K%U > WTH)B, then for all ¢,
P (C(y) = """ or Cly,) = o) = 0.

Therefore in this case, the controllers C' and C}¢ are equivalent, which implies all of the

desired results. For the rest of the proof, we will address the case when K’ — K%U < (lK/lTH)ﬁ
This combined with the definition of € gives that
K'l+1
|K' — K}, | < min (W e) = Or(v). (245)

Lemma 59. Using the notation and assumptions in the proof of Lemma if Equation
(245)) holds then for all t > 0,

dyoy = (a — bK")d; if ﬁ Sy < # (246)
(a = bK')d; + Or(v) otherwise,

and
K/ d . DL - < < DU .
|Cunc( ) C(yt)’ — ‘ ’ t Zf am—b7.nK SYe S A —bm K (247)
Or(v) otherwise.
The proof of Lemma, [59| can be found in Appendix [K.13]
This recursive relationship for d; in Lemma [59| implies that
= |$t — Yl
< Z Z 10 ( ) Yt—iZ %OI‘ Yt— Z_amf)bly/nKl Lemma
< Or(v Z a—bK')
OT(U)
~1—(a—bK")
< Or(v). Equation (238]) (248)

Note that y, is by construction safe with respect to dynamics 6,,. Therefore, |a,y; +
b C (Y1) < | D||oo and |y;| < || D]|oo + w, which together imply that

||D’|oo+am|yt’
b,

1Cye)| < = Or(1). (249)
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Now we can bound the difference in cost at time ¢ > 0 as follows:

gz} — qyi| + [rCa (z0)? — rC(yr)?]
< 2q|y|d; + qdf + (27“’0(%)’ |C () — Cye)| + 7 |CRa(y) — C(?/t)|2)
(

< 2q|yelde + qdi + (2rOr(1)]|C33(20) — C(ye)| + r |CR(2e) — C’(yt)|2) Equation ([249))
< 201D+ )+ 0 + (2000) (1KY + Or(0) e oy )
2
+ (|K’|dt +Or(v)l . by <DL ) ) Equation ([247))
V2 o —bm KT T VS T KT

Equation ([248))
(250)

= OT <dt + U2 + Ulyt Dy

Dy .
Zam b K O Y S R >

We will now show that E[d;] < Or(v?). Importantly, we use that the event

Dy

am—me’}

{yi-1 > or y;—1 <

_Fv
G, — O K

is equivalent to the event that C(y;_;) € {v5*eV vafel} which allows us to apply Lemma
in the second line.

t
E[dt] < OT(U) Z(CL - bKl)tii E[lyz‘—124ULb 77 O ¥i—1< DbL K/] Lemma
i=1 am —bm —am—bm
t
< Or(v) ) (a—bK")""Or(v) Lemma
=1
<01 (a—bK')
=0
OT(UZ)
~1—(a—bK")
< Op(v?). Equation (238)  (251)
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Therefore,

|J*(0,C, 1, 20) — J*(0, C}5°, T, x0)|

i T—1
1
<E p <QI'753 - yi| + Z \qxf - qyt2| + |r () — rC’(yt)2\>]
t=0

Equation ([250))

1 2
<E ;ZOT (dt+v R Ory‘SGmD’JLmK')

= am—bm K/
t=0

1 T
;;OT <E[dt]+v2—|—UE|:lyt2 Dy 'OrytS(M—DbLmK/:|)

am—bm K

IN

1 T

< - Z Or(v?) Equation (251]), Lemma [5§]
=0

S OT(U2).

Taking a limit as 7 — oo of the above equation (where nothing on the right side depends on
7) gives the first desired equation that

[J*(8,C, ) — J* (6, G2, )] < Or(v?).

Now we want to bound the difference in cost with high probability instead of in expectation.
Let X be the set of times t € [0 : 7] such that C(y;) # —K'y; (i.e. C(y;) € {wael p5afeU}),
Note that the event {t € X} is the same as the event {y; > amf)bljnl(/ or y; < #}

By Lemma 58} P(t € X | H;) < cv for some constant ¢ > 0 for all ¢. Therefore, M) =
Y 1o (Liex — cv) is a supermartingale. By Azuma-Hoeffding’s inequality, with probability
1 —op(1/T19),

| X| < Or(vr) + log(T)\/T.
Define A as the event that |X| < Or(vr) + log(T)+/7. Define x = [log,_,x(v)]. Note that

k= [log, yxr (V)]
log(v)
< te i
= O(log(v)) Lemma (252)

Define
G={te[0:7]:3ie€|t—k:t]such that C(y;) # —K'y;}.

Under event A,
|G < IX]- (5 +1) < (Or(v7) +1og(T)V/7)(k + 1). (253)
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By Lemma 59} if ¢t ¢ G, then

t

d; < Or(v) Z(a — bK')t_"ly, - <DL Lemma 59
=12 bk’ OT Yim1S T R
i=1
t—K
Nt—1
S OT(U) ;(CL —bK ) 1yi712# or yi—lﬁﬁ t ¢ G
t—K
K Nt—i—kK
< Or(v)(a — bK') ;(a SOENTL e o
< Or(v)(a—bK')"> (a - bK')’
i=0
< Or(v?) Z(a — bK')! Definition of x
i=1
. OT(UQ)
~ 1—(a—bK")
= Or(v?). Equation (238)

(254)

Recall that by Equation (248)), for any ¢t € G, d; < Or(v), therefore Equation (254]) implies
that

dy = Or (Vleq +07) . (255)
Using that t € G for all ¢ satisfying y, > % or y < #, we have that under event
A,
|J(0,C, 7,20, W') — J(0,C}5°, 7, m0, W')|
1 T
< =3 laat — auil+ [rCRe () — rClun)
=0
1< :
= - ; Or (dt o2 UlytZamf}sznK/ o ytﬁam?fmm) Equation (250))
1< ) .
= — ZOT v lieg+v°+ol by <Dy Equation ([255))
T -0 yt*amfme' or yt*amfme/
1 T
= Op(v?) + - ; Or (v) - liec
(O log(T 1
= Or(v®) + Or (U (Or(vr) +log(T)y/7) (s + >> Equation (253))
T
log(T
= Op (U log(1/v) (U + og( ))> . Equation (252)
VT
Since this holds under event A and P(A) > 1 — o7(1/T?), this completes the proof. O
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K.11 Proof of Lemma [56
proof. In Algorithm , 0, satisfies

0, = argmax a — b (6).

10—62"¢||<es
Under event E3, we have that [|§P® — 6*|| < ¢,, which implies that
iy — by Kopt (0) > a* — b* Kopi (0%).
Therefore, we have that (using Lemma |45 in the equality)
Dy Dy

= - Dy <
CALS - bsKopt(es) V= ar — b*KOPt(Q*)

— Dy =w—¢". (256)

Under event E3, we also have that ||0, — 6%||o < Or(vr), therefore

D
U B DU
a* — b*Kopt(Hs)
D D D
=T 3 C—— —Dy+ v - - v
ag — bsKopt<es) a* — b*KOpt<es) g — bsKopt(93>
As —a b* — ZA)S KO és
<w-—€+ Dy (@ a)—i—A( - )A o )A Eq (256))
(0 = 5 Kopa(8:)) s — b Fon(0,))
:w_€*+DU (as_a)+(b _bs)Kopt( s)

- DyOr(vr) (1+ [ Kop(6.)])
<w-—e€ + = = = = = ~
(i = buFope(82) = Or(vr) (1 + [ Kepn (0))) @x = b opu (0.))

<w-—€/2. Eq (258)
(257)

To see the last inequality, note that Lemma [50| gives that 1 > a, — EsKopt(éS) > cipg- This
implies that |Kop(0s)| = Or(1), and therefore for sufficiently large 7' we have that

DuOr(vr) (1 n Kopt(és)>

(& = byKopt (6) = Or(vr) (1 + Kopi(8))) (@ — byKopi (65))
OT(VT)DU (1 -+ OT(l))

< _
(cign — Or(vr)(1 + Or(1)))crzm
< €/2. (258)
Finally, rearranging Equation (257)) gives exactly the desired result. O
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K.12 Proof of Lemma 58

Lemma 60. Using the same notation and assumptions of Lemma for all 0" € émi B,
the controls used by controller C' are safe for dynamics 6" for allt € [0:T — 1].

The proof of Lemma [60| can be found in Appendix A
By definition, C(y;) = v;**U if and only if there exists a ¢’ € OyggE/3 such that y, > —BU_.
- We also note that

Equivalently, C(y;) = vV if and only if 3, >
(a —bK},) = (am — b K') = (a — am) + b(K' — K}, ) + K'(by, — b)
> —f+b(K' = Kp,) — |K'|8
=b(K' = Kp,,) — (1 +|K'|)3
> (b(K' ~ K9 ) — (K| + 1)B>1K’K%U<(K/b+lw

>
> —(be + (| K| + 1)5)1[(,_[(% SILEEI:
<

= _/UlK/_KQDUS(‘KI‘[fl)B' (259)
Therefore,
P (C(yt) — U:aer | Ht)
Dy
>~ | H,
o i)
Dy
=P ( ays—1 + bC(ys—1) + wi— 1>W|Ht
<P (\wt 1] > l()] o — Dy | Ht) Lemma, [60l
=P |w1] > Dy gD Definition of K?
— b K’ a— bK(’ Du
DU(CL — bKa ) DU(CLm — me/)
=P |w1]>w+ -
(a = bKp, ) (am — b K')
Dyv .
<P <‘wt 1| > (a — bK? )( — me/)> 1K,7K%U§(\qu+1)a Equation ([259))
Dyv .
<P <|wt 1| > KD )(a — bK9 — U)) 1K’—K%U§UK’LH)B Equation ([259))
Dyv (Du/2)
<SP |wa| = w— L., (K| +1)8 Def v < —
( wf%U)(wfo)U - 2(@2%,])) K=K, <5 (@ + Dy)
2u(w + D
]P) <|U}t 1| > w — ( DU U) ) ].K,_K%US(|K/|I)+1)B

Bpv(w + Dy)?

< Do L ks <K/l D pdf bounded by Bp
8, <

(260)

' K/_K%US(\K/Z\)+1)€'
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Therefore, the safety truncation vjafeV

safelL

is only applied with probability at most Or(v) a

every time Step By definition, C' (yt) = v;*" if and only 1f there exists a ' € 91@ + 4 Such

that y; < . This only happens if and only if y;, <

a b’Ix b K
(238) and (23 | that because Dy < 0,
Dy Dy
Tt pl=—E_p,.
ook P T e e 1P
Also by Equations ([238)) and (239)), we have because Dy < |Dp| that
Dy Dy
2w py>—2Y __ _p,.
Ay — by K’ | L|_am—me’ v
Therefore,
yt) — sach | Ht)
< — | H,
(yt —b K >
Dy,
=P |ay_1+bC(y,_ 1)+wt1<m H,
<P (w — b o D; Ht) Lemma [60]
<P > - ‘DL’ Dy| | H, Equation (261
S |wt 1| “ o, K | L| ¢ quation ({ )
<P (wt = —Z = — Dy Ht) Equation (262)
< Op(v) - L, Kb, <UR/fne " Equation (260))

This is exactly the second result we need and therefore we are done.

K.13 Proof of Lemma (9l
If

amfban, <y < W’ then C'(y;) = —K'y:, and therefore

|C(ye) — Crr(we)| = |K'|dy

and
dt+1 = \ayt + bC(yt) + wy — (al’t +b unc(xt) + U)t)‘ = (CL — bK/)dt

We also have by Equations

(261)

(262)

(263)

(264)

(265)

This proves the first case of both equations in Lemma[59] Now we will prove the second case

of both equations. R
Under Equation (245]), we have that for any 6’ € gz +

[(a—bK} ) — (d —VK')| < |a—d|+bK' — K} |+ K|t/ —b]
> (B—i—bOT( ) |K/|ﬁ)
:OT(U).
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If y, > —b =, then for some 0 € 0@:& B, Cly) = M Therefore,

|C(ye) — Crr“ ()]
= |C(y) + K'yi|
Dy — a’yt

= TJFK/%

1

= o | Dy — (a’ - b/K,) Y|
a —bK' DU

= b a — VK’ — Y

Equations (238), (239)

a — VK’ Dy ) Dy .
< b a’—b’K’_(DU+w)' mﬁytSDU+w byLemma
a — VK DU DU

Voo |d—VK'  a—bK),

_ Dy (a—bK},) — (¢ —VK')
T @ —bKY,
D @)
< b_/U (%) Equation (266[), Equation (239))
a—bKp,
_ (Du+w)Or(v) o _ Du
N v “ bKDU Dy +w

Because the controls used by C' are safe with respect to 6 by Lemma if Dy — %
then P (yt < ﬁ) = 0. Therefore, if y; < % then it also must be the case that
DL—ﬁ < w. By Equations (238 and -, we have that a,, — b, K/ < D L= +0r(v)

and a,, — b, K’ > DU ——Or(v). Therefore, if y, < then Dp, — — - < w, which
implies that

> w,

b K’ bm

DL21_+

am—bm K’

Qpy — by K’
—b,K'—1

DUer B OT(U)

DU+’LU+O() 1

Dy
=w (DE—IUJ - OT@))
Dy+o

= —DU - OT(U).

I
g

v

w

This combined with the fact that Dy < |Dy| by Assumption , we have that if y; < #,
then
|Dr| = Dy| < Or(v). (268)
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Therefore, if y; <

Cly:) — Cr*(9r)]
= 1Cy) + K"yt

—K,, then for some ¢’ € 91153 + 8, C(y) = M Therefore,

t) —
(y
Dy —a'y;

= |— K/
b +

1
=y |Dr, — (o' = b'K") yy

1 D

< 5 1DL = (@ = VE') (D - w)| Dy —w <y < —— s Ba ([239)
1

=y|\DLI (a" =V'K") (|IDr| + w)|

< 51Dy — (@ = VK') (Dy +@)] + Dy~ | D |

+\( V'K')(Dy — [DL])l

|DU — (' =VK') (Dy +w)| + |Du — |D|| + |Du — |DL||  Equation (239), (238)

< b’
<y |DU — (' =V K'") (Dy +w)| + Or(v) Equation
(@ —VK')| Dy _
< M (a’ — b'K') — (DU + w) + OT(’U)
= Or(v). As in Equation (267) (269)

Combining Equations (267)) and | gives that if y; > - b 77 OF Yp < #,
O (@) = Clye)| = |- Kz + K'yt — Ky, — C(yt)l
= |K'z, — K'ye| + |K'ye + C(ys)|
S K,dt + OT(U)
< Or(v). Equation ([248)) (270)

Now we can use this to bound the value of d;,; as follows:

dps1 = [(a — bK )z — (ay — bC (w1,)|
= |(a — bK")xy — (a — DK')y; + bK 'y, — bC ()|
< [(a = bK )z — (a = bK )ye| + [bKye — bC(yy)]
< (a —bK")d; + bOr(v) Equations (267) and (269)
< (a—bK")d; + Or(v). (271)

Equations (270]) and (271)) give the second half of both desired piecewise equations.

K.14 Proof of Lemma

proof. The proof follows similar logic to that in the proof of Lemma We will proceed
by induction. For the base case, we have that yy = ¢ satisfies |yg| < ||D]|s + w. Define
z:= DU7ay°726(”[;”°°+w+1°g(T)). For sufficiently large T', because 8 < 1/log®(T) and || D||s =
Or(1), we have that

_ _ 7)) o 2UDlloo+@tlog(T))
~ Du+a(| Dl + @) +28(| Dl + @ +log(7)) _ Dv + ol Pllec + @) + 7555067

2l < b = b

< log(T).
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Because 0 € ém:l: s,
max a'yo + b'z < ayo + bz + 26|yo| + 28|2|

9’ €Ot
< ayo + bz + 26(|| D||oe + @ + log(T))
= ayo + Dy — ayo — 26(|| D|| oo + @ +10g(T)) + 28([| D|| oo + @ +log(T))
= Dy.
Therefore,
ptel > Dy — ayo = 25(Dy + w + log(T))

b
By similar logic, we have that
UsafeL < Dy, — ayo + 2B(||D||OO + W+ 1Og(T))
t S :
b
For sufficiently large T, 45(]| D|| oo +w+1og(T")) < logl(T)' Therefore, because Dy > D[;Fﬁ
by Assumption [3| we have that

U:‘afeL S U;‘.aer )

Finally, this implies by construction of the controller C' that the control C(y,) will be safe
for all ' € ém + (. This completes the base case.

For the inductive step, we note that if C'(y;_1) is safe for all §' € élm:t 3, then it is safe
for #. This implies that Dy < ay;—1 + bC(yi—1) < Dy, which implies that |y, < || Dl/o + w.
We can therefore use the exact same logic as in the base case to get that C(y,) will be safe
for all ' € ém + (5. This completes the proof by induction. O

L Proofs from Appendix

L.1 Proof of Proposition

proof. By Lemmal[p0] a* —b* Fop (6*) < 1—cipg, which implies by Lemma p2] that J*(6*, Cp)
is twice differentiable at the point F' = F(0*) with first and second derivatives that are

both finite and independent of 7. We also have by Lemma {48| that | Fopt (Bua) — Fopt (60%)] <
Or(T~/*) conditional on event EY. Therefore, conditional on event EY and for sufficiently
large T', we can do a second order Taylor expansion of J*(6*, C*¢) around F' = Fy(0*) to
get that

(T (o ) =T (e, cgg;(e*)ﬂ — O;(VT). (272)
Because the lowest-cost unconstrained linear controller Cgf; (o) has the lowest cost among
all unconstrained controllers [AMO7],

T . J*(e*’ C;ift(e*)) — T . J*(e*’ Cfa(*opt(a*vT)) S 0 (273)
Combining Equations (272)) and (273]) and multiplying by (T" — Ty)/T, we have
(T —To) - T (07, Cpe 5.) = (T = To) - J(6", O yor 1)) = Or(VT). (274)

Now we just need to convert this to a result about finite time cost rather than infinite cost
which requires the following lemma.
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Lemma 61. Under Assumptions[]{J and[10, for any 6 € © and K satisfying 1 — (a—bK) =
€ >0 for some € = Qp(1),
* unc * unc 1
0. 1) — 70,0 = 0r (7).

The proof of Lemma [61] can be found in Appendix
For sufficiently large T', conditional on event EY,

1 — (a* — b* Fypy () > 1 — (a* b Ey (07) — OT(T*V“)) Lemma A3
> /2. Lemma

Therefore, we can apply Lemmas [47| and |61| to Equation (274)) to get the desired result that
conditional on event EY,

(T =Ty) - J (0", C .00 T = To) = (T = To) - J* (0", O o2 T — To) = Or(VT).

L.2 Proof of Proposition
proof. We will apply the standard McDiarmid’s inequality to the function

Fwd 5Ly = (T = To)J(6%,C™ o T — Ty, 0,W").

Fopt (Owu)’

To do this, we need a bounded difference inequality. We will show the following.

Lemma 62. Fori € [TO T — 1], let {w,}, 7 be such that w, = wy fort # i and w] ~ D is
independent of {wy}i—g . If |Fopi( On) — Fopt(0%)| < Op(T—4), then for sufficiently large T,
(T—Ty)-J (6%, T—T5,0,{we}y g, ) —(T—=To)- J(6", O 5.

Fopt (fura)’ T—Tp,0,{w}/ )| < c.

)’

for some ¢ = Op(1).

The proof of Lemma [62] can be found in Appendix

Under event EY, by Lemma {48 we have that |Fyp(fwu) — Fopt(0*)| < Op(T—/4). Fur-
thermore, conditional on EY and 0wy the random variables {w, } = Tlo are still i.i.d. because
the noise random variables are independent of the history. Therefore, conditional on event
E3, we can use Lemma [62 with the standard McDiarmid’s inequality [M*89] and get

P(I(T = To)- J0°,C 5 T =Ty, 0, {wi4) — BL(T = To) - J(0", C 5 T = To, 0, {wn} )| = e

62
<20 ( 2z =)

Because

E[(T —Tp) - J(6*, C T —Ty,0,{we )] = (T = Tp) - J* (6", Cy T -T),

Fopt gwu) Fopt (ewu)
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taking € = v/T'clog(T) gives conditional on EY,

P (|(T_T0) (0*70211;(9 )7T_T0507 {wt}?z_l}o) _T_TO) J*(a*)cz‘n; 9 )7T_T0)‘ Z \FTclog(T) ’ éwu)
— on(1/T). (275)
Define

EPIZZI::{\(T*TO) SO oy T~ To,0,{w;}, ) =T —To) - J* (6", C}™

¢ ooy T=To)l < ﬁclog(T)}.

By the law of total expectation, Equation implies that
P(Erg | £3) = E[P(Ergg | 6w, 3) | B3] 21— op(1/T).
Because P(EY) > P(E) =1 — o7(1/T), we therefore have that
P(Erga) > P(Erg | Ey)P(Ey) =1 —or(1/T)

as desired.

L.3 Proof of Proposition

proof.

Lemma 63. Under Assumptions @ and for any 0 € © and any K € [K?, K], when
using controller CE° under dynamics 6 where 1 — (a — bK) = ¢ = Qp(1) and starting at
position xg = x, then for all t, the position x; at time t satisfies

w
) < ] + 2.

Furthermore, for any x,y, W' and 7 < T,

K?*)(x —y)?+2 K2 ) |g —
|7’J(9 Ounc T,m,W) —TJ(@ Cunc T,y ,W’)| < (q+7‘ )([B y) + (q—{—r )(|1‘| + 6) |$ y|
€

=Or ((x—y)* + 2z —y)]).

The proof of Lemma [63] can be found in Appendix [L..7]
By Lemma , under event E C EY, we have |Fypi(Oyu) — Fope(6%)] < Op(T~Y/4). There-
fore, by Lemma [50, under event F and for large enough T,

L — (" = b Fopt () = crmm — b | Fopt () — Fopu(67)] > crmm/2.

Conditional on event £, C?# is safe for dynamics 6, and therefore by Lemma , the position
of C*¢ at time Ty satisfies |27, | < B, = Or(1) conditional on E. Therefore, by Lemma ,
conditional on F,

(T—T0)-J (8", O 5. T=To, 2, {we} g ) —~(T=To)- J(0", Cpc 5 . T—To, 0, {w,}{ 7, ) = Or(1).

Fopt (B

O

152



L.4 Proof of Proposition

proof. Under event EY, we have that for sufficiently large T,

A A~ ~

G — DF i (Ou) > a* — 0" Fopy(07) — Op(TY4) > 0 (276)

by Lemma [50] and Lemma [48] Conditional on event EY N Exggg and for sufficiently large T
we have the following result:

OT(T71/4)
D
> Dy +w— U Equation ((187))
a — bFopt (Bn)

D D N

= U o U Definition of KGDU
a* — b*KDU a— bFopt(ewu)
Dy Dy

> — — = Equation (276
— af — b*K%U a* — b*Fopt(g*) _ OT(T—1/4) 4 ‘ ’

B —DUOT(T_1/4) + b*DU(KgU B FOPt(e*))

(a* = b* Fop (0*) — Op(T=Y4)) (a* = b* K}y, )
N —DyOr(T7Y4) + b* Dy (KY  — Fop(6%))
- (@ = b Fope(07)) (a* — 0*K7,,)

. b* Dy

= (KY — F. (0" -

B = o O G 8 (@ — KT,
B DyOp(T~14)

(@ = 0" Fope(0%)) (0 — 0° K, )

(277)

Because 6%, Dy, Fopt(0%), Kgu are all independent of T', we can rearrange Equation (277) to
get -
K} — Fope(0%) < Op(T7Y4).

Combining this with Lemmawhich states that | Fopt (ywa) — Fope(0%)] = Op(T—/*) we have
that

K — Fop(fya) < Op (T4, (278)
Conditional on event E9 N EXL . |0y — 0% |oe < €0 = Op(T~/*) and |27, | < Dl + .

safe’
Conditional on EJ N EY%  we can apply Lemma [53| with 6 = 6*, 91153 = éwu, K' = Fopt(éwu),
€ as the right hand side of Equation , B =¢, =TT, and 29 = z7,. With this
choice of parameters, the controller C' in Lemma is exactly equivalent to C*%" under event
Frrgz. Conditional on EY, ¢ and 3 satisfy the necessary inequality for Lemma [53| as both
are Op(T—1/4).
The event ESNEYE N Eyrga depends only on noise random variables before time Tp, which

means we can apply Lemma |53| conditional on these events. Equation (223 of Lemma
gives that for sufficiently large T', conditional on EY N E¥% N Fgzg, and with conditional

safe
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probability 1 — or(1/T),

‘(T —Tp) - (07, CYE T — Ty 2ty W) — (T —Ty) - J(O%, 22, T — Ty, aly,, W)

< (T —Ty)Or ((bE + e+ |F0pt(éwu)|eo) log (be — |; (é )|€0>

({064t | Fon(Oundlen) + 2L )
< (T —Ty)Or (OT<T-1/4) log(1/Sup (T4 (OT<T-1/4) + %)) (€0 = Qr(1)]
= O, (V). (279)

Taking Epgg to be the event that Equation (279) holds gives the desired result that P( Eppy |
ESNEY N Egmg) =1 —or(1/7). [l

safe

L.5 Proof of Lemma [61]
proof. By Lemma when starting at o = 0 and using controller Ci*¢ we have that

lzr| < % (280)
Therefore, we can conclude that (for W’ = {w,}. ")
|J*(0,CRe,2T) — J*(0,CFe, T)|
‘T JHO,Cpe, T)+T-E[J(0,C, T, xr)] —J*(@,C}(HC,T)'
2T
_ ‘ [J*(0,Cx<, T\ 2r)] lj*(e,c;;nc,T)
2 2
1
= 57 \E[TJ*(0,C, T, xr)] — TJ*(0,C,T)|
1
- = ‘Eﬂ [E [TJ(0, ¢, T, 20, W) — TJ(0,C22¢, T,0, W) xT]”
1 2)
=57 ‘E [OT 2 H Lemma [63)]
~or (7Eish)
1 2
= Or (T E {w—z]) Equation ([280))
1
~o:(z)
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Furthermore, we have that

‘J*( unc ) o J*<9, C}l{nc)‘ — (97 C}l{nc’ 21T) o J*<0, C}l{nC’ 2i+1T)

J* unc 22T) o J* (9’ C}l{nc’ 21+1T)|

L.6 Proof of Lemma [62

proof. Define @y, .., xr as the positions with noise {w;}/; when using controller O ()
opt\Vwu

starting at 7, = 0 and define yg,, ..., yr as the positions with noise {wt}t 7, When using

controller C’;f‘c 6 )Starting at yp, = 0. By construction, the cost up until time ¢ is the same
opt (Uwu

for both trajectories. At time i + 1, we have that
i1 — Tisa] = i — )] < 20 = Op(1). (281)
The remaining difference in cost is simply the difference in cost of two length 7" =T — i — 1

trajectories using controller C’;nc (Gure) starting at positions y; 1 and x; ;1 respectively. By the
opt

assumption of this lemma on Fopt(ﬁwu) and Lemma we have that for sufficiently large T,
1— (0" = 0" Fope(Bgu)) > 1 — (a* = b* Fopi (8%)) — Op(T™H4) > cpmy/2.
Therefore we can combine Lemma [63| and Equation (281)) to get that the difference in the
cost from time ¢ + 1 onward is upper bounded by
T (0O o T, {wd 5 = T IO o T g, (i} 5] = Or(1).
(282)
Therefore, we have that (see below for justification)
(T = To)J (07, Cpe 5.0 T = To, 0, {we i) — (T = To) J (67, C} 5. )7T To,0, {wi} 7, )|
(=TI O i T} i) — (- To)J(0,C2 i = T, (g} ik )|+
|T/ (9* Cunc u)vT ‘Tt-i-l’{wt}t 1+1) ‘](6* C;:Ct(g W)’ Tvyi+17{wt}t:i+1)|

= [J(".cme >T— L {5k = 0.0 o T — i Ly, (w5
= Or(1).

Note that in the first equality we also cancelled out the controls at time ¢ Which are the same
for both trajectories. In the second equality, we used the fact that {w,},_5, = {w};}{_},, and
in the final line we used Equation ([282)). O
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L.7 Proof of Lemma [63l

proof. By construction, when using C3*® we have the recursive relationship that z; = (a —
bK)xi—1 + wy_1. Because we assume that a — bK =1 — € < 1, we have that

) w w
< —bK))o = — — =
|| < || + E (a K)'w \x!—l—l || + ; B,

— (a — bK)

where we define § = |z| + 2. This proves the first part of the lemma. Furthermore, this
implies that the magnitude of the control is never greater than

lu| = |K ||z < [K]|B.

Using controller CR*°, let x, x1,...,x7 be the sequence of positions starting at xop = = and
let o, y1, ..., yr be the series of positions starting at yo = y. Define d; = |z; — y;|. Note that
do = |z — y|. Furthermore, for all ¢,

dy = (a — bK)d;_;.
and
[CK () = CR“ ()| = Kdy.
Therefore, we have the following bound.

|TJO,Cx, T, 2, W) —TJ(O,Cp, T, y, W")|
-1

= (g2F — qui) + Y _ g} — qui + r(Kx)? — r(Ky,)®
t=0

T
<> 2qlayld, + qd} + 2r| K[| Kdy| + rK*d;
t=0

T T
< (2q+2rK*)BY di+ (q+rK*)D dy 7| < B
t=0 t=0
< (20 +2rK*)BY (a—bEK)'dy + (¢ +rK*) ) (a—bK)*d;
t=0 t=0
- 4K (@ — y)
_5 0 |z —y (q
e e iy < B oy sy 7o
- +rK?)(x —y)?
ek ey oy o S ey py @RS
2 K? L) |z — K?)(x —y)?
_ gty ) (el + ) |z —yl + (g + rE?)(x —y)* (283)
€
This is exactly the desired result of the second equation of Lemma [63] O

156



M Feasibility and Boundary Proofs

M.1 Relaxation of Assumption

The assumption that a,b > 0 in Assumption [I] can actually be dropped under Assumptions
2| and [3 I Informally, this is because the controller C™Mt can be used for log'(T) steps to,
with high probability, obtain an estimate 6 such that || — 6% < bg( (by the same logic
as in Lemma 2) ' Therefore, we could include an initial phase in every algorithm that does

log'*(T') steps of initial exploration and then replaces © with @' = {6 : || — ||+ < log(T)}’

and this ©' will satisfy a’, b’ > 0 for sufficiently large T because a* > 0. However, to simplify
the algorithms and proofs we will assume that the initial uncertainty set © is small enough
that this is unnecessary. Note that this assumption of sufficiently small bounded initial
uncertainty appears in other safe LQR literature such as [LDSL21].

M.2 Discussion on Assumption

To better understand Assumption 2] consider the case of bounded noise and constant bound-
aries as in [LDSL21, DTMRI9]. In this case, to satisfy Assumption [2] it is sufficient to

replace the Vz € [D%m + Fpl(), Dg[x] + Frt(1 - —)} with Vo € [Di:[x] — 1w, D%[x] + w].

T4
[LDST.21] makes a similar assumption that there is an initial linear controller that satisfies
this property. For the bounded noise case, Assumption [2| can be shown to be equivalent
to an assumption on the size of the initial uncertainty set. Let C™*(z;) = —%x; for some
arbitrary 0 € ©. When using this controller, the position and control at time ¢ (denoted z;

and u; respectively) satisfy

ab*

(b* —b)a
b

la*x+b"ug| < || [a* — < x| |a* —a—

< (1 + %) |z¢|size(O) < (1 + %) |z¢|size(O©).

This controller C™* satisfies Assumption [2] under bounded noise if

]Ex E[x
min(DE | DI — ()

([ ¥ oo + w)

size(0) <
‘1 +a

Therefore, instead of assuming Assumption [2) l it is sufficient to assume that size(©) <
min(D]]é[x] JD%M N— % init a . .

R (CEEI as the controller C"™*(z;) = —%w, satisfies Assumption [2, Note that
the bound on size(©) does still depend on the end points of ©. As a sanity check, suppose
| DE|| o = Op(1) and @,b,; < c for some constant c. Then there exists a constant such

that if size(©) is less than that constant, then Assumption [2]is satisfied for sufficiently large
T.

M.3 Assumptions Relationship to Infeasibility

In this section we briefly relate the assumptions we make to a notion of infeasibility. We begin
with two formal definitions. The first is a formal definition of feasibility for our problem.
The second is a property of a controller that is slightly stronger than regular safety.
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Definition 5 (Feasibility). An initial uncertainty set of system dynamics © 1is feasible for
boundary DE¥ and trajectory length T with probability 1 — & if there exists a controller C
that satisfies the following. For any 6* € ©, if the true dynamics are 8%, then

P (\# <T: D™ < gz, + 0°C(H,) < D%m> >1-4.

Definition 6 (Robust safety). A controller C' is robustly safe for Ty time steps for dynamics
0 if the followmg holds for some known distribution p with mean 0 and constant variance

n2>0. If s, "% p and u, = C(H,) + iy then

P (w €0, Ty — 1] : D™ < ¢z, + by, < DE[“?]) > 1—op(1/TY).

Proposition [26] shows that assuming access to a robustly safe controller replaces the need
for Assumption

Proposition 26. The results of Theorems[1] and[3 hold without Assumption[3 if we assume
access to a controller C™ that is robustly safe for /T steps. Similarly, the result of Theorem
[4 holds without Assumption [d if we assume access to a controller C™ that is robustly safe
for T?/3 steps.

proof. In the exploration phase of any of the three algorithms, instead of sampling ¢; from
Rademacher distribution we can instead sample i.i.d. from p and keep the rest of the algo-
rithm the same. Then the robust feasibility implies that with probability 1 — op(1/T*) the

algorithm will be safe for the warm-up period of the first 12 steps. We can then proof a

variation of Lemma [2] that holds using the distribution p instead of the Rademacher distri-
bution. O

By Definition as T approaches infinity, the existence of a robustly safe controller
C™ becomes intuitively equivalent to © being feasible for boundary Dl with probability
1 — op(1/T*). Therefore by Proposition , Assumption 2| is intuitively asymptotically
equivalent to the assumption that the problem is feasible for dynamics © and that a controller
that achieves feasibility is known.
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N Generalizations

N.1 Control Constraints

Our results focus on positional constraints, but we believe that our results with the same rates
of regret will also hold with both positional and control constraints under some additional
assumptions. While we leave the formal derivations of results for control constraints to future
work, we provide a brief discussion of how the algorithm and proofs from this paper could
be extended to include control constraints.

First, we briefly mention how control constraints change the definitions and notation
used. Control constraints would be of the form D} < w, < Dy for all ¢ < T (for the
rest of this section, we will refer to the expected-position constraints as DEFl). We also
define the function Kop (6,7, DEll D") as choosing the optimal parameter K for a controller
satisfying both the position constraints Dl and the control constraints D*. We also need
the additional assumption that there exists a (non-empty) set of baseline controllers that
can satisfy both the position and control constraints. Finally, we need to assume that the
controller C'™* satisfies both position and control constraints (i.e. an analogue of Assumption

2.

N.1.1 Theorem [3] and Algorithm

We start with considering how Algorithm |3| would need to be modified with the addition
of control constraints. The key idea behind Algorithm |3 satisfying the position constraints

is that the algorithm sometimes uses controls u$*°Y and u$**®t to enforce positional safety.

However, in the presence of control constraints, we can no longer use the controls u§**®V and

us®t | as these controls may not satisfy the control constraints. The key modification of
Algorithm |3[ is to choose the controller C?8 in such a way that C?8 will satisfy a tighter
positional constraint with respect to DB = (DF" 4 O1(e,), D™ — O1(e,)) for dynamics
0, and a tighter control constraint D* = (D} + Or(e,), D — Or(es)). In other words,

: alg __ 05
choosing C*% = CKopt(éS,TS,DE[IJ’,D“’)‘

the algorithm then can directly use C#'2. Because ||0, — 0*||oo < Or(e,) with high probability
and this C¢ is chosen to satisfy the tighter position constraints DE! for dynamics 6,
the controller C*# will satisfy the true position constraints D for dynamics 6* with high
probability. Because C?# satisfies the tighter control constraints D* | with the additional
assumption that the controller class is continuous, the controls used by C?# under dynamics
0* will also satisfy the control constraints with high probability.

Now we will briefly describe what additional results need to be proven in order for the
modified version of Algorithm [3| described above to achieve the same regret rate of Op(72/3)
in the presence of control constraints. We will do this by analyzing each of the terms of
regret from the proof of Theorem [3]

Within each iteration of the safe exploitation phase,

e The regret term Ry, which is the regret from the warm-up period of the first 1 Nz
steps, would have the same definition and the same regret bound of O(T%?) as in the
analysis of Algorithm [3]
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e To bound the regret term R;, we would need to show that 7, as described above does

not have much more expected cost than the true best controller, C’Z (6% T DEle] -
op 5Ly )
This can be incorporated into an analogue of Assumption [7} assuming that for ||6 —

0% 0o, | D* — D™ ||so, || D"l — D®l'|| o all sufficiently small,
|J* (6%, C?

* [Nk 0*
’ Kopt(e,T,DIE[:c]’,Du’yt) —J (‘9 7CKopt(a*,T,DE[z],Du)’t”

. , / 1
= Or (16l + |05 = D 4 10% = DVt 5 ).
This can be made into a new assumption on the baseline class of controllers that
replaces Assumption [7]

e We expect that the regret source Ry (of converting from expected regret to realized
regret) will still be O7(v/T), as this was a result of a concentration inequality that will
still apply.

e Note that regret Rz no longer exists as we no longer use the controls u$*¢U or ugafel,

and instead this source of regret is being incorporated into the chosen C?% in regret
term R;.

To summarize, the main modification to the algorithm would be the choice of controller
C?2_and the main change to the proof is moving the burden of bounding the regret term Rs
to the version of Assumption [7] described above that accounts for the tightened constraint
arguments to Kgp.

N.1.2 Theorem [2] and Algorithm

In order to show a version of Theorem [2| that works for control constraints, Algorithm
would need the same modifications as described for Algorithm [3| Specifically, instead of

using controls u§**Y and u§** the controller C?!# is chosen as C?l& = C?(S (O T DFEY D)

The main way that the proof of regret for Algorithm [5|differs from the recgrets for Alg’orithm
is that the proof for Algorithm [5| relies on the faster rate of convergence for 0, given by
Lemma [21} Proving a form of Lemma for the modified algorithm would be the main
additional step in proving that OT(\/T ) regret is possible with control constraints. As

discussed in the proof sketch of Theorem [2| the proof of Lemma comes from the fact

that a constant fraction of the time, u$**V is non-linear by an amount larger than a positive
constant. The non-linearity of u$*¢U occurs because enforcing safety constraint satisfaction

requires non-linear controls. While the modified controller C?8 described in the previuos
paragraph does not use the non-linear controls vV, C218 must still be frequently non-linear
in order to satisfy the safety constraints. Therefore, we expect that for noise distributions
with large enough support, the modified Algorithm [5| will a constant fraction of the time use
a control that is non-linear by a constant amount, which will give that ¢, decreases at a rate

of 1/+/t.
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N.1.3 Theorem [1] and Algorithm

Finally, we will discuss how we could modify Theorem [I| to get the same result in the
presence of control constraints. To modify Algorithm [4] we will need the same modification
as described above that chooses C28 in a way that u$*Y and u$**t are unnecessary. However,
an additional complexity with extending this theorem is that we no longer have a clean
dichotomy where we can use the unconstrained linear controller if the noise distribution
seems “small enough” and use the certainty equivalence if the noise distribution seems “large
enough”. This is because even with a very small amount of noise, the optimal unconstrained
linear controller may still not satisfy constraints because it may not satisfy the control
constraints. As a result, we can no longer do the split of C?# as we do in Algorithm .
Fundamentally, Algorithm [] has this split because when the optimal unconstrained linear
controller does not satisfy positional constraints, the optimal constraint-satisfying controller
(and therefore the algorithm) is non-linear by a constant amount a constant fraction of the
time, which leads to a learning rate of 1/ \V/t as described above. We expect that this is still
true in the presence of control constraints. In other words, when the unconstrained linear
controller does not satisfy either the control or position constraints by a relatively large
amount, then the optimal constraint-satisfying controller would still be very non-linear.
However, this does require a new uncertainty bound that can capture the non-linearity in
the presence of control constraints. This is the main additional technical result that would
be needed to extend these results to control constraints.

N.2 Higher Dimensions

This work focuses on the one-dimensional LQR setting, but many LQR applications have
higher dimensional positions and controls. We leave the formal extension of our results to
higher dimensions for future work, but discuss here when and how we believe our results
will extend to higher dimensions. Suppose x; € R™ and u; € R™, which implies that the
dynamics are a pair of matrices 6* = (A*, B*) where A* € R"™" and B* € R™™. A
natural extension of our constraints to higher dimensions is to consider a (origin-containing)
polytopal constraint, i.e., the intersection of a finite number of half-spaces that contain the
origin. Specifically, we could consider constraints of the form A(A*z; + B*u;) < d where
A € R¥" and d € R*. This still has the interpretation as the expected position at each time
is within the convex region {x € R" : Az < d}. Analogous to in Appendix , we define the
function Ko (6, T, A, d) as choosing the optimal parameter K for a controller satisfying the
constraints A(Az; + Bu;) < d. Before talking about specific algorithms, we first note that
we expect that the results of Lemmas 23| and [2| generalize directly to higher dimensions. This
is necessary for all of our algorithmic results. Note that because the dynamics are matrices,
the dynamics estimates will also be matrices denoted 0.

N.2.1 Theorem [3]and Algorithm

In higher dimensions, Assumption [5| becomes slightly more complicated. Specifically, we
define the truncated version of a controller C' in higher dimensions as using either control
C(z) if C(x) would result in an expected position inside the convex safe region, and otherwise
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using the smallest magnitude control that takes the position in expectation to inside of the
convex safe region. The other assumptions have direct higher dimensional counterparts.
The key modification of Algorithm [3|is to choose the controller C? in such a way that

A(A,z; 4+ B,C¥(x,)) < d — Or(e,). In other words, choosing C& = o

Kopt (05,5, A,d—Op(es))"
Within each iteration of the main loop of Algorithm (3 I the algorithm can directly use Cale
without the need for U or wgafel, By this construction, A(Asz; + B,C¥8(2,)) < d —
Or(e). Because with high probability [|6s — 6*[c < Or(e,), this will imply that A(A*z, +
B*C¥8(z,)) < d with high probability. This in turn means that the algorithm will satisfy
the constraints with high probability.

Analyzing the regret of this algorithm, the regret terms Ry, R;, and Ry stay the same
as in the proof of Theorem [3] The regret term Rj is no longer needed, as we no longer use
controls U or ysafel, To bound the regret term R;, we want to show that the cost of Cj,
is close to the cost of C% (6 TN Like we did in Appendix [N.1| we need an analogue of

Assumption [7, which is that for |0 — 0*|| and ||d — d'||c both sufficiently small,

[ T*(0", Chegpuiomnany t) = (0", Cl0n 1,0 1]
. . 1
~Or (||9 0 oo+ lld — e + ﬁ) .

By similar arguments as in our current proof, we expect this assumption will be sufficient
to bound R; for this modified algorithm. We expect that the bound on R, would be very
similar as in the proof of Theorem [3] as this regret term corresponds to concentration of the
cost. Similarly, the regret term Ry can also be bounded the same as in the proof of Theorem
, as this term corresponds to the warm-up period which still has length O(TQ/ 3). Therefore,
we expect that the total regret of this modified algorithm can still be bounded by O(T%/3).

N.2.2 Theorem [2] and Algorithm

We leave whether or not Theorem [2| generalizes to higher dimensions in all situations as an
open question. However, we will briefly outline a setting in which we do expect the result
to generalize. Suppose that m = n and that A* and B* are invertible. Algorithm [5| for
higher dimensions would require the same changes as in the previous subsubsection, which

means that C218 = c’ . The main new result that would be necessary is
Kopt (0s,Ts,A,d—Or(es))
an analogue of Lemma [21] for higher dimensions. Intuitively, the result of Lemma [21] holds
because Algorithm I 5| will a constant fraction of the time use the non-linear control w§eV
which allows for faster learning. The analogue for higher dimensions is to show that the
modified algorithm will a constant fraction of the time use a non-linear control. A difficulty
in higher dimension is that it is not sufficient to just be non-linear along one dimension.
Instead, there must be sufficient non-linearity in all m dimensions. Therefore, the higher
dimensional version of Assumption [9 requires that the noise distribution is sufficiently large
relative to the constraints in all m dimensions, which for example would be satisfied by the
multivariate normal distribution with mean 0 and constant variance matrix. Under this
assumption, the modified algorithm will a constant fraction of the time use controls u,; that
satisfy A;(A*x; + B*uy) > d; — Op(es) for some i € [1 : k]. Furthermore, if the noise is
sufficiently large in all dimensions, then we expect that for every side of the boundary of
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the convex compact region (corresponding to A; and d; for ¢ € [1 : k]), x; will at times be
sufficiently far from that side and a point on that side will be the closest point to z;. Because
A* is invertible, the previous sentence will also hold for A*x;. Because B*u; must bring the
position back to within the safe region in expectation, for every side of the boundary we
must have that B*u, is large and perpendicular to that side. Because B* is invertible, this
implies that the u; used to enforce safety will be sufficiently non-linear in all directions. We
believe this would allow the algorithm to learn the matrix B* up to accuracy Or(1/v/t) at
time ¢. Equipped with an analogue of Lemma [21], we expect that the rest of the proof will
follow directly. If m > n or A* and B* are not invertible, then showing that the non-linear
controls u, are sufficient for learning every column of the matrix B* is more difficult. We
leave the details of analyzing this case for future work.

N.2.3 Theorem [1] and Algorithm

In order to show the same result as Theorem [1] for higher dimensions, we would use the same
choice of C¥# as in the previous two subsubsections. In higher dimensions, the difficult part
is showing that a similar dichotomy to that in the proof of Theorem (1| holds. Namely, we
want to show that it is still the case that if the noise distribution is “large enough”, then the
rate of learning is 1// which causes the regret to be Op(v/T). Likewise, when the noise
distribution is “small enough”, then using a modification of the optimal unconstrained linear
controller will only have OT( VT) regret. While we leave the question of whether the general
result of Theorem (1| generalizes to higher dimensions as an open question, we outline below
a specific situation in which we expect that the same result will hold.

Suppose A*, B* € R™*™ and suppose that A* and B* are invertible. Furthermore, assume
that the noise distribution is spherically symmetric, in that for x,y € R", the noise density
function f satisfies f(x) = f(y) if ||z||2 = ||y||2. Define § as the smallest distance from the
origin to any of the points on the constraint boundaries, and define S as the set of coordinates
on the constraint boundaries that are exactly ¢ from the origin. In other words, S is the set
of points on the boundaries that are (tied for) closest to the origin. Assume that the span
of the vectors in S is equal to R™. One way to achieve this would be to have the constraints
be a symmetric n-dimensional polyhedron (for example a hypercube) with a center at the
origin. These last two assumptions can be informally viewed as requiring that the noise is
equally large in all directions and the tightest parts of the constraints are restricting along all
d dimensions. Under these assumptions, we expect that the same dichotomy from Theorem
of two cases based on the noise function holds. More specifically, we expect that either the
noise is small enough relative to the distance ¢ such that the unconstrained linear controller
only violates the constraints with probability OT(T_I/ 1), or the constraints are tight enough
in all directions for the constrained controller to learn the unknown dynamics at a rate
of 1/v/t. Therefore, we expect that a modified form of Algorithm || would achieve Op(v/T)
regret. We leave details of this specific case and exploration of the general higher dimensional
case as open questions for future work.
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