
Optimal ablation for interpretability

Maximilian Li
Harvard University

Lucas Janson
Harvard University

Abstract

Interpretability studies often involve tracing the flow of information through ma-
chine learning models to identify specific model components that perform relevant
computations for tasks of interest. Prior work quantifies the importance of a model
component on a particular task by measuring the impact of performing ablation on
that component, or simulating model inference with the component disabled. We
propose a new method, optimal ablation (OA), and show that OA-based component
importance has theoretical and empirical advantages over measuring importance
via other ablation methods. We also show that OA-based component importance
can benefit several downstream interpretability tasks, including circuit discovery,
localization of factual recall, and latent prediction.

1 Introduction

Interpretability work in machine learning (ML) seeks to develop tools that make models more
intelligible to humans in order to better monitor model behavior and predict failure modes. Early
work in interpretability sought to identify relationships between model outputs and input features
(Ribeiro et al., 2016; Covert et al., 2022), but with only black-box query access to observe inputs
and outputs, it can be difficult to evaluate a model’s internal logic. Hence, recent interpretability
work often seeks to take advantage of access to an ML model’s intermediate computations to gain
insights about its decision-making, focusing on deciphering internal units like neurons, weights, and
activations (Räuker et al., 2022). In addition to finding associations between latent representations
and semantic concepts (Bau et al., 2017; Mu and Andreas, 2021; Burns et al., 2022; Li et al., 2023;
Gurnee and Tegmark, 2024), interpretability studies aim to investigate how intermediate results are
used in later computation and identify specific model components that extract relevant information or
perform necessary computation to produce low loss on particular inputs.

A key instrumental goal in interpretability is quantifying the importance of a particular model
component for prediction. Studies often measure a component’s importance by performing ablation
on that component and comparing model performance with and without the component ablated.
Ablating a component typically entails replacing its value with a counterfactual value during inference,
sometimes referred to as “activation patching.” However, the details vary greatly and there is a lack of
consensus on best practices (Heimersheim and Nanda, 2024). For example, Meng et al. (2022) adds
Gaussian noise to ablated components’ values, while Geva et al. (2023) replaces these values with
zeros, and Ghorbani and Zou (2020) replaces them with their means over the training distribution.

In this paper, we present optimal ablation (OA), a new method that sets a component’s value
to a constant that minimizes the expected loss of the ablated model. In section 2, we introduce
OA and show that it is, in a certain sense, a canonical choice of ablation method for measuring
component importance. We then show that using OA produces meaningful improvements for several
common downstream applications of measuring component importance. In section 3, we apply
OA to algorithmic circuit discovery (Conmy et al., 2023), or the identification of a sparse subset
of components sufficient for performance on a subset of the training distribution. We demonstrate

Preprint. Under review.

that OA-based performance is a reasonable metric for evaluating circuits and using OA for circuit
discovery produces smaller and lower-loss circuits than previous ablation methods. In deploying OA
to this application, we also propose a new search algorithm for identifying sparse circuits that achieve
low loss according to any performance metric. In section 4, we use OA to locate relevant components
for factual recall (Meng et al., 2022) and show that OA better identifies important components
compared to prior work. In section 5, we apply OA to latent prediction (Belrose et al., 2023a), or the
elicitation of output predictions using intermediate activations. We propose an OA-based prediction
map and show that it has better predictive power and causal faithfulness than previous methods.

2 Optimal ablation

2.1 Motivation

LetM represent a model that is trained to minimize EX,Y L(M(X), Y) for a given loss function
L and a distribution of random input-label pairs (X,Y). A common theme in interpretability work
is quantifying the importance of some model component A for inference. For example, A could
represent a single neuron, a direction in activation space, a token embedding, an attention head, or an
entire transformer layer; further examples ofA are discussed in Section 3 and Appendix C.2. LetA(x)
represent the value of A when the model is evaluated on input x. To identify domain specialization
among model components, studies often measure the importance of A for model performance on
a particular “subtask” D, or an interpretable human-curated distribution of input-label pairs that
captures a general aspect of model behavior. We write (X,Y) ∼ D to indicate sampling input-label
pairs or X ∼ D to indicate sampling only inputs from the subtask distribution.

Although some works quantify component importance via gradients (Leino et al., 2018; Dhamdhere
et al., 2018), such an approach is inherently local (even when aggregated over many inputs) and as
such can fail to accurately represent the overall importance of A in highly nonlinear models. Instead,
most interpretability studies use ablation to quantify the importance of A by studying the gap in
performance between the full modelM and a modified versionM\A with A ablated:

∆(M,A) := P(M\A)− P(M), (1)

where P is a selected metric for model performance. In the context of measuring importance, we
argue that the construction ofM\A is motivated by the following question:

What is the best performance on subtask D the modelM could have achieved without component A?

To formalize this question, we split its meaning into four elements.

I. “Performance on subtask D”: The relevant performance metric P is the expected loss on the
subtask with respect to the full model’s predictions: P(M̃) = EX∼D L(M̃(X),M(X)) (note
that E aggregates over any randomness in M̃).1 We call ∆ defined using this choice of P the
ablation loss gap.

II. “ModelM could have achieved”: Since the goal of measuring component importance is to
interpret the modelM, the ablated modelM\A should be constructed solely by changing the
value of A, holding fixed all other parts ofM. We writeMA(x, a) to indicate computingM
on input x while setting the value of A to a instead of A(x) (see Appendix C.2 for details).

III. “Without component A”: The ablated modelM\A(x) should use a value for A that is devoid
of information about the input x.

Elements II and III motivate the following definition:

Definition 2.1 (Total ablation). A total ablation method satisfiesM\A(X) =MA(X,A) for some
random A, where A ⊥⊥ X . (Conversely, for a partial ablation method, A can depend on X .)

IV. “Best” performance: To measure the importance of A, we wish to understand how much
model performance degrades as a result of ablating A. If two constructions of the ablated
modelM\A both perform total ablation onA but one performs worse than another, the former’s
underperformance cannot be entirely be attributed to ablating A, since the latter also totally

1A common alternative choice is measuring performance in terms of proximity to the correct labels rather
than the original model predictions, i.e. P̃(M̃) = E(X,Y)∼D L(M̃(X), Y). See Appendix C.4 for discussion.

2

ablates A and yet does not degrade performance to the same extent. Thus, the relevantM\A for
measuring importance should incur the minimum ∆ among total ablation methods.

To make element IV more concrete, for an ablation method satisfying element II and a given x,
replacing A(x) with a can degrade the ablated model’s performance via both deletion and spoofing:

1. Deletion. The original value A(x) could carry informational content specific to x that serves
some mechanistic function in downstream computation and helps the model arrive at its pre-
dictionM(x). Replacing A(x) with some other value a could delete this information about x,
hindering the model’s ability to compute the originalM(x).

2. Spoofing. The replacement value a could “spoof” the downstream computation by inserting
information about the input that either:
(a) causes the model to treat x like a different input x′;2 or
(b) causes the model to treat x in a way that it never treated any training input, if the new

information is inconsistent with information about x derived from retained components.
In the latter case, the confluence of conflicting information could cause later activations to
become incoherent, causing performance degradation because these abnormal activations were
not observed during training and thus not necessarily regulated to lead to reasonable predictions.

To measure importance, we seek to isolate the contribution of effect 1 to performance degradation.
While total ablation methods all capture a maximal deletion effect since A does not depend on X ,
measuring the “best” performance minimizes the additional contribution of potential spoofing effects.

2.2 Prior work

Component importance is strongly related to variable importance (Sobol, 1993; Homma and Saltelli,
1996; Breiman, 2001; Ishwaran, 2007; Gromping, 2009), a longstanding area of research in statistics
and ML. The vast body of work in this area is too extensive to review here, and the recent surge of
research interest in interpreting internal model components has raised new and unique challenges
relating to the values of internal components often being deterministically related. Thus, we focus
on recent work applying ablation methods to internal components in this section, and defer broader
discussion to Appendix B.

Ablation methods previously applied to internal components can be separated into subtask-agnostic
methods, which can be applied out-of-the-box to any subtask, and subtask-specific methods, which
only work on subtasks for which inputs satisfy a designated structure, and even then require human
ingenuity to adapt to each new subtask.

Subtask-agnostic ablation methods include zero ablation (Baan et al., 2019; Lakretz et al., 2019;
Bau et al., 2020; Olsson et al., 2022; Geva et al., 2023; Cunningham et al., 2023; Merullo et al.,
2024; Gurnee et al., 2024), which replaces A(x) with zero, i.e. M\A(x) = MA(x, 0); mean
ablation (Ghorbani and Zou, 2020; McDougall et al., 2023; Tigges et al., 2023; Gould et al.,
2023; Li et al., 2024; Marks et al., 2024), which replaces A(x) with its mean, i.e. M\A(x) =
MA(x,EX′∼D[A(X ′)]); and (marginal) resample ablation (Chan et al., 2022; Lieberum et al., 2023;
McGrath et al., 2023; Belrose et al., 2023a; Rushing and Nanda, 2024), which replaces A(x) with
A(X ′) for an independent copy X ′ ∼ D of the input, i.e.M\A(x) =MA(x,A(X ′)). While zero,
mean, and resample ablation are total ablation methods, adding Gaussian noise to A(x) (Meng et al.,
2022) is a subtask-agnostic partial ablation method. These methods are all applicable to any subtask.

On the other hand, subtask-specific ablation methods rely on particular details of a chosen subtask.
Singh et al. (2024) replaces A(x) with interpretable values, e.g. setting an attention pattern to
copy from the previous token, while Goldowsky-Dill et al. (2023) replaces A(x) with A(x∗) for an
interpretable reference input x∗. Hanna et al. (2023) employs counterfactual ablation (CF), a partial
ablation method that replaces A(x) with A(π(x)), where π is a map that sends each input x to a
“neutral” (potentially random) input π(x) that preserves most aspects of x but removes information
relevant to the subtask, i.e. M\A(x) = MA(x,A(π(x))). Wang et al. (2022) also considers a
counterfactual distribution of inputs for counterfactual mean ablation, which replaces A(x) with its
mean over the distribution of counterfactuals, i.e.M\A(x) =MA(x,E(X′∼D),πA(π(X ′))).

2See Appendix D.1 for a brief example of why “treating x like x′” goes beyond deletion.

3

Subtask-specific methods can be useful, but it is usually unclear how to generalize them beyond
the subtask originally selected. CF is the most popular among these methods, leveraged by a range
of manual (Vig et al., 2020; Merullo et al., 2023; Stolfo et al., 2023; Tigges et al., 2023; Hendel
et al., 2023; Heimersheim and Janiak, 2023; Todd et al., 2024; Marks et al., 2024) and algorithmic
(Conmy et al., 2023; Syed et al., 2023) studies and recommended by meta-studies (Zhang and Nanda,
2024; Heimersheim and Nanda, 2024). For text data, the effectiveness of CF relies heavily on token
parallelism between x and π(x), which typically share exact tokens at all but a few sequence positions.
Though studies have thus far focused on toy subtasks for which suitable mappings π are relatively
easily constructed, it may be difficult or impossible to select well-suited input pairs for certain
subtasks (see Appendix F.3 for a few simple examples), especially more general model behaviors.
Even for subtasks that admit such a mapping, how π(x) is engineered to withhold subtask-relevant
information differs from subtask to subtask, and the construction of π for each particular subtask is a
subjective process that requires human ingenuity. Finally, CF is only a partial ablation method; since
A(π(x)) depends on x, it may give away information about x that is useful for performance on D.

2.3 Definition and properties of optimal ablation

We present optimal ablation (OA), our proposed approach to simulating component removal.
Definition 2.2 (Optimal ablation). To ablate A, we replace A(x) with an “optimal” constant a∗.

M\A(opt)(x) :=MA(x, a∗), a∗ := arg min
a

EX∼D L(MA(X, a),M(X)) (2)

We define ∆opt by pluggingM\A(opt)(x) into Equation (1). Like zero, mean,3 and resample ablation,
optimal ablation is a total ablation method satisfying Definition 2.1. But among all total ablation
methods, optimal ablation is optimal in the sense that it yields the lowest ∆.
Proposition 2.3. Let ∆(M,A) be the ablation loss gap for some component A measured with any
total ablation method. Then, ∆opt(M,A) ≤ ∆(M,A).
Proof. Consider a total ablation method that defines M\A(X) by replacing A(X) with A (per
Definition 2.1), and let ∆(M,A) be the measured ablation loss gap. By the tower property,

∆(M,A) = E(X∼D),A L(MA(X,A),M(X)) = EA
[
E
[
L(MA(X,A),M(X))

∣∣A]] .
Since A ⊥⊥ X , E

[
L(MA(X,A),M(X))

∣∣ A = a
]

= EX∼DL(MA(X, a),M(X)) =: g(a).

∀a, ∆opt(M,A) = EX∼D L(MA(X, a∗),M(X)) ≤ EX∼D L(MA(X, a),M(X)) = g(a)

=⇒ ∆opt(M,A) ≤ EA g(A) = ∆(M,A).

Optimal ablation thus provides the unique answer to our motivating question in Section 2.1, since it
produces the best performance among all total ablation methods, including zero, mean, and resample
ablation. Intuitively, OA minimizes the contribution of spoofing (effect 2 from Section 2.1) to ∆
by setting ablated components to constants a∗ that are maximally consistent with information from
other components, e.g. by conveying a lack of information about x or by hedging against a wide
range of possible x rather than strongly associating with a particular input other than the original
x. OA does not entirely eliminate spoofing, since it may be the case that every possible value of A
conveys at least weak information to the model. However, the excess ablation gap ∆ − ∆opt for
∆ measured with ablation methods that replace A(x) with a (random) value A is entirely caused
by spoofing, since replacing A(x) with the constant a∗ achieves lower loss without giving away
any more information about x. In practice, ∆ −∆opt for prior ablation methods is typically very
large compared to ∆opt for both single components (see Table 1) and circuits (see Section 3.2) on
prototypical language subtasks. This disparity indicates that effect 2 dominates the ∆ measurements
for previous ablation methods, making them poor estimators for effect 1 compared to OA.

Subtask-specific methods often try to generate consistent interventions by conditioning on features of
the input to avoid replacing A(x) with values that could confuse the model. For CF, choosing π(x)
to share many tokens with x mitigates the contribution of effect 2b to ∆CF, which is the main reason
the technique is so widely employed. Thus, among previous measures of component importance,
∆CF, when it can be well-constructed, may be the best quantification of effect 1. To demonstrate this
intuitive relation between OA and CF as techniques that aim to isolate effect 1, we perform a case
study in Section 2.4 that shows that among other ablation methods, OA produces the measurements

3See Appendix D.2 for an interesting connection of OA to mean ablation.

4

most similar to CF. However, not only is OA more general than subtask-specific methods like CF, but
∆opt may still be a better estimator for effect 1 than ∆CF even when CF is well-defined. In Section 3,
we show that for circuits, ∆opt is much lower than ∆CF despite reflecting a weakly stronger deletion
effect, indicating that effect 2 also contributes to ∆opt less than it does to ∆CF, and thus ∆opt is a
more accurate reflection of components’ informational importance.

Computation of a∗. Though it is impossible to derive a∗ in closed form, we find that in practice,
mini-batch stochastic gradient descent (SGD) performs well at finding constants â that greatly reduce
∆ compared to heuristic point estimates like zero and the mean. We generally adopt the approach of
initializing each â to the subtask mean EX∼D[A(X)] and performing SGD to minimize ∆.

2.4 Comparison of single-component ablation results on IOI

The Indirect Object Identification (IOI) subtask (Wang et al., 2022) consists of prompts like “When
Mary and John went to the store, Mary gave the apple to ___,” which GPT-2-small (Radford et al.,
2019) completes with the correct indirect object noun (“John”). We use IOI as a case study because it
is discussed extensively in interpretability work (Merullo et al., 2023; Makelov et al., 2023; Wu et al.,
2024; Lan et al., 2024; Zhang and Nanda, 2024). To implement CF, for each prompt x, Wang et al.
(2022) constructs a random π(x) in which the names are replaced with random distinct names.

We evaluate ∆ for attention heads and MLP blocks using zero, mean, resample, counterfactual,
counterfactual mean, and optimal ablation. In Table 1, we show that among attention heads and MLP
blocks, ∆opt accounts for only 11.1% of ∆zero, 33.0% of ∆mean, and 17.7% of ∆resample for the
median component. Furthermore, among these ∆ measurements, ∆opt has the highest highest rank
correlation (0.907) with ∆CF. Full results are shown in Appendix E.3.

Table 1: Comparison of ablation loss gap ∆ on IOI
Zero Mean Resample CF-Mean Optimal CF

Rank correlation with CF 0.590 0.825 0.828 0.833 0.907 1
Median ratio of ∆opt to ∆ 11.1% 33.0% 17.7% 31.7% 100% 88.9%

3 Application: circuit discovery

Circuit discovery is the selection of a sparse subnetwork ofM that is sufficient for the recovery of
model performance on an algorithmic subtask D. To define what constitutes a “sparse subnetwork,”
we writeM as a computational graph with vertices G and edges E. An edge ek := (Aj ,Ai, z) ∈ E
indicates that Aj(x) is taken as the zth input to Ai in the computation represented by the graph. To
ablate edge ek, we replace the zth input toAi, which is equal toAj(x) during normal inference, with
some value a. We computeMẼ(X), which represents modified inference with edges E \ Ẽ ablated,
by applying this intervention for each ablated edge (see Appendices C.1 and C.2 for more details).
Circuit discovery aims to select a subset of edges Ẽ∗ ⊆ E such that

Ẽ∗ = arg min
Ẽ⊆E

[
EX∼DL(MẼ(X),M(X)) +R(Ẽ)

]
= arg min

Ẽ⊆E

[
∆(M, E \ Ẽ) +R(Ẽ)

]
(3)

for a regularization term R that measures the sparsity level (further discussed in Appendix F.4).
Additionally, when implementing OA, though we could use a different constant for each edge, we
instead define a single constant a∗j for each vertex Aj , so that if multiple out-edges from Aj are
ablated, the same value is passed to each of its children (further discussed in Appendix F.2).

3.1 Methods

We compare ∆(M, E \ Ẽ) measured with mean ablation, resample ablation, OA, and CF as metrics
for circuit discovery. We consider the manual circuit for each subtask and circuits optimized on each
∆ metric using several search algorithms.

ACDC (Conmy et al., 2023) identifies circuits by iteratively considering edge ablations. They start by
proposing Ẽ = E, then iterate over edges ek, ablating ek and updating Ẽ = Ẽ \ {ek} if the marginal
impact on loss, ∆(M, (E ∪ {ek}) \ Ẽ)−∆(M, E \ ({ek} ∪ Ẽ)), is below a tolerance threshold λ.

5

Edge Attribution Patching (EAP) (Syed et al., 2023) selects Ẽ to contain the edges ek that have
the largest gradient approximation of their single-edge ablation loss gap ∆(M, ek).

HardConcrete Gradient Sampling (HCGS) is an adaptation of a pruning technique from Louizos
et al. (2018) to circuit discovery. Rather than considering only total ablation of an edge ek =
(Aj ,Ai, z), we can consider a continuous mask of coefficients ~α and partially ablate ek by replacing
the zth input to Ai with a linear combination of the original value Aj(x) and ablated value aj ,
i.e. αkAj(x) + (1 − αk)aj . Now, αk = 0 designates total ablation (replacing with aj), while
αk = 1 designates total retention (keeping Aj(x)). We useM~α(x) to represent the model with
edges partially ablated according to ~α.

Some previous work (Liu et al., 2017; Huang and Wang, 2018) optimizes directly on the mask
coefficients ~α, but to avoid getting stuck in local minima on αk ∈ (0, 1), Louizos et al. (2018)
samples αk from a HardConcrete distribution parameterized by location θk and temperature βk for
each edge, and performs SGD with respect to the distributional parameters. In effect, we update
the parameters based on gradients evaluated at randomly sampled values of ~α rather than gradients
evaluated at any exact ~α. Cao et al. (2021) applies this technique to find circuits that consist of a
subset of model weights. Conmy et al. (2023) applies this technique to vertices in a computational
graph. Unlike previous work, we apply this technique to edges rather than vertices.

Uniform Gradient Sampling (UGS) is our proposed method for algorithmic circuit discovery.
Similar to HCGS, we consider ablation coefficients ~α and update parameters based on gradients
evaluated at sampled values of ~α. We keep track of a parameter θ̃k for each edge, where θk =
(1 + exp(−θ̃k))−1 indicates an estimated probability of ek ∈ Ẽ∗. Using w(θk) = θk(1 − θk) to
determine sampling frequency (further discussed in Appendix F.8), we let αk ∼ Unif(0, 1) with
probability (w.p.) w(θk), αk = 1 w.p. θk − 1

2w(θk), and αk = 0 w.p. 1− θk − 1
2w(θk). For a batch

of b inputs X(1), ..., X(b), let ~α(j) denote the sampled coefficients corresponding to X(j), and let
Nk =

∑b
j=1 1(α

(j)
k ∈ (0, 1)). We construct a loss function L(UGS) whose gradient satisfies

∇θkL(UGS) = ∇θkR(~θ) +N−1k

∑b

j=1
1(α

(j)
k ∈ (0, 1)) · ∇

α
(j)
k

L(M~α(j)

(X(j)),M(X(j))) (4)

and perform SGD on the θ̃k, whereR(~θ) is a continuous relaxation ofR(Ẽ) from Equation (3). In
Appendix F.5, we motivate UGS as an estimator for sampling over Bernoulli edge coefficients.

Optimizing circuits on ∆opt ACDC and EAP are not compatible with optimization on ∆opt, since
the optimal ~a∗ values depend on the selected circuit and it is intractable to optimize â for every
candidate circuit. For our circuit evaluations on ∆opt, we compare to ACDC- and EAP-generated
circuits optimized on ∆CF. On the other hand, HCGS and UGS allow us to perform SGD to optimize
the ablation constants â concurrently with the sampling parameters.

3.2 Experiments

We study GPT-2-small performance on the IOI (Wang et al., 2022) subtask described in Section 2.4
and the Greater-Than (Hanna et al., 2023) subtask, which involves completing prompts such as “The
conflict started in 1812 and ended in 18__” with digits greater than the first year in the context. We
select these settings because their exposition in manual studies is particularly thorough and they are
used in prior work (Conmy et al., 2023; Syed et al., 2023) to benchmark algorithmic circuit discovery.

We compare the algorithms in Section 3.1 trained to minimize ∆ on the IOI and Greater-Than
subtasks when edges E \ Ẽ are ablated with mean ablation, resample ablation, OA, and CF. For IOI,
the mapping π for CF is defined in Section 2.4. For Greater-Than, we continue with the practice from
Hanna et al. (2023) of selecting counterfactuals π(x) by changing the first year in the prompt x to
end in “01” so that all numerical completions are equally valid (see Appendix F.3).

UGS achieves Pareto dominance on the ∆-|Ẽ| tradeoff over the other methods on both subtasks
for each ablation method, identifying circuits that achieve lower ∆ at any given |Ẽ| and vice
versa. Results for IOI circuits optimized on ∆CF are shown in Figure 1 (left). On IOI, UGS finds
a circuit with 385 edges that achieves ∆CF = 0.220. This circuit has 52% fewer edges than the
smallest ACDC-identified circuit with comparable ∆CF and 48% lower ∆CF than the best-performing
ACDC-identified circuit with a comparable edge count. Similar improvements to the Pareto frontier,

6

Figure 1: Left: Circuit discovery Pareto frontier for the IOI subtask with counterfactual ablation.
Right: Comparison of ablation methods for circuit discovery on IOI (X indicates manual circuit
evaluated on each ablation method). ∆ is measured in KL-divergence.

shown in Appendix F.10, occur for mean, resample, and optimal ablation. UGS also creates Pareto
improvements for Greater-Than circuits for each ablation method; see Appendix F.11.

Applying OA to circuit discovery reveals that certain sparse circuits can account for model perfor-
mance on these subtasks to a much greater extent than previously known. We visualize the ∆ for
each ablation method achieved by UGS-identified circuits in Figure 1 (right). Using OA to ablate
excluded components, we find circuits that recover much lower ∆ at any given circuit size than any
circuit for which excluded components are ablated with any other ablation method. For example, for
IOI, at a circuit size of 1,000 edges, ablating excluded components with OA enables the existence
of circuits with 32% lower ∆ compared to CF, 62% lower ∆ compared to mean ablation, and 88%
lower ∆ compared to resample ablation, and the improvement is even larger at smaller circuit sizes.
For Greater-Than (results shown in Appendix F.11), OA again admits circuits with by far the lowest
∆ among the four ablation methods. Thus, OA paints a more accurate and compelling picture of how
much small subsets of the model can explain behavior on these subtasks.

Unlike other ablation methods, OA indicates that the manual circuits are approximately optimal for
their size. Holding |Ẽ| fixed, the Pareto-optimal ∆opt is 29% below the ∆opt of the manual circuit on
IOI and 42% below the ∆opt of the manual circuit on Greater-Than. However, for the other ablation
methods, optimized circuits with fewer edges than the manual circuit achieve 84-85% lower ∆ than
the manual circuit on IOI, and 70-84% lower ∆ on Greater-Than. Since the manual circuits are
selected using a thorough mechanistic understanding of the model for each subtask and thus arguably
capture the important components, this finding furthers the notion that ∆ measured with previous
methods could be artificially high due to spoofing by ablated components, and therefore ∆opt is a
superior evaluation metric for circuits.

These results show that ∆opt is useful for evaluating and discovering circuits and provide evidence
that OA better quantifies the removal of important mechanisms than previous ablation methods.

4 Application: factual recall

Transformers can store and retrieve a large corpus of factual associations. One goal in interpretability
is localizing factual recall, or identifying components that store specific facts. To this end, Meng et al.
(2022) proposes causal tracing, which involves removing important information about the prompt x
and evaluating which components can recover the originalM(x). To isolate components responsible
for an association between a subject (e.g. “Eiffel Tower”) and an attribute (“located in Paris”), they
select a prompt x (“The Eiffel Tower is located in the city of ___”) that elicits fromM a correctly
memorized response y (“Paris”). They produce a corrupted input ξGN(x) by adding a Gaussian noise
(GN) term Z ∼ N (0, 9Σ), to all token embeddings that encode the subject, where Σ is a diagonal

7

matrix and Σii represents the variance of the ith neuron among token embeddings sampled from the
training distribution. Letting [M(x)]y represent the probability assigned byM(x) to label y. Since
ξGN partially ablates information about the subject, [M(ξGN(x))]y is typically much smaller than
[M(x)]y . For each component A, they estimate its contribution to the recall of y with the following
“average indirect effect” (AIE) representing the proportion of probability on the correct y recovered
by replacing A(ξ(X)) with A(X), averaged over (X,Y) ∼ D, where ξ = ξGN: 4

AIE(A) := min

(
0, 1−

E(X,Y)∼Dmax(0, [M(X)]Y − [MA(ξ(X), A(X))]Y)

E(X,Y)∼D [M(X)]Y − E(X,Y)∼D [M(ξ(X))]Y

)
(5)

where we declare AIE(A) = 0 if the denominator is non-positive and ablating subject tokens actually
helps identify the correct label (however, this is never the case).

Method We perform causal tracing by removing the subject with optimal ablation (OA-tracing, or
OAT) rather than with Gaussian noise (GNT). We define ξ(x) = ξOA(x, aA) by replacing subject
token embeddings with a constant aA trained to minimize the numerator in Equation (5), which
represents ∆ with a carefully chosen loss function (see Appendix G.2).

Figure 2: Comparison of AIE with GNT and OAT. In the top figure, layer ` on the x-axis represents
replacing a sliding window of 5 layers with ` as the median. Error bars indicate the sample estimate
plus/minus two standard errors (details given in Appendix G.4).

Experiments We compare GNT and OAT for GPT-2-XL on a dataset of subject-attribute prompts
from Meng et al. (2022) for which the model completes the correct answer via sampling with tem-
perature 0. To increase the sample size, we augment the data with similarly constructed prompts
from follow-up work on factual recall (Hernandez et al., 2022). We train OAT on 60% of the
dataset and evaluate both methods on the other 40%. On the test set, E[M(X)]Y = 30.6%,
E[M(ξGN(X))]Y = 12.3%, and E[M(ξOA(X))]Y = 8.7%. We let A(X) represent an atten-
tion or MLP layer output at a certain token position(s): namely, all subject token positions, only
the last subject token position, and only the last token position in the entire sequence. Rather than
considering only one layer at a time, Meng et al. (2022) lets A represent the outputs of a sliding
window of several consecutive attention layers or MLP layers. Thus, in addition to replacing the
output of a single layer (window size 1), we show results for replacing windows of sizes 5 and 9.

OAT offers a more precise localization of relevant components compared to GNT. While GNT
indicates a small positive AIE for most components, OAT shows a few components have large
contributions while most have little to no effect. For example, Figure 2 (top left) shows that the AIE
for a window of 5 attention layers at the last token is as high as 42.6% for the window consisting of
layers 30-34, while the AIE peaks at only 20.2% for GNT. On the other hand, for windows centered
around layers 15-23, the average AIE for OAT is only 1.7%, indicating little effect for these potentially

4Unlike Meng et al. (2022), we clip [M(X)]Y − [MA(ξ(X), A(X))]Y to be non-negative, so we do not
give A additional credit for increasing the probability mass of the true label past that given by the full model.
We also report AIE in proportion probability recovered compared to the full model rather than percentage points.

8

unimportant layers, compared to 7.0% for GNT. For sliding windows of 9 attention layers at subject
token positions, GNT shows marginally positive AIE measurements across layers 0-30, but OAT
specifically shows highly positive AIE for layers 0-5 and 25-30 (see Figure 15). Moreover, whereas
Meng et al. (2022) focuses on sliding window replacement because GNT effects from single-layer
replacements are very small, OAT can sometimes identify information gain from just one layer. For
instance, at the last token position, OAT records AIEs above 8% for each of attention layers 30, 32,
and 34 by themselves (see Figure 2, bottom left), much greater than the AIE of the other layers. This
greater level of granularity opens up the possibility of selectively investigating combinations of layers
as opposed to relying on the prior that adjacent layers work together.

5 Application: latent prediction

One practice in interpretability is eliciting predictions from latent representations. LetM have layers
0, ..., N and let `i(X) be the residual stream activation at the last token position (LTP) after layer i.
Logit attribution (Geva et al., 2022; Wang et al., 2022; Dar et al., 2023; Katz and Belinkov, 2023;
Dao et al., 2023; Merullo et al., 2024; Halawi et al., 2024) is the practice of applying a transformer
model’s unembedding map to an activation to obtain a semantic interpretation of that activation.
When applied to the LTP activation after layer i, this practice is equivalent to zero ablating layers i+1
to N . However, the semantic meanings of LTP activations after layer N can be different from those of
LTP activations in earlier layers. As an alternative, tuned lens (Belrose et al., 2023a; Din et al., 2023)
is a linear map fi(`i) = Wi`i + bi that “translates” from `i(X) to a predicted ̂̀N (X). MTL(X)

is defined by replacing `N (X) with ̂̀N (X) := fi(`i(X)) during inference, and training Wi and
bi to minimize LTL := EXL(MTL(X),M(X)). Tuned lens demonstrates when information is
transferred to LTP: if replacing `N (X) with ̂̀N (X) achieves low loss, then `i(X) contains sufficient
context for computingM(X), so key information is transferred prior to layer i.

Method We propose Optimal Constant Attention (OCA) lens. We defineMOCA(X) by using OA
to ablate attention layers i+ 1 to N : for each of these layers k, we replace its output at LTP with a
constant âk. We train â = (âi+1, ..., âN) to minimize EXLOCA := EXL(MOCA(X),M(X)).

Similar to tuned lens, OCA lens reveals whether the LTP activation after layer i contains sufficient
context to computeM(X) by eliminating information transfer from previous token positions to LTP
after layer i. While tuned lens is a linear map, OCA lens is a function that leverages the model’s
existing architecture (specifically, its MLP layers) to translate between LTP activations at different
layers. OCA lens has far fewer learnable parameters than tuned lens: O(Ndmodel) < O(d2model).

Experiments We compare LOCA to LTL for various model sizes. As additional baselines, we also
consider the ablation of later attention layers with mean or resample ablation rather than OA. Results
are shown in Figure 3 (left) for GPT-2-XL and Figure 16 for other model sizes. OCA lens achieves
significantly lower loss than tuned lens, indicating better extraction of predictive power from LTP
activations. For example, the predictive loss of OCA lens drops to below 0.01 around layer 35 of
GPT-2-XL, but does not reach this point even at the last layer for tuned lens.

Figure 3: Left: Prediction loss comparison between tuned lens and ablation-based alternatives.
Middle, right: Causal faithfulness metrics for tuned and OCA lens under basis-aligned projections.
Additionally, Belrose et al. (2023a) explains that one desiderata for latent prediction is causal
faithfulness, i.e. fi should use `i(X) in the same way asM. We can investigate causal faithfulness
by intervening on `i(X) and evaluating the extent to whichMTL(X) andM(X) move in parallel. If

9

MTL(X) changes significantly butM(X) does not, for example, then fi could be extrapolating from
spurious correlations, e.g. by inferring from directions that predict information transfer that occurs
in later layers. Consider a random intervention ξ on `i(X) and letMTL(X; ξ) represent replacing
`i(X) with ξ(`i(X)) before applying fi. Similarly, letM(X; ξ) represent replacing `i(X) with
ξ(`i(X)) during inference. Belrose et al. (2023a) separates causal faithfulness into two measurable
properties (both range from -1 to 1 and higher values reflect greater faithfulness):

1. Magnitude correlation: corr(E[L(MTL(X; ξ),MTL(X)) | ξ],E[L(M(X; ξ),M(X)) | ξ]).
2. Direction similarity: E[〈MTL(X; ξ) 	MTL(X), M(X; ξ) 	M(X)〉], where 	 denotes

subtraction in logit space and 〈〉 denotes the Aitchinson similarity between distributions.

We assess these properties forMTL andMOCA for a variety of interventions ξ. In Figure 3 (middle,
right), we plot these properties for a modified version of the “causal basis projection” ξ from Belrose
et al. (2023a). While they train a basis iteratively, this approach is expensive and unstable, and we
instead extract an approximate basis forMTL by performing singular value decomposition (SVD) on
WiΣ

1/2, where Σ is the covariance matrix of `i(X), and applying Σ1/2 to the right singular vectors.
ForMOCA, we extract this basis by training a linear map to approximate fi and using the weights as
the Wi. For both lenses, we compute ξ(a) = µ+ p(a− µ), where µ = E[`i(X)] and p represents
projecting to the orthogonal complement of span(~v) for a uniformly sampled basis vector ~v. We plot
the magnitude correlation and direction similarity forMTL andMOCA with respect toM in Figure
3. We find that OCA lens measures significantly better on both causal faithfulness metrics across all
layers, and we achieve similar results for other choices of interventions ξ (see Appendix H.3).

One downstream application of extracting latent predictions from intermediate-layer LTP activations
is that they can sometimes be more accurate on text classification tasks than the model’s output
predictions, especially if the context contains false demonstrations, i.e. examples of incorrect task
completions (Halawi et al., 2024). The proposed theory is that the model first computes the correct
answer at LTP in early layers, then later layers move contextual information to LTP that lead it to make
adjustments that benefit next-token prediction, such as reporting an incorrect answer for consistency
with false demonstrations. We compare the elicitation accuracy boost, or the best elicitation accuracy
across layers minus the accuracy of the model output, for OCA lens and tuned lens for GPT-2-XL
with 2,000 classification samples from each of 15 text classification datasets from Halawi et al. (2024),
using their calibrated accuracy metric. We find that OCA lens increases this accuracy boost for
prompts with true demonstrations on 12 of the 15 datasets and for prompts with false demonstrations
on 11 of the 15 (see Figure 21). In particular, for Wikipedia topic classification (DBPedia), OCA lens
increases the elicitation accuracy boost from 2.9% to 18.0% with true demonstrations and from 19.2%
to 28.8% with false demonstrations (see Figure 4, middle). Full results are reported in Appendix H.4.

Figure 4: Comparison of calibrated elicitation accuracy on selected datasets.

6 Future work

The applications of component importance presented in our work are not exhaustive. A variety of
interpretability work either directly applies ablation-based importance or can be framed to use it as a
potential tool. OA creates new opportunities to incorporate ablation into studies for which it may be
impossible to obtain good results with previous ablation methods. For example, we can train probes
derived from using OA with different loss functions (Li et al., 2023), or use an approach similar to
OCA lens to decode activations other than the LTP residual stream activation. See Appendix D.3 for
an extension of OA to evaluate the extent to which a component performs classification.

10

Acknowledgements

LJ was partially supported by DMS-2045981 and DMS-2134157.

References

Baan, J., ter Hoeve, M., van der Wees, M., Schuth, A., and de Rijke, M. (2019). Understanding
multi-head attention in abstractive summarization.

Bach, S., Binder, A., Montavon, G., Klauschen, F., Muller, K.-R., and Samek, W. (2015). On
pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation.
PLoS One, 10(7):e0130140.

Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., and Mueller, K.-R. (2009).
How to explain individual classification decisions.

Bau, D., Zhou, B., Khosla, A., Oliva, A., and Torralba, A. (2017). Network dissection: Quantifying
interpretability of deep visual representations.

Bau, D., Zhu, J.-Y., Strobelt, H., Lapedriza, A., Zhou, B., and Torralba, A. (2020). Understanding
the role of individual units in a deep neural network. Proceedings of the National Academy of
Sciences, 117(48):30071–30078.

Belrose, N., Furman, Z., Smith, L., Halawi, D., Ostrovsky, I., McKinney, L., Biderman, S., and
Steinhardt, J. (2023a). Eliciting latent predictions from transformers with the tuned lens.

Belrose, N., Schneider-Joseph, D., Ravfogel, S., Cotterell, R., Raff, E., and Biderman, S. (2023b).
Leace: Perfect linear concept erasure in closed form.

Bhaskar, A., Wettig, A., Friedman, D., and Chen, D. (2024). Finding transformer circuits with edge
pruning.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

Burns, C., Ye, H., Klein, D., and Steinhardt, J. (2022). Discovering latent knowledge in language
models without supervision.

Cao, S., Sanh, V., and Rush, A. M. (2021). Low-complexity probing via finding subnetworks. arXiv
preprint arXiv:2104.03514.

Chan, L., Garriga-Alonso, A., Goldowsky-Dill, N., Greenblatt, R., Nitishinskaya, J., Radhakrishnan,
A., Shlegeris, B., and Thomas, N. (2022). Causal scrubbing: A method for rigorously testing inter-
pretability hypotheses. https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/
causal-scrubbing-a-method-for-rigorously-testing.

Chang, C.-H., Creager, E., Goldenberg, A., and Duvenaud, D. (2019). Explaining image classifiers
by counterfactual generation.

Chen, H., Feng, S., Ganhotra, J., Wan, H., Gunasekara, C., Joshi, S., and Ji, Y. (2021). Explaining
neural network predictions on sentence pairs via learning word-group masks.

Chen, J., Song, L., Wainwright, M. J., and Jordan, M. I. (2018). Learning to explain: An information-
theoretic perspective on model interpretation.

Conmy, A., Mavor-Parker, A. N., Lynch, A., Heimersheim, S., and Garriga-Alonso, A. (2023).
Towards automated circuit discovery for mechanistic interpretability.

Covert, I., Lundberg, S., and Lee, S.-I. (2020). Understanding global feature contributions with
additive importance measures.

Covert, I. C., Lundberg, S., and Lee, S.-I. (2022). Explaining by removing: A unified framework for
model explanation. J. Mach. Learn. Res., 22(1).

11

https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing

Cunningham, H., Ewart, A., Smith, L. R., Huben, R., and Sharkey, L. (2023). Sparse autoencoders
find highly interpretable model directions.

Dabkowski, P. and Gal, Y. (2017). Real time image saliency for black box classifiers. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors,
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.

Dao, J., Lau, Y.-T., Rager, C., and Janiak, J. (2023). An adversarial example for direct logit attribution:
Memory management in gelu-4l.

Dar, G., Geva, M., Gupta, A., and Berant, J. (2023). Analyzing transformers in embedding space.

Datta, A., Sen, S., and Zick, Y. (2016). Algorithmic transparency via quantitative input influence:
Theory and experiments with learning systems. In 2016 IEEE Symposium on Security and Privacy
(SP), pages 598–617.

De Cao, N., Schlichtkrull, M., Aziz, W., and Titov, I. (2021). How do decisions emerge across layers
in neural models? interpretation with differentiable masking.

Dhamdhere, K., Sundararajan, M., and Yan, Q. (2018). How important is a neuron?

Din, A. Y., Karidi, T., Choshen, L., and Geva, M. (2023). Jump to conclusions: Short-cutting
transformers with linear transformations.

Fisher, A., Rudin, C., and Dominici, F. (2019). All models are wrong, but many are useful: Learning
a variable’s importance by studying an entire class of prediction models simultaneously.

Fong, R., Patrick, M., and Vedaldi, A. (2019). Understanding deep networks via extremal perturba-
tions and smooth masks.

Fong, R. C. and Vedaldi, A. (2017). Interpretable explanations of black boxes by meaningful
perturbation. In 2017 IEEE International Conference on Computer Vision (ICCV). IEEE.

Geva, M., Bastings, J., Filippova, K., and Globerson, A. (2023). Dissecting recall of factual
associations in auto-regressive language models.

Geva, M., Caciularu, A., Wang, K. R., and Goldberg, Y. (2022). Transformer feed-forward layers
build predictions by promoting concepts in the vocabulary space.

Ghorbani, A. and Zou, J. (2020). Neuron shapley: Discovering the responsible neurons.

Goldowsky-Dill, N., MacLeod, C., Sato, L., and Arora, A. (2023). Localizing model behavior with
path patching. arXiv preprint arXiv:2304.05969.

Gould, R., Ho, E., and Conmy, A. (2023). Mechanistically interpreting time in gpt-2 small.

Grömping, U. (2007). Estimators of relative importance in linear regression based on variance
decomposition. The American Statistician, 61(2):139–147.

Gromping, U. (2009). Variable importance assessment in regression: Linear regression versus random
forest. The American Statistician, 63(4):308–319.

Guan, C., Wang, X., Zhang, Q., Chen, R., He, D., and Xie, X. (2019). Towards a deep and unified
understanding of deep neural models in NLP. In Chaudhuri, K. and Salakhutdinov, R., editors,
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2454–2463. PMLR.

Gurnee, W., Horsley, T., Guo, Z. C., Kheirkhah, T. R., Sun, Q., Hathaway, W., Nanda, N., and
Bertsimas, D. (2024). Universal neurons in gpt2 language models.

Gurnee, W. and Tegmark, M. (2024). Language models represent space and time.

Halawi, D., Denain, J.-S., and Steinhardt, J. (2024). Overthinking the truth: Understanding how
language models process false demonstrations.

12

Hanna, M., Liu, O., and Variengien, A. (2023). How does gpt-2 compute greater-than?: Interpreting
mathematical abilities in a pre-trained language model.

Hase, P., Bansal, M., Kim, B., and Ghandeharioun, A. (2023). Does localization inform editing?
surprising differences in causality-based localization vs. knowledge editing in language models.

Hase, P., Xie, H., and Bansal, M. (2021). The out-of-distribution problem in explainability and search
methods for feature importance explanations.

Heimersheim, S. and Janiak, J. (2023). A circuit for Python docstrings in a 4-layer attention-
only transformer. https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/
a-circuit-for-python-docstrings-in-a-4-layer-attention-only.

Heimersheim, S. and Nanda, N. (2024). How to use and interpret activation patching.

Hendel, R., Geva, M., and Globerson, A. (2023). In-context learning creates task vectors.

Hernandez, E., Schwettmann, S., Bau, D., Bagashvili, T., Torralba, A., and Andreas, J. (2022).
Natural language descriptions of deep visual features.

Hernandez, E., Sharma, A. S., Haklay, T., Meng, K., Wattenberg, M., Andreas, J., Belinkov, Y., and
Bau, D. (2024). Linearity of relation decoding in transformer language models.

Homma, T. and Saltelli, A. (1996). Importance measures in global sensitivity analysis of nonlinear
models. Reliability Engineering & System Safety, 52(1):1–17.

Hooker, S., Erhan, D., Kindermans, P.-J., and Kim, B. (2019). A benchmark for interpretability
methods in deep neural networks.

Huang, Z. and Wang, N. (2018). Data-driven sparse structure selection for deep neural networks.

Ishwaran, H. (2007). Variable importance in binary regression trees and forests. Electronic Journal
of Statistics, 1(none).

Janzing, D., Minorics, L., and Blöbaum, P. (2019). Feature relevance quantification in explainable ai:
A causal problem.

Katz, S. and Belinkov, Y. (2023). Visit: Visualizing and interpreting the semantic information flow of
transformers.

Kim, S., Yi, J., Kim, E., and Yoon, S. (2020). Interpretation of nlp models through input marginaliza-
tion.

Lakretz, Y., Kruszewski, G., Desbordes, T., Hupkes, D., Dehaene, S., and Baroni, M. (2019). The
emergence of number and syntax units in lstm language models.

Lan, M., Torr, P., and Barez, F. (2024). Towards interpretable sequence continuation: Analyzing
shared circuits in large language models.

Leino, K., Sen, S., Datta, A., Fredrikson, M., and Li, L. (2018). Influence-directed explanations for
deep convolutional networks.

Li, C. and Mahadevan, S. (2017). Sensitivity Analysis of a Bayesian Network. ASCE-ASME J Risk
and Uncert in Engrg Sys Part B Mech Engrg, 4(1). 011003.

Li, J., Monroe, W., and Jurafsky, D. (2017). Understanding neural networks through representation
erasure.

Li, K., Hopkins, A. K., Bau, D., Viégas, F., Pfister, H., and Wattenberg, M. (2023). Emergent world
representations: Exploring a sequence model trained on a synthetic task.

Li, M., Davies, X., and Nadeau, M. (2024). Circuit breaking: Removing model behaviors with
targeted ablation.

Lieberum, T., Rahtz, M., Kramár, J., Nanda, N., Irving, G., Shah, R., and Mikulik, V. (2023). Does
circuit analysis interpretability scale? evidence from multiple choice capabilities in chinchilla.

13

https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., and Zhang, C. (2017). Learning efficient convolutional
networks through network slimming.

Louizos, C., Welling, M., and Kingma, D. P. (2018). Learning sparse neural networks through l0
regularization.

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J.,
Bansal, N., and Lee, S.-I. (2020). From local explanations to global understanding with explainable
ai for trees. Nature machine intelligence, 2(1):56–67.

Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model predictions. In
Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R.,
editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.

Makelov, A., Lange, G., and Nanda, N. (2023). Is this the subspace you are looking for? an
interpretability illusion for subspace activation patching.

Marks, S., Rager, C., Michaud, E. J., Belinkov, Y., Bau, D., and Mueller, A. (2024). Sparse feature
circuits: Discovering and editing interpretable causal graphs in language models.

Marks, S. and Tegmark, M. (2023). The geometry of truth: Emergent linear structure in large
language model representations of true/false datasets.

Mase, M., Owen, A. B., and Seiler, B. B. (2024). Variable importance without impossible data.
Annual Review of Statistics and Its Application, 11(Volume 11, 2024):153–178.

McDougall, C., Conmy, A., Rushing, C., McGrath, T., and Nanda, N. (2023). Copy suppression:
Comprehensively understanding an attention head.

McGrath, T., Rahtz, M., Kramar, J., Mikulik, V., and Legg, S. (2023). The hydra effect: Emergent
self-repair in language model computations.

Meng, K., Bau, D., Andonian, A., and Belinkov, Y. (2022). Locating and editing factual associations
in gpt. Advances in Neural Information Processing Systems, 35:17359–17372.

Merullo, J., Eickhoff, C., and Pavlick, E. (2023). Circuit component reuse across tasks in transformer
language models.

Merullo, J., Eickhoff, C., and Pavlick, E. (2024). Language models implement simple word2vec-style
vector arithmetic.

Montavon, G., Lapuschkin, S., Binder, A., Samek, W., and Müller, K.-R. (2017). Explaining nonlinear
classification decisions with deep taylor decomposition. Pattern Recognition, 65:211–222.

Mu, J. and Andreas, J. (2021). Compositional explanations of neurons.

Nanda, N. (2023). Attribution patching: Activation patching at industrial scale.

Nathans, L., Oswald, F., and Nimon, K. (2012). Interpreting multiple linear regression: A guidebook
of variable importance. Practical Assessment, Research and Evaluation, 17(9):1–19.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma, N., Henighan, T., Mann, B., Askell, A.,
Bai, Y., Chen, A., Conerly, T., Drain, D., Ganguli, D., Hatfield-Dodds, Z., Hernandez, D., Johnston,
S., Jones, A., Kernion, J., Lovitt, L., Ndousse, K., Amodei, D., Brown, T., Clark, J., Kaplan, J.,
McCandlish, S., and Olah, C. (2022). In-context learning and induction heads.

Petsiuk, V., Das, A., and Saenko, K. (2018). Rise: Randomized input sampling for explanation of
black-box models.

Rabitz, H. (1989). Systems analysis at the molecular scale. Science, 246(4927):221–226.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language models are
unsupervised multitask learners.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). "why should i trust you?": Explaining the
predictions of any classifier.

14

Robnik-Sikonja, M. and Kononenko, I. (2008). Explaining classifications for individual instances.
Knowledge and Data Engineering, IEEE Transactions on, 20:589 – 600.

Rushing, C. and Nanda, N. (2024). Explorations of self-repair in language models.

Räuker, T., Ho, A., Casper, S., and Hadfield-Menell, D. (2022). Toward transparent ai: A survey on
interpreting the inner structures of deep neural networks.

Schlichtkrull, M. S., De Cao, N., and Titov, I. (2022). Interpreting graph neural networks for nlp with
differentiable edge masking.

Schulz, K., Sixt, L., Tombari, F., and Landgraf, T. (2020). Restricting the flow: Information
bottlenecks for attribution.

Schwab, P. and Karlen, W. (2019). Cxplain: Causal explanations for model interpretation under
uncertainty.

Shah, H., Ilyas, A., and Madry, A. (2024). Decomposing and editing predictions by modeling model
computation.

Simonyan, K., Vedaldi, A., and Zisserman, A. (2014). Deep inside convolutional networks: Visualis-
ing image classification models and saliency maps.

Singh, A. K., Moskovitz, T., Hill, F., Chan, S. C. Y., and Saxe, A. M. (2024). What needs to go right
for an induction head? a mechanistic study of in-context learning circuits and their formation.

Slack, D., Hilgard, S., Jia, E., Singh, S., and Lakkaraju, H. (2020). Fooling lime and shap: Adversarial
attacks on post hoc explanation methods.

Smilkov, D., Thorat, N., Kim, B., Viégas, F., and Wattenberg, M. (2017). Smoothgrad: removing
noise by adding noise.

Sobol, I. (1993). Sensitivity estimates for nonlinear mathematical models. Computational Mathemat-
ics and Mathematical Physics, 1(4):407–413.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: A
simple way to prevent neural networks from overfitting. Journal of Machine Learning Research,
15(56):1929–1958.

Stolfo, A., Belinkov, Y., and Sachan, M. (2023). A mechanistic interpretation of arithmetic reasoning
in language models using causal mediation analysis.

Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., and Zeileis, A. (2008). Conditional variable
importance for random forests. BMC bioinformatics, 9:1–11.

Strumbelj, E. and Kononenko, I. (2010). An efficient explanation of individual classifications using
game theory. Journal of Machine Learning Research, 11(1):1–18.

Strumbelj, E., Kononenko, I., and Sikonja, M. R. (2009). Explaining instance classifications with
interactions of subsets of feature values. Data and Knowledge Engineering, 68(10):886–904.

Sundararajan, M., Taly, A., and Yan, Q. (2017). Axiomatic attribution for deep networks.

Syed, A., Rager, C., and Conmy, A. (2023). Attribution patching outperforms automated circuit
discovery.

Tigges, C., Hollinsworth, O. J., Geiger, A., and Nanda, N. (2023). Linear representations of sentiment
in large language models.

Todd, E., Li, M. L., Sharma, A. S., Mueller, A., Wallace, B. C., and Bau, D. (2024). Function vectors
in large language models.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. (2017). Attention is all you need.

15

Vig, J., Gehrmann, S., Belinkov, Y., Qian, S., Nevo, D., Singer, Y., and Shieber, S. (2020). Inves-
tigating gender bias in language models using causal mediation analysis. Advances in neural
information processing systems, 33:12388–12401.

Wang, K., Variengien, A., Conmy, A., Shlegeris, B., and Steinhardt, J. (2022). Interpretability in the
wild: a circuit for indirect object identification in gpt-2 small.

Wei, C., Kakade, S., and Ma, T. (2020). The implicit and explicit regularization effects of dropout.

Williamson, B. D. and Feng, J. (2020). Efficient nonparametric statistical inference on population
feature importance using shapley values.

Wu, Z., Geiger, A., Huang, J., Arora, A., Icard, T., Potts, C., and Goodman, N. D. (2024). A reply to
makelov et al. (2023)’s "interpretability illusion" arguments.

Ye, J., Lu, X., Lin, Z., and Wang, J. Z. (2018). Rethinking the smaller-norm-less-informative
assumption in channel pruning of convolution layers.

Yoon, J., Jordon, J., and Van der Schaar, M. (2018). Invase: Instance-wise variable selection using
neural networks. In International conference on learning representations.

Zeiler, M. D. and Fergus, R. (2013). Visualizing and understanding convolutional networks.

Zhang, F. and Nanda, N. (2024). Towards best practices of activation patching in language models:
Metrics and methods.

Zhang, L. and Janson, L. (2020). Floodgate: Inference for model-free variable importance. arXiv
preprint arXiv:2007.01283.

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A. (2015). Object detectors emerge in
deep scene cnns.

Zhuang, T., Zhang, Z., Huang, Y., Zeng, X., Shuang, K., and Li, X. (2020). Neuron-level structured
pruning using polarization regularizer. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and
Lin, H., editors, Advances in Neural Information Processing Systems, volume 33, pages 9865–9877.
Curran Associates, Inc.

Zintgraf, L. M., Cohen, T. S., Adel, T., and Welling, M. (2017). Visualizing deep neural network
decisions: Prediction difference analysis.

16

A Limitations

As is the case for previous work, we do not provide an entirely precise definition of the “importance”
of a component. The importance of a component can be generally described as an aggregation of
causal effects in a way that summarizes the component’s contribution to model performance. Among
the many ways to aggregate causal effects, there may not be a mathematically rigorous way to show
that one measure of importance produces the correct or canonical aggregation. However, component
importance is useful for a wide variety of applications in interpretability, so aside from showing that
our approach to component importance better captures relevant considerations in a conceptual sense,
we focus on the utility that it provides to some of these applications.

As noted in Section 2.3, optimal ablation does not entirely eliminate the contribution of information
spoofing to ∆. For example, if A typically conveys strong and exact information about the input,
then there may not exist any value of a that hedges between a range of inputs.

Though OA produces circuits that achieve lower loss at a given level of edge sparsity, it may
elicit mechanisms that were not previously used for some subtask, especially if there are multiple
computational paths that could lead to the same conclusion. However, if the subtask of interest is
sufficiently complex, it seems unlikely that a model would have many “dormant” mechanisms that
can be repurposed to perform the subtask, because this redundancy wastes computational complexity.

For factual recall, it remains to be seen whether localization is helpful for applications that are further
downstream such as producing surgical model edits (Hase et al., 2023; Shah et al., 2024).

B Additional related work

As mentioned in Section 2.2, component importance is strongly related to variable importance, which
quantifies the importance of a model input Xi (also known as a feature or covariate in the variable
importance literature).

Variable importance Much of variable importance work concerns “oracle” prediction, which
roughly considers how much Xi contributes to the performance of the best possible predictor for Y
given the set of covariates (X1, ..., Xn), and frames the importance of Xi as a property of the joint
distribution of (X1, ..., Xn, Y), rather than a property of any particular model used for prediction.
Most work in this area analyzes some parametric class of estimators, like linear models (Grömping,
2007; Nathans et al., 2012) or Bayesian networks (Li and Mahadevan, 2017). Later work generalizes
parametric variable importance to arbitrary model classes, e.g. by training an ensemble of models
that only have access to subsets of the covariates (Strumbelj et al., 2009; Fisher et al., 2019). Recent
work has also studied non-parametric variable importance, in which we attempt to lower-bound the
best performance of any arbitrary estimator (Williamson and Feng, 2020; Zhang and Janson, 2020).

On the other hand, our motivation is to interpret the behavior of one specific modelM (Fisher et al.,
2019; Hooker et al., 2019), not to analyze the theoretical relationship between model inputs and
outputs. Rather than estimating how well any function of Xi can predict Y , we wish to estimate
how much the particular functionM uses an input feature Xi to predict Y . Previous work on this
“algorithmic” variant of variable importance has taken two main approaches.

Local function approximations One way to quantify how much Xi contributes to model per-
formance is to aggregate local function approximations, which approximate the model around a
particular input. Common tools for local approximation include the gradient of M at a given x
(Rabitz, 1989; Baehrens et al., 2009; Simonyan et al., 2014; Leino et al., 2018; Nanda, 2023), or
a linear function that well-approximatesM(x+ ε) for a chosen noise term ε (Ribeiro et al., 2016;
Smilkov et al., 2017). Since these tools often yield straightforward estimates of the local importance
of Xi for the input x, one approach to quantifying the global importance of Xi is aggregate the
importance estimates given by these local approximations, for example by using a first-degree Taylor
approximation around a reference input x0 (Bach et al., 2015; Montavon et al., 2017), or integrating
over gradients along a straight-line path from x0 to any studied input x (Sundararajan et al., 2017;
Dhamdhere et al., 2018). This approach to measuring variable importance works just as well for
internal components as it does for inputs. However, local function approximations can fail to capture
the overall loss landscape, especially in the common setting whereM has unbounded gradients, and

17

can often be manipulated to produce arbitrary feature importance values (Slack et al., 2020; Hase
et al., 2021).

Ablation-based measures The second main approach considers the ablation of feature Xi. In this
approach, the feature Xi is ablated by replacing it with a different random variable Xi that captures
less information about the original feature value. We then compare the model performance when Xi

is replaced with Xi to the original model performance, per the definition of ∆ in Section 2.1 (where
the ablated component A is feature Xi of the model input).

Many of the current methods used for ablating internal model components as described in Section
2.2 were first introduced in feature importance work. Zero ablation (Dabkowski and Gal, 2017;
Li et al., 2017; Petsiuk et al., 2018; Schwab and Karlen, 2019), mean ablation (Zeiler and Fergus,
2013; Zhou et al., 2015), and Gaussian noise injection (Fong and Vedaldi, 2017; Fong et al., 2019;
Guan et al., 2019; Schulz et al., 2020) are all used to remove input features, such as the pixels of
an image or tokens of a text input, to assess their importance. Resample ablation is also common
in feature importance work; an early variant samples Xi from a uniform distribution (Sobol, 1993;
Homma and Saltelli, 1996; Strumbelj and Kononenko, 2010), while later work generally performs
resample ablation on features by resampling them from their marginal distribution (Breiman, 2001;
Robnik-Sikonja and Kononenko, 2008; Datta et al., 2016; Lundberg and Lee, 2017; Janzing et al.,
2019; Covert et al., 2020; Kim et al., 2020).

Measuring feature importance via these ablation methods suffers from a well-documented “out-of-
distribution” problem (Ishwaran, 2007; Fong and Vedaldi, 2017; Hooker et al., 2019; Hase et al.,
2021; Mase et al., 2024): since setting Xi to zero or its mean, resampling Xi from its marginal
distribution, or adding Gaussian noise to Xi could result in an input that was never observed during
training, the measured feature importance values could potentially be determined by model behavior
on impossible and/or nonsensical inputs. One way to mitigate this out-of-distribution problem is
replacing feature Xi by a random variable Xi sampled from its conditional distribution (Strobl et al.,
2008; Lundberg et al., 2020), i.e. Xi ∼ Xi|X−i, (Xi ⊥⊥ Xi)|X−i, where X−i denotes the other
features X1, ..., Xi−1, Xi+1, Xn. Since the conditional distribution is often intractable to sample
from, previous work employs a range of approximation techniques. For example, Zintgraf et al.
(2017) samples an ablated pixel from its conditional distribution given a `× ` patch of its proximate
pixels instead of conditioning on the entire image, and Chang et al. (2019) uses a generative model to
simulate the conditional distribution.

However, in a setting where the relevant features Xi represent internal model components, rather than
inputs to the model, it often does not make sense to discuss an “out-of-distribution” problem because
the (X1, ..., Xn) = (A1(X), ...,An(X)) are usually near-deterministically related to each other.
For example, for any neuron, it is typically the case that its value can be almost deterministically
recovered from the values of other neurons in the same layer. Thus, nearly any intervention on an
internal component Ai brings the model “out-of-distribution,” in the sense that the model observes
the vector (A1(X), ...,An(X)) where Ai(X) is replaced with a with near-zero probability density.

Our dichotomy of deletion and spoofing in Section 2.1 is more precise than the typical discussion of
the out-of-distribution problem in its description of distortions to importance values that we wish to
avoid. On one hand, our analysis is more lenient than the blanket requirement that the vector of all
internal component values (A1(x), ...,An(x)) is in-distribution, in the sense that not all interventions
that bring (A1(x), ...,An(x)) out of distribution constitute spoofing; for example, replacing Ai(x)
with a does not have a spoofing-related contribution to ∆ if Ai(x) and a are equivalent for the sake
of downstream computation. On the other hand, our analysis is more stringent in the sense that effect
2a from Section 2.1 is recognized as a form of spoofing that can occur even when interventions are
in-distribution (see Appendix D.1 for more details).

Using dropout to eliminate spoofing One way to eliminate spoofing when intervening on A(X)
is to trainM to accept neutral constant values that indicate that componentA has stopped functioning
and then replace A with these built-in neutral values to assess the importance of A. Variations of this
technique are common in feature importance (Strumbelj et al., 2009; Chen et al., 2018; Yoon et al.,
2018; Hooker et al., 2019). For internal components, we could train neural networks with dropout
(Srivastava et al., 2014; Wei et al., 2020), and then use zero ablation to assess the importance of A.
Since the downstream computation is trained to recognize A(X) = 0 as an indication that A carries

18

no information, as opposed to strong information associated with an input other than the original X ,
∆zero(M,A) becomes an accurate assessment of deletion (effect 1 from Section 2.1).

However, re-training with neutral values does not necessarily assist in analyzing a particular modelM,
since re-trainingM will in general changeM itself. Furthermore, training with dropout incentivizes
M to lower ∆zero(M,A) for any component A, since part of the loss function involves minimizing
loss with a random subset of ablated components. As a result, we expect to observe more redundant
computation shared between many model components, since a random subset of them could be ablated
during training. This redundancy inherently tends to makeM less modular and harder to analyze –
for example, we should expect a broad variety of components to perform relevant computation for any
input, even if an accurate prediction could be computed with just a few components, so it becomes
difficult to localize model behaviors. Since interpretability involves decomposing model computation
into smaller pieces and identifying specialization among model components, models trained with
dropout may be less interpretable. To summarize, while the ∆zero measurements are more “accurate”
whenM is trained with dropout, they may become less “useful” for interpretability. On the other
hand, OA makes ∆ measurements a more accurate reflection of deletion effects without trainingM
on to distort the magnitude of these effects.

Aggregation mechanisms for ablation methods On top of a selected ablation method, some work
uses Shapley values to aggregate performance gap measurements for sets of features (Strumbelj et al.,
2009; Strumbelj and Kononenko, 2010; Datta et al., 2016; Lundberg and Lee, 2017; Janzing et al.,
2019; Lundberg et al., 2020; Covert et al., 2020). This line of work measures the importance of Xi by
estimating a weighted average of the performance gap ∆(M, S) for all subsets S ⊂ {X1, ..., Xn}
rather than considering only ∆(M, Xi). This aggregation mechanism is applied after choosing an
ablation method via which to measure each ∆, and is just as compatible with OA as with any other
ablation method.

Sparse pruning and masking Finally, in the literature of sparse pruning and masking, an operation
that is procedurally similar to optimal ablation is sometimes performed in prior work by adding a
bias term to removed features or activations after setting weights to zero.

In some structured pruning work, it is typical to introduce scaled batch normalization layers Ã(X) =
γA(X) + β for γ ∈ [0, 1] to the output of each computational block A, and regularize the γ toward
zero to select weights to prune (Liu et al., 2017; Ye et al., 2018; Zhuang et al., 2020). When γ reaches
0, the output of A is set to the constant β, which is trained to minimize the loss of the pruned model.
However, the motivation of this reparameterization is not to measure component importance, and
optimal ablation can be applied to more general model components (e.g. computational edges in any
graph representation).

Similar to pruning, sparse masking work searches for a mask over input tokens such that for any input,
most inputs are zeroed out while model performance is retained (Li et al., 2017; De Cao et al., 2021;
Chen et al., 2021; Schlichtkrull et al., 2022). In particular, De Cao et al. (2021) replaces masked tokens
in an input X = X1, ..., Xn with a learned bias b(X). While this operation may seem similar to
optimal ablation, a fundamental difference is that the bias b(X) is different for each input sequence X
and is trained to equalize embeddings at different token positions in a single X rather than assuming
the same constant value for all values of X . Thus, for each X , b(X) contains specific information
about the masked tokens in X , so unlike OA, this technique does not perform total ablation on the
masked tokens. A follow-up work Schlichtkrull et al. (2022) trains a common b for a dataset of inputs
X . However, Schlichtkrull et al. (2022) uses an auxiliary linear model φi(A1(X), ...,An(X)) to
predict whether a component Ai(X) should be masked. Since φi explicitly depends on the values
of the masked components Ai(X), the model output remains dependent on information contained
in Ai(X), and total ablation is not achieved. Moreover, the auxiliary model φ provides the model
with additional computation to distill information about the input, rather than strictly reducing the
computational complexity of the original model as OA does. The use of an auxiliary model is a
requisite feature of their method and cannot be decoupled from the masking technique: without
using φ(X) to predict the masked components, computing masks requires a separate optimization
procedure for each input, which makes it computationally intractable to optimize a single b over an
entire distribution of inputs.

19

C Additional preliminaries

C.1 Models as computational graphs

We can write an ML modelM as a connected directed acyclic graph. The graph’s source vertices
represent the model’s (typically vector-valued) input, its sink vertices represent the model’s output,
and intermediate vertices represent units of computation. For the sake of simplicity, assumeM has a
single input and a single output. Each intermediate vertex Ai represents a computational block that
takes in the values of previous vertices evaluated on x, and itself produces an output Ai(x), that is
taken as input to later vertices. We indicate that there exists a directed edge from vertex Aj to vertex
Ai if Aj(x) is taken as input to Ai.
LetM be represented by computational graph (G,E) where G is the overall set of vertices and E be
the set of edges. Let A0:n be a tuple representing G in topologically sorted order (A0 represents the
model input, whileAn represents the model output). For a particular vertexAi, let ~Gi = (Gi1, ..., G

i
k)

be the tuple of vertices (duplicates allowed) whose outputs Ai takes as immediate inputs. As we will
see, we will sometimes require multiple edges between a pair of vertices. Rather than the standard
edge notation e = (Aj ,Ai) ∈ E for simple graphs, we adopt the notation e = (Aj ,Ai, z) ∈ E to
indicate that Giz = Aj , i.e. Aj(x) is taken as the zth input to Ai.
Model inference is performed by evaluating the vertices in topologically sorted order. We perform
inference on an input x by setting A0(x) = x and then iteratively evaluating Ai(x) = Ai(~Gi) for
i ∈ {1, ..., n}. By the time we evaluate some vertex Ai, we have already computed the values Giz(x)
for each of its inputs because they precede Ai in the topological sort. Finally, we determine that
M(x) = An(x). We will alternate between the notation Ai(~Gi) to explicitly write Ai as a function
of its immediate inputs and the notation Ai(x) to indicate that the output of Ai is a function of x. We
also sometimes use Ai(x) as a standalone quantity apart from evaluatingM(x) and observe that this
quantity is a function of x computed by evaluating Aj(x) in order for j ∈ {1, ..., i}.
The graph notation for any ML model is not unique. For any model, there are many equivalent graphs
that faithfully represent its computation. In particular, a computational graph can represent a model
at varying levels of detail. At one extreme, intermediate vertices can designate individual additions,
multiplications, and nonlinearities. Such a graph would have at least as many vertices as model
parameters. Fortunately, most model architectures have self-contained computational blocks, which
allows them to be represented by graphs that convey a significantly higher level of abstraction. For
example, in convolutional networks, intermediate vertices can represent convolutional filters and
pooling layers, while in transformer models, the natural high-level computational units are attention
heads and multi-layer perceptron (MLP) modules.

C.2 Activation patching

Activation patching is the practice of evaluatingM(x) while performing the intervention of setting
some component Ai to a counterfactual value a instead of Ai(x) during inference. We use the
notationMAi

(x, a) extensively in the paper to indicate this practice, and here we give a more precise
definition in terms ofM as a computational graph:
Definition C.1 (Vertex activation patching). To computeMAi

(x, a), compute A0(x), ...,Ai−1(x)
in normal fashion and set Ai(x) = a. Then compute each vertex Ai+1(x), ...,An(x) in order,
computing each vertex Aj as a function of its immediate inputs, i.e. Aj(x) = Aj(Gj1(x), ..., Gjk(x)).
Finally, returnMAi(x, a) = An(x).

During this modified forward pass, a vertexAj that takesAi as its zth immediate input, i.e. for which
(Ai,Aj , z) ∈ E, instead takes a as their zth input instead of the normal value of Ai(x). Later, if
some other vertex takesAj as input, it will take this modified version ofAj(x) as input, and so on, so
the intervention on Ai may have an effect that carries through the graph computation and eventually
makesMAi(x, a) different fromM(x).

In Section 3, we discuss extending this practice to edges e:
Definition C.2 (Edge activation patching). To computeMe(x, a), where e = (Aj ,Ai, z), compute
A0(x), ...,Ai−1(x) in normal fashion. Set Ai(x) = (Gi1(x), ..., Giz−1(x), a,Giz+1(x), ..., Gik(x)),

20

i.e. setting its zth input to a instead of Aj(x). Then compute each vertex Ai+1(x), ...,An(x) in
order as a function of its immediate inputs. Finally, returnMe(x, a) = An(x).

As mentioned in the main text, using activation patching on a particular edge e = (Aj ,Ai, z) is
more surgical than using activation patching on its parent vertex Aj . Performing activation patching
on Aj would replace Aj(x) with a as an input to all of its child vertices, but performing activation
patching on only e modifies Aj(x) only as an input to Ai. Notice that performing activation patching
on Aj(x) is equivalent to performing activation patching on e = (Aj ,Ai, z) for all edges e that
emanate from Aj in the graph.

C.3 Transformer architecture

The transformer architecture (Vaswani et al., 2017) may be familiar to most readers. However, since
our experiments involve interventions during model inference with varying levels of granularity, we
include a summary of the transformer computation, which we later reference to crystallize specifically
how we edit the computation.

TransformersM take in token sequences x1:s of length s, which are then prepended with a constant
padding token x0. Let x = (xj)

s
i=0. The model simultaneously computes, for each token position

i, a predicted probability distribution (P̂(xj+1 | x0:j))sj=0 for the (j + 1)th token given the first j
tokens. We useM(x) to refer to the predicted probability distribution over the (s+ 1)th token. We
sometimes abuse notation to write P(M(x) = y) to indicate P̂(y | x), i.e. the probability placed on
prediction y by the distributionM(x).

Let X̃ be a random input sequence and S be a token position sampled randomly from {1, ..., s}.M
is trained to minimize −EX,S logP(M(X̃0:S−1) = X̃S). However, we generally refer to input-label
pairs (X,Y) = (X̃0:S−1, X̃S), so that the loss function is instead written

EX,Y L(M(X), Y) = EX,Y [− logP(M(X) = Y)]

To evaluateM, each token xj is mapped to a embedding Resid(0)
j (x) = t(xj) + p(j) of dimension

dmodel, where t(xj) is a token embedding of token xj and p(j) is a position embedding representing
position j in the sequence. Over the course of inference, M keeps track of a “residual stream”
representation Resid

(i)
j at each token position j that is a vector of dimension dmodel, which it updates

by iterating over its nlayers layers, adding each layer’s contribution to the previous representation:

MResid
(i)
j (x) = Resid

(i−1)
j (x) +

nheads∑
k=1

Attn
(i,k)
j (x) (6)

Resid
(i)
j (x) = MResid

(i)
j (x) + MLP

(i)
j (x). (7)

Attention heads Attn(i,k) transfer information between token positions. Let LN (layer-norm) be the
function that takes a matrix Z of size m× n and outputs a matrix of the same size such that each row
of LN(Z) is equal to the corresponding row of Z normalized by its L2 norm: (LN(Z))j =

Zj

||Zj ||2 .

Let R = LN(Resid(i−1)(x)). Attention heads are computed as follows:

AttnScore(i,k)(x) = softmax

(
4 ·

(
RW

(i,k)
Q + b

(i,k)
Q

)
︸ ︷︷ ︸

Q(i,k)

(
RW

(i,k)
K + b

(i,k)
K

)T
︸ ︷︷ ︸

KT
(i,k)

)

Attn(i,k)(x) = AttnScore(i,k)(x)
(
RW

(i,k)
V + b

(i,k)
V

)
︸ ︷︷ ︸

V(i,k)

W
(i,k)
O + b

(i,k)
O . (8)

TheW (i,k)s and b(i,k)s are weights. W (i,k)
Q , W (i,k)

K , andW (i,k)
V have size dmodel×dhead, andW (i,k)

O

has size dhead × dmodel, b
(i,k)
Q , b(i,k)K , and b(i,k)V have dimension dhead while b(i,k) has dimension

dmodel. Biases are added to each row. 4 is a lower triangular matrix of 1s, · represents the elementwise
product and the softmax is performed row-wise. Multiplying by4 ensures that Attn

(i,k)
j (x) only

21

depends on Resid
(i)
0:j and thus information can only be propagated forward, so the prediction of token

j + 1 can only depend on tokens 0 through j.

MLP layers are computed token-wise; the same map is applied to Resid
(i−1)
j (x) at each token

position j. Let R = LN(MResid(i)(x)), and let Rj be the jth row of R. MLPs are computed as
follows: MLP

(i)
j (x) = ReLU

(
RjW

(i)
in + b

(i)
in

)
W

(i)
out + bout.

The W (i) and b(i) are weights. W (i)
in has shape dmodel × dmlp and W (i)

out has shape dmlp × dmodel.
b
(i)
in has dimension dmlp and b(i)out has dimension dmodel.

Finally, the output probability distribution is determined by applying a final transformation to the
residual stream representation after the last layer.

Out(x) := softmax
(

LN
(

Resid(nlayers)(x)
)
Wunembed

)
Wunembed is a learnable weight matrix of size dmodel×dvocab and the softmax is performed row-wise.
Out(x) is a matrix of size (s+ 1)× dvocab, where dvocab is the number of tokens in the vocabulary
and each row Outj(x) indicates a discrete probability distribution over dvocab values that predicts the
(j + 1)th token given the first j tokens.M(x) is the prediction for the (s+ 1)th-token continuation
of x given the entire sequence x, i.e.M(x) = Outs(x).

C.4 KL-divergence loss function

The performance metric P(M̃) = EX∼D L(M̃(X),M(X)) selected in the paper frames perfor-
mance in terms of proximity to the original model predictions, and thus the corresponding ablation
loss gap ∆(M,A) measures the importance of component A for the model to arrive at predictions
that are close to its original predictions. A common alternative, P̃(M̃) = E(X,Y)∼DL(M̃(X), Y),
frames performance in terms of proximity to the true labels, so the corresponding ablation loss
gap ∆̃(M,A) measures the importance of component A for the model to perform a subtask at a
comparable level to the original model. As an example, consider a model M that computes an
approximately-optimal solution M̃(X) and then adds noise in a way that changes its predictions but
does not improve or worsen EX,Y L(M(X), Y). Presenting M̃ alone is a satisfactory interpretation
of the behavior ofM under P̃ but not under P .

A major advantage of P is that it is much more sample-efficient to evaluate for language tasks,
especially if the label distribution has high entropy. Let (X,Y) denote a random input-label pair.
Recall that a language model is trained to minimize

EX,Y L(M(X), Y) = EX,Y [− logP(M(X) = Y)] = c+ EXDKL(ρ(X) || M(X))

where c is a constant and ρ(X) represents the true probability distribution of Y |X . For each X ,
we are unable to observe ρ(X) – in fact, we are usually only able to obtain a single sample from
Y ∼ ρ(X). On the other hand,M(X) may be a sufficient estimate for ρ(X), and provides many
more bits of information about ρ than the single sample Y ∼ ρ. Even if our desired performance
metric were P̃ , rather than estimating EX [EY [L(M̃(X), Y) | X]] from individual samples (X,Y),
it may often be more sample-efficient to approximate EY [L(M̃(X), Y) | X] analytically for a
particular X by assuming that the full model well-approximates that true distribution ρ, i.e. by
assuming thatM(X) ≈ ρ(X) (in the sense that DKL(ρ(X) || M(X)) ≈ 0), which implies

EXDKL(ρ(X) || M̃(X)) ≈ EXDKL(M(X) || M̃(X)). (9)

and so we still evaluate M̃ using P as the performance metric.

In practice, Equation (9) may be an unreasonable assumption and the two criteria may yield very
different interpretability results. We cannot estimate EX,Y L(M(X), Y) because it is impossible to
obtain an estimate of the ground truth entropy of next-token prediction – for long sequences, we
typically never observe the same sequence more than once. However, we can deduce a lower bound
EX,Y L(M(X), Y) ≥ 1 for a model like GPT-2 because larger models reduce cross-entropy by more
than this amount compared to GPT-2. Note that a better approximation of EX,Y L(M̃(X), Y) is to
obtain a probability distribution from a larger language modelM∗, and future work may wish to
explore this direction

22

However, there are several other reasons to prefer using P over P̃ with labels from a larger model.
The use of KL-divergence to the original modelM is consistent with previous work. In the real-world
scenario of performing interpretability on the largest frontier model, we will not have access to a
betterM∗. Most importantly, one concern with circuit discovery for subtasks (X,Y) ∼ D is that it
may be possible to adversarially select M̃ such that

E(X,Y)∼DL(M̃(X), Y) ≤ E(X,Y)∼DL(M(X), Y). (10)

which can occur ifM sacrifices some performance on (X,Y) ∼ D for better performance on other
regions of the input distribution. Selecting only the components ofM that maximize performance
on D may ignore important mechanisms that must be included in its predictions on D as a result
of this tradeoff. On the other hand, evaluating circuits with P̃ llows mitigating mechanisms to be
included in the selected circuit, since we must select M̃ in a way that imitates the behavior ofM
itself on the subtask D. Using this metric, a subnetwork can never achieve lower loss thanM, since
L(M̃(X),M(X)) ≥ L(M(X),M(X)).

D Commentary

D.1 Understanding the difference between deletion and treating x like x′

Colloquially, “deletion” means the model has lost the information it would use to distinguish between
inputs x and x′. One might expect that if the model were able to rationally handle this lack of
information, it would produce an output that hedges between labels corresponding to inputs x and x′.
On the other hand, subclass 2a of “spoofing” means the model was given information in component
A that is compatible with x′ and not x, leading the model to output something close to what it would
have produced on input x′.

To illustrate the difference between deletion and insertion, consider the following example. Assume a
classifierM has two possible labels and two possible inputs, x and x′, and the model entirely depends
on component A to determine the correct label. LetM output a probability vector, and suppose L is
KL-divergence. LetM(x) = (1, 0) andM(x′) = (0, 1). If we remove the information given by A,
we should expect the model to output (0.5, 0.5), giving L = log 0.5, but if we instead intervene by
inserting A(x′) into an inference pass on x or vice versa, then the model places probability 1 on the
incorrect label, and the loss is infinite from assessing that the input is x′ when the true input is x.

D.2 OA as an extension of mean ablation for nonlinear functions

LetA(X) be a vector-valued model component. As noted in Lundberg and Lee (2017), one motivation
for mean ablation is that E[A(X)] is, under certain assumptions, a reasonable point estimate for
A(X). For instance, if the relevant loss function is the squared distance between our point estimate a
and the realized value of A(X), then E[A(X)] = arg mina EX ||a−A(X)||22. Indeed, the mean is
also the best point estimate of A(X) if the relevant loss is squared distance betweenMA(X, a) and
M(X) =MA(X,A(X)) and the modelM is linear in A(X):

E[A(X)] = arg min
a

EX ||MA(X, a)−MA(X,A(X))||22 (11)

ifM(X, a) = M(X)a+ b(X) for a random matrix M(X) ⊥⊥ A(X) and random bias b(X).

Thus, for model componentsA(X) for which the downstream computation is roughly linear, E[A(X)]
could potentially be a reasonable point estimate, hence justifying mean ablation. This presumption of
linearity also shows up in other interpretability work, including Hernandez et al. (2024), which uses
a linear map to approximate the decoding of subject-attribute relations, and Belrose et al. (2023b),
which considers erasing concepts Z from a model’s latent space in a “minimal” sense by transforming
activations A(X) with a map gZ that makes gZ(A(X)) uncorrelated with Z and minimizes expected
squared distance to the original activations, E[gZ(A(X)),A(X)].

However, in most settings,M(X, a) is highly nonlinear in a, and the mean E[A(X)] could be an
arbitrarily poor point estimate for A(X). Optimal ablation generalizes the idea of selecting the “best
point estimate” for A(X) as measured by replacing A(X) with a and evaluating model loss. In
particular, optimal ablation constants a∗ generalize the property given in Equation (11) to arbitrary

23

modelsM and loss functions L:

a∗ = arg min
a

L(MA(X, a),MA(X,A(X))). (12)

D.3 Generalizing OA to constrained-form estimates of A(X)

Measuring ∆opt(M,A) on a subtask (X,Y) ∼ D is, in a sense, a testing procedure for the hypothesis
that “A does not provide relevant information for model performance on subtask D.” Verifying that
∆opt ≈ 0 validates this hypothesis, since a point estimate of A(X) performs as well as the realized
value of A(X) for the purpose of model inference.

Optimal ablation can be generalized to test interpretability hypotheses beyond assertions that a
computed quantity A(X) is unimportant. In particular, we can test hypotheses about the specific
properties of A(X) that are important.

Suppose A(X) is vector-valued, and consider the hypothesis “the only relevant information in A(X)
is stored in subspace W .” We can test this hypothesis by replacingA(X) with PWA(X) +a∗, where
a∗ is an optimal constant that lies in W⊥ and PW is the projection matrix to subspace W . While
this example is simple and illustrates some of the flexibility of OA, it does not add to the space of
what OA can express, in the sense that we could have simply considered PWA(X) and PW⊥A(X)
as separate vertices in the graph and used OA (or any other ablation method) on only the latter.

However, a real gain of expression from OA materializes from being able to generalize the idea
of null point estimates to estimates with constrained form. For example, consider the subspace
hypothesis “every A(X) can be adequately represented in subspace W .” We can test this hypothesis
by training an optimal activation a∗(X) for each X that lies in subspace W . Though activation
training is expensive, we can train a function a∗(X) that maps X to values in W , and then estimate
the error of this function by performing activation training on a few samples of X .

Similarly, we can generalize a∗ to include multiple point estimates to test the claim that A(X) is the
outcome of an internal classification problem, i.e. the relevant information provided by A(X) is the
classification of X among a few input classes. We can train optimal point estimates (a∗1, ..., a

∗
k) such

that (a∗1, ..., a
∗
k) = arg min

(a1,...,ak)

EX min
j∈{1,...,k}

L(M(X, aj), Y)

calling the outer minimized quantity ∆k−opt. If ∆k−opt ≈ 0, then every A(X) can be represented
by one of a small number of prototype quantities.

E Single-component loss on IOI

E.1 Transformer graph representation

We use a graph representation in which each vertex corresponds to an attention head (Attn(i,k)(x)),
an MLP block (MLP(i)(x)), the model input (Resid(0)(x)), or the model output (Out(x)). We also
allow vertices representing the Resid(i)(x) and MResid(i)(x) computations. Appendix C.3 defines
the computation of each vertex.

However, we slightly modify the definition of attention head vertices Attn(i,k) to save memory and
so that ablation constants a∗ for OA lie in the column space of attention head outputs. Recall from
Equation (8) that attention heads produce output in a dhead-dimensional vector space, which is then
mapped linearly to dmodel-dimensional space by a weight matrix W (i,k)

O :

Attn(i,k)(x) = AttnScore(i,k)(x)
(
RW

(i,k)
V + b

(i,k)
V

)
W

(i,k)
O + b

(i,k)
O

Thus, while Attn(i,k)(x) is dmodel-dimensional, its distribution lies within a dhead subspace of the
residual stream. If we used vertices Attn(i,k), then our dmodel-dimensional a∗ for attention head (i, k)
could sometimes contribute to subspaces that the attention head (i, k) can never write to. Instead, for
an attention head vertex, we represent its output computation in dhead-dimensional space:

ZAttn(i,k)(x) = AttnScore(i,k)(x)
(
RW

(i,k)
V + b

(i,k)
V

)

24

and consider replacing ZAttn(i,k)(x) rather than replacing Attn(i,k)(x) to ablate an attention head.
This slight modification reduces our parameter count by a factor of dmodel/dhead when applying OA
but does not affect the results for the other ablation types.

We measure the single-component ablation loss gap ∆ for the ZAttn(i,k) and MLP(i) vertices,
(nheads + 1) · nlayers = 156 vertices in total for GPT-2.

E.2 Ablation details

We consider zero ablation, mean ablation, optimal ablation, counterfactual mean ablation, resample
ablation, and counterfactual ablation.

For a token position j, let [A(X)]j denote the representation of A(X) at token position j.

Zero ablation: To zero ablateA, we replace [A(X)]j with 0 at each sequence position j ≥ 1. We do
not replace [A(X)]0 because it is a constant that does not depend on X (any result at token position
0 must only be a function of Resid(0)

0 , which represents a padding token that is the same for every
sequence). Transformers may read from this beginning-of-string (BOS) token position in attention
heads if no token in the sequence indicates a particularly strong signal, and since this token position
does not distinguish between any inputs X and is more appropriately viewed as a structural part of
the architecture, we choose not to modify it.

Mean ablation: For each vertex A, we compute E(X,Y)∼D[A(X)] over 20,000 samples, conditional
on token position. We let µj = E(X,Y)∼D[[A(X)]j]. To mean ablate A, we replace [A(X)]j with
µj at each sequence position j.

In the Greater-Than dataset, all prompts X are the same length, but in the IOI dataset, some prompts
X are longer than others, reducing our sample size for later sequence positions. In particular, if X∗
is the longest prompt in the dataset with ` tokens, then µ` = X∗` , so the mean value actually carries
identifying information about the prompt. Since we want the mean value µj to be uninformative
about the original prompt X , we instead consider m to the minimum length of any prompt, compute
a modified mean µm = E(X,Y)∼D, S∼Unif{1,...,`}[[A(X)]S | S ≥ m] that considers all values of
A(X) at token positions after token position m, and replace [A(X)]j with µm if j ≥ m.

Optimal ablation: Similar to mean ablation, we optimally ablate A by replacing [A(X)]j with a
constant âj for each sequence position j < m and replacing [A(X)]j with a constant âm for each j ≥
m, where m is the minimum length of any prompt. We initialize (â0, â1, ..., âm) = (µ0, µ1, ..., µm)
as defined for mean ablation and then optimize (â1, ..., âm) for each ablated componentA to minimize
∆(M,A). Note that similarly to zero ablation, we fix â0 = µ0 = [A(X)]0 and do not optimize its
value as an ablation constant because [A(X)]0 does not depend on X and thus naturally conveys no
information about the input.

Counterfactual mean ablation: Our implementation is the same as for mean ablation except that
we compute means over (X,Y) ∼ D′ for the counterfactual distribution D′, and m is taken as the
minimum prompt length in the counterfactual distribution.

Resample ablation: To perform modified inference on an input X , we first sample an independent
copy X ′ ⊥⊥ X . Let X and X ′ have lengths s and s′ respectively. If s ≤ s′, for an ablated component
A, we replace [A(X)]j with [A(X ′)]j at each token position j ∈ {1, ..., s} (in other words, we only
resample from the first s tokens of X ′). If s > s′, then we left-pad X ′ with an additional s − s′
tokens to form a modified token sequence X̃ ′ that is the same length as X . We then replace ablated
component values A(X) with A(X̃ ′) with respect to each sequence position. Before arriving upon
this implementation, we tried other choices, like resampling from the last s tokens of X ′ in the case
that s ≤ s′, or right-padding X ′ in the case that s > s′.

Counterfactual ablation: We choose a function π (details discussed in the main text and further
analyzed in Appendix F.3) that maps inputs X to neutral counterfactual inputs X ′. Typically, X
and X ′ are the same length and have many tokens in common. For ablated components, we replace
[A(X)]j with [A(π(X))]j at each token position.

25

Figure 5: Correlation of single-component ablation loss measurements on IOI. Lower triangle shows
rank correlation and upper triangle shows log-log correlation across metrics.

E.3 Full results

Figure 5 plots the pairwise correlations of single-component ablation loss evaluated on the IOI dataset
with a variety of ablation methods. Table 2 is an extended version of Table 1 in the main paper that
provides a summary of these results.

Table 2: Comparison of ablation loss gap ∆ on IOI, extended
Zero Mean Resample CF-Mean Optimal CF

Log-log correlation with CF 0.626 0.831 0.826 0.847 0.908 1
Rank correlation with CF 0.590 0.825 0.828 0.833 0.907 1

Mean ∆ 0.0584 0.0405 0.0559 0.0412 0.0035 0.0296
Median ratio of ∆opt to ∆ 11.1% 33.0% 17.7% 31.7% 100% 88.9%

26

F Circuit discovery

F.1 Transformer graph representation

We use a residual rewrite graph representation favored by Wang et al. (2022), Goldowsky-Dill et al.
(2023), and Conmy et al. (2023). Similarly to Appendix E.1, we define vertices that correspond to an
attention head, an MLP block, the model input (Resid(0)(x)), or the model output (Out(x)), but we
eliminate the Resid(i)(x) and MResid(i)(x) vertices. We have nlayers(nheads + 1) + 2 vertices in
total (156 for GPT-2). Notice from Appendix C.3 that

Resid(`)(x) = Resid(0)(x) +
∑̀
i=1

(
MLP(i)(x) +

nheads∑
k=1

Attn(i,k)(x)

)
so rather than assuming that attention heads, MLP blocks, and the model output take Resid(i)(x)
as input, we can assume that they take the output of each previous block as a separate input to the
computation. In particular, we can write

MLP(i)(x) = MLP(i)
(

Resid(0)(x), MLP(1)(x), ...,MLP(i−1)(x), (13)

Attn(1,1)(x), ...,Attn(i,nheads)(x)
)

(14)

in which the MLP(i) vertex has i(nheads + 1) + 1 incoming edges from previous vertices. Similarly,
we can write

Out(x) = Out
(

Resid(0)(x), MLP(1)(x), ...,MLP(nlayers)(x), (15)

Attn(1,1)(x), ...,Attn(nlayers,nheads)(x)
)

(16)

so the Out vertex has nlayers(nheads + 1) + 1 incoming edges, one from each previous vertex in
the graph. Finally, notice that attention heads Attn(i,k) take Resid(i−1) as input in three different
locations, once in each of the query, key, and value subcircuits, so we can write attention heads as
taking three copies of each previous vertex’s output, which can be ablated individually.

Attn(i,k)(x) = Attn(i,k)
(

Resid(0),Q(x), MLP(1),Q(x), ...,MLP(i−1),Q(x), (17)

Attn(1,1),Q(x), ...,Attn(i−1,nheads),Q(x), (18)

Resid(0),K(x), MLP(1),K(x), ...,MLP(i−1),K(x), (19)

Attn(1,1),K(x), ...,Attn(i−1,nheads),K(x), (20)

Resid(0),V (x), MLP(1),V (x), ...,MLP(i−1),V (x), (21)

Attn(1,1),V (x), ...,Attn(i−1,nheads),V (x)
)

(22)

This notation indicates that attention heads admit multiple incoming edges for each previous vertex,
which is somewhat non-standard. Alternatively, rather than allowing multiple edges between pairs of
vertices, Conmy et al. (2023) creates a separate vertex for each of the query, key, and value subcircuits
and considers each attention head output to take the outputs of these three circuits as input. However,
edges between the subcircuits and attention head outputs are essentially placeholder edges that cannot
be independently removed, since removing them is informationally equivalent to ablating the entire
attention head. Thus, our graph representation is more natural and provides a more realistic edge
count when considering removing model components.

Furthermore, we continue with the adjustment from Appendix E.1 of using ZAttn(i,k) as computa-
tional vertices rather than Attn(i,k) to conserve memory and reduce the parameter count of OA. We
consider the linear map φ(i,k)(Z) = ZW

(i,k)
O + b

(i,k)
O (so that Attn(i,k)(x) = φ(i,k)(ZAttn(i,k)(x)))

and express all downstream vertices as taking ZAttn(i,k)(x) as input rather than Attn(i,k)(x) and
performing their computation by pre-composing with φ(i,k). For example, for an MLP vertex
MLP(i), if m(i) represents how MLP(i)(x) is computed using Attn(i,k)(x) values as inputs, then its

27

computation taking ZAttn(i,k)(x) as inputs is equal to

MLP(i)(x) = m(i)(Resid(0)(x), MLP(1)(x), ...,MLP(i−1)(x),

φ(1,1)(ZAttn(1,1)(x)), ..., φ(i,nheads)(Attn(i,nheads)(x))
)

We replace all Attn(i,k) vertices in the graph structure with the corresponding ZAttn(i,k) vertex.

In total, we have (nheads · nlayers) ZAttn(i,k) vertices, nlayers MLP(i) vertices, an input vertex
(Resid(0)) and an output vertex (Out). Letting V represent the set of vertices that includes the input
and MLP(i) vertices. There are 3 · 12nlayers · (nlayers− 1) ·n2heads edges between two attention heads,
2·(nlayers+1)·nlayers·nheads edges between an attention head and a vertex in V , 1

2 ·nlayers·(nlayers+1)
edges between two vertices in V , and (nlayers) · (nheads + 1) + 1 edges from any vertex to the output.

For GPT-2, there are 28,512 edges between two attention heads, 3,744 edges between an attention
head and a vertex in V , 78 edges between two vertices in V , and 157 edges from any vertex to the
output for a total of 32,491 edges.

F.2 Ablation details

For mean, resample, and counterfactual ablation, our implementation is the same as in Appendix E.2.

For optimal ablation, we make an adjustment to the implementation to remove dependence on token
positions and further reduce the parameter count. For each ablated component A, rather than training
a different a∗j to replace [A(X)]j for each token position j, we train a single optimal constant a∗

that is the same shape as any particular [A(X)]j . We initialize a∗ to E[[A(X)]j | j > 9], the subtask
mean excluding early token positions, since early positional embeddings may have idiosyncratic
effects. To ablate A during inference on X , for all token positions j > 0, we replace [A(X)]j with
a∗. As in Appendix E.2, we do not replace [A(X)]0 because this value is a constant that does not
depend on X .

We take this conservative approach to demonstrate that OA can be implemented in a sequence-
position agnostic manner while still outperforming sequence-position specific implementations
of other ablation methods by a large margin. Several other ablation methods, like resample and
counterfactual ablation, are inherently sequence-position specific, and we believe that compatibility
with a sequence-position agnostic implementation is a crucial advantage of OA over these ablation
methods. Sequence-position agnostic ablation will be necessary for interpretability studies to move
beyond synthetic data and analyze training-distribution samples in a systematic manner; we continue
this discussion in the next section, Appendix F.3.

As noted in Section 3, we train a single constant a∗j for each vertexAj . An alternative implementation
is training a separate constant for each ablated edge. In theory, this approach is consistent with the
spirit of OA: though ablated edges transmit different values to downstream components that would
normally receive the same value, none of the transmitted constants transmit any information about
the input to downstream components. However, this approach would greatly increase the number of
learnable parameters, and arguably may actually increase the computational capacity of the model.
Additionally, training a single constant for each vertex has the appealing property that ablating all of
the out-edges from a vertex is equivalent to ablating that vertex.

F.3 Normative comparison of ablation types

Thus far, circuit discovery on language models has focused on synthetic subtasks for which a
mapping π from studied inputs x to counterfactual inputs π(x) is easily constructed. Recall that a
crucial criterion for selecting π is to preserve as many tokens as possible between x and π(x). For
Greater-Than, an example counterfactual pair is

Token: S YY1 YY2 YY1*
x: The [conflict] began in [18][89] and ended in [18]
π(x): The [conflict] began in [18][01] and ended in [18]

where the brackets [] are added to emphasize the two-token representation of the year. Similarly, for
IOI, an example counterfactual pair is

28

Token: S1 IO S2
x: Friends [Alice] and [Bob] found a bone at the store. [Alice] gave the bone to
π(x): Friends [Charlie] and [David] found a bone at the store. [Charlie] gave the bone to

Since x and π(x) share the same token at all but a few token positions (only the S1, S2, and IO token
positions for IOI and only the YY2 token position for Greater-Than), we are able to isolate the effect
of changing the specific token that conveys important information necessary for the subtask. CF thus
allows us to study subtasks involving input-label pairs where relevant information is given by only
one or several tokens.

However, replacing A(x) with A(x′) typically incurs significantly higher loss if x and x′ differ at
many different token positions, even if most tokens are unimportant in relation to the behavior we
wish to study. The model representation at a token position j is likely to contain information specific
to the tokens at position j and at surrounding positions in the input X , so replacing [A(x)]j with
[A(x′)]j is likely to inject inconsistent information if Xj and X ′j (or pairs of tokens at corresponding
proximate token positions) are different tokens, causing ∆ to be high as a result of spoofing (per
Section 2.3).

An illustration is the discrepancy in resample ablation loss between the Greater-Than and IOI subtasks.
The Greater-Than dataset only contains a single prompt template, so any sampled X and X ′ only
differ in tokens that encode the subject and year. Here is an example of a sampled (X,X ′) pair:

Token: S YY1 YY2 YY1*
X: The [conflict] began in [18][89] and ended in [18]
X’: The [deal] began in [15][47] and ended in [15]

On the other hand, the IOI dataset consists of multiple prompt templates that differ in sentence
structure, so X and X ′ may differ at nearly all token positions, not just the S1, IO, and S2 positions
as shown above. For example:

X: Friends Alice and Bob found a bone at the store. Alice gave the bone to
X’: <> <> <> Then, Charlie and David had a long argument, and Charlie said to

where <> represents a padding token added to make the sequences the same length. As a result,
resample ablation loss is relatively low for Greater-Than (see Figure 10) but relatively high for IOI
(see Figure 8), indicating that token parallelism is an important requirement for CF to work well.

While the synthetic IOI and Greater-Than datasets are specifically engineered so that we can modify
a prompt x at only a few token positions to obtain a neutral prompt π(x), more general language
behaviors may not be suited for this type of counterfactual analysis. Here are a few examples of
language subtasks for which it not be possible to pair up x and π(x) with parallel tokens:

• A case study of the effect of modifiers, e.g. adjectives and adverbs, compared to a sentence
with no modifier. Consider the following (degenerate) counterfactual pair, inspired by Marks
and Tegmark (2023):

x: Paris is a city in the country of
x’: Paris is not a city in the country of

Since the presence of a modifier creates an extra token, replacing A(x) with A(x′) patching
between sequences with and without the modifier would result in the embedding at most
token positions in X being replaced with embeddings at the token position of a token
reflecting the previous input token in X (“city” with “a,” “in” with “city,” and so on).

• A case study comparing sentence order in situations where order matters, like giving
directions. Patching in activations from a counterfactual prompt in which the order of two
sentences is permuted involves introducing a new token at many token positions.

x: Make a left turn, then walk forward one block. Your position is now
x’: Walk foward one block, then make a left turn. Your position is now

• A case study relating to how language models handle mis-tokenization, like processing
prompts in which a word is misspelled or the model is required to spell out a word.

29

x: The correct spelling of the word umpire is
x’: The correct [sp] [le] [ling] of [te] [h] word [up][mire] is

Additionally, as the field of interpretability moves forward, we believe that it must progress toward
“total” interpretation of models’ internal mechanisms. This level of interpretation requires reasoning
about subtasks that are much more general than those that have been studied and will require
performing intervention-based analysis across a broad distribution of inputs. For example, we may
want to make the claim that certain components of a model M are unimportant for performing
mathematical calculations; or that some components are not involved in ensuring grammatical
correctness; or do not assist in making theory-of-mind assessments; etc. Additionally, we likely
wish to assess component functions “in the wild” with filtered sampling from the model’s training
distribution as opposed to engineering synthetic datasets. These circumstances mean that the data
will be much less suited for token parallelism between counterfactual prompts, so the adoption of a
sequence-position agnostic ablation method is likely critical. This quality of OA makes it a much
better candidate than CF as a suitable ablation method for scaling interpretability.

F.4 Sparsity metric

As stated in Equation (3), we wish to select a circuit Ẽ that achieves low loss EXLX(MẼ
(opt)(X))

and which is a sparse subset of the model. Let EA represent the set of edges connected to vertex A in
graph G, i.e. EA = {(Aj ,Ai, z) ∈ E | Aj = A ∨Ai = A}.

The selected circuit Ẽ should ideally satisfy two types of sparsity:

1. Edge sparsity: |Ẽ| << |E|. The circuit should contain a small number of edges compared to
the total number of edges in the model.

2. Vertex sparsity: |{A | |EA ∩ Ẽ| > 0}| << |G|. The circuit should pass through a small number
of vertices compared to the total number of vertices in the model.

There is a lack of guidance in prior work about whether smaller structures with more densely packed
connections are more interpretable than larger structures with more thinly distributed connections.
Indeed, one could argue that the larger structure is in fact easier to understand, since we do not need
to dissect as many relationships to consider the function of any particular vertex within the circuit.

While circuit discovery aims to localize model behaviors on specific subtasks, we contend that a
central challenge in interpretability going forward could be stacking together many circuit analyses
to form a sum-of-the-parts analysis of the model’s overall structure. Considering circuit discovery as
a tool for decomposing model computation into interpretable subtasks, holding the total number of
edges equal, we may prefer each circuit to have a smaller number of vertices to reduce the complexity
of interactions between circuits rather than within circuits.

As such, we setR(Ẽ) to select for circuits with high levels of both edge and vertex sparsity:

R(Ẽ) = λ|Ẽ|+ γλ
∑
A∈G

1

2
|EA| tanh

(
2
|EA ∩ Ẽ|
|EA|

)
(23)

where λ, γ are constants. Similarly, the continuous relaxationR(θk) is for HCGS and UGS is derived
by replacing |Ẽ| with

∑|E|
k=1 θk and replacing |EA ∩ Ẽ| with εA :=

∑
ek∈EA θk.

Note that∇θkR(~θ) = λ+ γλ
∑
A∈G sech2(2 εA

|EA|).

The first term, λ, is generally used to control the tradeoff between edge sparsity and circuit loss;
a general interpretation is that we should include an edge e ∈ Ẽ if its marginal contribution,
∆(M, (E ∪ {ek}) \ Ẽ)−∆(M, E \ ({ek} ∪ Ẽ)), is greater than λ, expressing the same tradeoff as
the discrete threshold λ in ACDC. However, since ACDC is a less fine-grained optimization algorithm
than UGS, the λ required to achieve the same circuit size |Ẽ| tends to be larger for ACDC.

The second term expresses vertex sparsity, and its effect is to increase the regularization effect for
edges that are attached to vertices that have few other edges included in the circuit. Its effect is
small when εA ≈ |EA|, since sech2(2) ≈ 0, so we do not apply additional regularization to edges
attached to vertices that have high overall likelihood to be included in the selected circuit. However,

30

its effect is significant when εA/|EA| ≈ 0 to prune the remaining edges from a vertex whose edge
probabilities as represented by ~θ are low on average. We use γ to express the maximum influence of
vertex regularization as compared to the effect of edge regularization (since maxx sech2(x) = 1),
and generally select γ = 0.5, so the second term adds at most 50% more regularization.

F.5 Uniform Gradient Sampling: motivation

In circuit discovery, the number of possible circuits Ẽ ⊂ E is exponential in |E| and the circuit losses
∆(M, E \ Ẽ) for subsets Ẽ are not required to be related. ∆ is not even necessarily monotonic in Ẽ
for any ablation method considered, i.e. Ẽ ⊂ Ẽ′ does not imply that ∆(M, E \ Ẽ) ≥ ∆(M, E \ Ẽ′).

In reality, we can hope that the optimal ground-truth circuit Ẽ∗ is clear-cut and ∆ is relatively
well-behaved. If so, we could try to relax the discrete optimization problem and find a solution
with gradient descent. As mentioned in Section 3, one way to produce a continuous relaxation is to
consider partial ablation for each edge ek = (Aj ,Ai, z), where we replace Aj(x) as the zth input
to Ai(x) with αkAj(x) + (1 − αk)âj and use L1 or L2 regularization on the αk. However, this
approach is likely to get stuck in local minima in which edge coefficients converge to the optimal
magnitude instead of edges being completely ablated or retained.

The continuous relaxation we prefer is to consider a vector of independent sampling probabilities
for the inclusion of each edge – this way, we never consider αk ∈ (0, 1) in our space of possible
solutions. We can then perform optimization on the sampling probabilities so that the probability for
each edge converges to 0 or 1. The loss function we want to minimize with respect to the sampling
probabilities ~θ is

f(~θ) := EX,(Ẽ∼~θ)
[
L(MẼ(X),M(X)) +R(Ẽ)

]
(24)

To simplify the notation, we can denote LR(X, Ẽ) = L(MẼ(X),M(X)) +R(Ẽ), so that f(~θ) =

EX,(Ẽ∼~θ)[LR(X, Ẽ)]. Now the gradient with respect to the sampling probability θk for each edge is
simply a marginal ablation loss gap:

∂f(~θ)

∂θk
= EX,(Ẽ∼~θ)

[
LR(X, Ẽ ∪ {ek})− LR(X, Ẽ \ {ek})

]
=: EX,(Ẽ∼~θ)∆R(M, ek,) (25)

The problem is that |E| is large and it is not tractable to estimate this quantity individually for all k.
Our goal is to find a good sample estimator for this quantity simultaneously for all k.

One way to perform this simultaneous estimation is importance sampling, where we write

f(~θ) = EX,(Ẽ∼~p)

[
PE′∼~θ(Ẽ = E′)

PE′∼~p(Ẽ = E′)
· LR(X, Ẽ)

]
so therefore, when ~p = ~θ

∂f(~θ)

∂θk
= EX,(Ẽ∼~θ)

[
1(ek ∈ Ẽ)

θk
LR(X, Ẽ)− 1(ek 6∈ Ẽ)

1− θk
LR(X, Ẽ)

]
. (26)

Empirically, this method leads to poor estimates. Most of the variance in gradient updates to θk
comes from sampling different subsets of edges among the |E| − 1 edges other than ek, not the effect
of fixing ek ∈ Ẽ or ek 6∈ Ẽ for a particular edge.

Instead, the basis for UGS is an approximation of the marginal ablation loss gap for each edge
obtained by taking gradients with respect to sampled partial ablation coefficients ~α. We consider the
extension ofMẼ to convex relaxationsM~α, where αk represents the partial ablation coefficient for
edge ek as alluded to above. Similarly, we consider LR(X, ~α) in place of LR(X, Ẽ). Let ~α(Ẽ, S)
where S ⊂ {1, ..., |E|} such that

αk(~U, Ẽ, S) = 1(k ∈ S)Uk + 1(k 6∈ S)1(ek ∈ Ẽ).

31

For any edge ek, the marginal ablation loss gap inside the expectation in Equation (25) is equal to the
expected gradient with respect to αk ∼ Unif(0, 1) when other edges are sampled according to Ẽ:

∂f(~θ)

∂θk
= EX,(Ẽ∼~θ),(~U∼Unif(0,1) iid)

[
∂

∂Uk
LR(X, ~α(~U, Ẽ, {k}))

]
. (27)

In other words, we can estimate the effect of totally ablating ek for a given (X, Ẽ) by sampling a
partial ablation coefficient αk ∼ Unif(0, 1) and taking the loss gradient with respect to αk. However,
we run into the same problem of needing to estimate the effect individually for each edge k.

UGS assumes that we can estimate this loss gradient for many edges simultaneously without introduc-
ing much bias. For any particular edge ek, the interference effects caused by sampling other edges
ek ∼ Unif(0, 1) for all k ∈ S instead of setting them according to Ẽ could be small, if S is small
enough. The main approximation of UGS is that, if S is sampled from a distribution DS ,

∂f(~θ)

∂θk
≈ EX,(Ẽ∼~θ),(~U∼Unif(0,1) iid),(S∼DS)

[
∂

∂Uk
LR(X, ~α(~U, Ẽ, S))

∣∣∣∣ k ∈ S] . (28)

F.6 Uniform Gradient Sampling: construction

We use θk to represent the sampling probabilities for each edge, and perform gradient descent on the
parameters by constructing a loss function whose gradient is a sample estimator of Equation (28).
As noted in the main text, rather than using θk ∈ (0, 1) as our parameters, we use θ̃k ∈ (−∞,∞) as
our parameters and compute θk = σ(θ̃k). We initialize θ̃k = 1 for all edges ek. We avoid random
initialization because it achieves worse results by causing the resulting circuits to be suboptimally
constrained to be close to our random prior.

We sample S ⊂ {1, ..., k} by independently sampling each 1(k ∈ S) ∼ Bern(w(θk)), where a
window function w determines how often we sample αk ∼ Unif(0, 1). Additionally, we require that

P(ek ∈ Ẽ | k ∈ S) = P(ek 6∈ Ẽ | k ∈ S) =
1

2
(29)

so that sampling αk ∼ Unif(0, 1) takes away probability mass equally from ek ∈ Ẽ and ek 6∈ Ẽ. We
perform this adjustment because for the purpose of estimating gradients ∇∇ with respect to edges
other than ek, Equation (28) implicitly assumes that

E[∇∇ | k ∈ S] ≈ p · E[∇∇ | αk = 0] + (1− p) · E[∇∇ | αk = 1], p = P(ek ∈ Ẽ | k ∈ S) (30)

and without any priors about the functional form of∇∇, p = 1
2 is a reasonable choice.

We construct a loss function whose gradient is given by Equation (4), a sample estimator of Equation
(28) with this construction of S. We construct the batch X(1), ..., X(b) by choosing b/ns unique
samples of input X and repeating each input ns times in the batch. We generally use ns = 12 and
b = 60. We choose w(θk) = c · θk(1− θk). Note that c ≤ 2 in order for 1

2w(θk) ≤ min(θk, 1− θk)
to hold, as is required by Equation (29), and we choose c = 1. We discuss this choice in F.8.

The full algorithm pseudocode is given after describing a few additional details in Appendix F.7.

F.7 Additional circuit discovery details

For HCGS and UGS, we use learning rates between 0.01 and 0.15 for the sampling parameters.

Pruning dangling edges For HCGS and UGS, after sampling ~α(~U, Ẽ, S) for each input, we
remove “dangling” edges ek. A dangling vertex is a vertex A for which there does not exist a path
from the model input to A along edges ej for which αj > 0, or for which there does not exist such a
path from A to the model output. A dangling edge is an edge that is connected to a dangling vertex.
For a dangling edge ek, we replace αk = 0 (i.e. the equivalent of removing ek from Ẽ and S).

Discretization For HCGS and UGS, after training the θk, we select a final circuit by selecting all
edges for which θk > τ for a threshold τ . Generally, for UGS, all but a handful of θk converge
to highly negative or positive values, the choice of τ does not have much impact, and we choose
τ = 0.5. However, for HCGS, many edges have θk parameters around zero even after training for

32

10,000 batches. We again select τ = 0.5 since we observe that including edges with θk ∈ (−1, 0.5)
does not generally affect performance.

Optimizing constants for OA For HCGS and UGS, we train ablation constants â concurrently
with training the sampling parameters θk. We use a learning rate of 0.002 for ~a, lower than the
learning rate used for the sampling parameters.

Note that we only provide gradient updates to âj for a vertex Aj along edges ek for which αk = 0.
Updating âj when αk 6= 0 can lead â to update toward a value that is optimal when taking a linear
combination of â and Aj(X), rather than a value that is optimal as a constant. See Figure 6.

âj Ukâj + (1− Uk)Aj(X) Aj(X)

true a∗j

learned a∗j

incorrect update

correct update
∇âjL(M~α(X),M(X))

Figure 6: Gradient updates on â can be biased when αk 6= 0.

Even though we obtain approximate constants â through the training process for HCGS and UGS,
in order to level the playing field when comparing to ACDC and EAP, we do not use the constants
found during training during circuit evaluation. Instead, for each circuit discovery algorithm, we
evaluate circuits with OA by initializing constants to subtask means and then training for the same
number of batches (10,000) with the same settings with a learning rate of 0.002.

Algorithm 1 shows the full algorithm of UGS, including our exact loss function, for optimization
with OA. For optimization with other ablation methods, we set ablated values â according to the
ablation method and do not perform gradient updates on â. Note that we use the notationM~α(X, â)
with OA to indicate running the circuit evaluation with ablation coefficients ~α and replacing ablated
components with â, in line with our notation in Appendix C.2.

F.8 Choosing a window size for UGS

We motivate the choice of our window function w(θk) = θk(1− θk).

Let f∗k := ∂f(~θ)

∂θ̃k
= ∂f(~θ)

∂θk
· ∂θk
∂θ̃k

, and let fk be our sample estimate from approximation 28. Let
K ∼ Unif({1, ..., |E|}). We may want to minimize the squared distance between our sample
estimates and the true gradient values,

ε := E(f∗K − fK)2 = EKVar(fK |K) + EK(E[fK |K]− f∗K)2. (31)

Let our sampling distribution S ∼ D be defined by independent Bernoulli random variables 1(ek ∈
S) ∼ Bern(wk). Assume that we collect b samples of (~U, Ẽ, S) in a batch and use the samples i for
which k ∈ Si to estimate the fk. Let Tk :=

∑n
i=1 1(k ∈ Si), and let fk := 1

Tk

∑n
i=1 f

(i)
k 1(k ∈ Si).

Let f ()k represent the first sample for which k ∈ Si.

Assuming that αk ∼ Unif(0, 1) w.p. wk, αk = 0 w.p. θk − 1
2wk, and αk = 1 w.p. 1− θk − 1

2wk as
given by Equation (29), we have the loss derivative

|E| ∂ε
∂wk

=
∂Var(fk)

∂wk
+
∑
6̀=k

(
∂Var(f`)

∂wk
+ 2(E[f`]− f∗`)

∂E[f`]

∂wk

)
(32)

This computation tells us that as we increase wk, we can decrease the error ε by lowering the variance
of our estimate fk, and we can increase the error by increasing the variance of our estimates f` for
other edges and also by making the f` more biased. If we assume that the second term is roughly

33

Algorithm 1 Uniform gradient sampling
Input: set of edges E, initial parameter array θ, initial constant array â
Output: a set of edges Ẽ ⊂ E that represents the circuit
Require: metric L, learning rates δθ, δa, final threshold τ , batch size b, sample count per input ns,
window function w

loop
X ← []
α← []
UnifCount← [0 for k ∈ [length(θ)]]
for j ∈ [b/ns] do

α[j]← []
X[j]← sample_input()
for i ∈ ns do

α[j][i]← []
for k ∈ [length(θ)] do

U ← Unif(0, 1)
W ← w(θ[k]).detach_gradient()
p←W · θ[k] + (1−W) · θ[k].detach_gradient()
α[j][i][k]←

(
p−U
W + 0.5

)
.clamp(0, 1)

UnifCount[k]← UnifCount[k] + 1(α[j][i][k] ∈ (0, 1))

α[j][i]← prune_dangling_edges(α[j][i])

L← []
for j ∈ [b/ns] do

for i ∈ ns do
for k ∈ [length(θ)] do

g ← b/UnifCount[k]
α[j][i][k]← g · α[j][i][k] + (1− g) · α[j][i][k].detach_gradient()

b̂← (α[j][i] == 0) · â+ (α[j][i] > 0) · â.detach_gradient()
where + and · are applied componentwise; this step is only used with OA.

L.append(L(Mα[j][i](X[j], b̂),M(X[judged])))
f ← (

∑
L)/b

θ ← θ − δθ · ∇θf
â← â− δa · ∇âf ; this step is only used with OA.
Note that in practice, we use Adam to determine step sizes.

Ẽ ← ∅
for k ∈ [length(p)] do

if θ[k] > τ then Ẽ.add(E[k])
return Ẽ

equal to a constant c for all edges, then

|E| ∂ε
∂wk

= Var(f
()
k)

(
∂θk

∂θ̃k

)2
∂

∂wk
E
[

1

Tk
| Tk > 0

]
(33)

since Tk = 0 for an edge implies that it simply does not get a gradient update. Note that ∂θk
∂θ̃k

=

θk(1− θk), and ∂
∂wk

E
[

1
Tk

]
≈ −bw−2k for a constant b > 0. Solving for ∂ε

∂wk
= 0, ε is minimized

when wk ∝ θk(1− θk)

√
Var(f

()
k) which motivates the definition of the window function w(θk) =

θk(1− θk) in our main experiments. We try including the additional factor of
√

Var(f
()
k), but our

results do not improve. The lack of improvement could be explained by the fact that edges with
higher-variance gradients could also have higher c representing their disruptive effects on other
edge-gradient estimates when αk ∼ Unif(0, 1), making the optimal window size wk closer to equal.

34

F.9 Comparison of UGS and HCGS

HCGS and UGS both involve sampling gradients from a distribution over ~α ∈ (0, 1)|E| and taking
gradient steps on parameters θ̃k that represent our confidence in ek ∈ Ẽ∗ using an average of
gradients with respect to the edge coefficients αk. The original explanation provided by Louizos
et al. (2018) for the convergence of HCGS to a satisfactory subset of weights that minimizes a loss
function similar to Equation (3) involves L0 regularization. To the contrary, we believe that a more
compelling explanation for the performance of HCGS is that its behavior of sampling gradients on a
region of partial ablations, ~α ∈ (0, 1)|E|, serves as a vague approximation of Equation (27).

Sampling αk ∈ Unif(0, 1) to obtain gradient information, rather than a scaled conditional Concrete
distribution, makes the simultaneous gradient-sampling estimator unbiased in the single-dimensional
case, and thus is the choice that makes Equation (28) most resemble Equation (27).

F.10 Additional IOI circuit discovery results

This section displays additional circuit discovery results on the IOI subtask. In Figure 7, we show
the tradeoff between ∆ (y-axis) and |Ẽ| (x-axis) for optimal ablation to compare different circuit
discovery methods. In Figure 8 (left), we show this tradeoff for mean ablation, and in Figure 8 (right),
we show this tradeoff for resample ablation.

Figure 7: Circuit discovery Pareto frontier for the IOI subtask with optimal ablation.

35

Figure 8: Circuit discovery Pareto frontier for IOI with mean ablation (left) and resample ablation
(right).

F.11 Circuit discovery results for Greater-Than

This section displays circuit discovery results on the Greater-Than subtask. In Figure 9 (left), we
show the tradeoff between ∆ (y-axis) and |Ẽ| (x-axis) for optimal ablation. In Figure 9 (right), we
show this tradeoff for counterfactual ablation. In Figure 10 (left), we show this tradeoff for mean
ablation. In Figure 10 (right), we show this tradeoff for resample ablation. Finally, in Figure 11,
we show the ∆ achieved by circuits optimized using UGS on ∆ with different ablation methods,
analogous to Figure 1 (right) in the main text for the IOI subtask.

Figure 9: Circuit discovery Pareto frontier for the Greater-Than subtask with optimal ablation (left)
and counterfactual ablation (right).

36

Figure 10: Circuit discovery Pareto frontier for Greater-Than with mean ablation (left) and resample
ablation (right).

Figure 11: Comparison of different ablation methods for circuit discovery for Greater-Than.

F.12 Comparison to Edge Pruning

Edge Pruning (Bhaskar et al., 2024) is a concurrent work that uses HCGS for circuit discovery.
We compare our implementation of HCGS against their custom implementation on their evaluation
settings (IOI with counterfactual ablation and Greater-Than with resample ablation) and find that
these additional details do not cause Edge Pruning to outperform our HCGS implementation (see
Figure 12). Thus, we only include our implementation of HCGS as a baseline in our main figures.

F.13 Random circuits

One question is whether it may be possible to extract circuits with OA that do not necessarily explain
model behavior on the training distribution by setting vertices to out-of-distribution values which
maximally elicit a certain behavior. If the ablation constants â overparameterize the data, then
performing OA could behave similarly to fine-tuning the model to perform the desired task.

Intuitively, however, OA strictly decreases the amount of computation available to the model, since
we only add constants to model components and do not allow additional transformations of internal
representation that are not already present in the downstream computation. To verify our stance, we

37

Figure 12: Comparison of our methods to Edge Pruning on IOI (left) and Greater-Than (right).

Table 3: Optimized circuits compared to random circuits for various ablation types
Mean Resample Optimal Counterfactual

IOI Random circuit loss 4.529 6.527 2.723 4.264
UGS circuit loss 0.264 1.779 0.176 0.191

Std 0.200 0.085 0.024 0.049
Z-score -21.28 -55.67 -100.57 -82.44

Greater-Than Random circuit loss 1.010 2.109 0.900 1.785
UGS circuit loss 0.033 0.056 0.029 0.021

Std 0.020 0.039 0.011 0.027
Z-score -49.29 -52.89 -80.81 -64.76

compare the loss recovered by circuits discovered by UGS to random circuits to verify that OA indeed
distinguishes subtask-performing mechanisms and does not provide enough degrees of freedom to
elicit subtask behavior from unrelated model components.

In Table 3, we compare the ∆(M, Ẽ) achieved by random circuits Ẽ to those achieved by circuits
optimized with UGS for various ablation types. We construct Ẽ by sampling each 1(ek ∈ Ẽ)
independently with some probability p, and prune dangling edges as detailed in Appendix F.7. We
accept Ẽ if |Ẽ| is within an acceptable range, and we select p to maximize the probability that |Ẽ| falls
within this range. We set our range of |Ẽ| to be [400, 500] for IOI and [200, 300] for Greater-Than.

Recall that to evaluate circuits with OA, we perform gradient descent on â to approximate the optimal
constants. Since repeating this process is expensive, we truncate training after just 200 training
batches, far short of the 10,000 batches used for a full training run, for both the random circuits
and optimized circuits. However, we test using a smaller sample size that the loss for the random
circuits does not tend to decrease much with further training; in fact, for the optimized circuit, the loss
typically drops by more than 50% after the first batch, which does not occur for the random circuits.

While random circuits achieve lower loss under OA than mean and resample ablation, the ∆opt

measurements for random circuits do not approach the low figures achieved by optimized circuits.
Furthermore, the standard deviation of ∆ for random circuits is lower on average for OA than for
mean or resample ablation, and surprisingly, the OA losses for optimized circuits have the most
significant Z-score for both IOI and Greater-Than, though there is not necessarily a difference between
Z-scores of such large magnitude. These results demonstrate that OA is likely highlighting specialized
circuit components that already exist in the model rather than fabricating non-existent mechanisms.

38

G Causal tracing

G.1 Transformer graph representation

Consider running a causal tracing experiment on vertexA. We represent the model with four vertices:
Subj(X) representing the subject tokens of the input, Non-Subj(X) representing the remaining
input tokens, the component of concern A(X) = A(Subj(X),Non-Subj(X)), and the model output
Out(X) = Out(Subj(X),Non-Subj(X),A(X)). In particular, if A = MLP(i), then we compute
Out(X) as a function of these three arguments by computing Equation (7), which takes A(X) and
MResid(i)(X) as input, by taking the latter term MResid(i)(X) as a function of Non-Subj(X) and
Subj(X), and then computing Out(X) as a function of Resid(i)(X). A similar construction is used
for attention layers.

Note that the AIE compares the performance of the model with the vertex Subj ablated (the denomi-
nator in Equation (5)) to the performance of the model with only the edge (Subj,Out) ablated (the
numerator in Equation (5)).

G.2 Relation of AIE to ablation loss gap

For consistency with Meng et al. (2022), we use a carefully selected loss function in the definition of
∆ to represent proximity to the model’s original predictions rather than the typical KL-divergence
loss. In particular, we choose

LAIE(P,Q) := min (0,maxQ− [P]argmaxQ) , (34)

where P and Q represent probability distributions over the model vocabulary. Note that since the
dataset is filtered so that Y = arg maxM(X), replacing L with LAIE in ∆, we get

∆ = EX∼DLAIE(MA(ξ(X), A(X)),M(X))

= E(X,Y)∼Dmax(0, [M(X)]Y − [MA(ξ(X), A(X))]Y) (35)

which is the numerator in Equation (5).

G.3 Additional results

We show results for additional window sizes and token positions. In particular, we show results for
intervening at all subject token positions, only the last subject token position, and only the last token
position, for window sizes 1 (see Figure 13), 5 (see Figure 14), and 9 (see Figure 15).

In addition to providing a more precise localization of components’ informational contributions, the
results provide some evidence against one of the claims of Meng et al. (2022), the idea that the last
subject token position is a uniquely important “early site” for processing information at MLP layers
10-20. For sliding windows of size 5, GNT shows that intervening on MLPs at only the last subject
token position achieves over half of the AIE of performing the same intervention at all subject token
positions (33.8% vs 19.3%, shown in Figure 14). However, the OAT results indicate that intervening
at all subject tokens is much more effective (35.2% vs 11.1%), indicating that early subject token
positions may be more important than previously thought.

G.4 Construction of standard errors

For input-label pairs (X,Y) ∼ D, let W = min(0, [M(X)]Y − [MA(ξ(X), A(X))]Y) and
Z = [M(X)]Y − [M(ξ(X))]Y , and let Ŵn and Ẑn be their respective sample means with
n samples. Recall from Equation (5) that we want to estimate from samples the quantity
AIE(A) = min

(
0, 1− EW

EZ
)

=: min
(

0, 1− µW

µZ

)
. By the central limit theorem,

√
n

([
Ŵn

Ẑn

]
−
[
µW
µZ

])
d−→ N (0,Σ) := N

(
0,

[
σ2
W σWZ

σWZ σ2
Z

])
(36)

39

Figure 13: Causal tracing probabilities for different token positions with window size 1 (patching a
single component). Error bars indicate the sample estimate plus/minus two standard errors.

By the multivariate delta method, for h
([
w
z

])
= w

z and v := ∇h
([
µW
µZ

])
=

[
1
µZ

−µW

µ2
Z

]
√
n

(
Ŵn

Ẑn
− µW
µZ

)
=
√
n

(
h

([
Ŵn

Ẑn

])
− h

([
µW
µZ

]))
d−→ N (0, vTΣv) (37)

so the asymptotic variance is µ2
W

µ2
Z

(
σ2
W

µ2
W

+
σ2
Z

µ2
Z

− 2
σWZ

µWµZ

)
which we estimate via samples to obtain our standard errors.

H OCA lens

H.1 Transformer graph representation

We represent the model with Resid(i), MResid(i), Attn(i), and MLP(i) vertices for each layer i and a
vertex Out(x) representing the model output, where the relationships between the vertices are defined
by the equations given in Appendix C.3. Applying OCA lens at layer i entails ablating vertices
Attn(i+1) through Attn(N) (where N is the number of layers in the model).

H.2 Additional prediction accuracy results

Figure 16 shows results on prediction loss for GPT-2-small, GPT-2-medium, and GPT-2-large. For
all models, we use a learning rate of 0.01 for tuned lens and 0.002 for OCA lens.

40

Figure 14: Causal tracing probabilities for different token positions with a sliding window of size 5.
Error bars indicate the sample estimate plus/minus two standard errors.

H.3 Additional causal faithfulness results

The following figures show the causal faithfulness metrics with several kinds of perturbations. Let
µ = E[`i(X)] and Σ = Var(`i(X)).

• Random perturbation: We sample Z ∼ N (0,Σ), and let V = Z/||Z||. We let Z ′ ∼
N (0, 1), Z ′ ⊥⊥ Z. We define ξ(a) = a + c · Z ′ · V . We define the constant c such that
E[L(M(X; ξ),M(X))] ≈ 0.2. Results shown in Figure 17.

• Basis-aligned perturbation: Same as random perturbation, except we choose a basis of
dmodel vectors as described in Section 5, and let Z be a uniformly sampled basis element.
Results shown in Figure 18.

• Random projection: We sample Z ∼ N (0,Σ), and let V = Z/||Z||. We define ξ(x) =

µ+ p(a−µ), where p represents the projection to the orthogonal complement of V . Results
shown in Figure 19

• Basis-aligned projection: Described in the main text. Results shown in Figure 3.
• Basis-aligned resample ablation: We choose a basis as described in Section 5. We consider

the subspace spanned by 100 basis elements with the largest singular vectors, and define
ξ(a) by performing resample ablation on the projection of a to this subspace. Results shown
in Figure 20.

We find that the improvement in causal faithfulness is consistent across all perturbation types studied.

H.4 Elicitation results on factual datasets

We show additional results for elicitations on the text classification datasets. Figure 21 compares the
elicitation accuracy boost between OCA lens and tuned lens.

41

Figure 15: Causal tracing probabilities for different token positions with a sliding window of size 9.
Error bars indicate the sample estimate plus/minus two standard errors.

Figure 16: Comparison of prediction loss between tuned lens and ablation-based alternatives.

Figure 22 shows comprehensive results for each of the individual datasets. For our experiments, we
use 10 demonstrations and sample from datasets without replacement to generate the demonstration
examples. Note that we exclude SST2-AB, a toy dataset constructed by Halawi et al. (2024) that
replaces SST2 sentiment labels with letters “A” and “B,” since it is only created to show that elicitation
accuracy does not improve when the expected answer is unrelated to the question (since the label
is encoded in a non-intuitive manner, information from later layers is required to relate internal
knowledge to the correct label).

I Reproducibility

All code can be found at https://github.com/maxtli/optimalablation.

42

Figure 17: Causal faithfulness comparison under random perturbations.

Figure 18: Causal faithfulness comparison under basis-aligned perturbations.

Figure 19: Causal faithfulness comparison under random projections.

All experiments were run on a single Nvidia A100 GPU with 80GB VRAM. The cost of UGS is
comparable to ACDC (about 1-2 hours to train). Training OCA lens until convergence also takes
about 3-5 hours, which is similar to the amount of time to train tuned lens.

J Impact statement

We believe that OA can lead to a more granular level of understanding for models’ internal mecha-
nisms. A better understanding of interpretability can help to reduce risk from dangerous AIs, but

43

Figure 20: Causal faithfulness comparison under basis-aligned resample ablation.

Figure 21: Comparison of elicitation accuracy boost between OCA lens and tuned lens.

more work is required to scale interpretability techniques to larger models. Interpretability can also
help us to understand how to build better inductive biases into models, paving the way for future
developments in architecture. On the other hand, advanced interpretability can also be repurposed for
nefarious applications, like eliciting dangerous knowledge from models’ latent space. However, we
believe that better interpretability will also provide better clarity on how to mitigate these risks.

44

Figure 22: Comparison of calibrated accuracy of elicited completions on 15 datasets from Halawi et al.
(2024). Dotted lines indicate the accuracy of the model’s output predictions for true demonstrations
(black) and false demonstrations (red).

45

	Introduction
	Optimal ablation
	Motivation
	Prior work
	Definition and properties of optimal ablation
	Comparison of single-component ablation results on IOI

	Application: circuit discovery
	Methods
	Experiments

	Application: factual recall
	Application: latent prediction
	Future work
	Limitations
	Additional related work
	Additional preliminaries
	Models as computational graphs
	Activation patching
	Transformer architecture
	KL-divergence loss function

	Commentary
	Understanding the difference between deletion and treating x like x'
	OA as an extension of mean ablation for nonlinear functions
	Generalizing OA to constrained-form estimates of A(X)

	Single-component loss on IOI
	Transformer graph representation
	Ablation details
	Full results

	Circuit discovery
	Transformer graph representation
	Ablation details
	Normative comparison of ablation types
	Sparsity metric
	Uniform Gradient Sampling: motivation
	Uniform Gradient Sampling: construction
	Additional circuit discovery details
	Choosing a window size for UGS
	Comparison of UGS and HCGS
	Additional IOI circuit discovery results
	Circuit discovery results for Greater-Than
	Comparison to Edge Pruning
	Random circuits

	Causal tracing
	Transformer graph representation
	Relation of AIE to ablation loss gap
	Additional results
	Construction of standard errors

	OCA lens
	Transformer graph representation
	Additional prediction accuracy results
	Additional causal faithfulness results
	Elicitation results on factual datasets

	Reproducibility
	Impact statement

