Bandits: UCB Regret, Bayesian Bandits, and Thompson Sampling

Lucas Janson CS/Stat 184(0): Introduction to Reinforcement Learning

Fall 2024

Bandits: UCB Regret, Bayesian Bandits, and Thompson Sampling

Lucas Janson CS/Stat 184(0): Introduction to Reinforcement Learning

Fall 2024

- Feedback from last lecture
- Recap
- UCB regret analysis
- Regret lower-bound
- Bayesian bandit
- Thompson sampling

Feedback from feedback forms

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

4

- Recap
- UCB regret analysis
- Regret lower-bound
- Bayesian bandit
- Thompson sampling

•Pure greedy and pure exploration achieve linear regret

- •Pure greedy and pure exploration achieve linear regret
- •Explore-then-commit (ETC) and *ε*-greedy:

- •Pure greedy and pure exploration achieve linear regret
- •Explore-then-commit (ETC) and *ε*-greedy:
	- balance exploration with exploitation

 $\tilde{O}(T^{2/3})$

- •Pure greedy and pure exploration achieve linear regret
- •Explore-then-commit (ETC) and *ε*-greedy:
	- balance exploration with exploitation
	- •Achieve sublinear regret of *O*

 $\tilde{O}(T^{2/3})$

- •Pure greedy and pure exploration achieve linear regret
- •Explore-then-commit (ETC) and *ε*-greedy:
	- balance exploration with exploitation
	- •Achieve sublinear regret of *O*
	- •Exploration is non-adaptive

- •Pure greedy and pure exploration achieve linear regret
- •Explore-then-commit (ETC) and *ε*-greedy:
	- balance exploration with exploitation
	- •Achieve sublinear regret of *O*
	- •Exploration is non-adaptive
- \cdot Today: UCB does better than a rate of $T^{2/3}$

 $\tilde{O}(T^{2/3})$

Recap of UCB

Recap of UCB $1_{\{a_{\tau}=k\}}$ and $\hat{\mu}$ ̂ (*k*) *t* = 1 $N_t^{(k)}$ *t t*−1 ∑ *τ*=0 $1_{\{a_{\tau}=k\}}r_{\tau}$

Recap of
Notation:
$$
N_t^{(k)} = \sum_{\tau=0}^{t-1} 1_{\{a_{\tau}=k\}}
$$
 and

Any-algorithm time-and-arm-uniform error bounds for arm mean estimates:

$$
\mathbb{P}\left(\forall k \leq K, t < T, \|\hat{\mu}_t^{(k)} - \mu^{(k)}\| \leq \sqrt{\ln(2TK/\delta)/2N_t^{(k)}}\right) \geq 1 - \delta
$$

p of UCB $=k$ } and $\hat{\mu}$ ̂ (*k*) *t* = 1 $N_t^{(k)}$ *t t*−1 ∑ *τ*=0 $1_{\{a_{\tau}=k\}}r_{\tau}$

UCB Algorithm: $For t = 0, ..., T - 1:$

Choose the arm with the highest upper confidence bound, i.e., ̂ $\int_{t}^{(k)} + \sqrt{\ln(2TK/\delta)/2N_t^{(k)}}$

$$
a_t = \arg \max_{k \in \{1, ..., K\}} \hat{\mu}
$$

Recap of UCB $=k$ } and $\hat{\mu}$ ̂ (*k*) *t* = 1 $N_t^{(k)}$ *t t*−1 ∑ *τ*=0 $1_{\{a_{\tau}=k\}}r_{\tau}$

Recap of
Notation:
$$
N_t^{(k)} = \sum_{\tau=0}^{t-1} 1_{\{a_{\tau}=k\}}
$$
 and

Any-algorithm time-and-arm-uniform error bounds for arm mean estimates:

$$
\mathbb{P}\left(\forall k \leq K, t < T, \|\hat{\mu}_t^{(k)} - \mu^{(k)}\| \leq \sqrt{\ln(2TK/\delta)/2N_t^{(k)}}\right) \geq 1 - \delta
$$

7

• Feedback from last lecture

- UCB regret analysis
- Regret lower-bound
- Bayesian bandit
- Thompson sampling

UCB Regret Analysis Strategy

UCB Regret Analysis Strategy

1. Bound regret at each time step

UCB Regret Analysis Strategy

- 1. Bound regret at each time step
- 2. Bound the sum of those bounds over time steps

Recall k^{\star} is optimal arm, so $\mu^{(k^{\star})}$ is true best arm mean. Thus time step t regret is:

Recall k^{\star} is optimal arm, so $\mu^{(k^{\star})}$ is true best arm mean. Thus time step t regret is:

 $\mu^{(k^\star)} - \mu^{(a_t)} \leq \hat{\mu}^{(k^\star)}_t + \sqrt{\ln(2KT/\delta)/2N^{(k^\star)}_t - \mu^{(a_t)} }$ (CI coverage on arm $k^\star)$ ̂

Recall k^{\star} is optimal arm, so $\mu^{(k^{\star})}$ is true best arm mean. Thus time step t regret is:

 $\mu^{(k^\star)} - \mu^{(a_t)} \leq \hat{\mu}^{(k^\star)}_t + \sqrt{\ln(2KT/\delta)/2N^{(k^\star)}_t - \mu^{(a_t)} }$ (CI coverage on arm k^\star) Next step? ̂

Recall k^{\star} is optimal arm, so $\mu^{(k^{\star})}$ is true best arm mean. Thus time step t regret is:

 $\mu^{(k^\star)} - \mu^{(a_t)} \leq \hat{\mu}^{(k^\star)}_t + \sqrt{\ln(2KT/\delta)/2N^{(k^\star)}_t - \mu^{(a_t)} }$ (CI coverage on arm k^\star) Next step? ̂

 $\leq \hat{\mu}$ ̂

 $\mu_t^{(a_t)} + \sqrt{\ln(2KT/\delta)/2N_t^{(a_t)} - \mu^{(a_t)} \left(a_t \text{ maximizes UCB by definition}\right)}$

Recall k^{\star} is optimal arm, so $\mu^{(k^{\star})}$ is true best arm mean. Thus time step t regret is:

$$
\mu^{(k^{\star})} - \mu^{(a_t)} \le \hat{\mu}_t^{(k^{\star})} + \sqrt{\ln(2KT/\delta)/2N_t^{(k^{\star})}}
$$

 $\leq \hat{\mu}$ ̂

 $\mu^{(k^{\star})}$ − $\mu^{(a_t)}$ (CI coverage on arm $k^{\star})$) Next step?

 $\mu_t^{(a_t)} + \sqrt{\ln(2KT/\delta)/2N_t^{(a_t)} - \mu^{(a_t)} \left(a_t \text{ maximizes UCB by definition}\right)}$

 $\leq \sqrt{\ln(2KT/\delta)/2N_t^{(a_t)}} + \sqrt{\ln(2KT/\delta)/2N_t^{(a_t)}}$ (CI coverage on arm a_t)

Recall k^{\star} is optimal arm, so $\mu^{(k^{\star})}$ is true best arm mean. Thus time step t regret is:

$$
\mu^{(k^*)} - \mu^{(a_t)} \le \hat{\mu}_t^{(k^*)} + \sqrt{\ln(2KT/\delta)/2N_t^{(k^*)}}
$$

$$
\le \hat{\mu}_t^{(a_t)} + \sqrt{\ln(2KT/\delta)/2N_t^{(a_t)}}.
$$

$$
\leq \sqrt{\ln(2KT/\delta)/2N_t^{(a_t)}} + \sqrt{\ln(1/\delta)/2N_t^{(a_t)}}
$$

$$
= \sqrt{2\ln(2KT/\delta)/N_t^{(a_t)}}
$$

 $\mu^{(k^{\star})}$ − $\mu^{(a_t)}$ (CI coverage on arm $k^{\star})$) Next step?

 $\mu^{(a_t)} - \mu^{(a_t)}$ (a_t maximizes UCB by definition)

 $\sigma_t^{(a_t)} + \sqrt{\ln(2KT/\delta)/2N_t^{(a_t)}}$ (CI coverage on arm a_t)

Recall k^{\star} is optimal arm, so $\mu^{(k^{\star})}$ is true best arm mean. Thus time step t regret is:

$$
\mu^{(k^*)} - \mu^{(a_t)} \le \hat{\mu}_t^{(k^*)} + \sqrt{\ln(2KT/\delta)/2N_t^{(k^*)}}
$$

$$
\le \hat{\mu}_t^{(a_t)} + \sqrt{\ln(2KT/\delta)/2N_t^{(a_t)}}
$$

$$
\leq \sqrt{\ln(2KT/\delta)/2N_t^{(a_t)}} + \sqrt{\ln(1/\delta)/2N_t^{(a_t)}}
$$

$$
= \sqrt{2\ln(2KT/\delta)/N_t^{(a_t)}}
$$

all lines above hold simultaneously for all t w/p $1 - \delta$ because of *uniform* Hoeffding

 $\mu^{(k^{\star})}$ − $\mu^{(a_t)}$ (CI coverage on arm $k^{\star})$) Next step?

 $\mu_t^{(a_t)} + \sqrt{\ln(2KT/\delta)/2N_t^{(a_t)} - \mu^{(a_t)} \left(a_t \text{ maximizes UCB by definition}\right)}$

 $\sigma_t^{(a_t)} + \sqrt{\ln(2KT/\delta)/2N_t^{(a_t)}}$ (CI coverage on arm a_t)

Sum of UCB per-time-step regrets

1. per-time-step regret bound $\mu^{(k^{\star})} - \mu^{(a_{t})} \leq \sqrt{2 \ln(2KT/\delta)/N_{t}^{(a_{t})}}$

2.

 $\int_t^{(d_t)}$ w/p 1 – δ

Sum of UCB per-time-step regrets *T*−1 ∑ $2 \ln(2KT/\delta)/N_t^{(a_t)}$ *t* $=\sqrt{2 \ln(2KT/\delta)}$ *T*−1 ∑ *t*=0 1 $N_t^{(a_t)}$ *t* $w/p 1 - \delta$ 1. per-time-step regret bound $\mu^{(k^{\star})} - \mu^{(a_{t})} \leq \sqrt{2 \ln(2KT/\delta)/N_{t}^{(a_{t})}}$ $\int_t^{(d_t)}$ w/p 1 – δ

2.
$$
\text{Regret}_{T} \leq \sum_{t=0}^{T-1} \sqrt{2 \ln(2KT/\delta)/N_t^{\left(\epsilon\right)}}
$$

t=0

t

Sum of UCB per-time-step regrets *T*−1 ∑ $2 \ln(2KT/\delta)/N_t^{(a_t)}$ *t* $=\sqrt{2 \ln(2KT/\delta)}$ *T*−1 ∑ *t*=0 1 $N_t^{(a_t)}$ *t* $w/p 1 - \delta$ 1. per-time-step regret bound $\mu^{(k^{\star})} - \mu^{(a_{t})} \leq \sqrt{2 \ln(2KT/\delta)/N_{t}^{(a_{t})}}$ $\int_t^{(d_t)}$ w/p 1 – δ

2.
$$
\text{Regret}_{T} \leq \sum_{t=0}^{T-1} \sqrt{2 \ln(2KT/\delta)/N_t^{(d)}} = \sum_{t=0}^{T-1} \sum_{k=1}^{K} 1_{\{a_t = k\}} \sqrt{\frac{1}{N_t^{(k)}}}
$$

t=0

k=1

Sum of UCB per-time-step regrets *T*−1 ∑ $2 \ln(2KT/\delta)/N_t^{(a_t)}$ *t* $=\sqrt{2 \ln(2KT/\delta)}$ *T*−1 ∑ *t*=0 1 $N_t^{(a_t)}$ *t* $w/p 1 - \delta$ 1. per-time-step regret bound $\mu^{(k^{\star})} - \mu^{(a_{t})} \leq \sqrt{2 \ln(2KT/\delta)/N_{t}^{(a_{t})}}$ $\int_t^{(d_t)}$ w/p 1 – δ

2.
$$
\text{Regret}_{T} \leq \sum_{t=0}^{T-1} \sqrt{2 \ln(2KT/\delta)/N_t^{(t)}}
$$

$$
\sum_{t=0}^{T-1} \sqrt{\frac{1}{N_t^{(a_t)}}} = \sum_{t=0}^{T-1} \sum_{k=1}^{K} 1_{\{a_t = k\}} \sqrt{\frac{1}{N_t^{(k)}}} = \sum_{k=1}^{K}
$$

Sum of UCB per-time-step regrets

1. per-time-step regret bound $\mu^{(k^{\star})} - \mu^{(k)}$

$$
w/p 1 - \delta
$$

2.
$$
\text{Regret}_{T} \leq \sum_{t=0}^{T-1} \sqrt{2 \ln(2KT/\delta)/N_t^{(a_t)}} = \sqrt{2 \ln(2KT/\delta)} \sum_{t=0}^{T-1} \sqrt{\frac{1}{N_t^{(a_t)}}}
$$

$$
\sum_{t=0}^{T-1} \sqrt{\frac{1}{N_t^{(a_t)}}} = \sum_{t=0}^{T-1} \sum_{k=1}^{K} 1_{\{a_t=k\}} \sqrt{\frac{1}{N_t^{(k)}}} = \sum_{k=1}^{K} \sum_{n=1}^{N_T^{(k)}} \sqrt{\frac{1}{n}} \leq K \sum_{n=1}^{T} \sqrt{\frac{1}{n}}
$$

$$
P(a_t) \le \sqrt{2\ln(2KT/\delta)/N_t^{(a_t)}} \quad \text{with } 1 - \delta
$$

Sum of UCB per-time-step regrets

1. per-time-step regret bound $\mu^{(k^{\star})} - \mu^{(k)}$

$$
w/p 1 - \delta
$$

2.
$$
\text{Regret}_{T} \leq \sum_{t=0}^{T-1} \sqrt{2 \ln(2KT/\delta)/N_t^{(a_t)}} = \sqrt{2 \ln(2KT/\delta)} \sum_{t=0}^{T-1} \sqrt{\frac{1}{N_t^{(a_t)}}}
$$

$$
\sum_{t=0}^{T-1} \sqrt{\frac{1}{N_t^{(a_t)}}} = \sum_{t=0}^{T-1} \sum_{k=1}^{K} \frac{1}{N_t^{(k)}} = \sum_{k=1}^{K} \sum_{n=1}^{N_T^{(k)}} \sqrt{\frac{1}{n}} \leq K \sum_{n=1}^{T} \sqrt{\frac{1}{n}} \leq 2K\sqrt{T}
$$

$$
^{(a_t)} \leq \sqrt{2\ln(2KT/\delta)/N_t^{(a_t)}} \quad \text{w/p } 1 - \delta
$$

 $\bigcup_{i=1}^{n} y_i \bigcup_{i=1}^{n} y_i$ I Come
Or

 Regret_{T} \leq *T*−1 ∑ *t* 2.

$$
\sum_{i} x_{i} e^{x} \sum_{k=1}^{k} \sum_{\substack{r=1 \\ r \text{ odd}}}^{k} \sum_{\substack{r=1 \\ r \text{ odd}}}
$$

Finally, putting it all together, we get: $\text{Regret}_{T} \leq 2K\sqrt{T}\sqrt{2\ln(KT/\delta)}$ w/p 1 – δ

Finally, putting it all together, we get: $\text{Regret}_T \leq 2K\sqrt{T}$

$$
\leq 2K\sqrt{T}\sqrt{2\ln(KT/\delta)} \quad \text{w/p } 1 - \delta
$$

$$
= \tilde{O}(\sqrt{T}) \quad \text{w/p } 1 - \delta
$$

Finally, putting it all together, we get: $\text{Regret}_{T} \leq 2K\sqrt{T}$

In fact, a more sophisticated analysis c

can get:
$$
Regret_T = \tilde{O}(\sqrt{KT})
$$
 w/p 1

$$
\leq 2K\sqrt{T}\sqrt{2\ln(KT/\delta)} \quad \text{w/p } 1 - \delta
$$

$$
= \tilde{O}(\sqrt{T}) \quad \text{w/p } 1 - \delta
$$

12

- Feedback from last lecture
- Recap
- UCB regret analysis
	- Regret lower-bound
	- Bayesian bandit
	- Thompson sampling

Can we do better than $\Omega(\sqrt{T})$ regret?

Can we do better than $\Omega(\sqrt{T})$ regret?

Short answer: no

Short answer: no

Can we do better than $\Omega(\sqrt{T})$ regret?

But how can we know that?

Can we do better than $\Omega(\sqrt{T})$ regret?

- Short answer: no
- But how can we know that?
- A *lower bound* on the achievable regret

Can we do better than $\Omega(\sqrt{T})$ regret?

- Short answer: no
- But how can we know that?
- A *lower bound* on the achievable regret
- So far we our theoretical analysis has always considered a fixed algorithm and analyzed it (by deriving a regret upper bound with high probability)

Can we do better than $\Omega(\sqrt{T})$ regret? Short answer: no

But how can we know that?

A *lower bound* on the achievable regret

- So far we our theoretical analysis has always considered a fixed algorithm and analyzed it (by deriving a regret upper bound with high probability)
- To get a lower bound, we would need to consider what regret could be achieved by *any* algorithm, and show it can't be better than some rate

 ν 's mean μ to within $\Omega(1/\sqrt{T})$

1. CLT tells us that with T *i.i.d.* samples from a distribution ν , we can only learn

- 1. CLT tells us that with T *i.i.d.* samples from a distribution ν , we can only learn ν 's mean μ to within $\Omega(1/\sqrt{T})$
- learn any of the arm means better than to within $\Omega(1/\sqrt{T})$

2. Then since in a bandit, we get at most T samples total, certainly we can't

- 1. CLT tells us that with T *i.i.d.* samples from a distribution ν , we can only learn ν 's mean μ to within $\Omega(1/\sqrt{T})$
- 2. Then since in a bandit, we get at most T samples total, certainly we can't learn any of the arm means better than to within $\Omega(1/\sqrt{T})$
- at no point during the bandit can we confidently tell them apart

3. This means that if an arm \tilde{k} is about $1/\sqrt{T}$ away from the best arm k^\star , then

- 1. CLT tells us that with T *i.i.d.* samples from a distribution ν , we can only learn ν 's mean μ to within $\Omega(1/\sqrt{T})$
- 2. Then since in a bandit, we get at most T samples total, certainly we can't learn any of the arm means better than to within $\Omega(1/\sqrt{T})$
- 3. This means that if an arm \tilde{k} is about $1/\sqrt{T}$ away from the best arm k^\star , then at no point during the bandit can we confidently tell them apart
- 4. Thus, we should expect to sample \tilde{k} roughly as often as $k^{\star},$ which is at best roughly $T/2$ times (if we ignore any other arms)

- 1. CLT tells us that with T *i.i.d.* samples from a distribution ν , we can only learn ν 's mean μ to within $\Omega(1/\sqrt{T})$
- 2. Then since in a bandit, we get at most T samples total, certainly we can't learn any of the arm means better than to within $\Omega(1/\sqrt{T})$
- 3. This means that if an arm \tilde{k} is about $1/\sqrt{T}$ away from the best arm k^\star , then at no point during the bandit can we confidently tell them apart
- 4. Thus, we should expect to sample \tilde{k} roughly as often as $k^{\star},$ which is at best roughly $T/2$ times (if we ignore any other arms)
- 5. Finally, since the regret incurred each time we pull arm \tilde{k} is $1/\sqrt{T}$, and we $\,$ pull it $T/2$ times, we get a regret lower bound of $(1/\sqrt{T})\times T/2 = \Omega(\sqrt{T})$ \tilde{k} is $1/\sqrt{T}$

- Feedback from last lecture
- Recap
- UCB regret analysis
- Regret lower-bound
	- Bayesian bandit
	- Thompson sampling

A Bayesian bandit augments the bandit environment we've been working in so far with a prior distribution on the unknown reward distributions: $\pi(\nu^{(1)},...,\nu^{(K)})$

A Bayesian bandit augments the bandit environment we've been working in so far with a prior distribution on the unknown reward distributions: $\pi(\nu^{(1)},...,\nu^{(K)})$

E.g., in a Bernoulli bandit, each $\nu^{(k)}$ is entirely characterized by its mean , so a prior on the $\nu^{(\kappa)}$ is equivalent to a prior on the

 $\mu^{(k)} = \mathbb{P}_{r \sim \nu^{(k)}}(r=1)$, so a prior on the $\nu^{(k)}$ is equivalent to a prior on the $\mu^{(k)}$

A Bayesian bandit augments the bandit environment we've been working in so far with a prior distribution on the unknown reward distributions: $\pi(\nu^{(1)},...,\nu^{(K)})$

E.g., in a Bernoulli bandit, each $\nu^{(k)}$ is entirely characterized by its mean , so a prior on the $\nu^{(\kappa)}$ is equivalent to a prior on the $\mu^{(k)} = \mathbb{P}_{r \sim \nu^{(k)}}(r=1)$, so a prior on the $\nu^{(k)}$ is equivalent to a prior on the $\mu^{(k)}$

One such prior, since all the $\mu^{(K)}$ are bounded between 0 and 1 , is the prior that is *Uniform* on the unit hypercube, i.e., $\mu^{(k)}$ are bounded between 0 and 1 $(\mu^{(1)}, ..., \mu^{(K)}) =: \mu \sim \text{Uniform}([0,1]^K)$

A Bayesian bandit augments the bandit environment we've been working in so far with a prior distribution on the unknown reward distributions: $\pi(\nu^{(1)},...,\nu^{(K)})$

E.g., in a Bernoulli bandit, each $\nu^{(k)}$ is entirely characterized by its mean , so a prior on the $\nu^{(\kappa)}$ is equivalent to a prior on the $\mu^{(k)} = \mathbb{P}_{r \sim \nu^{(k)}}(r=1)$, so a prior on the $\nu^{(k)}$ is equivalent to a prior on the $\mu^{(k)}$

- One such prior, since all the $\mu^{(K)}$ are bounded between 0 and 1 , is the prior that is *Uniform* on the unit hypercube, i.e., $\mu^{(k)}$ are bounded between 0 and 1
	- $(\mu^{(1)}, ..., \mu^{(K)}) =: \mu \sim \text{Uniform}([0,1]^K)$
- Note that the Bernoulli bandit reduced everything unknown about the bandit system to a *K*-dimensional vector *μ*

A Bayesian bandit augments the bandit environment we've been working in so far with a prior distribution on the unknown reward distributions: $\pi(\nu^{(1)},...,\nu^{(K)})$

E.g., in a Bernoulli bandit, each $\nu^{(k)}$ is entirely characterized by its mean , so a prior on the $\nu^{(\kappa)}$ is equivalent to a prior on the $\mu^{(k)} = \mathbb{P}_{r \sim \nu^{(k)}}(r=1)$, so a prior on the $\nu^{(k)}$ is equivalent to a prior on the $\mu^{(k)}$

- One such prior, since all the $\mu^{(K)}$ are bounded between 0 and 1 , is the prior that is *Uniform* on the unit hypercube, i.e., $\mu^{(k)}$ are bounded between 0 and 1
	- $(\mu^{(1)}, ..., \mu^{(K)}) =: \mu \sim \text{Uniform}([0,1]^K)$
- Note that the Bernoulli bandit reduced everything unknown about the bandit system to a *K*-dimensional vector *μ*
- Without the Bernoulli assumption, we may need many more dimensions to describe the possible distributions, and hence have to define a much higher-dimensional prior

The really nice thing about a Bayesian bandit is that we can use Bayes rule to exactly characterize our uncertainty about the reward distributions at every time step.

The really nice thing about a Bayesian bandit is that we can use Bayes rule to exactly characterize our uncertainty about the reward distributions at every time step.

Example: Bayesian Bernoulli bandit

The really nice thing about a Bayesian bandit is that we can use Bayes rule to exactly characterize our uncertainty about the reward distributions at every time step.

Example: Bayesian Bernoulli bandit

1. At $t = 0$, how can we characterize our uncertainty about μ ?

The really nice thing about a Bayesian bandit is that we can use Bayes rule to exactly characterize our uncertainty about the reward distributions at every time step.

 $\mathbb{P}(\mu) = \pi(\mu)$

1. At $t = 0$, how can we characterize our uncertainty about μ ? We have no data, and the distribution of the reward distributions is simply given by the prior on the reward parameters *μ*:

Example: Bayesian Bernoulli bandit

The really nice thing about a Bayesian bandit is that we can use Bayes rule to exactly characterize our uncertainty about the reward distributions at every time step.

Example: Bayesian Bernoulli bandit

1. At $t = 0$, how can we characterize our uncertainty about μ ? We have no data, and the distribution of the reward distributions is simply given by the prior on the reward parameters *μ*:

 $(P$ will sometimes denote a continuous density instead of a true probability, e.g., for $\pmb{\mu} \sim \mathsf{Uniform}([0,1]^K)$, we would write $\mathbb{P}(\pmb{\mu}) = 1_{\{0 \leq \mu^{(k)} \leq 1 \; \forall k\}}$

$$
\mathbb{P}(\mu) = \pi(\mu)
$$

1. At $t = 0$, $\mathbb{P}(\mu) = \pi(\mu)$

- 1. At $t = 0$, $\mathbb{P}(\mu) = \pi(\mu)$
- gets updated via Bayes rule: $t=1$, we have one data point $r^{}_{0} \sim \operatorname{Bernoulli}(\mu^{(a^{}_{0})})$

2. At $t=1$, we have one data point $r_0 \thicksim$ Bernoulli $(\mu^{(d_0)})$, and the distribution of), and the distribution of μ

- 1. At $t = 0$, $\mathbb{P}(\mu) = \pi(\mu)$
- gets updated via Bayes rule: $t=1$, we have one data point $r^{}_{0} \sim \operatorname{Bernoulli}(\mu^{(a^{}_{0})})$

$$
\mathbb{P}(\boldsymbol{\mu} \mid r_0, a_0) = \frac{\mathbb{P}(r_0, a_0 \mid \boldsymbol{\mu}) \mathbb{P}(\boldsymbol{\mu})}{\mathbb{P}(r_0, a_0)}
$$

2. At $t=1$, we have one data point $r_0 \thicksim$ Bernoulli $(\mu^{(d_0)})$, and the distribution of), and the distribution of μ

- 1. At $t = 0$, $\mathbb{P}(\mu) = \pi(\mu)$
- gets updated via Bayes rule: $t=1$, we have one data point $r^{}_{0} \sim \operatorname{Bernoulli}(\mu^{(a^{}_{0})})$

$$
\mathbb{P}(\mu \mid r_0, a_0) = \frac{\mathbb{P}(r_0, a_0 \mid \mu) \mathbb{P}(\mu)}{\mathbb{P}(r_0, a_0)} = \frac{\mathbb{P}(r_0, a_0 \mid \mu) \mathbb{P}(\mu)}{\int_{\tilde{\mu} \in [0, 1]^k} \mu}
$$

2. At $t=1$, we have one data point $r_0 \thicksim$ Bernoulli $(\mu^{(d_0)})$, and the distribution of), and the distribution of μ

> $P(r_0, a_0 | \boldsymbol{\mu}) \mathbb{P}(\boldsymbol{\mu})$ $\tilde{\mu} \in [0,1]^K$ $\mathbb{P}(r_0, a_0 | \tilde{\mu}) \mathbb{P}(\tilde{\mu}) d\tilde{\mu}$

- 1. At $t = 0$, $\mathbb{P}(\mu) = \pi(\mu)$
- 2. At $t=1$, we have one data point $r_0 \thicksim$ Bernoulli $(\mu^{(d_0)})$, and the distribution of gets updated via Bayes rule: $t=1$, we have one data point $r^{}_{0} \sim \operatorname{Bernoulli}(\mu^{(a^{}_{0})})$), and the distribution of μ

$$
\mathbb{P}(\mu \mid r_0, a_0) = \frac{\mathbb{P}(r_0, a_0 \mid \mu) \mathbb{P}(\mu)}{\mathbb{P}(r_0, a_0)} = \frac{\mathbb{P}(r_0, a_0)}{\int_{\tilde{\mu} \in [0,1]^l} \mathbb{P}(r_0 \mid a_0, \mu) \mathbb{P}(a_0, \mu)} = \frac{\mathbb{P}(r_0 \mid a_0, \mu) \mathbb{P}(a_0, \mu)}{\int_{\tilde{\mu} \in [0,1]^K} \mathbb{P}(r_0 \mid a_0, \mu)} = \frac{\mathbb{P}(r_0 \mid a_0, \mu)}{\int_{\tilde{\mu} \in [0,1]^K} \mathbb{P}(r_0 \mid a_0, \mu)} = \frac{\mathbb{P}(r_0 \mid a_0, \mu)}{\int_{\tilde{\mu} \in [0,1]^K} \mathbb{P}(r_0 \mid a_0, \mu)} = \frac{\mathbb{P}(r_0 \mid a_0, \mu)}{\int_{\tilde{\mu} \in [0,1]^K} \mathbb{P}(r_0 \mid a_0, \mu)} = \frac{\mathbb{P}(r_0 \mid a_0, \mu)}{\int_{\tilde{\mu} \in [0,1]^K} \mathbb{P}(r_0 \mid a_0, \mu)} = \frac{\mathbb{P}(r_0 \mid a_0, \mu)}{\int_{\tilde{\mu} \in [0,1]^K} \mathbb{P}(r_0 \mid a_0, \mu)} = \frac{\mathbb{P}(r_0 \mid a_0, \mu)}{\int_{\tilde{\mu} \in [0,1]^K} \mathbb{P}(r_0 \mid a_0, \mu)} = \frac{\mathbb{P}(r_0 \mid a_0, \mu)}{\int_{\tilde{\mu} \in [0,1]^K} \mathbb{P}(r_0 \mid a_0, \mu)} = \frac{\mathbb{P}(r_0 \mid a_0, \mu)}{\int_{\tilde{\mu} \in [0,1]^K} \mathbb{P}(r_0 \mid a_0, \mu)} = \frac{\mathbb{P}(r_0 \mid a_0, \mu)}{\int_{\tilde{\mu} \in [0,1]^K} \mathbb{P}(r_0 \mid a_0, \mu)} = \frac{\mathbb{P}(r_0 \mid a_0, \mu)}{\int_{\tilde{\mu} \in [0,1]^K} \mathbb{P}(r_0 \
$$

 $P(r_0, a_0 | \boldsymbol{\mu}) \mathbb{P}(\boldsymbol{\mu})$ $\tilde{\mu} \in [0,1]^K$ $\mathbb{P}(r_0, a_0 | \tilde{\mu}) \mathbb{P}(\tilde{\mu}) d\tilde{\mu}$ $a_0 | \mu$) $\mathbb{P}(\mu)$

 \tilde{u}) $\mathbb{P}(a_0 | \tilde{\mu}) \mathbb{P}(\tilde{\mu}) d\tilde{\mu}$

- 1. At $t = 0$, $\mathbb{P}(\mu) = \pi(\mu)$
- 2. At $t=1$, we have one data point $r_0 \thicksim$ Bernoulli $(\mu^{(d_0)})$, and the distribution of gets updated via Bayes rule: $t=1$, we have one data point $r^{}_{0} \sim \operatorname{Bernoulli}(\mu^{(a^{}_{0})})$), and the distribution of μ

$$
\mathbb{P}(\mu \mid r_0, a_0) = \frac{\mathbb{P}(r_0, a_0 \mid \mu) \mathbb{P}(\mu)}{\mathbb{P}(r_0, a_0)} = \frac{\mathbb{P}(r_0, a_0)}{\int_{\tilde{\mu} \in [0,1]^l} \mathbb{P}(r_0 \mid a_0, \mu) \mathbb{P}(a_0, \mu)} = \frac{\mathbb{P}(r_0 \mid a_0, \mu) \mathbb{P}(a_0, \mu)}{\int_{\tilde{\mu} \in [0,1]^K} \mathbb{P}(r_0 \mid a_0, \mu)} = \frac{\mathbb{P}(r_0 \mid a_0, \mu)}{\int_{\tilde{\mu} \in [0,1]^K} \mathbb{P}(r_0 \mid a_0, \mu)} = \frac{\mathbb{P}(r_0 \mid a_0, \mu)}{\int_{\tilde{\mu} \in [0,1]^K} \mathbb{P}(r_0 \mid a_0, \mu)} = \frac{\mathbb{P}(r_0 \mid a_0, \mu)}{\int_{\tilde{\mu} \in [0,1]^K} \mathbb{P}(r_0 \mid a_0, \mu)} = \frac{\mathbb{P}(r_0 \mid a_0, \mu)}{\int_{\tilde{\mu} \in [0,1]^K} \mathbb{P}(r_0 \mid a_0, \mu)} = \frac{\mathbb{P}(r_0 \mid a_0, \mu)}{\int_{\tilde{\mu} \in [0,1]^K} \mathbb{P}(r_0 \mid a_0, \mu)} = \frac{\mathbb{P}(r_0 \mid a_0, \mu)}{\int_{\tilde{\mu} \in [0,1]^K} \mathbb{P}(r_0 \mid a_0, \mu)} = \frac{\mathbb{P}(r_0 \mid a_0, \mu)}{\int_{\tilde{\mu} \in [0,1]^K} \mathbb{P}(r_0 \mid a_0, \mu)} = \frac{\mathbb{P}(r_0 \mid a_0, \mu)}{\int_{\tilde{\mu} \in [0,1]^K} \mathbb{P}(r_0 \mid a_0, \mu)} = \frac{\mathbb{P}(r_0 \mid a_0, \mu)}{\int_{\tilde{\mu} \in [0,1]^K} \mathbb{P}(r_0 \mid a_0, \mu)} = \frac{\mathbb{P}(r_0 \mid a_0, \mu)}{\int_{\tilde{\mu} \in [0,1]^K} \mathbb{P}(r_0 \
$$

 $P(r_0, a_0 | \boldsymbol{\mu}) \mathbb{P}(\boldsymbol{\mu})$ $\tilde{\mu} \in [0,1]^K$ $\mathbb{P}(r_0, a_0 | \tilde{\mu}) \mathbb{P}(\tilde{\mu}) d\tilde{\mu}$ $a_0 | \mu$) $\mathbb{P}(\mu)$ \tilde{u}) $\mathbb{P}(a_0 | \tilde{\mu}) \mathbb{P}(\tilde{\mu}) d\tilde{\mu}$ Can you see any way to simplify?

- 1. At $t = 0$, $\mathbb{P}(\mu) = \pi(\mu)$
- 2. At $t=1$, we have one data point $r_0 \thicksim$ Bernoulli $(\mu^{(d_0)})$, and the distribution of gets updated via Bayes rule: $t=1$, we have one data point $r^{}_{0} \sim \operatorname{Bernoulli}(\mu^{(a^{}_{0})})$), and the distribution of μ

$$
\mathbb{P}(\mu \mid r_0, a_0) = \frac{\mathbb{P}(r_0, a_0 \mid \mu) \mathbb{P}(\mu)}{\mathbb{P}(r_0, a_0)} = \frac{\mathbb{P}(r_0 \mid \mu) \mathbb{P}(\mu)}{\int_{\tilde{\mu} \in [0,1]^K} \mathbb{P}(r_0 \mid a_0, \mu) \mathbb{P}(a_0, \tilde{\mu})} = \frac{\mathbb{P}(r_0 \mid a_0, \mu) \mathbb{P}(a_0, \mu)}{\int_{\tilde{\mu} \in [0,1]^K} \mathbb{P}(r_0 \mid a_0, \tilde{\mu})}
$$

 $P(r_0, a_0 | \boldsymbol{\mu}) \mathbb{P}(\boldsymbol{\mu})$ $\tilde{\mu} \in [0,1]^K$ $\mathbb{P}(r_0, a_0 | \tilde{\mu}) \mathbb{P}(\tilde{\mu}) d\tilde{\mu}$ $a_0 | \mu$) $\mathbb{P}(\mu)$

 \tilde{u}) $\mathbb{P}(a_0 | \tilde{\mu}) \mathbb{P}(\tilde{\mu}) d\tilde{\mu}$ Can you see any way to simplify?

- a_0 $\mathbb{P}(\mu)$
- \tilde{u}) $P(a_0)P(\tilde{\mu})d\tilde{\mu}$

- 1. At $t = 0$, $\mathbb{P}(\mu) = \pi(\mu)$
- 2. At $t=1$, we have one data point $r_0 \thicksim$ Bernoulli $(\mu^{(d_0)})$, and the distribution of gets updated via Bayes rule: $t=1$, we have one data point $r^{}_{0} \sim \operatorname{Bernoulli}(\mu^{(a^{}_{0})})$), and the distribution of μ

$$
\mathbb{P}(\mu \mid r_0, a_0) = \frac{\mathbb{P}(r_0, a_0 \mid \mu) \mathbb{P}(\mu)}{\mathbb{P}(r_0, a_0)} = \frac{\mathbb{P}(r_0 \mid \mu) \mathbb{P}(\mu)}{\int_{\tilde{\mu} \in [0,1]^K} \mathbb{P}(r_0 \mid a_0, \mu) \mathbb{P}(a_0, \tilde{\mu})} = \frac{\mathbb{P}(r_0 \mid a_0, \mu) \mathbb{P}(a_0, \mu)}{\int_{\tilde{\mu} \in [0,1]^K} \mathbb{P}(r_0 \mid a_0, \tilde{\mu})}
$$

 $P(r_0, a_0 | \boldsymbol{\mu}) \mathbb{P}(\boldsymbol{\mu})$ $\tilde{\mu} \in [0,1]^K$ $\mathbb{P}(r_0, a_0 | \tilde{\mu}) \mathbb{P}(\tilde{\mu}) d\tilde{\mu}$ $a_0 | \mu$) $\mathbb{P}(\mu)$ \tilde{u}) $\mathbb{P}(a_0 | \tilde{\mu}) \mathbb{P}(\tilde{\mu}) d\tilde{\mu}$ a_0) $\mathbb{P}(\mu)$ \tilde{u}) $P(a_0)P(\tilde{\mu})d\tilde{\mu}$ = $\mathbb{P}(r_0 | a_0, \mu) \mathbb{P}(\mu)$ $\int_{\tilde{\mu}\in[0,1]^K}\mathbb{P}(r_0 | a_0,\tilde{\mu})\mathbb{P}(\tilde{\mu})d\tilde{\mu}$ Can you see any way to simplify?

- 1. At $t = 0$, $P(\mu) = \pi(\mu)$
- gets updated via Bayes rule: $t=1$, we have one data point $r^{}_{0} \sim \text{Bernoulli}(\mu^{(a^{}_{0})})$

$$
\mathbb{P}(\boldsymbol{\mu} \mid r_0, a_0) = \frac{\mathbb{P}(r_0 \mid a_0, \boldsymbol{\mu}) \mathbb{P}(\boldsymbol{\mu})}{\int_{\tilde{\boldsymbol{\mu}} \in [0,1]^K} \mathbb{P}(r_0 \mid a_0, \tilde{\boldsymbol{\mu}}) \mathbb{P}(\tilde{\boldsymbol{\mu}}) d\tilde{\boldsymbol{\mu}}}
$$

2. At $t=1$, we have one data point $r_0 \thicksim$ Bernoulli $(\mu^{(d_0)})$, and the distribution of ρ), and the distribution of μ

$$
\mathbb{P}(\boldsymbol{\mu} \mid r_0, a_0) = \frac{\mathbb{P}(r_0 \mid a_0, \boldsymbol{\mu}) \mathbb{P}(\boldsymbol{\mu})}{\int_{\tilde{\boldsymbol{\mu}} \in [0,1]^K} \mathbb{P}(r_0 \mid a_0, \tilde{\boldsymbol{\mu}}) \mathbb{P}(\tilde{\boldsymbol{\mu}}) d\tilde{\boldsymbol{\mu}}}
$$

2. At $t=1$, we have one data point $r_0 \thicksim$ Bernoulli $(\mu^{(d_0)})$, and the distribution of ρ), and the distribution of μ

=

- 1. At $t = 0$, $P(\mu) = \pi(\mu)$
- gets updated via Bayes rule: $t=1$, we have one data point $r^{}_{0} \sim \text{Bernoulli}(\mu^{(a^{}_{0})})$

$$
\frac{(\mu^{(a_0)})^{r_0}(1-\mu^{(a_0)})^{1-r_0}\pi(\mu)}{\int_{\tilde{\mu}\in[0,1]^K}(\tilde{\mu}^{(k)})^{r_0}(1-\tilde{\mu}^{(a)})^{1-r_0}\pi(\tilde{\mu})d\tilde{\mu}}
$$

- 1. At $t = 0$, $P(\mu) = \pi(\mu)$
- gets updated via Bayes rule: $t=1$, we have one data point $r^{}_{0} \sim \text{Bernoulli}(\mu^{(a^{}_{0})})$

$$
\mathbb{P}(\boldsymbol{\mu} \mid r_0, a_0) = \frac{\mathbb{P}(r_0 \mid a_0, \boldsymbol{\mu}) \mathbb{P}(\boldsymbol{\mu})}{\int_{\tilde{\boldsymbol{\mu}} \in [0,1]^K} \mathbb{P}(r_0 \mid a_0, \tilde{\boldsymbol{\mu}}) \mathbb{P}(\tilde{\boldsymbol{\mu}}) d\tilde{\boldsymbol{\mu}}}
$$

If prior is Uniform($[0,1]^K$), i.e., $\pi(\mu) = 1 \ \forall \mu$: = $(\mu^{(a_0)})^{r_0}(1-\mu^{(a_0)})$ $1 - r_0$ $\int_{\tilde{\mu} \in [0,1]^K} (\tilde{\mu}^{(a_0)})^{r_0} (1 - \tilde{\mu}^{(a_0)})^{1-r_0} d\tilde{\mu}$

2. At $t=1$, we have one data point $r_0 \thicksim$ Bernoulli $(\mu^{(d_0)})$, and the distribution of ρ), and the distribution of μ

$$
= \frac{(\mu^{(a_0)})^{r_0}(1-\mu^{(a_0)})^{1-r_0}\pi(\mu)}{\int_{\tilde{\mu}\in[0,1]^K}(\tilde{\mu}^{(k)})^{r_0}(1-\tilde{\mu}^{(a)})^{1-r_0}\pi(\tilde{\mu})d\tilde{\mu}}
$$

- 1. At $t = 0$, $P(\mu) = \pi(\mu)$
- 2. At $t=1$, we have one data point $r_0 \thicksim$ Bernoulli $(\mu^{(d_0)})$, and the distribution of ρ gets updated via Bayes rule: $t=1$, we have one data point $r^{}_{0} \sim \text{Bernoulli}(\mu^{(a^{}_{0})})$), and the distribution of μ

If prior is Uniform($[0,1]^K$), i.e., $\pi(\mu)$ = = $(\mu^{(a_0)})^{r_0}(1-\mu^{(a_0)})$ $1 - r_0$ $\int_{\tilde{\mu} \in [0,1]^K} (\tilde{\mu}^{(a_0)})^{r_0} (1 - \tilde{\mu}^{(a_0)})^{1-r_0} d\tilde{\mu}$ = ∫ 1

$$
\mathbb{P}(\mu \mid r_0, a_0) = \frac{\mathbb{P}(r_0 \mid a_0, \mu) \mathbb{P}(\mu)}{\int_{\tilde{\mu} \in [0,1]^K} \mathbb{P}(r_0 \mid a_0, \tilde{\mu}) \mathbb{P}(\tilde{\mu}) d\tilde{\mu}} = \frac{(\mu^{(a_0)})^{r_0} (1 - \mu^{(a_0)})^{1 - r_0} \pi(\mu)}{\int_{\tilde{\mu} \in [0,1]^K} (\tilde{\mu}^{(k)})^{r_0} (1 - \tilde{\mu}^{(a)})^{1 - r_0} \pi(\tilde{\mu}) d\tilde{\mu}}
$$

$$
= 1 \ \forall \mu
$$

$$
\frac{(\mu^{(a_0)})^{r_0}(1-\mu^{(a_0)})^{1-r_0}}{(\tilde{\mu}^{(a_0)})^{r_0}(1-\tilde{\mu}^{(a_0)})^{1-r_0}d\tilde{\mu}^{(a_0)}}
$$

- 1. At $t = 0$, $P(\mu) = \pi(\mu)$
- 2. At $t=1$, we have one data point $r_0 \thicksim$ Bernoulli $(\mu^{(d_0)})$, and the distribution of ρ gets updated via Bayes rule: $t=1$, we have one data point $r^{}_{0} \sim \text{Bernoulli}(\mu^{(a^{}_{0})})$), and the distribution of μ

= $\int_{\tilde{\mu} \in [0,1]^K} (\tilde{\mu}^{(a_0)})^{r_0} (1 - \tilde{\mu}^{(a_0)})^{1-r_0} d\tilde{\mu}$ = ∫ 1 $\int_0^1 (\tilde{\mu}^{(a_0)})^{r_0} (1 - \tilde{\mu}^{(a_0)})^{1-r_0} d\tilde{\mu}^{(a_0)}$

$$
\mathbb{P}(\mu | r_0, a_0) = \frac{\mathbb{P}(r_0 | a_0, \mu) \mathbb{P}(\mu)}{\int_{\tilde{\mu} \in [0,1]^K} \mathbb{P}(r_0 | a_0, \tilde{\mu}) \mathbb{P}(\tilde{\mu}) d\tilde{\mu}} = \frac{(\mu^{(a_0)})^{r_0} (1 - \mu^{(a_0)})^{1 - r_0} \pi(\mu)}{\int_{\tilde{\mu} \in [0,1]^K} (\tilde{\mu}^{(k)})^{r_0} (1 - \tilde{\mu}^{(a)})^{1 - r_0} \pi(\tilde{\mu}) d\tilde{\mu}}
$$
\nIf prior is Uniform([0,1]^K), i.e., $\pi(\mu) = 1 \ \forall \mu$:
\n
$$
= \frac{(\mu^{(a_0)})^{r_0} (1 - \mu^{(a_0)})^{1 - r_0}}{\int_{\tilde{\mu} \in [0,1]^K} (\mu^{(a_0)})^{r_0} (1 - \mu^{(a_0)})^{1 - r_0}} = \frac{(\mu^{(a_0)})^{r_0} (1 - \mu^{(a_0)})^{1 - r_0}}{\int_{\tilde{\mu} \in [0,1]^K} (\mu^{(a_0)})^{r_0} (1 - \mu^{(a_0)})^{r_0} (1 - \mu^{(a_0)})^{r_0}} = \frac{1}{\int_{\tilde{\mu} \in [0,1]^K} (\mu^{(a_0)})^{r_0} (1 - \mu^{(a_0)})^{r_0} (1 - \mu^{(a_0)})^{r
$$

- 1. At $t = 0$, $P(\mu) = \pi(\mu)$
- gets updated via Bayes rule: $t=1$, we have one data point $r^{}_{0} \sim \text{Bernoulli}(\mu^{(a^{}_{0})})$
	- $\mathbb{P}(\mu | r_0, a_0) = 2(\mu^{(a_0)})$

2. At $t=1$, we have one data point $r_0 \thicksim$ Bernoulli $(\mu^{(d_0)})$, and the distribution of ρ), and the distribution of μ

> $f^{0}(1-\mu^{(a_0)})$ $1 - r_0$

- 1. At $t = 0$, $P(\mu) = \pi(\mu)$
- 2. At $t=1$, we have one data point $r_0 \thicksim$ Bernoulli $(\mu^{(d_0)})$, and the distribution of ρ gets updated via Bayes rule: $t=1$, we have one data point $r^{}_{0} \sim \text{Bernoulli}(\mu^{(a^{}_{0})})$), and the distribution of μ
	- $\mathbb{P}(\mu | r_0, a_0) =$
- $t=2$, we have another data point $r^{}_1 \sim \mathsf{Bernoulli}(\mu^{(a^{}_1)})$

3. At $t=2$, we have another data point $r_1\sim$ Bernoulli $(\mu^{(a_1)})$, and we can update the distribution of $\pmb{\mu}$ again via Bayes rule, treating $\mathbb{P}(\pmb{\mu} \mid r_0, a_0)$ as the prior)

$$
2(\mu^{(a_0)})^{r_0}(1-\mu^{(a_0)})^{1-r_0}
$$

1. At $t = 0$, $P(\mu) = \pi(\mu)$

3. At $t=2$, we have another data point $r_1\sim$ Bernoulli $(\mu^{(a_1)})$, and we can update the distribution of $\pmb{\mu}$ again via Bayes rule, treating $\mathbb{P}(\pmb{\mu} \mid r_0, a_0)$ as the prior)

$$
2(\mu^{(a_0)})^{r_0}(1-\mu^{(a_0)})^{1-r_0}
$$

…

- 2. At $t=1$, we have one data point $r_0 \thicksim$ Bernoulli $(\mu^{(d_0)})$, and the distribution of ρ gets updated via Bayes rule: $t=1$, we have one data point $r^{}_{0} \sim \text{Bernoulli}(\mu^{(a^{}_{0})})$), and the distribution of μ
	- $\mathbb{P}(\mu | r_0, a_0) =$
- $t=2$, we have another data point $r^{}_1 \sim \mathsf{Bernoulli}(\mu^{(a^{}_1)})$

- 1. At $t = 0$, $P(\mu) = \pi(\mu)$
- 2. At $t=1$, we have one data point $r_0 \thicksim$ Bernoulli $(\mu^{(d_0)})$, and the distribution of ρ gets updated via Bayes rule: $t=1$, we have one data point $r^{}_{0} \sim \text{Bernoulli}(\mu^{(a^{}_{0})})$), and the distribution of μ
	- $\mathbb{P}(\mu | r_0, a_0) = 2$
- … $t=2$, we have another data point $r^{}_1 \sim \mathsf{Bernoulli}(\mu^{(a^{}_1)})$
	- Bayes rule at time step t gives us a distribution (called the posterior distribution) $\mathbb{P}(\mu | r_0, a_0, r)$
	- that exactly characterizes our uncertainty about μ

$$
\mathbb{P}(\mu \mid r_0, a_0) = 2(\mu^{(a_0)})^{r_0}(1 - \mu^{(a_0)})^{1 - r_0}
$$

3. At $t = 2$, we have another data point $r_1 \sim \text{Bernoulli}(\mu^{(a_1)})$, and we can update the distribution of μ again via Bayes rule, treating $\mathbb{P}(\mu \mid r_0, a_0)$ as the prior

μ

- 1. At $t = 0$, $P(\mu) = \pi(\mu)$
- 2. At $t=1$, we have one data point $r_0 \thicksim$ Bernoulli $(\mu^{(d_0)})$, and the distribution of ρ gets updated via Bayes rule: $t=1$, we have one data point $r^{}_{0} \sim \text{Bernoulli}(\mu^{(a^{}_{0})})$), and the distribution of μ
	- $\mathbb{P}(\mu | r_0, a_0) = 2$
- … $t=2$, we have another data point $r^{}_1 \sim \mathsf{Bernoulli}(\mu^{(a^{}_1)})$
	- Bayes rule at time step t gives us a distribution (called the posterior distribution) $\mathbb{P}(\mu \mid r_0, a_0, r)$
	-

$$
\mathbb{P}(\mu \mid r_0, a_0) = 2(\mu^{(a_0)})^{r_0}(1 - \mu^{(a_0)})^{1 - r_0}
$$

3. At $t = 2$, we have another data point $r_1 \sim \text{Bernoulli}(\mu^{(a_1)})$, and we can update the distribution of μ again via Bayes rule, treating $\mathbb{P}(\mu \mid r_0, a_0)$ as the prior

$$
r_1, a_1, \ldots, r_{t-1}, a_{t-1})
$$

that exactly characterizes our uncertainty about $\pmb{\mu}$. We can use this to choose $a_t!$

Bayesian Bernoulli bandit with uniform prior on μ gives a running posterior on the mean of each arm k that is Beta $(1 + \# \{ \text{arm } k \text{ successes} \},1 + \# \{ \text{arm } k \text{ failures} \})$

Bayesian Bernoulli bandit with uniform prior on μ gives a running posterior on the mean of each arm k that is Beta $(1 + \# \{ \text{arm } k \text{ successes} \},1 + \# \{ \text{arm } k \text{ failures} \})$ (derived by Bayes rule and some algebra, see HW2)

Bayesian Bernoulli bandit with uniform prior on μ gives a running posterior on the

Beta (α_k, β_k) has mean (posterior mean = what we expect $\mu^{(k)}$ *αk* =

$$
\alpha_k+\beta_k
$$

- mean of each arm k that is Beta $(1 + \# \{ \text{arm } k \text{ successes} \},1 + \# \{ \text{arm } k \text{ failures} \})$ (derived by Bayes rule and some algebra, see HW2)
	- has mean (posterior mean = what we *expect* $\mu^{(K)}$ to be): $1 + #{arm k success}$
		- $2 + #\{arm k \text{ pulls}\}$
- which starts at 1/2 and approaches the sample mean of arm k with more pulls.

Bayesian Bernoulli bandit with uniform prior on μ gives a running posterior on the

Beta (α_k, β_k) has mean (posterior mean = what we expect $\mu^{(k)}$ *αk* =

has variance (posterior variance \approx how uncertain we are about $\mu^{(K)}$): $\mathsf{Beta}(\alpha_k, \beta_k)$ has variance (posterior variance \approx how uncertain we are about $\mu^{(k)}$ *βk* 1

 $\alpha_k + \beta_k$ × $\alpha_k + \beta_k + 1$

$$
\alpha_k+\beta_k
$$

which decreases at a rate of roughly 1/#{arm *k* pulls}

- mean of each arm k that is Beta $(1 + \# \{ \text{arm } k \text{ successes} \},1 + \# \{ \text{arm } k \text{ failures} \})$ (derived by Bayes rule and some algebra, see HW2)
	- has mean (posterior mean = what we *expect* $\mu^{(K)}$ to be): $1 + #{arm k success}$
		- $2 + #\{arm k pulls\}$
- which starts at 1/2 and approaches the sample mean of arm k with more pulls.

αk $\alpha_k + \beta_k$ ×

A Bayesian bandit augments the bandit environment we've been working in so far with a prior distribution on the unknown reward distributions; for Bernoulli bandits, the reward distributions are entirely characterized by μ , so prior is: $\pi(\mu)$

- A Bayesian bandit augments the bandit environment we've been working in so far with a prior distribution on the unknown reward distributions; for Bernoulli bandits,
- Bayes rule at time step t gives us a distribution (called the posterior distribution)
	- $\mathbb{P}(\mu | r_0, a_0, r_1, a_1, \ldots, r_{t-1}, a_{t-1})$

the reward distributions are entirely characterized by μ , so prior is: $\pi(\mu)$

that exactly characterizes our uncertainty about μ .

- A Bayesian bandit augments the bandit environment we've been working in so far with a prior distribution on the unknown reward distributions; for Bernoulli bandits,
- Bayes rule at time step t gives us a distribution (called the posterior distribution)
	- $\mathbb{P}(\mu | r_0, a_0, r_1, a_1, \ldots, r_{t-1}, a_{t-1})$
- Note that although we are now treating μ as random, we still assume its value is

the reward distributions are entirely characterized by μ , so prior is: $\pi(\mu)$

that exactly characterizes our uncertainty about μ .

only drawn once (from the prior) and then stays the same throughout *t*

- A Bayesian bandit augments the bandit environment we've been working in so far with a prior distribution on the unknown reward distributions; for Bernoulli bandits,
- Bayes rule at time step t gives us a distribution (called the posterior distribution)
	- $\mathbb{P}(\mu | r_0, a_0, r_1, a_1, \ldots, r_{t-1}, a_{t-1})$
- Note that although we are now treating μ as random, we still assume its value is
- What changes with t is our information about $\pmb{\mu}$, i.e., the posterior distribution, as

the reward distributions are entirely characterized by μ , so prior is: $\pi(\mu)$

that exactly characterizes our uncertainty about μ .

only drawn once (from the prior) and then stays the same throughout *t*

we collect more and more data by pulling arms via a bandit algorithm

23

- Feedback from last lecture • Recap • UCB regret analysis • Regret lower-bound • Bayesian bandit
	- Thompson sampling

Bayesian bandit environment means that at every time step, we know the distribution of the arm reward distributions conditioned on everything we've seen so far

- Bayesian bandit environment means that at every time step, we know the distribution of the arm reward distributions conditioned on everything we've seen so far
	- In particular, we know the exact probability, given everything we've seen so far, that each arm is the true optimal arm, i.e.,

 $\forall k$, we know $\mathbb{P}(k = k^{\star} | r_0, a_0, \ldots, r_{t-1}, a_{t-1})$

- Bayesian bandit environment means that at every time step, we know the distribution of the arm reward distributions conditioned on everything we've seen so far
	- In particular, we know the exact probability, given everything we've seen so far, that each arm is the true optimal arm, i.e.,
		- $\forall k$, we know $\mathbb{P}(k = k^{\star} | r_0, a_0, \ldots, r_{t-1}, a_{t-1})$
	-

Thompson sampling: sample from this distribution to determine next arm to pull

- Bayesian bandit environment means that at every time step, we know the distribution of the arm reward distributions conditioned on everything we've seen so far
	- In particular, we know the exact probability, given everything we've seen so far, that each arm is the true optimal arm, i.e.,

Thompson sampling: sample from this distribution to determine next arm to pull

 $For t = 0, \ldots, T - 1:$ $a_t \sim$ distribution of k^* | $r_0, a_0, ..., r_{t-1}, a_{t-1}$

 $\forall k$, we know $\mathbb{P}(k = k^{\star} | r_0, a_0, \ldots, r_{t-1}, a_{t-1})$

- Bayesian bandit environment means that at every time step, we know the distribution of the arm reward distributions conditioned on everything we've seen so far
	- In particular, we know the exact probability, given everything we've seen so far, that each arm is the true optimal arm, i.e.,

Thompson sampling: sample from this distribution to determine next arm to pull

 $For t = 0, ..., T - 1:$ $a_t \sim$ distribution of k^* | $r_0, a_0, ..., r_{t-1}, a_{t-1}$

How can we sample from this distribution?

 $\forall k$, we know $\mathbb{P}(k = k^{\star} | r_0, a_0, \ldots, r_{t-1}, a_{t-1})$

- Bayesian bandit environment means that at every time step, we know the distribution of the arm reward distributions conditioned on everything we've seen so far
	- In particular, we know the exact probability, given everything we've seen so far, that each arm is the true optimal arm, i.e.,

 $\forall k$, we know $\mathbb{P}(k=$

Thompson sampling: sample from this distribution to determine next arm to pull

 $For t = 0, ..., T - 1$: $a_t \sim$ distribution of k^* | $r_0, a_0, ..., r_{t-1}, a_{t-1}$

How can we sample from this distribution? Draw a sample $\mu_t \sim$ distribution of $\mu \mid r_0, a_0, ..., r_{t-1}, a_{t-1}$ and then compute $a_t = \arg\max_{t} \mu_t^{(k)}$, which is the same thing as $a_t \thicksim$ distribution of $k^\star \mid r_0, a_0,...,r_{t-1}, a_{t-1}$ *k*

$$
: k^{\star} | r_0, a_0, \ldots, r_{t-1}, a_{t-1})
$$

- Bayesian bandit environment means that at every time step, we know the distribution of the arm reward distributions conditioned on everything we've seen so far
	- In particular, we know the exact probability, given everything we've seen so far, that each arm is the true optimal arm, i.e.,

 $\forall k$, we know $\mathbb{P}(k=$

Thompson sampling: sample from this distribution to determine next arm to pull

 $For t = 0, ..., T - 1$: $a_t \sim$ distribution of k^* | $r_0, a_0, ..., r_{t-1}, a_{t-1}$

That's it! Statistically, this is a super simple and elegant algorithm How can we sample from this distribution? Draw a sample $\mu_t \sim$ distribution of $\mu \mid r_0, a_0, ..., r_{t-1}, a_{t-1}$ and then compute $a_t = \arg\max_{t} \mu_t^{(k)}$, which is the same thing as $a_t \thicksim$ distribution of $k^\star \mid r_0, a_0,...,r_{t-1}, a_{t-1}$ *k*

$$
: k^{\star} | r_0, a_0, \ldots, r_{t-1}, a_{t-1})
$$

- Bayesian bandit environment means that at every time step, we know the distribution of the arm reward distributions conditioned on everything we've seen so far
	- In particular, we know the exact probability, given everything we've seen so far, that each arm is the true optimal arm, i.e.,

 $\forall k$, we know $\mathbb{P}(k=$

Thompson sampling: sample from this distribution to determine next arm to pull

 $For t = 0, ..., T - 1$: $a_t \sim$ distribution of k^* | $r_0, a_0, ..., r_{t-1}, a_{t-1}$

That's it! Statistically, this is a super simple and elegant algorithm (though computationally, it may not be easy to update the posterior at each time step) How can we sample from this distribution? Draw a sample $\mu_t \sim$ distribution of $\mu \mid r_0, a_0, ..., r_{t-1}, a_{t-1}$ and then compute $a_t = \arg\max_{t} \mu_t^{(k)}$, which is the same thing as $a_t \thicksim$ distribution of $k^\star \mid r_0, a_0,...,r_{t-1}, a_{t-1}$ *k*

$$
: k^{\star} | r_0, a_0, \ldots, r_{t-1}, a_{t-1})
$$

24

 $\overline{\text{Thompson sampling: }} a_t \sim \text{distribution of } k^\star \mid r_0, a_0, ..., r_{t-1}, a_{t-1}$

$\overline{\text{Thompson sampling: }} a_t \sim \text{distribution of } k^\star \mid r_0, a_0, ..., r_{t-1}, a_{t-1}$

Why is this a good idea?

- $\overline{\text{Thompson sampling: }} a_t \sim \text{distribution of } k^\star \mid r_0, a_0, ..., r_{t-1}, a_{t-1}$
	- Why is this a good idea?
- A good tradeoff of exploration vs exploitation should:

- $\overline{\text{Thompson sampling: }} a_t \sim \text{distribution of } k^\star \mid r_0, a_0, ..., r_{t-1}, a_{t-1}$
	- Why is this a good idea?
- A good tradeoff of exploration vs exploitation should: a) Sample the optimal arm as much as possible (duh)

- $\overline{\text{Thompson sampling: }} a_t \sim \text{distribution of } k^\star \mid r_0, a_0, ..., r_{t-1}, a_{t-1}$
	- Why is this a good idea?
- A good tradeoff of exploration vs exploitation should: a) Sample the optimal arm as much as possible (duh) b) Ensure arms that might still be optimal aren't overlooked

- $\overline{\text{Thompson sampling: }} a_t \sim \text{distribution of } k^\star \mid r_0, a_0, ..., r_{t-1}, a_{t-1}$
	- Why is this a good idea?
- A good tradeoff of exploration vs exploitation should: a) Sample the optimal arm as much as possible (duh) b) Ensure arms that might still be optimal aren't overlooked c) Not waste undue time on less promising arms

 $\overline{\text{Thompson sampling: }} a_t \sim \text{distribution of } k^\star \mid r_0, a_0, ..., r_{t-1}, a_{t-1}$ Why is this a good idea?

A good tradeoff of exploration vs exploitation should: a) Sample the optimal arm as much as possible (duh) b) Ensure arms that might still be optimal aren't overlooked c) Not waste undue time on less promising arms Intuitively: want to sample arms proportionally to how promising they are

-
-
-
-
-
Thompson sampling intuition

 $\overline{\text{Thompson sampling: }} a_t \sim \text{distribution of } k^\star \mid r_0, a_0, ..., r_{t-1}, a_{t-1}$ Why is this a good idea?

A good tradeoff of exploration vs exploitation should: a) Sample the optimal arm as much as possible (duh) b) Ensure arms that might still be optimal aren't overlooked c) Not waste undue time on less promising arms Intuitively: want to sample arms proportionally to how promising they are

-
-
-
-
-
- This is exactly what Thompson sampling does, where "promising" is encoded very naturally as: "the probability that the arm is the optimal arm, given all the data so far"

Thompson sampling intuition

 $\overline{\text{Thompson sampling: }} a_t \sim \text{distribution of } k^\star \mid r_0, a_0, ..., r_{t-1}, a_{t-1}$ Why is this a good idea?

A good tradeoff of exploration vs exploitation should: a) Sample the optimal arm as much as possible (duh) b) Ensure arms that might still be optimal aren't overlooked c) Not waste undue time on less promising arms Intuitively: want to sample arms proportionally to how promising they are

-
-
-
-
-
- This is exactly what Thompson sampling does, where "promising" is encoded very naturally as: "the probability that the arm is the optimal arm, given all the data so far"
	- No arbitrary *δ* tuning parameter, but do have to choose prior *π*

Thompson sampling intuition

 $\overline{\text{Thompson sampling: }} a_t \sim \text{distribution of } k^\star \mid r_0, a_0, ..., r_{t-1}, a_{t-1}$ Why is this a good idea?

A good tradeoff of exploration vs exploitation should: a) Sample the optimal arm as much as possible (duh) b) Ensure arms that might still be optimal aren't overlooked c) Not waste undue time on less promising arms Intuitively: want to sample arms proportionally to how promising they are

-
-
-
-
-
- This is exactly what Thompson sampling does, where "promising" is encoded very naturally as: "the probability that the arm is the optimal arm, given all the data so far"
	- 25 No arbitrary *δ* tuning parameter, but do have to choose prior *π* π can often be chosen "uninformatively" to a default prior such as the uniform, or can encode nuanced prior information/belief about the arms' reward distributions

Thompson sampling samples arms proportionally to how promising they are

- Thompson sampling samples arms proportionally to how promising they are
- Note this sampling is much more sophisticated than, say, ε -greedy, which really just samples according to 2 categories: "most promising" and "other"

- Thompson sampling samples arms proportionally to how promising they are
- Note this sampling is much more sophisticated than, say, ε -greedy, which really just samples according to 2 categories: "most promising" and "other"
- But it's also quite different from UCB, whose OFU approach doesn't really involve
- "sampling" at all, i.e., every a_t for UCB is a *deterministic* function of the previous data

- Thompson sampling samples arms proportionally to how promising they are
- Note this sampling is much more sophisticated than, say, ε -greedy, which really just samples according to 2 categories: "most promising" and "other"
- But it's also quite different from UCB, whose OFU approach doesn't really involve "sampling" at all, i.e., every a_t for UCB is a *deterministic* function of the previous data
- My interpretation: OFU provides a simple heuristic to accomplish what Thompson sampling does by design, namely, sample arms according to how promising they are

- Thompson sampling samples arms proportionally to how promising they are
- Note this sampling is much more sophisticated than, say, ε -greedy, which really just samples according to 2 categories: "most promising" and "other"
- But it's also quite different from UCB, whose OFU approach doesn't really involve "sampling" at all, i.e., every a_t for UCB is a *deterministic* function of the previous data
- My interpretation: OFU provides a simple heuristic to accomplish what Thompson sampling does by design, namely, sample arms according to how promising they are
- Thompson sampling can do this because of the Bayesian bandit: assuming a prior on the reward distributions makes the arm means random, otherwise it wouldn't even make sense to talk about "the probability that an arm is the best arm"

- Thompson sampling samples arms proportionally to how promising they are
- Note this sampling is much more sophisticated than, say, ε -greedy, which really just samples according to 2 categories: "most promising" and "other"
- But it's also quite different from UCB, whose OFU approach doesn't really involve "sampling" at all, i.e., every a_t for UCB is a *deterministic* function of the previous data
- My interpretation: OFU provides a simple heuristic to accomplish what Thompson sampling does by design, namely, sample arms according to how promising they are
- Thompson sampling can do this because of the Bayesian bandit: assuming a prior on the reward distributions makes the arm means random, otherwise it wouldn't even make sense to talk about "the probability that an arm is the best arm"
	- Although derived from the Bayesian bandit, Thompson sampling has excellent practical performance across bandit problems, whether or not they are Bayesian!

Thompson sampling has excellent performance in practice, but is still just a heuristic

Thompson sampling has excellent performance in practice, but is still just a heuristic

Thompson sampling has excellent performance in practice, but is still just a heuristic

There is an *instance-dependent* lower-bound result that says that for any bandit algorithm: $\liminf_{n \to \infty} \frac{1}{\sqrt{n}} \geq \frac{1}{\sqrt{n}}$ *T*→∞ $\mathbb{E}[N^{(\bar{k})}_T]$ $\frac{1}{\ln(T)} \geq$ 1 $d(\nu^{(k^{\star})}, \nu^{(k)})$

where d is a distance between distributions called the Kullback—Leibler divergence

Thompson sampling has excellent performance in practice, but is still just a heuristic

There is an *instance-dependent* lower-bound result that says that for any bandit algorithm: $\liminf_{n \to \infty} \frac{1}{\sqrt{n}} \geq \frac{1}{\sqrt{n}}$ *T*→∞ $\mathbb{E}[N^{(\bar{k})}_T]$ $\frac{1}{\ln(T)} \geq$ 1 $d(\nu^{(k^{\star})}, \nu^{(k)})$

where d is a distance between distributions called the Kullback—Leibler divergence

It turns out that Thompson sampling satisfies this lower-bound with equality!

Thompson sampling has excellent performance in practice, but is still just a heuristic

There is an *instance-dependent* lower-bound result that says that for any bandit algorithm: $\liminf_{n \to \infty} \frac{1}{\sqrt{n}} \geq \frac{1}{\sqrt{n}}$ *T*→∞ $\mathbb{E}[N^{(\bar{k})}_T]$ $\frac{1}{\ln(T)} \geq$ 1 $d(\nu^{(k^{\star})}, \nu^{(k)})$

where d is a distance between distributions called the Kullback—Leibler divergence

It turns out that Thompson sampling satisfies this lower-bound with equality!

So it is asymptotically optimal, not just in its rate, but its constant too!

T→∞ $\mathbb{E}[N^{(\bar{k})}_T]$

- Thompson sampling has excellent performance in practice, but is still just a heuristic
	- However, asymptotically, i.e., as $T \to \infty$, it actually is optimal in a certain sense
	- There is an *instance-dependent* lower-bound result that says that for any bandit algorithm:
		- $\liminf_{n \to \infty} \frac{1}{\sqrt{n}} \geq \frac{1}{\sqrt{n}}$ $\frac{1}{\ln(T)} \geq$ 1 $d(\nu^{(k^{\star})}, \nu^{(k)})$
- where d is a distance between distributions called the Kullback—Leibler divergence
	- It turns out that Thompson sampling satisfies this lower-bound with equality!
		- So it is asymptotically optimal, not just in its rate, but its constant too!
			- (UCB is not, but there are more complicated versions of it that are)

What could go wrong for smaller *T*? Suppose $K = 2$ and $T = 3$, and:

What could go wrong for smaller *T*? Suppose $K = 2$ and $T = 3$, and:

•
$$
t = 0
$$
: $a_0 = 1$, $r_0 = 1$

What could go wrong for smaller *T*? Suppose $K = 2$ and $T = 3$, and:

•
$$
t = 0
$$
: $a_0 = 1$, $r_0 = 1$

•
$$
t = 1
$$
: $a_1 = 2$, $r_1 = 0$

What could go wrong for smaller *T*? Suppose $K = 2$ and $T = 3$, and:

• $t = 2$ (last time step, with $\hat{\mu}_{2}^{(1)} = 1$ and $\hat{\mu}_{2}^{(2)} = 0$): $a_{2} = ?$ 2

$= 1$ and $\hat{\mu}_{2}^{(2)}$ ̂ 2 $= 0$: $a_2 =$

•
$$
t = 0
$$
: $a_0 = 1$, $r_0 = 1$

•
$$
t = 1
$$
: $a_1 = 2$, $r_1 = 0$

What could go wrong for smaller *T*? Suppose $K = 2$ and $T = 3$, and:

- $t = 0$: $a_0 = 1$, $r_0 = 1$
- $t = 1$: $a_1 = 2$, $r_1 = 0$
- $t = 2$ (last time step, with $\hat{\mu}_{2}^{(1)} = 1$ and $\hat{\mu}_{2}^{(2)} = 0$): $a_{2} = ?$ 2 $= 1$ and $\hat{\mu}$

Thompson sampling in practice (cont'd) So Thompson sampling is basically exactly optimal for large *T*

Thompson sampling has a decent probability of choosing $a_2=2$, since with just one sample from each arm, Thompson sampling isn't sure which arm is best.

$$
ad \hat{\mu}_2^{(2)} = 0
$$
: $a_2 = ?$

What could go wrong for smaller *T*? Suppose $K = 2$ and $T = 3$, and:

- $t = 0$: $a_0 = 1$, $r_0 = 1$
- $t = 1$: $a_1 = 2$, $r_1 = 0$
- $t = 2$ (last time step, with $\hat{\mu}_{2}^{(1)} = 1$ and $\hat{\mu}_{2}^{(2)} = 0$): $a_{2} = ?$ 2 $= 1$ and $\hat{\mu}$

Thompson sampling in practice (cont'd) So Thompson sampling is basically exactly optimal for large *T*

But $a_2 = 1$ is clear right choice here: there is no future value to learning more, i.e., no reason to explore rather than exploit.

$$
ad \hat{\mu}_2^{(2)} = 0
$$
: $a_2 = ?$

Thompson sampling has a decent probability of choosing $a_2=2$, since with just

one sample from each arm, Thompson sampling isn't sure which arm is best.

What could go wrong for smaller *T*? Suppose $K = 2$ and $T = 3$, and:

- $t = 0$: $a_0 = 1$, $r_0 = 1$
- $t = 1$: $a_1 = 2$, $r_1 = 0$
- $t = 2$ (last time step, with $\hat{\mu}_{2}^{(1)} = 1$ and $\hat{\mu}_{2}^{(2)} = 0$): $a_{2} = ?$ 2 $= 1$ and $\hat{\mu}$

Thompson sampling in practice (cont'd) So Thompson sampling is basically exactly optimal for large *T*

$$
ad \hat{\mu}_2^{(2)} = 0
$$
: $a_2 = ?$

Thompson sampling has a decent probability of choosing $a_2=2$, since with just

But $a_2 = 1$ is clear right choice here: there is no future value to learning more, i.e.,

one sample from each arm, Thompson sampling isn't sure which arm is best.

no reason to explore rather than exploit.

Thompson sampling doesn't know this, and neither does UCB (although UCB wouldn't happen to make the same mistake in this case).

For small *T*, Thompson sampling is not greedy enough

For small *T*, Thompson sampling is not greedy enough

Fix: add a tuning parameter to make it more greedy. Some possibilities:

For small *T*, Thompson sampling is not greedy enough

Fix: add a tuning parameter to make it more greedy. Some possibilities:

- Update the Beta parameters by $1+\epsilon$ instead of just 1 each time
-

- For small *T*, Thompson sampling is not greedy enough
	-

Fix: add a tuning parameter to make it more greedy. Some possibilities:

- Update the Beta parameters by $1+\epsilon$ instead of just 1 each time
- Instead of just taking one sample of μ and computing the greedy action with respect to it, take n samples, compute the greedy action with respect to each, and pick the *mode* of those greedy actions

- For small *T*, Thompson sampling is not greedy enough
	-

Fix: add a tuning parameter to make it more greedy. Some possibilities:

- Update the Beta parameters by $1+\epsilon$ instead of just 1 each time
- Instead of just taking one sample of μ and computing the greedy action with respect to it, take n samples, compute the greedy action with respect to each, and pick the *mode* of those greedy actions

All of these favor arms that the algorithm has more confidence are good (i.e., arms

that have worked well so far), as opposed to arms that *may* be good

- For small *T*, Thompson sampling is not greedy enough
	-

Fix: add a tuning parameter to make it more greedy. Some possibilities:

- Update the Beta parameters by $1+\epsilon$ instead of just 1 each time
- Instead of just taking one sample of μ and computing the greedy action with respect to it, take n samples, compute the greedy action with respect to each, and pick the *mode* of those greedy actions

that have worked well so far), as opposed to arms that *may* be good

- All of these favor arms that the algorithm has more confidence are good (i.e., arms
- Such tuning can improve Thompson sampling's performance even for reasonably large *T* (the asymptotic optimality of vanilla TS is *very* asymptotic)

Summary:

Feedback: bit.ly/3RHtlxy

Attendance:

bit.ly/3RcTC9T

- \cdot UCB achieves regret of $\tilde{O}(\sqrt{TK})$
- A regret lower-bound exists that says one can't do better than $\Omega(\sqrt{T})$ regret
- Bayesian bandit prior + Bayes rule gives exact running uncertainty quantification
- Thompson sampling samples optimal arm from its (posterior) distribution
- Thompson sampling achieves excellent performance in practice