
 
Bandits: UCB Regret, Bayesian

Bandits, and Thompson
Sampling

 
Lucas Janson 

CS/Stat 184(0): Introduction to Reinforcement Learning  
Fall 2024

1

 
Bandits: UCB Regret, Bayesian

Bandits, and Thompson
Sampling

 
Lucas Janson 

CS/Stat 184(0): Introduction to Reinforcement Learning  
Fall 2024

1

Today

• Feedback from last lecture

• Recap

• UCB regret analysis

• Regret lower-bound

• Bayesian bandit

• Thompson sampling

2

Feedback from feedback forms

3

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

3

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

3

Today

4

• Feedback from last lecture

• Recap

• UCB regret analysis

• Regret lower-bound

• Bayesian bandit

• Thompson sampling

Recap

5

Recap

•Pure greedy and pure exploration achieve linear regret

5

Recap

•Pure greedy and pure exploration achieve linear regret

•Explore-then-commit (ETC) and -greedy:ε

5

Recap

•Pure greedy and pure exploration achieve linear regret

•Explore-then-commit (ETC) and -greedy:ε
•balance exploration with exploitation

5

Recap

•Pure greedy and pure exploration achieve linear regret

•Explore-then-commit (ETC) and -greedy:ε
•balance exploration with exploitation
•Achieve sublinear regret of Õ(T2/3)

5

Recap

•Pure greedy and pure exploration achieve linear regret

•Explore-then-commit (ETC) and -greedy:ε
•balance exploration with exploitation
•Achieve sublinear regret of Õ(T2/3)
•Exploration is non-adaptive

5

Recap

•Pure greedy and pure exploration achieve linear regret

•Explore-then-commit (ETC) and -greedy:ε
•balance exploration with exploitation
•Achieve sublinear regret of Õ(T2/3)
•Exploration is non-adaptive

•Today: UCB does better than a rate of T2/3

5

Recap of UCB

6

Recap of UCB

6

Notation: and N(k)
t =

t−1

∑
τ=0

1{aτ=k} ̂μ(k)
t = 1

N(k)
t

t−1

∑
τ=0

1{aτ=k}rτ

Recap of UCB

6

Notation: and N(k)
t =

t−1

∑
τ=0

1{aτ=k} ̂μ(k)
t = 1

N(k)
t

t−1

∑
τ=0

1{aτ=k}rτ

Any-algorithm time-and-arm-uniform error bounds for arm mean estimates:

ℙ (∀k ≤ K, t < T, | ̂μ(k)
t − μ(k) | ≤ ln(2TK/δ)/2N(k)

t) ≥ 1 − δ

Recap of UCB

6

UCB Algorithm:

For :t = 0,…, T − 1

Choose the arm with the highest upper confidence bound, i.e.,

at = arg max

k∈{1,…,K}
̂μ(k)
t + ln(2TK/δ)/2N(k)

t

Notation: and N(k)
t =

t−1

∑
τ=0

1{aτ=k} ̂μ(k)
t = 1

N(k)
t

t−1

∑
τ=0

1{aτ=k}rτ

Any-algorithm time-and-arm-uniform error bounds for arm mean estimates:

ℙ (∀k ≤ K, t < T, | ̂μ(k)
t − μ(k) | ≤ ln(2TK/δ)/2N(k)

t) ≥ 1 − δ

Today

7

• Feedback from last lecture

• Recap

• UCB regret analysis

• Regret lower-bound

• Bayesian bandit

• Thompson sampling

UCB Regret Analysis Strategy

8

UCB Regret Analysis Strategy

1. Bound regret at each time step

8

UCB Regret Analysis Strategy

1. Bound regret at each time step
2. Bound the sum of those bounds over time steps

8

UCB regret at each time step
Recall is optimal arm, so is true best arm mean. Thus time step regret is:k⋆ μ(k⋆) t

9

UCB regret at each time step

μ(k⋆) − μ(at) ≤ ̂μ(k⋆)
t + ln(2KT/δ)/2N(k⋆)

t − μ(at) (CI coverage on arm k⋆)

Recall is optimal arm, so is true best arm mean. Thus time step regret is:k⋆ μ(k⋆) t

9

UCB regret at each time step

μ(k⋆) − μ(at) ≤ ̂μ(k⋆)
t + ln(2KT/δ)/2N(k⋆)

t − μ(at) (CI coverage on arm k⋆)

Recall is optimal arm, so is true best arm mean. Thus time step regret is:k⋆ μ(k⋆) t

9

Next step?

UCB regret at each time step

μ(k⋆) − μ(at) ≤ ̂μ(k⋆)
t + ln(2KT/δ)/2N(k⋆)

t − μ(at) (CI coverage on arm k⋆)

Recall is optimal arm, so is true best arm mean. Thus time step regret is:k⋆ μ(k⋆) t

≤ ̂μ(at)
t + ln(2KT/δ)/2N(at)

t − μ(at) (at maximizes UCB by definition)

9

Next step?

UCB regret at each time step

μ(k⋆) − μ(at) ≤ ̂μ(k⋆)
t + ln(2KT/δ)/2N(k⋆)

t − μ(at) (CI coverage on arm k⋆)

Recall is optimal arm, so is true best arm mean. Thus time step regret is:k⋆ μ(k⋆) t

≤ ̂μ(at)
t + ln(2KT/δ)/2N(at)

t − μ(at) (at maximizes UCB by definition)

≤ ln(2KT/δ)/2N(at)
t + ln(2KT/δ)/2N(at)

t (CI coverage on arm at)

9

Next step?

UCB regret at each time step

μ(k⋆) − μ(at) ≤ ̂μ(k⋆)
t + ln(2KT/δ)/2N(k⋆)

t − μ(at) (CI coverage on arm k⋆)

Recall is optimal arm, so is true best arm mean. Thus time step regret is:k⋆ μ(k⋆) t

≤ ̂μ(at)
t + ln(2KT/δ)/2N(at)

t − μ(at) (at maximizes UCB by definition)

≤ ln(2KT/δ)/2N(at)
t + ln(2KT/δ)/2N(at)

t (CI coverage on arm at)

= 2 ln(2KT/δ)/N(at)
t

9

Next step?

UCB regret at each time step

μ(k⋆) − μ(at) ≤ ̂μ(k⋆)
t + ln(2KT/δ)/2N(k⋆)

t − μ(at) (CI coverage on arm k⋆)

Recall is optimal arm, so is true best arm mean. Thus time step regret is:k⋆ μ(k⋆) t

≤ ̂μ(at)
t + ln(2KT/δ)/2N(at)

t − μ(at) (at maximizes UCB by definition)

≤ ln(2KT/δ)/2N(at)
t + ln(2KT/δ)/2N(at)

t (CI coverage on arm at)

= 2 ln(2KT/δ)/N(at)
t

all lines above hold simultaneously for all w/p because of uniform Hoeffdingt 1 − δ
9

Next step?

Sum of UCB per-time-step regrets
1. per-time-step regret bound μ(k⋆) − μ(at) ≤ 2 ln(2KT/δ)/N(at)

t w/p 1 − δ

2.

10

Sum of UCB per-time-step regrets

RegretT ≤
T−1

∑
t=0

2 ln(2KT/δ)/N(at)
t = 2 ln(2KT/δ)

T−1

∑
t=0

1
N(at)t

w/p 1 − δ

1. per-time-step regret bound μ(k⋆) − μ(at) ≤ 2 ln(2KT/δ)/N(at)
t w/p 1 − δ

2.

10

Sum of UCB per-time-step regrets

RegretT ≤
T−1

∑
t=0

2 ln(2KT/δ)/N(at)
t = 2 ln(2KT/δ)

T−1

∑
t=0

1
N(at)t

w/p 1 − δ

T−1

∑
t=0

1
N(at)t

=
T−1

∑
t=0

K

∑
k=1

1{at=k}
1

N(k)
t

1. per-time-step regret bound μ(k⋆) − μ(at) ≤ 2 ln(2KT/δ)/N(at)
t w/p 1 − δ

2.

10

Sum of UCB per-time-step regrets

RegretT ≤
T−1

∑
t=0

2 ln(2KT/δ)/N(at)
t = 2 ln(2KT/δ)

T−1

∑
t=0

1
N(at)t

w/p 1 − δ

T−1

∑
t=0

1
N(at)t

=
T−1

∑
t=0

K

∑
k=1

1{at=k}
1

N(k)
t

1. per-time-step regret bound μ(k⋆) − μ(at) ≤ 2 ln(2KT/δ)/N(at)
t w/p 1 − δ

2.

10

=
K

∑
k=1

N(k)
T

∑
n=1

1
n

- 1

Sum of UCB per-time-step regrets

RegretT ≤
T−1

∑
t=0

2 ln(2KT/δ)/N(at)
t = 2 ln(2KT/δ)

T−1

∑
t=0

1
N(at)t

w/p 1 − δ

T−1

∑
t=0

1
N(at)t

=
T−1

∑
t=0

K

∑
k=1

1{at=k}
1

N(k)
t

1. per-time-step regret bound μ(k⋆) − μ(at) ≤ 2 ln(2KT/δ)/N(at)
t w/p 1 − δ

2.

10

=
K

∑
k=1

N(k)
T

∑
n=1

1
n

≤ K
T

∑
n=1

1
n

Sum of UCB per-time-step regrets

RegretT ≤
T−1

∑
t=0

2 ln(2KT/δ)/N(at)
t = 2 ln(2KT/δ)

T−1

∑
t=0

1
N(at)t

w/p 1 − δ

T−1

∑
t=0

1
N(at)t

=
T−1

∑
t=0

K

∑
k=1

1{at=k}
1

N(k)
t

1. per-time-step regret bound μ(k⋆) − μ(at) ≤ 2 ln(2KT/δ)/N(at)
t w/p 1 − δ

2.

10

=
K

∑
k=1

N(k)
T

∑
n=1

1
n

≤ K
T

∑
n=1

1
n

≤ 2K T

Sum of UCB per-time-step regrets

RegretT ≤
T−1

∑
t=0

2 ln(2KT/δ)/N(at)
t = 2 ln(2KT/δ)

T−1

∑
t=0

1
N(at)t

w/p 1 − δ

T−1

∑
t=0

1
N(at)t

=
T−1

∑
t=0

K

∑
k=1

1{at=k}
1

N(k)
t

1. per-time-step regret bound μ(k⋆) − μ(at) ≤ 2 ln(2KT/δ)/N(at)
t w/p 1 − δ

2.

10

=
K

∑
k=1

N(k)
T

∑
n=1

1
n

≤ K
T

∑
n=1

1
n

≤ 2K T

T

∑
n=1

1
n

≤ 1 + ∫
T

1

1
x

dx = 1 + 2 x ∣x=T
x=1 = 2 T

time stepget a
O:Yuddtrest of this bounds regret for alg's times K, T-

A

#-
T

U

UCB total regret

11

UCB total regret

Finally, putting it all together, we get:
RegretT ≤ 2K T 2 ln(KT/δ) w/p 1 − δ

11

UCB total regret

Finally, putting it all together, we get:
RegretT ≤ 2K T 2 ln(KT/δ) w/p 1 − δ

= Õ(T) w/p 1 − δ

11

UCB total regret

In fact, a more sophisticated analysis can get: RegretT = Õ(KT) w/p 1 − δ

Finally, putting it all together, we get:
RegretT ≤ 2K T 2 ln(KT/δ) w/p 1 − δ

= Õ(T) w/p 1 − δ

11

Today

12

• Feedback from last lecture

• Recap

• UCB regret analysis

• Regret lower-bound

• Bayesian bandit

• Thompson sampling

Can we do better than regret?Ω(T)

13

Can we do better than regret?Ω(T)
Short answer: no

13

Can we do better than regret?Ω(T)
Short answer: no

But how can we know that?

13

Can we do better than regret?Ω(T)
Short answer: no

But how can we know that?

A lower bound on the achievable regret

13

Can we do better than regret?Ω(T)
Short answer: no

But how can we know that?

A lower bound on the achievable regret

So far we our theoretical analysis has always considered a fixed algorithm and
analyzed it (by deriving a regret upper bound with high probability)

13

Can we do better than regret?Ω(T)
Short answer: no

But how can we know that?

A lower bound on the achievable regret

So far we our theoretical analysis has always considered a fixed algorithm and
analyzed it (by deriving a regret upper bound with high probability)

To get a lower bound, we would need to consider what regret could be achieved by
any algorithm, and show it can’t be better than some rate

13

Intuition for lower bound

14

Intuition for lower bound
1. CLT tells us that with i.i.d. samples from a distribution , we can only learn

’s mean to within
T ν

ν μ Ω(1/ T)

14

Intuition for lower bound
1. CLT tells us that with i.i.d. samples from a distribution , we can only learn

’s mean to within
T ν

ν μ Ω(1/ T)
2. Then since in a bandit, we get at most samples total, certainly we can’t

learn any of the arm means better than to within
T

Ω(1/ T)

14

Intuition for lower bound
1. CLT tells us that with i.i.d. samples from a distribution , we can only learn

’s mean to within
T ν

ν μ Ω(1/ T)
2. Then since in a bandit, we get at most samples total, certainly we can’t

learn any of the arm means better than to within
T

Ω(1/ T)
3. This means that if an arm is about away from the best arm , then

at no point during the bandit can we confidently tell them apart
k̃ 1/ T k⋆

14

Intuition for lower bound
1. CLT tells us that with i.i.d. samples from a distribution , we can only learn

’s mean to within
T ν

ν μ Ω(1/ T)
2. Then since in a bandit, we get at most samples total, certainly we can’t

learn any of the arm means better than to within
T

Ω(1/ T)
3. This means that if an arm is about away from the best arm , then

at no point during the bandit can we confidently tell them apart
k̃ 1/ T k⋆

4. Thus, we should expect to sample roughly as often as , which is at best
roughly times (if we ignore any other arms)

k̃ k⋆

T/2

14

Intuition for lower bound
1. CLT tells us that with i.i.d. samples from a distribution , we can only learn

’s mean to within
T ν

ν μ Ω(1/ T)
2. Then since in a bandit, we get at most samples total, certainly we can’t

learn any of the arm means better than to within
T

Ω(1/ T)
3. This means that if an arm is about away from the best arm , then

at no point during the bandit can we confidently tell them apart
k̃ 1/ T k⋆

4. Thus, we should expect to sample roughly as often as , which is at best
roughly times (if we ignore any other arms)

k̃ k⋆

T/2
5. Finally, since the regret incurred each time we pull arm is , and we

pull it times, we get a regret lower bound of
k̃ 1/ T

T/2 (1/ T) × T/2 = Ω(T)
14

Today

15

• Feedback from last lecture

• Recap

• UCB regret analysis

• Regret lower-bound

• Bayesian bandit

• Thompson sampling

Bayesian bandit

16

Bayesian bandit
A Bayesian bandit augments the bandit environment we’ve been working in so far
with a prior distribution on the unknown reward distributions: π(ν(1), …, ν(K))

16

Bayesian bandit
A Bayesian bandit augments the bandit environment we’ve been working in so far
with a prior distribution on the unknown reward distributions: π(ν(1), …, ν(K))

E.g., in a Bernoulli bandit, each is entirely characterized by its mean
, so a prior on the is equivalent to a prior on the

ν(k)

μ(k) = ℙr∼ν(k)(r = 1) ν(k) μ(k)

16

Bayesian bandit
A Bayesian bandit augments the bandit environment we’ve been working in so far
with a prior distribution on the unknown reward distributions: π(ν(1), …, ν(K))

E.g., in a Bernoulli bandit, each is entirely characterized by its mean
, so a prior on the is equivalent to a prior on the

ν(k)

μ(k) = ℙr∼ν(k)(r = 1) ν(k) μ(k)

One such prior, since all the are bounded between and ,

is the prior that is Uniform on the unit hypercube, i.e.,

μ(k) 0 1

(μ(1), …, μ(K)) =: μ ∼ Uniform([0,1]K)

16

Bayesian bandit
A Bayesian bandit augments the bandit environment we’ve been working in so far
with a prior distribution on the unknown reward distributions: π(ν(1), …, ν(K))

E.g., in a Bernoulli bandit, each is entirely characterized by its mean
, so a prior on the is equivalent to a prior on the

ν(k)

μ(k) = ℙr∼ν(k)(r = 1) ν(k) μ(k)

One such prior, since all the are bounded between and ,

is the prior that is Uniform on the unit hypercube, i.e.,

μ(k) 0 1

(μ(1), …, μ(K)) =: μ ∼ Uniform([0,1]K)
Note that the Bernoulli bandit reduced everything unknown about the bandit system

to a -dimensional vector K μ

16

Bayesian bandit
A Bayesian bandit augments the bandit environment we’ve been working in so far
with a prior distribution on the unknown reward distributions: π(ν(1), …, ν(K))

E.g., in a Bernoulli bandit, each is entirely characterized by its mean
, so a prior on the is equivalent to a prior on the

ν(k)

μ(k) = ℙr∼ν(k)(r = 1) ν(k) μ(k)

One such prior, since all the are bounded between and ,

is the prior that is Uniform on the unit hypercube, i.e.,

μ(k) 0 1

(μ(1), …, μ(K)) =: μ ∼ Uniform([0,1]K)
Note that the Bernoulli bandit reduced everything unknown about the bandit system

to a -dimensional vector K μ

16

Without the Bernoulli assumption, we may need many more dimensions to describe
the possible distributions, and hence have to define a much higher-dimensional prior

Bayesian Bernoulli bandit

17

Bayesian Bernoulli bandit
The really nice thing about a Bayesian bandit is that we can use Bayes rule to exactly

characterize our uncertainty about the reward distributions at every time step.

17

Bayesian Bernoulli bandit
The really nice thing about a Bayesian bandit is that we can use Bayes rule to exactly

characterize our uncertainty about the reward distributions at every time step.

17

Example: Bayesian Bernoulli bandit

Bayesian Bernoulli bandit
The really nice thing about a Bayesian bandit is that we can use Bayes rule to exactly

characterize our uncertainty about the reward distributions at every time step.

1. At , how can we characterize our uncertainty about ?t = 0 μ

17

Example: Bayesian Bernoulli bandit

Bayesian Bernoulli bandit
The really nice thing about a Bayesian bandit is that we can use Bayes rule to exactly

characterize our uncertainty about the reward distributions at every time step.

1. At , how can we characterize our uncertainty about ?t = 0 μ

17

Example: Bayesian Bernoulli bandit

We have no data, and the distribution of the reward distributions is simply
given by the prior on the reward parameters :

μ

ℙ(μ) = π(μ)

Bayesian Bernoulli bandit
The really nice thing about a Bayesian bandit is that we can use Bayes rule to exactly

characterize our uncertainty about the reward distributions at every time step.

1. At , how can we characterize our uncertainty about ?t = 0 μ

17

Example: Bayesian Bernoulli bandit

(will sometimes denote a continuous density instead of a true probability,

e.g., for , we would write)
ℙ

μ ∼ Uniform([0,1]K) ℙ(μ) = 1{0≤μ(k)≤1 ∀k}

We have no data, and the distribution of the reward distributions is simply
given by the prior on the reward parameters :

μ

ℙ(μ) = π(μ)

Bayesian Bernoulli bandit (cont’d)
1. At , t = 0 ℙ(μ) = π(μ)

18

Bayesian Bernoulli bandit (cont’d)
1. At , t = 0 ℙ(μ) = π(μ)

18

2. At , we have one data point , and the distribution of
gets updated via Bayes rule:

t = 1 r0 ∼ Bernoulli(μ(a0)) μ

Bayesian Bernoulli bandit (cont’d)
1. At , t = 0 ℙ(μ) = π(μ)

ℙ(μ ∣ r0, a0) = ℙ(r0, a0 ∣ μ)ℙ(μ)
ℙ(r0, a0)

18

2. At , we have one data point , and the distribution of
gets updated via Bayes rule:

t = 1 r0 ∼ Bernoulli(μ(a0)) μ

Bayesian Bernoulli bandit (cont’d)
1. At , t = 0 ℙ(μ) = π(μ)

ℙ(μ ∣ r0, a0) = ℙ(r0, a0 ∣ μ)ℙ(μ)
ℙ(r0, a0)

= ℙ(r0, a0 ∣ μ)ℙ(μ)
∫μ̃∈[0,1]K ℙ(r0, a0 ∣ μ̃)ℙ(μ̃)dμ̃

18

2. At , we have one data point , and the distribution of
gets updated via Bayes rule:

t = 1 r0 ∼ Bernoulli(μ(a0)) μ

Bayesian Bernoulli bandit (cont’d)
1. At , t = 0 ℙ(μ) = π(μ)

ℙ(μ ∣ r0, a0) = ℙ(r0, a0 ∣ μ)ℙ(μ)
ℙ(r0, a0)

= ℙ(r0, a0 ∣ μ)ℙ(μ)
∫μ̃∈[0,1]K ℙ(r0, a0 ∣ μ̃)ℙ(μ̃)dμ̃

= ℙ(r0 ∣ a0, μ)ℙ(a0 ∣ μ)ℙ(μ)
∫μ̃∈[0,1]K ℙ(r0 ∣ a0, μ̃)ℙ(a0 ∣ μ̃)ℙ(μ̃)dμ̃

18

2. At , we have one data point , and the distribution of
gets updated via Bayes rule:

t = 1 r0 ∼ Bernoulli(μ(a0)) μ

Bayesian Bernoulli bandit (cont’d)
1. At , t = 0 ℙ(μ) = π(μ)

ℙ(μ ∣ r0, a0) = ℙ(r0, a0 ∣ μ)ℙ(μ)
ℙ(r0, a0)

= ℙ(r0, a0 ∣ μ)ℙ(μ)
∫μ̃∈[0,1]K ℙ(r0, a0 ∣ μ̃)ℙ(μ̃)dμ̃

= ℙ(r0 ∣ a0, μ)ℙ(a0 ∣ μ)ℙ(μ)
∫μ̃∈[0,1]K ℙ(r0 ∣ a0, μ̃)ℙ(a0 ∣ μ̃)ℙ(μ̃)dμ̃

18

2. At , we have one data point , and the distribution of
gets updated via Bayes rule:

t = 1 r0 ∼ Bernoulli(μ(a0)) μ

Can you see any

way to simplify?

Bayesian Bernoulli bandit (cont’d)
1. At , t = 0 ℙ(μ) = π(μ)

ℙ(μ ∣ r0, a0) = ℙ(r0, a0 ∣ μ)ℙ(μ)
ℙ(r0, a0)

= ℙ(r0, a0 ∣ μ)ℙ(μ)
∫μ̃∈[0,1]K ℙ(r0, a0 ∣ μ̃)ℙ(μ̃)dμ̃

= ℙ(r0 ∣ a0, μ)ℙ(a0 ∣ μ)ℙ(μ)
∫μ̃∈[0,1]K ℙ(r0 ∣ a0, μ̃)ℙ(a0 ∣ μ̃)ℙ(μ̃)dμ̃

18

2. At , we have one data point , and the distribution of
gets updated via Bayes rule:

t = 1 r0 ∼ Bernoulli(μ(a0)) μ

= ℙ(r0 ∣ a0, μ)ℙ(a0)ℙ(μ)
∫μ̃∈[0,1]K ℙ(r0 ∣ a0, μ̃)ℙ(a0)ℙ(μ̃)dμ̃

Can you see any

way to simplify?

Bayesian Bernoulli bandit (cont’d)
1. At , t = 0 ℙ(μ) = π(μ)

ℙ(μ ∣ r0, a0) = ℙ(r0, a0 ∣ μ)ℙ(μ)
ℙ(r0, a0)

= ℙ(r0, a0 ∣ μ)ℙ(μ)
∫μ̃∈[0,1]K ℙ(r0, a0 ∣ μ̃)ℙ(μ̃)dμ̃

= ℙ(r0 ∣ a0, μ)ℙ(a0 ∣ μ)ℙ(μ)
∫μ̃∈[0,1]K ℙ(r0 ∣ a0, μ̃)ℙ(a0 ∣ μ̃)ℙ(μ̃)dμ̃

18

2. At , we have one data point , and the distribution of
gets updated via Bayes rule:

t = 1 r0 ∼ Bernoulli(μ(a0)) μ

= ℙ(r0 ∣ a0, μ)ℙ(a0)ℙ(μ)
∫μ̃∈[0,1]K ℙ(r0 ∣ a0, μ̃)ℙ(a0)ℙ(μ̃)dμ̃

= ℙ(r0 ∣ a0, μ)ℙ(μ)
∫μ̃∈[0,1]K ℙ(r0 ∣ a0, μ̃)ℙ(μ̃)dμ̃

Can you see any

way to simplify?

Bayesian Bernoulli bandit (cont’d)
1. At ,

2. At , we have one data point , and the distribution of

gets updated via Bayes rule:

t = 0 ℙ(μ) = π(μ)
t = 1 r0 ∼ Bernoulli(μ(a0)) μ

ℙ(μ ∣ r0, a0) = ℙ(r0 ∣ a0, μ)ℙ(μ)
∫μ̃∈[0,1]K ℙ(r0 ∣ a0, μ̃)ℙ(μ̃)dμ̃

19

Bayesian Bernoulli bandit (cont’d)
1. At ,

2. At , we have one data point , and the distribution of

gets updated via Bayes rule:

t = 0 ℙ(μ) = π(μ)
t = 1 r0 ∼ Bernoulli(μ(a0)) μ

ℙ(μ ∣ r0, a0) = ℙ(r0 ∣ a0, μ)ℙ(μ)
∫μ̃∈[0,1]K ℙ(r0 ∣ a0, μ̃)ℙ(μ̃)dμ̃

= (μ(a0))r0(1 − μ(a0))1−r0π(μ)
∫μ̃∈[0,1]K (μ̃(k))r0(1 − μ̃(a))1−r0π(μ̃)dμ̃

19

Bayesian Bernoulli bandit (cont’d)
1. At ,

2. At , we have one data point , and the distribution of

gets updated via Bayes rule:

t = 0 ℙ(μ) = π(μ)
t = 1 r0 ∼ Bernoulli(μ(a0)) μ

ℙ(μ ∣ r0, a0) = ℙ(r0 ∣ a0, μ)ℙ(μ)
∫μ̃∈[0,1]K ℙ(r0 ∣ a0, μ̃)ℙ(μ̃)dμ̃

= (μ(a0))r0(1 − μ(a0))1−r0π(μ)
∫μ̃∈[0,1]K (μ̃(k))r0(1 − μ̃(a))1−r0π(μ̃)dμ̃

If prior is , i.e., :Uniform([0,1]K) π(μ) = 1 ∀μ

= (μ(a0))r0(1 − μ(a0))1−r0

∫μ̃∈[0,1]K (μ̃(a0))r0(1 − μ̃(a0))1−r0dμ̃

19

Bayesian Bernoulli bandit (cont’d)
1. At ,

2. At , we have one data point , and the distribution of

gets updated via Bayes rule:

t = 0 ℙ(μ) = π(μ)
t = 1 r0 ∼ Bernoulli(μ(a0)) μ

ℙ(μ ∣ r0, a0) = ℙ(r0 ∣ a0, μ)ℙ(μ)
∫μ̃∈[0,1]K ℙ(r0 ∣ a0, μ̃)ℙ(μ̃)dμ̃

= (μ(a0))r0(1 − μ(a0))1−r0π(μ)
∫μ̃∈[0,1]K (μ̃(k))r0(1 − μ̃(a))1−r0π(μ̃)dμ̃

If prior is , i.e., :Uniform([0,1]K) π(μ) = 1 ∀μ

= (μ(a0))r0(1 − μ(a0))1−r0

∫μ̃∈[0,1]K (μ̃(a0))r0(1 − μ̃(a0))1−r0dμ̃
= (μ(a0))r0(1 − μ(a0))1−r0

∫ 1
0 (μ̃(a0))r0(1 − μ̃(a0))1−r0dμ̃(a0)

19

Bayesian Bernoulli bandit (cont’d)
1. At ,

2. At , we have one data point , and the distribution of

gets updated via Bayes rule:

t = 0 ℙ(μ) = π(μ)
t = 1 r0 ∼ Bernoulli(μ(a0)) μ

ℙ(μ ∣ r0, a0) = ℙ(r0 ∣ a0, μ)ℙ(μ)
∫μ̃∈[0,1]K ℙ(r0 ∣ a0, μ̃)ℙ(μ̃)dμ̃

= (μ(a0))r0(1 − μ(a0))1−r0π(μ)
∫μ̃∈[0,1]K (μ̃(k))r0(1 − μ̃(a))1−r0π(μ̃)dμ̃

If prior is , i.e., :Uniform([0,1]K) π(μ) = 1 ∀μ

= (μ(a0))r0(1 − μ(a0))1−r0

∫μ̃∈[0,1]K (μ̃(a0))r0(1 − μ̃(a0))1−r0dμ̃
= (μ(a0))r0(1 − μ(a0))1−r0

∫ 1
0 (μ̃(a0))r0(1 − μ̃(a0))1−r0dμ̃(a0)

19

= 2(μ(a0))r0(1 − μ(a0))1−r0

Bayesian Bernoulli bandit (cont’d)
1. At ,

2. At , we have one data point , and the distribution of

gets updated via Bayes rule:

t = 0 ℙ(μ) = π(μ)
t = 1 r0 ∼ Bernoulli(μ(a0)) μ

ℙ(μ ∣ r0, a0) = 2(μ(a0))r0(1 − μ(a0))1−r0

20

Bayesian Bernoulli bandit (cont’d)
1. At ,

2. At , we have one data point , and the distribution of

gets updated via Bayes rule:

t = 0 ℙ(μ) = π(μ)
t = 1 r0 ∼ Bernoulli(μ(a0)) μ

ℙ(μ ∣ r0, a0) = 2(μ(a0))r0(1 − μ(a0))1−r0

3. At , we have another data point , and we can update
the distribution of again via Bayes rule, treating as the prior

t = 2 r1 ∼ Bernoulli(μ(a1))
μ ℙ(μ ∣ r0, a0)

20

Bayesian Bernoulli bandit (cont’d)
1. At ,

2. At , we have one data point , and the distribution of

gets updated via Bayes rule:

t = 0 ℙ(μ) = π(μ)
t = 1 r0 ∼ Bernoulli(μ(a0)) μ

ℙ(μ ∣ r0, a0) = 2(μ(a0))r0(1 − μ(a0))1−r0

…

3. At , we have another data point , and we can update
the distribution of again via Bayes rule, treating as the prior

t = 2 r1 ∼ Bernoulli(μ(a1))
μ ℙ(μ ∣ r0, a0)

20

Bayesian Bernoulli bandit (cont’d)
1. At ,

2. At , we have one data point , and the distribution of

gets updated via Bayes rule:

t = 0 ℙ(μ) = π(μ)
t = 1 r0 ∼ Bernoulli(μ(a0)) μ

ℙ(μ ∣ r0, a0) = 2(μ(a0))r0(1 − μ(a0))1−r0

…

3. At , we have another data point , and we can update
the distribution of again via Bayes rule, treating as the prior

t = 2 r1 ∼ Bernoulli(μ(a1))
μ ℙ(μ ∣ r0, a0)

Bayes rule at time step gives us a distribution (called the posterior distribution)

that exactly characterizes our uncertainty about .

t
ℙ(μ ∣ r0, a0, r1, a1, …, rt−1, at−1)

μ
20

Bayesian Bernoulli bandit (cont’d)
1. At ,

2. At , we have one data point , and the distribution of

gets updated via Bayes rule:

t = 0 ℙ(μ) = π(μ)
t = 1 r0 ∼ Bernoulli(μ(a0)) μ

ℙ(μ ∣ r0, a0) = 2(μ(a0))r0(1 − μ(a0))1−r0

…

3. At , we have another data point , and we can update
the distribution of again via Bayes rule, treating as the prior

t = 2 r1 ∼ Bernoulli(μ(a1))
μ ℙ(μ ∣ r0, a0)

Bayes rule at time step gives us a distribution (called the posterior distribution)

that exactly characterizes our uncertainty about .

t
ℙ(μ ∣ r0, a0, r1, a1, …, rt−1, at−1)

μ We can use this to choose !at
20

Bayesian Bernoulli bandit (cont’d)

21

Bayesian Bernoulli bandit with uniform prior on gives a running posterior on the
mean of each arm that is

μ
k Beta(1 + #{arm k successes},1 + #{arm k failures})

Bayesian Bernoulli bandit (cont’d)

21

Bayesian Bernoulli bandit with uniform prior on gives a running posterior on the
mean of each arm that is

μ
k Beta(1 + #{arm k successes},1 + #{arm k failures})

(derived by Bayes rule and some algebra, see HW2)

Bayesian Bernoulli bandit (cont’d)

21

Bayesian Bernoulli bandit with uniform prior on gives a running posterior on the
mean of each arm that is

μ
k Beta(1 + #{arm k successes},1 + #{arm k failures})

(derived by Bayes rule and some algebra, see HW2)

 has mean (posterior mean = what we expect to be):

which starts at 1/2 and approaches the sample mean of arm with more pulls.

Beta(αk, βk) μ(k)
αk

αk + βk
= 1 + #{arm k successes}

2 + #{arm k pulls}
k

Bayesian Bernoulli bandit (cont’d)

21

Bayesian Bernoulli bandit with uniform prior on gives a running posterior on the
mean of each arm that is

μ
k Beta(1 + #{arm k successes},1 + #{arm k failures})

(derived by Bayes rule and some algebra, see HW2)

 has mean (posterior mean = what we expect to be):

which starts at 1/2 and approaches the sample mean of arm with more pulls.

Beta(αk, βk) μ(k)
αk

αk + βk
= 1 + #{arm k successes}

2 + #{arm k pulls}
k

 has variance (posterior variance how uncertain we are about):

which decreases at a rate of roughly

Beta(αk, βk) ≈ μ(k)

αk

αk + βk
× βk

αk + βk
× 1

αk + βk + 1
1/#{arm k pulls}

Bayesian bandit summary
A Bayesian bandit augments the bandit environment we’ve been working in so far
with a prior distribution on the unknown reward distributions; for Bernoulli bandits,
the reward distributions are entirely characterized by , so prior is: μ π(μ)

22

Bayesian bandit summary
A Bayesian bandit augments the bandit environment we’ve been working in so far
with a prior distribution on the unknown reward distributions; for Bernoulli bandits,
the reward distributions are entirely characterized by , so prior is: μ π(μ)

22

Bayes rule at time step gives us a distribution (called the posterior distribution)

that exactly characterizes our uncertainty about .

t
ℙ(μ ∣ r0, a0, r1, a1, …, rt−1, at−1)

μ

Bayesian bandit summary
A Bayesian bandit augments the bandit environment we’ve been working in so far
with a prior distribution on the unknown reward distributions; for Bernoulli bandits,
the reward distributions are entirely characterized by , so prior is: μ π(μ)

22

Bayes rule at time step gives us a distribution (called the posterior distribution)

that exactly characterizes our uncertainty about .

t
ℙ(μ ∣ r0, a0, r1, a1, …, rt−1, at−1)

μ

Note that although we are now treating as random, we still assume its value is
only drawn once (from the prior) and then stays the same throughout

μ
t

Bayesian bandit summary
A Bayesian bandit augments the bandit environment we’ve been working in so far
with a prior distribution on the unknown reward distributions; for Bernoulli bandits,
the reward distributions are entirely characterized by , so prior is: μ π(μ)

22

Bayes rule at time step gives us a distribution (called the posterior distribution)

that exactly characterizes our uncertainty about .

t
ℙ(μ ∣ r0, a0, r1, a1, …, rt−1, at−1)

μ

Note that although we are now treating as random, we still assume its value is
only drawn once (from the prior) and then stays the same throughout

μ
t

What changes with is our information about , i.e., the posterior distribution, as
we collect more and more data by pulling arms via a bandit algorithm

t μ

Today

23

• Feedback from last lecture

• Recap

• UCB regret analysis

• Regret lower-bound

• Bayesian bandit

• Thompson sampling

Thompson sampling
Bayesian bandit environment means that at every time step, we know the distribution

of the arm reward distributions conditioned on everything we’ve seen so far

24

Thompson sampling
Bayesian bandit environment means that at every time step, we know the distribution

of the arm reward distributions conditioned on everything we’ve seen so far
In particular, we know the exact probability, given everything we’ve seen so far,

that each arm is the true optimal arm, i.e.,

∀k, we know ℙ(k = k⋆ ∣ r0, a0, …, rt−1, at−1)

24

Thompson sampling
Bayesian bandit environment means that at every time step, we know the distribution

of the arm reward distributions conditioned on everything we’ve seen so far
In particular, we know the exact probability, given everything we’ve seen so far,

that each arm is the true optimal arm, i.e.,

∀k, we know ℙ(k = k⋆ ∣ r0, a0, …, rt−1, at−1)

Thompson sampling: sample from this distribution to determine next arm to pull

24

Thompson sampling
Bayesian bandit environment means that at every time step, we know the distribution

of the arm reward distributions conditioned on everything we’ve seen so far
In particular, we know the exact probability, given everything we’ve seen so far,

that each arm is the true optimal arm, i.e.,

∀k, we know ℙ(k = k⋆ ∣ r0, a0, …, rt−1, at−1)

Thompson sampling: sample from this distribution to determine next arm to pull
For t = 0,…, T − 1 :

at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

24

Thompson sampling
Bayesian bandit environment means that at every time step, we know the distribution

of the arm reward distributions conditioned on everything we’ve seen so far
In particular, we know the exact probability, given everything we’ve seen so far,

that each arm is the true optimal arm, i.e.,

∀k, we know ℙ(k = k⋆ ∣ r0, a0, …, rt−1, at−1)

Thompson sampling: sample from this distribution to determine next arm to pull
For t = 0,…, T − 1 :

at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

24

How can we sample from this distribution?

Thompson sampling
Bayesian bandit environment means that at every time step, we know the distribution

of the arm reward distributions conditioned on everything we’ve seen so far
In particular, we know the exact probability, given everything we’ve seen so far,

that each arm is the true optimal arm, i.e.,

∀k, we know ℙ(k = k⋆ ∣ r0, a0, …, rt−1, at−1)

Thompson sampling: sample from this distribution to determine next arm to pull
For t = 0,…, T − 1 :

at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

 Draw a sample and
then compute , which is the same thing as

μt ∼ distribution of μ ∣ r0, a0, …, rt−1, at−1
at = arg max

k
μ(k)

t at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

24

How can we sample from this distribution?

Thompson sampling
Bayesian bandit environment means that at every time step, we know the distribution

of the arm reward distributions conditioned on everything we’ve seen so far
In particular, we know the exact probability, given everything we’ve seen so far,

that each arm is the true optimal arm, i.e.,

∀k, we know ℙ(k = k⋆ ∣ r0, a0, …, rt−1, at−1)

Thompson sampling: sample from this distribution to determine next arm to pull
For t = 0,…, T − 1 :

at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

That’s it! Statistically, this is a super simple and elegant algorithm

 Draw a sample and
then compute , which is the same thing as

μt ∼ distribution of μ ∣ r0, a0, …, rt−1, at−1
at = arg max

k
μ(k)

t at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

24

How can we sample from this distribution?

Thompson sampling
Bayesian bandit environment means that at every time step, we know the distribution

of the arm reward distributions conditioned on everything we’ve seen so far
In particular, we know the exact probability, given everything we’ve seen so far,

that each arm is the true optimal arm, i.e.,

∀k, we know ℙ(k = k⋆ ∣ r0, a0, …, rt−1, at−1)

Thompson sampling: sample from this distribution to determine next arm to pull
For t = 0,…, T − 1 :

at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

That’s it! Statistically, this is a super simple and elegant algorithm
(though computationally, it may not be easy to update the posterior at each time step)

 Draw a sample and
then compute , which is the same thing as

μt ∼ distribution of μ ∣ r0, a0, …, rt−1, at−1
at = arg max

k
μ(k)

t at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

24

How can we sample from this distribution?

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

25

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

25

Why is this a good idea?

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

25

Why is this a good idea?
A good tradeoff of exploration vs exploitation should:

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

25

Why is this a good idea?
A good tradeoff of exploration vs exploitation should:

a) Sample the optimal arm as much as possible (duh)

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

25

Why is this a good idea?
A good tradeoff of exploration vs exploitation should:

a) Sample the optimal arm as much as possible (duh)
b) Ensure arms that might still be optimal aren’t overlooked

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

25

Why is this a good idea?
A good tradeoff of exploration vs exploitation should:

a) Sample the optimal arm as much as possible (duh)
b) Ensure arms that might still be optimal aren’t overlooked
c) Not waste undue time on less promising arms

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

25

Why is this a good idea?
A good tradeoff of exploration vs exploitation should:

a) Sample the optimal arm as much as possible (duh)
b) Ensure arms that might still be optimal aren’t overlooked
c) Not waste undue time on less promising arms

Intuitively: want to sample arms proportionally to how promising they are

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

25

Why is this a good idea?
A good tradeoff of exploration vs exploitation should:

a) Sample the optimal arm as much as possible (duh)
b) Ensure arms that might still be optimal aren’t overlooked
c) Not waste undue time on less promising arms

Intuitively: want to sample arms proportionally to how promising they are
This is exactly what Thompson sampling does, where “promising” is encoded very

naturally as: “the probability that the arm is the optimal arm, given all the data so far”

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

25

Why is this a good idea?
A good tradeoff of exploration vs exploitation should:

a) Sample the optimal arm as much as possible (duh)
b) Ensure arms that might still be optimal aren’t overlooked
c) Not waste undue time on less promising arms

Intuitively: want to sample arms proportionally to how promising they are
This is exactly what Thompson sampling does, where “promising” is encoded very

naturally as: “the probability that the arm is the optimal arm, given all the data so far”

No arbitrary tuning parameter, but do have to choose prior δ π

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

25

Why is this a good idea?
A good tradeoff of exploration vs exploitation should:

a) Sample the optimal arm as much as possible (duh)
b) Ensure arms that might still be optimal aren’t overlooked
c) Not waste undue time on less promising arms

Intuitively: want to sample arms proportionally to how promising they are
This is exactly what Thompson sampling does, where “promising” is encoded very

naturally as: “the probability that the arm is the optimal arm, given all the data so far”

No arbitrary tuning parameter, but do have to choose prior δ π
 can often be chosen “uninformatively” to a default prior such as the uniform, or
can encode nuanced prior information/belief about the arms’ reward distributions
π

Thompson sampling vs other algorithms

26

Thompson sampling samples arms proportionally to how promising they are

Thompson sampling vs other algorithms

26

Thompson sampling samples arms proportionally to how promising they are
Note this sampling is much more sophisticated than, say, -greedy, which really just

samples according to 2 categories: “most promising” and “other”
ε

Thompson sampling vs other algorithms

26

Thompson sampling samples arms proportionally to how promising they are
Note this sampling is much more sophisticated than, say, -greedy, which really just

samples according to 2 categories: “most promising” and “other”
ε

But it’s also quite different from UCB, whose OFU approach doesn’t really involve
“sampling” at all, i.e., every for UCB is a deterministic function of the previous dataat

Thompson sampling vs other algorithms

26

Thompson sampling samples arms proportionally to how promising they are
Note this sampling is much more sophisticated than, say, -greedy, which really just

samples according to 2 categories: “most promising” and “other”
ε

But it’s also quite different from UCB, whose OFU approach doesn’t really involve
“sampling” at all, i.e., every for UCB is a deterministic function of the previous dataat

My interpretation: OFU provides a simple heuristic to accomplish what Thompson
sampling does by design, namely, sample arms according to how promising they are

Thompson sampling vs other algorithms

26

Thompson sampling can do this because of the Bayesian bandit: assuming a prior on
the reward distributions makes the arm means random, otherwise it wouldn’t even

make sense to talk about “the probability that an arm is the best arm”

Thompson sampling samples arms proportionally to how promising they are
Note this sampling is much more sophisticated than, say, -greedy, which really just

samples according to 2 categories: “most promising” and “other”
ε

But it’s also quite different from UCB, whose OFU approach doesn’t really involve
“sampling” at all, i.e., every for UCB is a deterministic function of the previous dataat

My interpretation: OFU provides a simple heuristic to accomplish what Thompson
sampling does by design, namely, sample arms according to how promising they are

Thompson sampling vs other algorithms

26

Thompson sampling can do this because of the Bayesian bandit: assuming a prior on
the reward distributions makes the arm means random, otherwise it wouldn’t even

make sense to talk about “the probability that an arm is the best arm”

Thompson sampling samples arms proportionally to how promising they are
Note this sampling is much more sophisticated than, say, -greedy, which really just

samples according to 2 categories: “most promising” and “other”
ε

But it’s also quite different from UCB, whose OFU approach doesn’t really involve
“sampling” at all, i.e., every for UCB is a deterministic function of the previous dataat

My interpretation: OFU provides a simple heuristic to accomplish what Thompson
sampling does by design, namely, sample arms according to how promising they are

Although derived from the Bayesian bandit, Thompson sampling has excellent
practical performance across bandit problems, whether or not they are Bayesian!

Thompson sampling in practice

27

Thompson sampling in practice

27

Thompson sampling has excellent performance in practice, but is still just a heuristic

Thompson sampling in practice

27

Thompson sampling has excellent performance in practice, but is still just a heuristic
However, asymptotically, i.e., as , it actually is optimal in a certain senseT → ∞

Thompson sampling in practice

27

Thompson sampling has excellent performance in practice, but is still just a heuristic
However, asymptotically, i.e., as , it actually is optimal in a certain senseT → ∞
There is an instance-dependent lower-bound result that says that for any bandit

algorithm:

,

where is a distance between distributions called the Kullback—Leibler divergence

lim inf
T→∞

'[N(k)
T]

ln(T) ≥ 1
d(ν(k⋆), ν(k))

d

Thompson sampling in practice

27

Thompson sampling has excellent performance in practice, but is still just a heuristic
However, asymptotically, i.e., as , it actually is optimal in a certain senseT → ∞
There is an instance-dependent lower-bound result that says that for any bandit

algorithm:

,

where is a distance between distributions called the Kullback—Leibler divergence

lim inf
T→∞

'[N(k)
T]

ln(T) ≥ 1
d(ν(k⋆), ν(k))

d

It turns out that Thompson sampling satisfies this lower-bound with equality!

Thompson sampling in practice

27

Thompson sampling has excellent performance in practice, but is still just a heuristic
However, asymptotically, i.e., as , it actually is optimal in a certain senseT → ∞
There is an instance-dependent lower-bound result that says that for any bandit

algorithm:

,

where is a distance between distributions called the Kullback—Leibler divergence

lim inf
T→∞

'[N(k)
T]

ln(T) ≥ 1
d(ν(k⋆), ν(k))

d

It turns out that Thompson sampling satisfies this lower-bound with equality!
So it is asymptotically optimal, not just in its rate, but its constant too!

Thompson sampling in practice

27

Thompson sampling has excellent performance in practice, but is still just a heuristic
However, asymptotically, i.e., as , it actually is optimal in a certain senseT → ∞
There is an instance-dependent lower-bound result that says that for any bandit

algorithm:

,

where is a distance between distributions called the Kullback—Leibler divergence

lim inf
T→∞

'[N(k)
T]

ln(T) ≥ 1
d(ν(k⋆), ν(k))

d

It turns out that Thompson sampling satisfies this lower-bound with equality!
So it is asymptotically optimal, not just in its rate, but its constant too!

(UCB is not, but there are more complicated versions of it that are)

Thompson sampling in practice (cont’d)

28

So Thompson sampling is basically exactly optimal for large T

Thompson sampling in practice (cont’d)

28

So Thompson sampling is basically exactly optimal for large T
What could go wrong for smaller ? Suppose and , and:T K = 2 T = 3

Thompson sampling in practice (cont’d)

28

So Thompson sampling is basically exactly optimal for large T
What could go wrong for smaller ? Suppose and , and:T K = 2 T = 3
• : , t = 0 a0 = 1 r0 = 1

Thompson sampling in practice (cont’d)

28

So Thompson sampling is basically exactly optimal for large T
What could go wrong for smaller ? Suppose and , and:T K = 2 T = 3
• : , t = 0 a0 = 1 r0 = 1
• : , t = 1 a1 = 2 r1 = 0

Thompson sampling in practice (cont’d)

28

So Thompson sampling is basically exactly optimal for large T
What could go wrong for smaller ? Suppose and , and:T K = 2 T = 3
• : , t = 0 a0 = 1 r0 = 1
• : , t = 1 a1 = 2 r1 = 0
• (last time step, with and): ?t = 2 ̂μ(1)

2 = 1 ̂μ(2)
2 = 0 a2 =

Thompson sampling in practice (cont’d)

28

So Thompson sampling is basically exactly optimal for large T
What could go wrong for smaller ? Suppose and , and:T K = 2 T = 3
• : , t = 0 a0 = 1 r0 = 1
• : , t = 1 a1 = 2 r1 = 0
• (last time step, with and): ?t = 2 ̂μ(1)

2 = 1 ̂μ(2)
2 = 0 a2 =

Thompson sampling has a decent probability of choosing , since with just
one sample from each arm, Thompson sampling isn’t sure which arm is best.

a2 = 2

Thompson sampling in practice (cont’d)

28

So Thompson sampling is basically exactly optimal for large T
What could go wrong for smaller ? Suppose and , and:T K = 2 T = 3
• : , t = 0 a0 = 1 r0 = 1
• : , t = 1 a1 = 2 r1 = 0
• (last time step, with and): ?t = 2 ̂μ(1)

2 = 1 ̂μ(2)
2 = 0 a2 =

Thompson sampling has a decent probability of choosing , since with just
one sample from each arm, Thompson sampling isn’t sure which arm is best.

a2 = 2

But is clear right choice here: there is no future value to learning more, i.e.,
no reason to explore rather than exploit.

a2 = 1

Thompson sampling in practice (cont’d)

28

So Thompson sampling is basically exactly optimal for large T
What could go wrong for smaller ? Suppose and , and:T K = 2 T = 3
• : , t = 0 a0 = 1 r0 = 1
• : , t = 1 a1 = 2 r1 = 0
• (last time step, with and): ?t = 2 ̂μ(1)

2 = 1 ̂μ(2)
2 = 0 a2 =

Thompson sampling has a decent probability of choosing , since with just
one sample from each arm, Thompson sampling isn’t sure which arm is best.

a2 = 2

But is clear right choice here: there is no future value to learning more, i.e.,
no reason to explore rather than exploit.

a2 = 1

Thompson sampling doesn’t know this, and neither does UCB (although UCB
wouldn’t happen to make the same mistake in this case).

Thompson sampling in practice (cont’d)

29

For small , Thompson sampling is not greedy enoughT

Thompson sampling in practice (cont’d)

29

For small , Thompson sampling is not greedy enoughT

Fix: add a tuning parameter to make it more greedy. Some possibilities:

Thompson sampling in practice (cont’d)

29

For small , Thompson sampling is not greedy enoughT

Fix: add a tuning parameter to make it more greedy. Some possibilities:
• Update the Beta parameters by instead of just 1 each time1+ϵ

Thompson sampling in practice (cont’d)

29

For small , Thompson sampling is not greedy enoughT

Fix: add a tuning parameter to make it more greedy. Some possibilities:
• Update the Beta parameters by instead of just 1 each time1+ϵ
• Instead of just taking one sample of and computing the greedy action with

respect to it, take samples, compute the greedy action with respect to each,
and pick the mode of those greedy actions

μ
n

Thompson sampling in practice (cont’d)

29

For small , Thompson sampling is not greedy enoughT

Fix: add a tuning parameter to make it more greedy. Some possibilities:
• Update the Beta parameters by instead of just 1 each time1+ϵ
• Instead of just taking one sample of and computing the greedy action with

respect to it, take samples, compute the greedy action with respect to each,
and pick the mode of those greedy actions

μ
n

All of these favor arms that the algorithm has more confidence are good (i.e., arms
that have worked well so far), as opposed to arms that may be good

Thompson sampling in practice (cont’d)

29

For small , Thompson sampling is not greedy enoughT

Fix: add a tuning parameter to make it more greedy. Some possibilities:
• Update the Beta parameters by instead of just 1 each time1+ϵ
• Instead of just taking one sample of and computing the greedy action with

respect to it, take samples, compute the greedy action with respect to each,
and pick the mode of those greedy actions

μ
n

All of these favor arms that the algorithm has more confidence are good (i.e., arms
that have worked well so far), as opposed to arms that may be good

Such tuning can improve Thompson sampling’s performance even for reasonably
large (the asymptotic optimality of vanilla TS is very asymptotic)T

Today

30

• Feedback from last lecture

• Recap

• UCB regret analysis

• Regret lower-bound

• Bayesian bandit

• Thompson sampling

Summary:

Feedback:

bit.ly/3RHtlxy

31

Attendance: 
bit.ly/3RcTC9T

• UCB achieves regret of

• A regret lower-bound exists that says one can’t do better than regret

• Bayesian bandit prior + Bayes rule gives exact running uncertainty quantification

• Thompson sampling samples optimal arm from its (posterior) distribution

• Thompson sampling achieves excellent performance in practice

Õ(TK)
Ω(T)

