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•Explore-then-commit (ETC) and -greedy:ε
•balance exploration with exploitation
•Achieve sublinear regret of Õ(T2/3)
•Exploration is non-adaptive

•Today: UCB does better than a rate of T2/3
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Can we do better than  regret?Ω( T)
Short answer: no

But how can we know that?

A lower bound on the achievable regret

So far we our theoretical analysis has always considered a fixed algorithm and 
analyzed it (by deriving a regret upper bound with high probability)

To get a lower bound, we would need to consider what regret could be achieved by 
any algorithm, and show it can’t be better than some rate
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learn any of the arm means better than to within 
T

Ω(1/ T)
3. This means that if an arm  is about  away from the best arm , then 

at no point during the bandit can we confidently tell them apart
k̃ 1/ T k⋆

4. Thus, we should expect to sample  roughly as often as , which is at best 
roughly  times (if we ignore any other arms)

k̃ k⋆

T/2
5. Finally, since the regret incurred each time we pull arm  is , and we 

pull it  times, we get a regret lower bound of 
k̃ 1/ T

T/2 (1/ T) × T/2 = Ω( T)
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Without the Bernoulli assumption, we may need many more dimensions to describe 
the possible distributions, and hence have to define a much higher-dimensional prior
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Example: Bayesian Bernoulli bandit

(  will sometimes denote a continuous density instead of a true probability, 

e.g., for , we would write )
ℙ

μ ∼ Uniform([0,1]K) ℙ(μ) = 1{0≤μ(k)≤1 ∀k}

We have no data, and the distribution of the reward distributions is simply 
given by the prior on the reward parameters :
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2. At , we have one data point , and the distribution of  
gets updated via Bayes rule: 

t = 1 r0 ∼ Bernoulli(μ(a0)) μ

= ℙ(r0 ∣ a0, μ)ℙ(a0)ℙ(μ)
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Can you see any 

way to simplify?
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ℙ(μ ∣ r0, a0, r1, a1, …, rt−1, at−1)

μ
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that exactly characterizes our uncertainty about .
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ℙ(μ ∣ r0, a0, r1, a1, …, rt−1, at−1)

μ We can use this to choose !at
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which starts at 1/2 and approaches the sample mean of arm  with more pulls.

Beta(αk, βk) μ(k)
αk

αk + βk
= 1 + #{arm k successes}

2 + #{arm k pulls}
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Bayesian Bernoulli bandit with uniform prior on  gives a running posterior on the 
mean of each arm  that is 

μ
k Beta(1 + #{arm k successes},1 + #{arm k failures})

(derived by Bayes rule and some algebra, see HW2)

 has mean (posterior mean = what we expect  to be):


 


which starts at 1/2 and approaches the sample mean of arm  with more pulls.

Beta(αk, βk) μ(k)
αk

αk + βk
= 1 + #{arm k successes}

2 + #{arm k pulls}
k

 has variance (posterior variance  how uncertain we are about ):





which decreases at a rate of roughly 

Beta(αk, βk) ≈ μ(k)

αk

αk + βk
× βk

αk + βk
× 1

αk + βk + 1
1/#{arm k pulls}
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only drawn once (from the prior) and then stays the same throughout 

μ
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Bayes rule at time step  gives us a distribution (called the posterior distribution)



that exactly characterizes our uncertainty about .

t
ℙ(μ ∣ r0, a0, r1, a1, …, rt−1, at−1)

μ

Note that although we are now treating  as random, we still assume its value is 
only drawn once (from the prior) and then stays the same throughout 

μ
t

What changes with  is our information about , i.e., the posterior distribution, as 
we collect more and more data by pulling arms via a bandit algorithm

t μ



Today
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• Feedback from last lecture

• Recap

• UCB regret analysis

• Regret lower-bound

• Bayesian bandit

• Thompson sampling
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In particular, we know the exact probability, given everything we’ve seen so far, 


that each arm is the true optimal arm, i.e., 
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Why is this a good idea?
A good tradeoff of exploration vs exploitation should:

a) Sample the optimal arm as much as possible (duh)
b) Ensure arms that might still be optimal aren’t overlooked
c) Not waste undue time on less promising arms

Intuitively: want to sample arms proportionally to how promising they are
This is exactly what Thompson sampling does, where “promising” is encoded very 

naturally as: “the probability that the arm is the optimal arm, given all the data so far”

No arbitrary  tuning parameter, but do have to choose prior δ π
  can often be chosen “uninformatively” to a default prior such as the uniform, or 
can encode nuanced prior information/belief about the arms’ reward distributions
π
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Thompson sampling can do this because of the Bayesian bandit: assuming a prior on 
the reward distributions makes the arm means random, otherwise it wouldn’t even 

make sense to talk about “the probability that an arm is the best arm”

Thompson sampling samples arms proportionally to how promising they are
Note this sampling is much more sophisticated than, say, -greedy, which really just 

samples according to 2 categories: “most promising” and “other”
ε

But it’s also quite different from UCB, whose OFU approach doesn’t really involve 
“sampling” at all, i.e., every  for UCB is a deterministic function of the previous dataat

My interpretation: OFU provides a simple heuristic to accomplish what Thompson 
sampling does by design, namely, sample arms according to how promising they are

Although derived from the Bayesian bandit, Thompson sampling has excellent 
practical performance across bandit problems, whether or not they are Bayesian!
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Thompson sampling has excellent performance in practice, but is still just a heuristic
However, asymptotically, i.e., as , it actually is optimal in a certain senseT → ∞
There is an instance-dependent lower-bound result that says that for any bandit 

algorithm: 


,


where  is a distance between distributions called the Kullback—Leibler divergence

lim inf
T→∞

'[N(k)
T ]

ln(T) ≥ 1
d(ν(k⋆), ν(k))

d

It turns out that Thompson sampling satisfies this lower-bound with equality!
So it is asymptotically optimal, not just in its rate, but its constant too!

(UCB is not, but there are more complicated versions of it that are)
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Thompson sampling has a decent probability of choosing , since with just 
one sample from each arm, Thompson sampling isn’t sure which arm is best.

a2 = 2



Thompson sampling in practice (cont’d)

28

So Thompson sampling is basically exactly optimal for large T
What could go wrong for smaller ? Suppose  and , and:T K = 2 T = 3
• : , t = 0 a0 = 1 r0 = 1
• : , t = 1 a1 = 2 r1 = 0
•  (last time step, with  and ): ?t = 2 ̂μ(1)

2 = 1 ̂μ(2)
2 = 0 a2 =

Thompson sampling has a decent probability of choosing , since with just 
one sample from each arm, Thompson sampling isn’t sure which arm is best.

a2 = 2

But  is clear right choice here: there is no future value to learning more, i.e., 
no reason to explore rather than exploit.

a2 = 1



Thompson sampling in practice (cont’d)

28

So Thompson sampling is basically exactly optimal for large T
What could go wrong for smaller ? Suppose  and , and:T K = 2 T = 3
• : , t = 0 a0 = 1 r0 = 1
• : , t = 1 a1 = 2 r1 = 0
•  (last time step, with  and ): ?t = 2 ̂μ(1)

2 = 1 ̂μ(2)
2 = 0 a2 =

Thompson sampling has a decent probability of choosing , since with just 
one sample from each arm, Thompson sampling isn’t sure which arm is best.

a2 = 2

But  is clear right choice here: there is no future value to learning more, i.e., 
no reason to explore rather than exploit.

a2 = 1

Thompson sampling doesn’t know this, and neither does UCB (although UCB 
wouldn’t happen to make the same mistake in this case). 
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For small , Thompson sampling is not greedy enoughT

Fix: add a tuning parameter to make it more greedy. Some possibilities:
• Update the Beta parameters by  instead of just 1 each time1+ϵ
• Instead of just taking one sample of  and computing the greedy action with 

respect to it, take  samples, compute the greedy action with respect to each, 
and pick the mode of those greedy actions

μ
n

All of these favor arms that the algorithm has more confidence are good (i.e., arms 
that have worked well so far), as opposed to arms that may be good

Such tuning can improve Thompson sampling’s performance even for reasonably 
large  (the asymptotic optimality of vanilla TS is very asymptotic)T
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• Feedback from last lecture

• Recap

• UCB regret analysis

• Regret lower-bound

• Bayesian bandit

• Thompson sampling



Summary:

Feedback: 

bit.ly/3RHtlxy
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Attendance: 
bit.ly/3RcTC9T

• UCB achieves regret of 

• A regret lower-bound exists that says one can’t do better than  regret

• Bayesian bandit prior + Bayes rule gives exact running uncertainty quantification

• Thompson sampling samples optimal arm from its (posterior) distribution

• Thompson sampling achieves excellent performance in practice

Õ( TK)
Ω( T)


