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Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

2.
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Recap

•Multi-armed bandits (or MAB or just bandits)

•Online learning of a 1-state/1-horizon MDP

•Exemplify exploration vs exploitation

•Pure greedy & pure exploration achieve linear regret

•Hoeffding’s inequality
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Recap

•Multi-armed bandits (or MAB or just bandits)

•Online learning of a 1-state/1-horizon MDP

•Exemplify exploration vs exploitation

•Pure greedy & pure exploration achieve linear regret

•Hoeffding’s inequality

•Today: let’s do better than linear regret!
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T−1
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μat
=
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(μ⋆ − μat
)

Expected regret at time 

given that you chose arm 

t
at

1.

3. Why is linear regret bad?   average regret ⇒ :=
RegretT

T
↛ 0

2. Recall , i.e., linear regretRegretT = Ω(T)
⇒  for some c > 0 and T0,  RegretT ≥ cT ∀T ≥ T0

4. Hoeffding inequality: sample mean of  i.i.d. samples on  satisfies


  w/p 

N [0,1]

̂μ − μ ≤
ln(2/δ)

2N
1 − δ
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Explore-Then-Commit (ETC)

Algorithm hyper parameter  (we assume  >> )Ne < T/K T K

Pull arm    times to observe  k Ne {r(k)
i }Ne

i=1 ∼ νk

Calculate arm k’s empirical mean: ̂μk =
1

Ne

Ne

∑
i=1

r(k)
i

For : k = 1,…, K (Exploration phase)

For : t = NeK, …, (T − 1) (Exploitation phase)

Pull the best empirical arm at = arg max
i∈[K]

̂μi

Q: how to set ?Ne

Number of explorationsNe =
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Regret Analysis Strategy

1. Calculate regret during exploration stage

2. Quantify error of arm mean estimates at end of exploration stage

3. Using step 2, calculate regret during exploitation stage


(Actually, will only be able to upper-bound total regret in steps 1-3)


4. Minimize our upper-bound over Ne
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-greedyε
ETC very abrupt (huge difference between exploration and exploitation stages)

-greedy like a smoother version of ETC: ε
at every step, do pure greedy w/p , and do pure exploration w/p 1 − ε ε

For :t = 0,…, T − 1
Sample Et ∼ Bernoulli(ε)

Initialize ̂μ0 = ⋯ = ̂μK = 1

(pure explore)If , choose Et = 1 at ∼ Uniform(1,…, K)
If , choose Et = 0 at = arg max

k∈{1,…,K}
̂μk (pure exploit)

Update ̂μat
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Regret ,

where  hides logarithmic factors

ε εt = ( K ln(t)
t )

1/3

t = Õ(t2/3K1/3)
Õ( ⋅ )

• Regret rate (ignoring log factors) is the same as ETC, but holds for all , 
not just the full time horizon 

t
T

• Nothing in -greedy (including  above) depends on , so don’t need to 
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and use them to focus exploration on most promising arms

First: how to construct confidence intervals?
Recall Hoeffding inequality: 


Sample mean of  i.i.d. samples on  satisfies


  w/p 

N [0,1]

̂μ − μ ≤
ln(2/δ)

2N
1 − δ

Worked for ETC b/c exploration phase was i.i.d., but in general the 

rewards from a given arm are not i.i.d. due to adaptivity of action selections
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Constructing confidence intervals

Let  be the number of times arm  is pulled before time N(k)
t =

t−1

∑
τ=0

1{aτ=k} k t

Let   be the sample mean reward of arm  up to time ̂μ(k)
t =

1
N(k)

t

t−1

∑
τ=0
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Notation:

So want Hoeffding to give us something like


  w/p ̂μ(k)
t − μ ≤

ln(2/δ)
2N(k)
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1 − δ

But this is generally FALSE 

(unless  chosen very simply, like exploration phase of ETC)at 18
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t N(k)

t

(all arm indexing  now in superscripts;

subscripts reserved for time index )

(k)
tThe problem: Although  is an i.i.d. draw from , rτ ∣ aτ = k ν(k)

19



Constructing confidence intervals (cont’d)

 is the sample mean of a random number  of returnŝμ(k)
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0 , r̃(k)
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2 , r̃(k)

3 , …
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(k)
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i
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N(k)

τ
̂μ(k)
t =

1
N(k)

t

N(k)
t −1

∑
i=0

r̃(k)
i
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Constructing confidence intervals (cont’d)

Recall:    ̂μ(k)
t =

1
N(k)

t

N(k)
t −1

∑
i=0

r̃(k)
i
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Hoeffding + union bound over :
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Constructing confidence intervals (cont’d)
Hoeffding + union bound over :
n ≤ t
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Constructing confidence intervals (cont’d)
Hoeffding + union bound over :
n ≤ t

⇒ ℙ (∀n ≤ t, | μ̃(k)
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Constructing confidence intervals (cont’d)

And then since , we immediately get the kind of result we want:
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Constructing confidence intervals (cont’d)

And then since , we immediately get the kind of result we want:
μ̃(k)
N(k)

t
= ̂μ(k)

t

ℙ ( | ̂μ(k)
t −μ(k) | ≤ ln(2t/δ)/2N(k)

t ) ≥ 1 − δ

Summary: to deal with problem of non-i.i.d. rewards that enter into , we used 
rewards’ conditional i.i.d. property along with a union bound to get Hoeffding bound 

that is wider by just a factor of  in the log term
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t

t

Hoeffding + union bound over :
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⇒ ℙ (∀n ≤ t, | μ̃(k)

n − μ(k) | ≤ ln(2t/δ)/2n) ≥ 1 − δ
But since in particular , this immediately implies
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Uniform confidence intervals
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Uniform confidence intervals
So we have a valid  confidence interval (CI) for  at time  from last equation:


,


i.e., 

(1 − δ) μ(k) t

ℙ ( | ̂μ(k)
t − μ(k) | ≤ ln(2t/δ)/2N(k)

t ) ≥ 1 − δ

[ ̂μ(k)
t − ln(2t/δ)/2N(k)

t , ̂μ(k)
t + ln(2t/δ)/2N(k)

t ]
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Uniform confidence intervals

By same argument made in ETC analysis, union bound over  makes coverage uniform over :
K k
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Today

• Feedback from last lecture


• Recap


• Regret analysis of ETC


• -greedy algorithm


• Confidence intervals for the arms 


• Upper Confidence Bound (UCB) algorithm

ε
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Upper Confidence Bound (UCB) algorithm
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Upper Confidence Bound (UCB) algorithm
For :t = 0,…, T − 1

Choose the arm with the highest upper confidence bound, i.e.,


at = arg max
k∈{1,…,K}

̂μ(k)
t + ln(2TK/δ)/2N(k)

t
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Choose the arm with the highest upper confidence bound, i.e.,
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UCB Intuition: optimism in the face of uncertainty
Optimism in the face of uncertainty is an important principle in RL


It basically says to give each arm the benefit of the doubt, and basically act as if that 
arm is as good as it could plausibly be in choosing an action
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Note that the exploration here is adaptive, i.e., focused on most promising arms
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• Upper Confidence Bound (UCB) algorithm
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Summary:

Feedback: 

bit.ly/3RHtlxy

27

Attendance: 
bit.ly/3RcTC9T

• ETC and -greedy, achieve sublinear regret 

• Hoeffding can be used to provide (uniform) bounds on the arm means

• UCB algorithm follows “optimism in the face of uncertainty” principle

ε Õ(T2/3)

http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

