
Optimal Control Theory and the
Linear Quadratic Regulator

 
Lucas Janson 

CS/Stat 184(0): Introduction to Reinforcement Learning  
Fall 2024

1

Today

• Feedback from last lecture

• Recap

• General optimal control problem

• The linear quadratic regulator (LQR) problem

• Optimal control solution to LQR

2

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

2.

3

Today

4

• Feedback from last lecture

• Recap

• General optimal control problem

• The linear quadratic regulator (LQR) problem

• Optimal control solution to LQR

Recap

5

Bellman Consistency and the Bellman Equations
• Theorem: Every policy satisfies the Bellman consistency conditions:

•  

 

• A function satisfies the Bellman equations if  
	 ,

• Theorem:

• V satisfies the Bellman equations if and only if .

π
Vπ(s) = r(s, π(s)) + γ!s′ ∼P(⋅|s,π(s))[Vπ(s′)]

V : S → R
V(s) = max

a {r(s, a) + γ!s′ ∼P(⋅|s,a)[V(s′)]} ∀s

V = V⋆

6

Value Iteration Algorithm:

7

1. Initialization: ,

2. For  

,

3. Return:

V0(s) = 0 ∀s
t = 0,…T − 1

Vt+1(s) = max
a {r(s, a) + γ∑

s′ ∈S
P(s′ |s, a)Vt(s′)} ∀s

VT(s)
π(s) = arg max

a {r(s, a) + γ!s′ ∼P(⋅|s,a)VT(s′)}
•For , define , where 
	 	

• Bellman equations:

• Value iteration:

V ∈ ℝ|S| + : ℝ|S| ↦ ℝ|S|

(+V)(s) := max
a [r(s, a) + γ!s′ ∼P(s,a)V(s′)]

V = +V
Vt+1 ← +Vt

Convergence of Value Iteration:

8

• The “infinity norm”: For any vector , define

• Theorem: Given any , we have:  
 

• Corollary: If we set iterations,  

VI will return a value s.t. . 

• VI then has computational complexity .

x ∈ Rd ∥x∥∞ = max
i

|xi |

V, V′ ∥+V − +V′ ∥∞ ≤ γ∥V − V′ ∥∞

T = 1
1 − γ

ln(1
ϵ(1 − γ))

VT ∥VT − V⋆∥∞ ≤ ϵ

O(|S |2 |A |T)

Policy Iteration (PI)
• Initialization: choose a policy

• For

1. Policy Evaluation: 	 given , compute :

2. Policy Improvement: set

π0 : S ↦ A
t = 0,1,…T − 1

πt Qπt(s, a)
πt+1(s) := arg max

a
Qπt(s, a)

9

Policy Iteration (PI)
• Initialization: choose a policy

• For

1. Policy Evaluation: 	 given , compute :

2. Policy Improvement: set

π0 : S ↦ A
t = 0,1,…T − 1

πt Qπt(s, a)
πt+1(s) := arg max

a
Qπt(s, a)

• Computing Qπt

• Computing : with linear system solving Vπt O(|S |3)
• Computing with : using Qπt Vπt O(|S |2 |A |) Qπ(s, a) = r(s, a) + γ!s′ ∼P(⋅|s,a) [Vπ(s′)]

 Per iteration complexity: O(|S |3 + |S |2 |A |)

9

Convergence of Policy Iteration:

10

• Theorem: PI has two properties:

• montone improvement:

• “contraction”:  
 

• Corollary: If we set iterations,  

PI will return a policy s.t.

• with total computational complexity .

Vπt+1(s) ≥ Vπt(s)
∥Vπt+1 − V⋆∥∞ ≤ γ∥Vπt − V⋆∥∞

T = 1
1 − γ

ln(1
ϵ(1 − γ))

πt+1 ∥Vπt+1 − V⋆∥∞ ≤ ϵ

O((|S |3 + |S |2 |A |)T)

Recap

11

Recap

•For discrete MDPs, we covered some great algorithms for computing the
optimal policy

11

Recap

•For discrete MDPs, we covered some great algorithms for computing the
optimal policy
•But all algorithms scale polynomially in the size of the state and action
spaces… what if one or both are infinite?

11

Recap

•For discrete MDPs, we covered some great algorithms for computing the
optimal policy
•But all algorithms scale polynomially in the size of the state and action
spaces… what if one or both are infinite?
• In this unit (next 2 lectures), we will discuss computation of good/optimal
policies in continuous/infinite state and action spaces

11

Today

12

• Feedback from last lecture

• Recap

• General optimal control problem

• The linear quadratic regulator (LQR) problem

• Optimal control solution to LQR

Robotics and Controls

13

Example: CartPole

14

z

Example: CartPole
State: position and velocity of the cart,
angle and angular velocity of the pole

14

z

Example: CartPole
State: position and velocity of the cart,
angle and angular velocity of the pole

Control=action: force on the cart

14

z

Example: CartPole
State: position and velocity of the cart,
angle and angular velocity of the pole

Control=action: force on the cart

14

WARNING!
Notation change for controls lectures only:

States are (instead of)

Actions are called “controls” and are (instead of)

x s
u a

z

Example: CartPole
State: position and velocity of the cart,
angle and angular velocity of the pole

Control=action: force on the cart

14

Goal: stabilizing around the point (x = x⋆, u = 0)

WARNING!
Notation change for controls lectures only:

States are (instead of)

Actions are called “controls” and are (instead of)

x s
u a

z

Example: CartPole

c(xh, uh) = u⊤
h Ruh + (xh − x⋆)⊤Q(xh − x⋆)

State: position and velocity of the cart,
angle and angular velocity of the pole

Control=action: force on the cart

14

Goal: stabilizing around the point (x = x⋆, u = 0)

WARNING!
Notation change for controls lectures only:

States are (instead of)

Actions are called “controls” and are (instead of)

x s
u a

z

Example: CartPole

c(xh, uh) = u⊤
h Ruh + (xh − x⋆)⊤Q(xh − x⋆)

State: position and velocity of the cart,
angle and angular velocity of the pole

Control=action: force on the cart

min
π0,…,πH−1:X→U

! [
H−1

∑
h=0

c(xh, uh)] s.t. xh+1 = f(xh, uh), x0 ∼ μ0

Optimal control:

14

Goal: stabilizing around the point (x = x⋆, u = 0)

WARNING!
Notation change for controls lectures only:

States are (instead of)

Actions are called “controls” and are (instead of)

x s
u a

z

Example: CartPole

c(xh, uh) = u⊤
h Ruh + (xh − x⋆)⊤Q(xh − x⋆)

State: position and velocity of the cart,
angle and angular velocity of the pole

Control=action: force on the cart

min
π0,…,πH−1:X→U

! [
H−1

∑
h=0

c(xh, uh)] s.t. xh+1 = f(xh, uh), x0 ∼ μ0

Optimal control:

14

Goal: stabilizing around the point (x = x⋆, u = 0)

WARNING!
Notation change for controls lectures only:

States are (instead of)

Actions are called “controls” and are (instead of)

x s
u a

z

More Generally: Optimal Control

15

More Generally: Optimal Control
General dynamical system is described as , wherexh+1 = fh(xh, uh, wh)

15

More Generally: Optimal Control
General dynamical system is described as , wherexh+1 = fh(xh, uh, wh)
• is the state which starts at initial value ,xh ∈ ℝd x0 ∼ μ0

15

More Generally: Optimal Control
General dynamical system is described as , wherexh+1 = fh(xh, uh, wh)
• is the state which starts at initial value ,xh ∈ ℝd x0 ∼ μ0
• is the control (action),uh ∈ ℝk

15

More Generally: Optimal Control
General dynamical system is described as , wherexh+1 = fh(xh, uh, wh)
• is the state which starts at initial value ,xh ∈ ℝd x0 ∼ μ0
• is the control (action),uh ∈ ℝk

• is the noise/disturbance, wh

15

More Generally: Optimal Control
General dynamical system is described as , wherexh+1 = fh(xh, uh, wh)
• is the state which starts at initial value ,xh ∈ ℝd x0 ∼ μ0
• is the control (action),uh ∈ ℝk

• is the noise/disturbance, wh
• is a function (the dynamics) that determines the next state fh xh+1 ∈ ℝd

15

More Generally: Optimal Control
General dynamical system is described as , wherexh+1 = fh(xh, uh, wh)
• is the state which starts at initial value ,xh ∈ ℝd x0 ∼ μ0
• is the control (action),uh ∈ ℝk

• is the noise/disturbance, wh
• is a function (the dynamics) that determines the next state fh xh+1 ∈ ℝd

Objective is to find control policy which minimizes the total cost (horizon),πh H

15

More Generally: Optimal Control
General dynamical system is described as , wherexh+1 = fh(xh, uh, wh)
• is the state which starts at initial value ,xh ∈ ℝd x0 ∼ μ0
• is the control (action),uh ∈ ℝk

• is the noise/disturbance, wh
• is a function (the dynamics) that determines the next state fh xh+1 ∈ ℝd

Objective is to find control policy which minimizes the total cost (horizon),πh H

minimize ![cH(xH) +
H−1

∑
h=0

ch(xh, uh)]
s.t. xh+1 = fh(xh, uh, wh), uh = πh(xh), x0 ∼ μ0

15

More Generally: Optimal Control
General dynamical system is described as , wherexh+1 = fh(xh, uh, wh)
• is the state which starts at initial value ,xh ∈ ℝd x0 ∼ μ0
• is the control (action),uh ∈ ℝk

• is the noise/disturbance, wh
• is a function (the dynamics) that determines the next state fh xh+1 ∈ ℝd

Objective is to find control policy which minimizes the total cost (horizon),πh H

minimize ![cH(xH) +
H−1

∑
h=0

ch(xh, uh)]
s.t. xh+1 = fh(xh, uh, wh), uh = πh(xh), x0 ∼ μ0

• Randomness (in the dynamics) enters via , e.g., wh wh ∼ 3(0,Σ)

15

More Generally: Optimal Control
General dynamical system is described as , wherexh+1 = fh(xh, uh, wh)
• is the state which starts at initial value ,xh ∈ ℝd x0 ∼ μ0
• is the control (action),uh ∈ ℝk

• is the noise/disturbance, wh
• is a function (the dynamics) that determines the next state fh xh+1 ∈ ℝd

Objective is to find control policy which minimizes the total cost (horizon),πh H

minimize ![cH(xH) +
H−1

∑
h=0

ch(xh, uh)]
s.t. xh+1 = fh(xh, uh, wh), uh = πh(xh), x0 ∼ μ0

• Randomness (in the dynamics) enters via , e.g., wh wh ∼ 3(0,Σ)
• Note separated out because by convention there is no cH uH

15

Discretize to finite state/action spaces?
x ∈ ℝd, u ∈ ℝk

16

Discretize to finite state/action spaces?
x ∈ ℝd, u ∈ ℝk

16

Idea: Round states and controls onto an -grid of their spaces; then use tools from finite MDPsϵ

Discretize to finite state/action spaces?
x ∈ ℝd, u ∈ ℝk

16

Idea: Round states and controls onto an -grid of their spaces; then use tools from finite MDPsϵ

E.g., if , round and to 2 decimal placesϵ = 0.01 x u

Discretize to finite state/action spaces?
x ∈ ℝd, u ∈ ℝk

16

Idea: Round states and controls onto an -grid of their spaces; then use tools from finite MDPsϵ

E.g., if , round and to 2 decimal placesϵ = 0.01 x u

Assuming state/control spaces are bounded, this makes both finite

Discretize to finite state/action spaces?
x ∈ ℝd, u ∈ ℝk

16

Idea: Round states and controls onto an -grid of their spaces; then use tools from finite MDPsϵ

E.g., if , round and to 2 decimal placesϵ = 0.01 x u

Assuming state/control spaces are bounded, this makes both finite

Recall: VI/PI computation times scaled polynomially in and |S | |A |

Discretize to finite state/action spaces?
x ∈ ℝd, u ∈ ℝk

16

Idea: Round states and controls onto an -grid of their spaces; then use tools from finite MDPsϵ

E.g., if , round and to 2 decimal placesϵ = 0.01 x u

Assuming state/control spaces are bounded, this makes both finite

Recall: VI/PI computation times scaled polynomially in and |S | |A |

But curse of dimensionality means and will scale like |S | |A | (1/ϵ)d

Discretize to finite state/action spaces?
x ∈ ℝd, u ∈ ℝk

16

Idea: Round states and controls onto an -grid of their spaces; then use tools from finite MDPsϵ

E.g., if , round and to 2 decimal placesϵ = 0.01 x u

Assuming state/control spaces are bounded, this makes both finite

Recall: VI/PI computation times scaled polynomially in and |S | |A |

But curse of dimensionality means and will scale like |S | |A | (1/ϵ)d

E.g., , gives on the order of …ϵ = 0.01 d = k = 10 |S |2 |A | 1060

Discretize to finite state/action spaces?
x ∈ ℝd, u ∈ ℝk

16

Idea: Round states and controls onto an -grid of their spaces; then use tools from finite MDPsϵ

E.g., if , round and to 2 decimal placesϵ = 0.01 x u

Assuming state/control spaces are bounded, this makes both finite

Recall: VI/PI computation times scaled polynomially in and |S | |A |

But curse of dimensionality means and will scale like |S | |A | (1/ϵ)d

E.g., , gives on the order of …ϵ = 0.01 d = k = 10 |S |2 |A | 1060

Even the idea of discretizing relies on continuity (i.e., rounding nearby values to the same grid point only
works if system treats them nearly the same),

Discretize to finite state/action spaces?
x ∈ ℝd, u ∈ ℝk

16

Idea: Round states and controls onto an -grid of their spaces; then use tools from finite MDPsϵ

E.g., if , round and to 2 decimal placesϵ = 0.01 x u

Assuming state/control spaces are bounded, this makes both finite

Recall: VI/PI computation times scaled polynomially in and |S | |A |

But curse of dimensionality means and will scale like |S | |A | (1/ϵ)d

E.g., , gives on the order of …ϵ = 0.01 d = k = 10 |S |2 |A | 1060

Even the idea of discretizing relies on continuity (i.e., rounding nearby values to the same grid point only
works if system treats them nearly the same),

So why not rely on this more formally by assuming smoothness/structure on the dynamics and cost ?f c

Today

17

• Feedback from last lecture

• Recap

• General optimal control problem

• The linear quadratic regulator (LQR) problem

• Optimal control solution to LQR

The Linear Quadratic Regulator (LQR)

18

The Linear Quadratic Regulator (LQR)

18

Linear dynamics: xh+1 = f(xh, uh, wh) = Axh + Buh + wh

The Linear Quadratic Regulator (LQR)

18

Linear dynamics: xh+1 = f(xh, uh, wh) = Axh + Buh + wh
Quadratic cost function: c(xh, uh) = x⊤

h Qxh + u⊤
h Ruh, cH(xH) = x⊤

HQxH

The Linear Quadratic Regulator (LQR)

18

Linear dynamics: xh+1 = f(xh, uh, wh) = Axh + Buh + wh
Quadratic cost function: c(xh, uh) = x⊤

h Qxh + u⊤
h Ruh, cH(xH) = x⊤

HQxH

Gaussian noise: wh ∼ 3(0,Σ)

The Linear Quadratic Regulator (LQR)

18

Linear dynamics: xh+1 = f(xh, uh, wh) = Axh + Buh + wh

• Why not linear for ? Want it bounded below so we can minimize itc

Quadratic cost function: c(xh, uh) = x⊤
h Qxh + u⊤

h Ruh, cH(xH) = x⊤
HQxH

Gaussian noise: wh ∼ 3(0,Σ)

The Linear Quadratic Regulator (LQR)

18

Linear dynamics: xh+1 = f(xh, uh, wh) = Axh + Buh + wh

• Why not linear for ? Want it bounded below so we can minimize itc
• and are positive definite matricesQ ∈ ℝd×d R ∈ ℝk×k

Quadratic cost function: c(xh, uh) = x⊤
h Qxh + u⊤

h Ruh, cH(xH) = x⊤
HQxH

Gaussian noise: wh ∼ 3(0,Σ)

The Linear Quadratic Regulator (LQR)

18

Linear dynamics: xh+1 = f(xh, uh, wh) = Axh + Buh + wh

• Why not linear for ? Want it bounded below so we can minimize itc
• and are positive definite matricesQ ∈ ℝd×d R ∈ ℝk×k

• , , determine the dynamicsA ∈ ℝd×d B ∈ ℝd×k Σ ∈ ℝd×d

Quadratic cost function: c(xh, uh) = x⊤
h Qxh + u⊤

h Ruh, cH(xH) = x⊤
HQxH

Gaussian noise: wh ∼ 3(0,Σ)

The Linear Quadratic Regulator (LQR)

18

Linear dynamics: xh+1 = f(xh, uh, wh) = Axh + Buh + wh

• Why not linear for ? Want it bounded below so we can minimize itc
• and are positive definite matricesQ ∈ ℝd×d R ∈ ℝk×k

• , , determine the dynamicsA ∈ ℝd×d B ∈ ℝd×k Σ ∈ ℝd×d

• Note lack of subscripts on (except at) and : time-homogeneousc H f

Quadratic cost function: c(xh, uh) = x⊤
h Qxh + u⊤

h Ruh, cH(xH) = x⊤
HQxH

Gaussian noise: wh ∼ 3(0,Σ)

Is LQR useful?

19

Is LQR useful?

19

Surprisingly yes, despite its simplicity!

Is LQR useful?

19

Surprisingly yes, despite its simplicity!
Any smooth dynamics function is locally approximately linear, and any smooth
function with a minimum is locally approximately quadratic near its minimum

Is LQR useful?

19

Surprisingly yes, despite its simplicity!
Any smooth dynamics function is locally approximately linear, and any smooth
function with a minimum is locally approximately quadratic near its minimum

E.g., think of heating/cooling a room: if done right, temperature should rarely deviate
much from a fixed value, and shouldn’t have to do too much heating or cooling, i.e.,

states and controls stay local to some fixed points!

Is LQR useful?

19

Surprisingly yes, despite its simplicity!
Any smooth dynamics function is locally approximately linear, and any smooth
function with a minimum is locally approximately quadratic near its minimum

In fact, because the LQR model is so well-studied in control theory, many human-
engineered systems are designed to be approximately linear where possible

E.g., think of heating/cooling a room: if done right, temperature should rarely deviate
much from a fixed value, and shouldn’t have to do too much heating or cooling, i.e.,

states and controls stay local to some fixed points!

Is LQR useful?

19

Surprisingly yes, despite its simplicity!
Any smooth dynamics function is locally approximately linear, and any smooth
function with a minimum is locally approximately quadratic near its minimum

In fact, because the LQR model is so well-studied in control theory, many human-
engineered systems are designed to be approximately linear where possible

E.g., think of heating/cooling a room: if done right, temperature should rarely deviate
much from a fixed value, and shouldn’t have to do too much heating or cooling, i.e.,

states and controls stay local to some fixed points!

That said, it is indeed far too simple for many more complex (nonlinear) systems,
though next lecture we will see how to extend it to some nonlinear systems to get

surprisingly good solutions

Example: 1-d Vehicle

20

Robot moving in 1-d by choosing to apply force left (negative) or right (positive)uh

Example: 1-d Vehicle

20

Robot moving in 1-d by choosing to apply force left (negative) or right (positive)uh

Newton: Force = mass acceleration, so if vehicle mass = , acceleration = × m
uh

m

Example: 1-d Vehicle

20

Robot moving in 1-d by choosing to apply force left (negative) or right (positive)uh

Newton: Force = mass acceleration, so if vehicle mass = , acceleration = × m
uh

m
If time steps are separated by (small), then we can approximate acceleration

(derivative of velocity) by finite difference of velocities :

δ

vh

accelerationh = vh − vh−1
δ

= uh

m

Example: 1-d Vehicle

20

Robot moving in 1-d by choosing to apply force left (negative) or right (positive)uh

Newton: Force = mass acceleration, so if vehicle mass = , acceleration = × m
uh

m
If time steps are separated by (small), then we can approximate acceleration

(derivative of velocity) by finite difference of velocities :

δ

vh

accelerationh = vh − vh−1
δ

= uh

m
Same trick to approximate velocity (derivative of position) via positions :
ph

vh = ph − ph−1
δ

Example: 1-d Vehicle

20

Robot moving in 1-d by choosing to apply force left (negative) or right (positive)uh

Newton: Force = mass acceleration, so if vehicle mass = , acceleration = × m
uh

m
If time steps are separated by (small), then we can approximate acceleration

(derivative of velocity) by finite difference of velocities :

δ

vh

accelerationh = vh − vh−1
δ

= uh

m
Same trick to approximate velocity (derivative of position) via positions :
ph

vh = ph − ph−1
δ

So if state , we basically get linear dynamics!xh = (ph, vh)

LQR Value and Q functions

21

LQR Value and Q functions

21

Given a policy , define the value function as:
π = (π0, …, πh−1) Vπ
h : ℝd → ℝ

Vπ
h (x) = ![x⊤

HQxH +
H−1

∑
i=h

(x⊤
i Qxi + u⊤

i Rui) ui = πi(xi) ∀i ≥ h, xh = x]

LQR Value and Q functions

21

Given a policy , define the value function as:
π = (π0, …, πh−1) Vπ
h : ℝd → ℝ

Vπ
h (x) = ![x⊤

HQxH +
H−1

∑
i=h

(x⊤
i Qxi + u⊤

i Rui) ui = πi(xi) ∀i ≥ h, xh = x]

and the Q function as:
Qπ
h : ℝd × ℝk → ℝ

Qπ
h (x, u) = ![x⊤

HQxH +
H−1

∑
i=h

(x⊤
i Qxi + u⊤

i Rui) uh = u, ui = πi(xi) ∀i > h, xh = x]

Today

22

• Feedback from last lecture

• Recap

• General optimal control problem

• The linear quadratic regulator (LQR) problem

• Optimal control solution to LQR

LQR Optimal Control

23

LQR Optimal Control

V⋆
h (x) = min

π
Vπ

h (x) = min
πh, πh+1,…, πH−1

![x⊤
HQxH +

H−1

∑
i=h

(x⊤
i Qxi + u⊤

i Rui) ui = πi(xi) ∀i ≥ h, xh = x]

23

LQR Optimal Control

V⋆
h (x) = min

π
Vπ

h (x) = min
πh, πh+1,…, πH−1

![x⊤
HQxH +

H−1

∑
i=h

(x⊤
i Qxi + u⊤

i Rui) ui = πi(xi) ∀i ≥ h, xh = x]

Theorem:

1. is a quadratic function, i.e., for some and

2. The optimal policy is linear, i.e., for some

3. , , and can be computed exactly

V⋆
h V⋆

h (x) = x⊤Phx + ph Ph ∈ ℝd×d ph ∈ ℝd

π⋆
h π⋆

h (x) = − Khx Kh ∈ ℝk×d

Ph ph Kh

23

LQR Optimal Control

V⋆
h (x) = min

π
Vπ

h (x) = min
πh, πh+1,…, πH−1

![x⊤
HQxH +

H−1

∑
i=h

(x⊤
i Qxi + u⊤

i Rui) ui = πi(xi) ∀i ≥ h, xh = x]

Theorem:

1. is a quadratic function, i.e., for some and

2. The optimal policy is linear, i.e., for some

3. , , and can be computed exactly

V⋆
h V⋆

h (x) = x⊤Phx + ph Ph ∈ ℝd×d ph ∈ ℝd

π⋆
h π⋆

h (x) = − Khx Kh ∈ ℝk×d

Ph ph Kh

We will cover the steps of the proof the theorem and derive the optimal policy along the way via dynamic
programming

23

Key Steps in the Proof
Dynamic programming (finite-horizon), stepping backwards in time from to H 0

24

Key Steps in the Proof
Dynamic programming (finite-horizon), stepping backwards in time from to H 0

1. Base case: Show that is quadraticV⋆
H(x)

24

Key Steps in the Proof
Dynamic programming (finite-horizon), stepping backwards in time from to H 0

1. Base case: Show that is quadraticV⋆
H(x)

2. Inductive hypothesis: Assuming is quadratic,

a) Show that is quadratic (in both and)

b) Derive the optimal policy , and show that it’s linear

c) Show is quadratic

V⋆
h+1(x)

Q⋆
h (x, u) x u

π⋆
h (x) = arg min

u
Q⋆

h (x, u)
V⋆

h (x)

24

Key Steps in the Proof
Dynamic programming (finite-horizon), stepping backwards in time from to H 0

1. Base case: Show that is quadraticV⋆
H(x)

2. Inductive hypothesis: Assuming is quadratic,

a) Show that is quadratic (in both and)

b) Derive the optimal policy , and show that it’s linear

c) Show is quadratic

V⋆
h+1(x)

Q⋆
h (x, u) x u

π⋆
h (x) = arg min

u
Q⋆

h (x, u)
V⋆

h (x)

3. Conclusion: is quadratic and is linear and we’ll have their formulasV⋆
h (x) π⋆

h (x)

24

Base case at H

25

Base case at H

25

Recall the value function at a given is:h

Vπ
h (x) = ![x⊤

HQxH +
H−1

∑
i=h

(x⊤
i Qxi + u⊤

i Rui) ui = πi(xi) ∀i ≥ h, xh = x]

Base case at H

25

Recall the value function at a given is:h

Vπ
h (x) = ![x⊤

HQxH +
H−1

∑
i=h

(x⊤
i Qxi + u⊤

i Rui) ui = πi(xi) ∀i ≥ h, xh = x]

For , everything disappears except first term :Vπ
H x⊤

HQxH = x⊤Qx
V⋆

H(x) = x⊤Qx

Base case at H

Denoting and , we get
PH := Q pH := 0
V⋆

H(x) = x⊤PHx + pH

25

Recall the value function at a given is:h

Vπ
h (x) = ![x⊤

HQxH +
H−1

∑
i=h

(x⊤
i Qxi + u⊤

i Rui) ui = πi(xi) ∀i ≥ h, xh = x]

For , everything disappears except first term :Vπ
H x⊤

HQxH = x⊤Qx
V⋆

H(x) = x⊤Qx

Base case at H

Denoting and , we get
PH := Q pH := 0
V⋆

H(x) = x⊤PHx + pH

25

Recall the value function at a given is:h

Vπ
h (x) = ![x⊤

HQxH +
H−1

∑
i=h

(x⊤
i Qxi + u⊤

i Rui) ui = πi(xi) ∀i ≥ h, xh = x]

For , everything disappears except first term :Vπ
H x⊤

HQxH = x⊤Qx
V⋆

H(x) = x⊤Qx

(and didn’t do much here, but we’re going to define them recursively in the next step)Ph ph

Induction Step
Assume , for all , where and V⋆

h+1(x) = x⊤Ph+1x + ph+1 x Ph+1 ∈ ℝd×d ph+1 ∈ ℝd

26

Induction Step
Assume , for all , where and V⋆

h+1(x) = x⊤Ph+1x + ph+1 x Ph+1 ∈ ℝd×d ph+1 ∈ ℝd

Q⋆
h (x, u) = c(x, u) + !x′ ∼f(x,u,wh+1) [V⋆

h+1(x′)]

26

Induction Step
Assume , for all , where and V⋆

h+1(x) = x⊤Ph+1x + ph+1 x Ph+1 ∈ ℝd×d ph+1 ∈ ℝd

Q⋆
h (x, u) = c(x, u) + !x′ ∼f(x,u,wh+1) [V⋆

h+1(x′)]
= x⊤Qx + u⊤Ru + !x′ ∼f(x,u,wh+1) [V⋆

h+1(x′)]

26

Induction Step
Assume , for all , where and V⋆

h+1(x) = x⊤Ph+1x + ph+1 x Ph+1 ∈ ℝd×d ph+1 ∈ ℝd

Q⋆
h (x, u) = c(x, u) + !x′ ∼f(x,u,wh+1) [V⋆

h+1(x′)]
= x⊤Qx + u⊤Ru + !x′ ∼f(x,u,wh+1) [V⋆

h+1(x′)]
= x⊤Qx + u⊤Ru + !wh+1∼3(0,σ2I) [V⋆

h+1 (Ax + Bu + wh+1)]

26

Induction Step
Assume , for all , where and V⋆

h+1(x) = x⊤Ph+1x + ph+1 x Ph+1 ∈ ℝd×d ph+1 ∈ ℝd

Q⋆
h (x, u) = c(x, u) + !x′ ∼f(x,u,wh+1) [V⋆

h+1(x′)]
= x⊤Qx + u⊤Ru + !x′ ∼f(x,u,wh+1) [V⋆

h+1(x′)]
= x⊤Qx + u⊤Ru + !wh+1∼3(0,σ2I) [V⋆

h+1 (Ax + Bu + wh+1)]
= x⊤Qx + u⊤Ru + !wh+1∼3(0,σ2I) [(Ax + Bu + wh+1)⊤Ph+1(Ax + Bu + wh+1) + ph+1]

26

Induction Step
Assume , for all , where and V⋆

h+1(x) = x⊤Ph+1x + ph+1 x Ph+1 ∈ ℝd×d ph+1 ∈ ℝd

Q⋆
h (x, u) = c(x, u) + !x′ ∼f(x,u,wh+1) [V⋆

h+1(x′)]
= x⊤Qx + u⊤Ru + !x′ ∼f(x,u,wh+1) [V⋆

h+1(x′)]
= x⊤Qx + u⊤Ru + !wh+1∼3(0,σ2I) [V⋆

h+1 (Ax + Bu + wh+1)]
= x⊤Qx + u⊤Ru + !wh+1∼3(0,σ2I) [(Ax + Bu + wh+1)⊤Ph+1(Ax + Bu + wh+1) + ph+1]
= x⊤ (Q + A⊤Ph+1A) x + u⊤ (R + B⊤Ph+1B) u + 2x⊤A⊤Ph+1Bu + !wh+1∼3(0,σ2I) [w⊤

h+1Ph+1wh+1] + ph+1

26

Induction Step
Assume , for all , where and V⋆

h+1(x) = x⊤Ph+1x + ph+1 x Ph+1 ∈ ℝd×d ph+1 ∈ ℝd

Q⋆
h (x, u) = c(x, u) + !x′ ∼f(x,u,wh+1) [V⋆

h+1(x′)]
= x⊤Qx + u⊤Ru + !x′ ∼f(x,u,wh+1) [V⋆

h+1(x′)]
= x⊤Qx + u⊤Ru + !wh+1∼3(0,σ2I) [V⋆

h+1 (Ax + Bu + wh+1)]
= x⊤Qx + u⊤Ru + !wh+1∼3(0,σ2I) [(Ax + Bu + wh+1)⊤Ph+1(Ax + Bu + wh+1) + ph+1]
= x⊤ (Q + A⊤Ph+1A) x + u⊤ (R + B⊤Ph+1B) u + 2x⊤A⊤Ph+1Bu + !wh+1∼3(0,σ2I) [w⊤

h+1Ph+1wh+1] + ph+1

= x⊤ (Q + A⊤Ph+1A) x + u⊤ (R + B⊤Ph+1B) u + 2x⊤A⊤Ph+1Bu + tr (σ2Ph+1) + ph+1

26

Induction Step (continued)

27

Q⋆
h (x, u) = c(x, u) + !x′ ∼f(x,u,wh+1) [V⋆

h+1(x′)]
= x⊤ (Q + A⊤Ph+1A) x + u⊤ (R + B⊤Ph+1B) u + 2x⊤A⊤Ph+1Bu + tr (σ2Ph+1) + ph+1

Induction Step (continued)

π⋆
h (x) = arg min

u
Q⋆

h (x, u)

27

Q⋆
h (x, u) = c(x, u) + !x′ ∼f(x,u,wh+1) [V⋆

h+1(x′)]
= x⊤ (Q + A⊤Ph+1A) x + u⊤ (R + B⊤Ph+1B) u + 2x⊤A⊤Ph+1Bu + tr (σ2Ph+1) + ph+1

Induction Step (continued)

π⋆
h (x) = arg min

u
Q⋆

h (x, u)

Set and solve for :∇uQ⋆
h (x, u) = 0 u

27

Q⋆
h (x, u) = c(x, u) + !x′ ∼f(x,u,wh+1) [V⋆

h+1(x′)]
= x⊤ (Q + A⊤Ph+1A) x + u⊤ (R + B⊤Ph+1B) u + 2x⊤A⊤Ph+1Bu + tr (σ2Ph+1) + ph+1

Induction Step (continued)

π⋆
h (x) = arg min

u
Q⋆

h (x, u)

Set and solve for :∇uQ⋆
h (x, u) = 0 u

27

Q⋆
h (x, u) = c(x, u) + !x′ ∼f(x,u,wh+1) [V⋆

h+1(x′)]
= x⊤ (Q + A⊤Ph+1A) x + u⊤ (R + B⊤Ph+1B) u + 2x⊤A⊤Ph+1Bu + tr (σ2Ph+1) + ph+1

∇uQ⋆
h (x, u) = ∇u[u⊤ (R + B⊤Ph+1B) u + 2x⊤A⊤Ph+1Bu]

Induction Step (continued)

π⋆
h (x) = arg min

u
Q⋆

h (x, u)

Set and solve for :∇uQ⋆
h (x, u) = 0 u

27

Q⋆
h (x, u) = c(x, u) + !x′ ∼f(x,u,wh+1) [V⋆

h+1(x′)]
= x⊤ (Q + A⊤Ph+1A) x + u⊤ (R + B⊤Ph+1B) u + 2x⊤A⊤Ph+1Bu + tr (σ2Ph+1) + ph+1

∇uQ⋆
h (x, u) = ∇u[u⊤ (R + B⊤Ph+1B) u + 2x⊤A⊤Ph+1Bu]

= 2 (R + B⊤Ph+1B) u + 2B⊤Ph+1Ax

Induction Step (continued)

π⋆
h (x) = arg min

u
Q⋆

h (x, u)

Set and solve for :∇uQ⋆
h (x, u) = 0 u

π⋆
h (x) = − (R + B⊤Ph+1B)−1B⊤Ph+1A

:=Kh

x

27

Q⋆
h (x, u) = c(x, u) + !x′ ∼f(x,u,wh+1) [V⋆

h+1(x′)]
= x⊤ (Q + A⊤Ph+1A) x + u⊤ (R + B⊤Ph+1B) u + 2x⊤A⊤Ph+1Bu + tr (σ2Ph+1) + ph+1

∇uQ⋆
h (x, u) = ∇u[u⊤ (R + B⊤Ph+1B) u + 2x⊤A⊤Ph+1Bu]

= 2 (R + B⊤Ph+1B) u + 2B⊤Ph+1Ax

Induction Step (continued)

π⋆
h (x) = arg min

u
Q⋆

h (x, u)

Set and solve for :∇uQ⋆
h (x, u) = 0 u

π⋆
h (x) = − (R + B⊤Ph+1B)−1B⊤Ph+1A

:=Kh

x

:= − Khx
27

Q⋆
h (x, u) = c(x, u) + !x′ ∼f(x,u,wh+1) [V⋆

h+1(x′)]
= x⊤ (Q + A⊤Ph+1A) x + u⊤ (R + B⊤Ph+1B) u + 2x⊤A⊤Ph+1Bu + tr (σ2Ph+1) + ph+1

∇uQ⋆
h (x, u) = ∇u[u⊤ (R + B⊤Ph+1B) u + 2x⊤A⊤Ph+1Bu]

= 2 (R + B⊤Ph+1B) u + 2B⊤Ph+1Ax

Concluding the Induction step:

28

Q⋆
h (x, u) = x⊤ (Q + A⊤Ph+1A) x + u⊤ (R + B⊤Ph+1B) u + 2x⊤A⊤Ph+1Bu + tr (σ2Ph+1) + ph+1

π⋆
h (x) = − (R + B⊤Ph+1B)−1B⊤Ph+1A

:=Kh

x

Concluding the Induction step:

V⋆
h (x) = Q⋆

h (x, π⋆
h (x))

28

Q⋆
h (x, u) = x⊤ (Q + A⊤Ph+1A) x + u⊤ (R + B⊤Ph+1B) u + 2x⊤A⊤Ph+1Bu + tr (σ2Ph+1) + ph+1

π⋆
h (x) = − (R + B⊤Ph+1B)−1B⊤Ph+1A

:=Kh

x

Concluding the Induction step:

V⋆
h (x) = Q⋆

h (x, π⋆
h (x))

28

Q⋆
h (x, u) = x⊤ (Q + A⊤Ph+1A) x + u⊤ (R + B⊤Ph+1B) u + 2x⊤A⊤Ph+1Bu + tr (σ2Ph+1) + ph+1

π⋆
h (x) = − (R + B⊤Ph+1B)−1B⊤Ph+1A

:=Kh

x

= x⊤ (Q + A⊤Ph+1A) x + x⊤K⊤
h (R + B⊤Ph+1B) Khx − 2x⊤A⊤Ph+1BKhx + tr (σ2Ph+1) + ph+1

Concluding the Induction step:

V⋆
h (x) = Q⋆

h (x, π⋆
h (x))

Collecting the quadratic and constant terms together, where:V⋆
h (x) = x⊤Phx + ph,

28

Q⋆
h (x, u) = x⊤ (Q + A⊤Ph+1A) x + u⊤ (R + B⊤Ph+1B) u + 2x⊤A⊤Ph+1Bu + tr (σ2Ph+1) + ph+1

π⋆
h (x) = − (R + B⊤Ph+1B)−1B⊤Ph+1A

:=Kh

x

= x⊤ (Q + A⊤Ph+1A) x + x⊤K⊤
h (R + B⊤Ph+1B) Khx − 2x⊤A⊤Ph+1BKhx + tr (σ2Ph+1) + ph+1

Concluding the Induction step:

V⋆
h (x) = Q⋆

h (x, π⋆
h (x))

Collecting the quadratic and constant terms together, where:V⋆
h (x) = x⊤Phx + ph,

Ph = Q + A⊤Ph+1A − A⊤Ph+1B(R + B⊤Ph+1B)−1B⊤Ph+1A
ph = tr (σ2Ph+1) + ph+1

28

Q⋆
h (x, u) = x⊤ (Q + A⊤Ph+1A) x + u⊤ (R + B⊤Ph+1B) u + 2x⊤A⊤Ph+1Bu + tr (σ2Ph+1) + ph+1

π⋆
h (x) = − (R + B⊤Ph+1B)−1B⊤Ph+1A

:=Kh

x

= x⊤ (Q + A⊤Ph+1A) x + x⊤K⊤
h (R + B⊤Ph+1B) Khx − 2x⊤A⊤Ph+1BKhx + tr (σ2Ph+1) + ph+1

Concluding the Induction step:

V⋆
h (x) = Q⋆

h (x, π⋆
h (x))

Collecting the quadratic and constant terms together, where:V⋆
h (x) = x⊤Phx + ph,

Ph = Q + A⊤Ph+1A − A⊤Ph+1B(R + B⊤Ph+1B)−1B⊤Ph+1A
ph = tr (σ2Ph+1) + ph+1

28

Q⋆
h (x, u) = x⊤ (Q + A⊤Ph+1A) x + u⊤ (R + B⊤Ph+1B) u + 2x⊤A⊤Ph+1Bu + tr (σ2Ph+1) + ph+1

π⋆
h (x) = − (R + B⊤Ph+1B)−1B⊤Ph+1A

:=Kh

x

= x⊤ (Q + A⊤Ph+1A) x + x⊤K⊤
h (R + B⊤Ph+1B) Khx − 2x⊤A⊤Ph+1BKhx + tr (σ2Ph+1) + ph+1

Ricatti Equation

Summary:

29

Summary:
V⋆

H(x) = x⊤Qx, define PH = Q, pH = 0,

29

Summary:
V⋆

H(x) = x⊤Qx, define PH = Q, pH = 0,

We have shown that , where: V⋆
h (x) = x⊤Phx + ph

Ph = Q + A⊤Ph+1A − A⊤Ph+1B(R + B⊤Ph+1B)−1B⊤Ph+1A
ph = tr (σ2Ph+1) + ph+1

29

Summary:
V⋆

H(x) = x⊤Qx, define PH = Q, pH = 0,

We have shown that , where: V⋆
h (x) = x⊤Phx + ph

Ph = Q + A⊤Ph+1A − A⊤Ph+1B(R + B⊤Ph+1B)−1B⊤Ph+1A
ph = tr (σ2Ph+1) + ph+1

Along the way, we also have shown that , where: π⋆
h (x) = − Khx

Kh = (R + B⊤Ph+1B)−1B⊤Ph+1A

29

Summary:
V⋆

H(x) = x⊤Qx, define PH = Q, pH = 0,

We have shown that , where: V⋆
h (x) = x⊤Phx + ph

Ph = Q + A⊤Ph+1A − A⊤Ph+1B(R + B⊤Ph+1B)−1B⊤Ph+1A
ph = tr (σ2Ph+1) + ph+1

Along the way, we also have shown that , where: π⋆
h (x) = − Khx

Kh = (R + B⊤Ph+1B)−1B⊤Ph+1A

Optimal policy has nothing to do with initial distribution or the noise ! μ0 σ2

29

Today

30

• Feedback from last lecture

• Recap

• General optimal control problem

• The linear quadratic regulator (LQR) problem

• Optimal control solution to LQR

Summary:

Feedback:

bit.ly/3RHtlxy

31

Attendance: 
bit.ly/3RcTC9T

• Optimal control: Find optimal policy in MDP with continuous state/action spaces

• Linear quadratic regulator (LQR) is canonical problem in optimal control

-Linear dynamics, Gaussian errors, quadratic costs

-Optimal value and policy follow from dynamic programming

