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« S a set of states
» A a set of actions
e P: S XA A(S) specifies the dynamics model,
.e. is the probability of transitioning to s’ from state s via action a

e For now, let’'s assume this is a deterministic function
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Policy Evaluation = Computing Value function and/or Q function

We evaluate policies via quantities that allow us to reason about the policy’s long-term effect:

H-1
_ Value function V/'(s) = E [ Z r(s,a,)|s, = S]

1=h

H-1

Q function Q7(s,a) = [ [ Z r(s, a)| (s, a,) = (s, a)]
t=h

* For deterministic policy x, Bellman consistency:

e Vi) = 1(s, () + Egepeismys) | Vi1 (8)
e O(s,a) = r(s,a) + Egop(isa) | Vi (8)

e DP: « |nitialize: VE(S) =0, Vs eSS

e Forh=H—-1,...0, set:
V, (s) = (s, m(s)) + Eg_p(.s, 7:(5)) [ (s )] Vs €S
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Example of Optimal Policy 7*

Consider the following deterministic MDP w/ 3 states & 2 actions, with

 What’s the optimal policy?
7 (s) = A, Vs, h

« What is optimal value function, VT = V*?
Vz*(a) = 0, V;(b) = 1, Vz*(c) =0

V¥a) =1, V¥b)=2, Vi) =1

Vi(a) =2, V() =3, VJ(c)=2




How do we compute 7~ and V*?



How do we compute 7~ and V*?

* Naively, we could compute the value of all policies and take the best one.



How do we compute 7~ and V*?

* Naively, we could compute the value of all policies and take the best one.
» Suppose | S| states, |A | actions, and horizon H.

ST H
A




How do we compute 7~ and V*?

* Naively, we could compute the value of all policies and take the best one.
» Suppose | S| states, |A | actions, and horizon H.

e Can we do better?



Properties of an Optimal Policy 7 *



Properties of an Optimal Policy 7 *

« Let I1 be the set of all time dependent, history dependent, stochastic policies.



Properties of an Optimal Policy 7 *

« Let I1 be the set of all time dependent, history dependent, stochastic policies.

 Theorem: Every finite horizon MDP has a
optimal policy, that



Properties of an Optimal Policy 7 *

« Let I1 be the set of all time dependent, history dependent, stochastic policies.

 Theorem: Every finite horizon MDP has a
optimal policy, that
o I.e. there exists a deterministic policy T* = {72'8(, 7z1*, e th_l}, 71'; S A
such that
VZ(s) > Vi(s) Vs,h, Vrell



Properties of an Optimal Policy 7 *

« Let I1 be the set of all time dependent, history dependent, stochastic policies.

 Theorem: Every finite horizon MDP has a
optimal policy, that

o I.e. there exists a deterministic policy T* = {72'8(, 7z1*, e th_l}, 71'; S A
such that
*
VZ(s) > Vi(s) Vs,h, Vrell

¢ = We can write: V,f = V,ff* and QZ( = Q;f*.



Properties of an Optimal Policy 7 *

Let 11 be the set of all time dependent, history dependent, stochastic policies.

Theorem: Every finite horizon MDP has a
optimal policy, that

o I.e. there exists a deterministic policy T* = {72'8(, 7z1*, e th_l}, 71'; S A
such that
*
VZ(s) > Vi(s) Vs,h, Vrell

—> we can write: V,f = V,’l’* and QZ( = Q}’l’*.

— 7~ doesn’t depend on the initial state distribution .
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What's the Proof Intuition?

* Theorem: Every finite horizon MDP has a
optimal policy, that

e What's the Proof Intuition?

* “Only the state matters”: how got here doesn’t matter to where we go next, conditioned on
the action.
* This explains both determinism and history-independence
 Caveat: some legitimate reward functions are not additive/linear (so, naively, not an MDP).
(But, RL is general: think about redefining the state so you can do these.)
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The Bellman Equations

» AfunctionV=1{V,,...Vy_;}, V, : § = R satisfies the Bellman equations if
Vh(S) — IMax {F(S, Cl) + _S’NP(°‘S,CI) [Vh-l-l(s/)] } ; VS

(@assume V; = 0).

e Theorem:

« V satisfies the Bellman equations if and only if V = V7.

. The optimal policy is: 7, *(s) = arg max {r(s, a) + =N an a)[ +1(S )] }

d
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Computation of V* with Dynamic Programming

 [heorem: the following Dynamic Programming algorithm computes 7* and V*
Prf: the Bellman equations directly lead to this backwards induction.

e Initialize: V/,(s) =0 Vs & 5
Fort=H — 1,...0, set:

h+

. VX(s) = max [r(s, a) + Eypiisa) | Vi 1(S’)]], Vs €S

d

. m(s) = arg max [r(s, a) + Ey p.is.0 [V,fﬂ(s’)]], Vs e S

d

 What is the per iteration computational complexity of DP?

(assume scalar +, — , X , = are O(1) operations)
 What is the total computational complexity of DP?

O( # Wl s/1>
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Infinite Horizon MDPs:

 An MDP:

e U, S, A, P:SXA > AW), r:5XA — |0,1] same as before
e instead of finite horizon H, we have a discount factor

o Objective: find policy & that maximizes our expected, discounted future reward:
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The Setting and Our Objective

e Consider a deterministic, stationary policy
e stationary means not history or time dependent

o Sampling a trajectory 7 on an episode: for a given policy &
« Sample an initial state s, ~ u:
e Fort=0,1,2,...00
» Take action a, = 7n(s,)
» Observe reward r, = r(s,, a,)
» Transition to (and observe) s,, ; where s,. | ~ P( - |s,, a,)
« The infinite trajectory:
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Value function and Q functions:

Quantities that allow us to reason about the policy’s long-term effect:

Value function V*(s) = Z y'r(s,, a,) | so = s
h=0
- T E N h —
Q function Q%(s,a) = E | ) y"r(s). ay) | (0 ap) = (5, a)

h=0

OQ
What are upper and lower bounds on V* and Q” [0 > )/ h _ ,L)—/ z
) =0 \ -
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Example of Policy Evaluation (e.g. computing V* and O”)

Consider the following deterministic MDP w/ 3 states & 2 actions

e Consider the policy
ma) =B, n(b) = A, n(c) = A 1

(—J
e \What is Vﬂ; 56 /\/\/‘
Vi@ = S " Sty Sy
h=2 L= 0 h'=0
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Example of Policy Evaluation (e.g. computing V* and O”)

Consider the following deterministic MDP w/ 3 states & 2 actions

e Consider the policy
n(a) =B, n(b) =A,n(c) =A
« What is V*?

Vi(a) = y*/(1 —y)

Vi(b) = 1/(1 —y)

Vi) =y/(1 —y)
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» Consider a fixed policy, 7 : S — A.

By definition, V*(s) = OQ”(s, 7(s))
 Bellman consistency conditions:

o VH(s) = (s, (5)) + YEg o p(. (s zsnl V()]

. Q%(s,a) = r(s,a) + YEy_p( 0 | V()]
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Proof: Bellman Consistency for V-function:

* By definition and by the “tower” property of conditional expectations:

Vi(s) = b [r(so, ag) + yr(s;,ap) + }/zr(sz, ) + ... |8y = S]

- [r(so, ag) + [E [yr(sl, a,) + y°r(sy, ay) + ... | Sy = 5, a, S1] So = S]

* By the Markov property:

= [ [r(sy, ay) + yE |r(s;, ay) + yr(s,, a,) + ... S1] So = S]

= I [’”(S()a ag) +yV*i(s)) | s, = S]

= r(s, n(s)) + yz P(s’|s, n(s)) V*(s')

20
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Computation of V*

For a fixed policy, 7 : S — A, let’s compute its V (and Q) value functions.
We have the Bellman consistency conditions, for a given policy &

VA(s) = r(s, 2(s)) + v ) P(s'| 5, (s) V(s

(41 [$]

/
How do we use this to find a solution? \/ o~ X P \/

What is the time complexity?
O (15%)

21
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Example of Optimal Policy 7*, discounted case

Consider the following deterministic MDP w/ 3 states & 2 actions

 What’s the optimal policy?
7*(s) = A, Vs

 \What is optimal value function, VZ = V*?

A YL S

V*(a) =
@ 1=y 1 —vy 1=y
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How do we compute 7~ and V*?

* Naively, we could compute the value of all policies and take the best one.

» Suppose | S| states, |A | actions.
(]

A
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Properties of an Optimal Policy 7 *

 Theorem: Every infinite horizon MDP has a stationary, history independent,
deterministic optimal policy, that dominates all other policies, everywhere.
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Properties of an Optimal Policy 7 *

 Theorem: Every infinite horizon MDP has a
optimal policy, that

. i.e. there exists a policy 7* : S — A such that
Ve (s) > Vi(s) Vs, Vr eIl

(again 11 is the set of all time dependent, history dependent, stochastic policies)

.+ = we can write: V* = V" and O* = Q”*.
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Summary:

* \We remember the results on “sub-problems”
* Optimal policies are history independent.
* Discounted infinite horizon MDP analogous to finite-horizon case

Attendance: Feedback:
bit.ly/3RcTCOT bit.ly/3RHtIxy
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