Dynamic Programming & Infinite Horizons

Lucas Janson

CS/Stat 184(0): Introduction to Reinforcement Learning Fall 2024

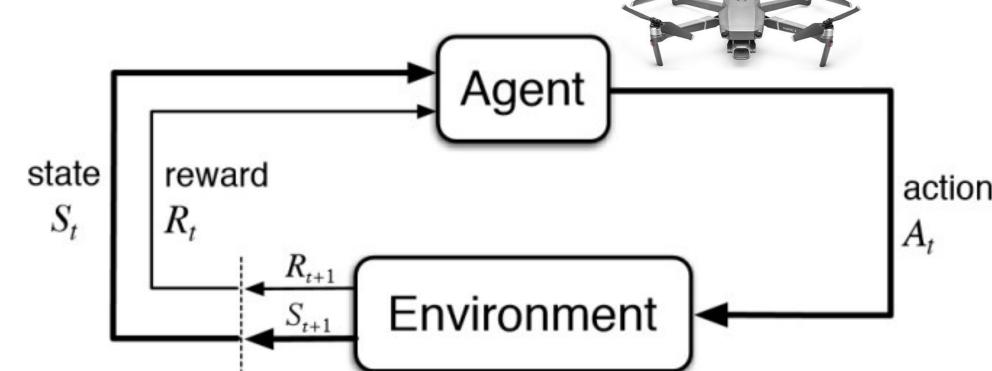
Today

- Recap
- Optimality
- The Bellman Equations & Dynamic Programming
- Infinite Horizons

Finite Horizon Markov Decision Processes (MDPs):

- An MDP: $\mathcal{M} = \{\mu, S, A, P, r, H\}$
 - μ is a distribution over initial states (sometimes we assume we start a given state s_0)

- A a set of actions
- $P: S \times A \mapsto \Delta(S)$ specifies the dynamics model, i.e. P(s' | s, a) is the probability of transitioning to s' from state s via action a
- $r: S \times A \rightarrow [0,1]$
 - For now, let's assume this is a deterministic function
 - (sometimes we use a cost $c: S \times A \rightarrow [0,1]$)
- A time horizon $H \in \mathbb{N}$



Policy Evaluation = Computing Value function and/or Q function

We evaluate policies via quantities that allow us to reason about the policy's long-term effect:

Value function
$$V_h^{\pi}(s) = \mathbb{E} \left[\sum_{t=h}^{H-1} r(s_t, a_t) \middle| s_h = s \right]$$

• Q function
$$Q_h^{\pi}(s, a) = \mathbb{E}\left[\left.\sum_{t=h}^{H-1} r(s_t, a_t)\right| (s_h, a_h) = (s, a)\right]$$

- For deterministic policy π , Bellman consistency:
 - $V_h^{\pi}(s) = r(s, \pi_h(s)) + \mathbb{E}_{s' \sim P(\cdot | s, \pi_h(s))} \left[V_{h+1}^{\pi}(s') \right]$
 - $Q_h^{\pi}(s, a) = r(s, a) + \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[V_{h+1}^{\pi}(s') \right]$

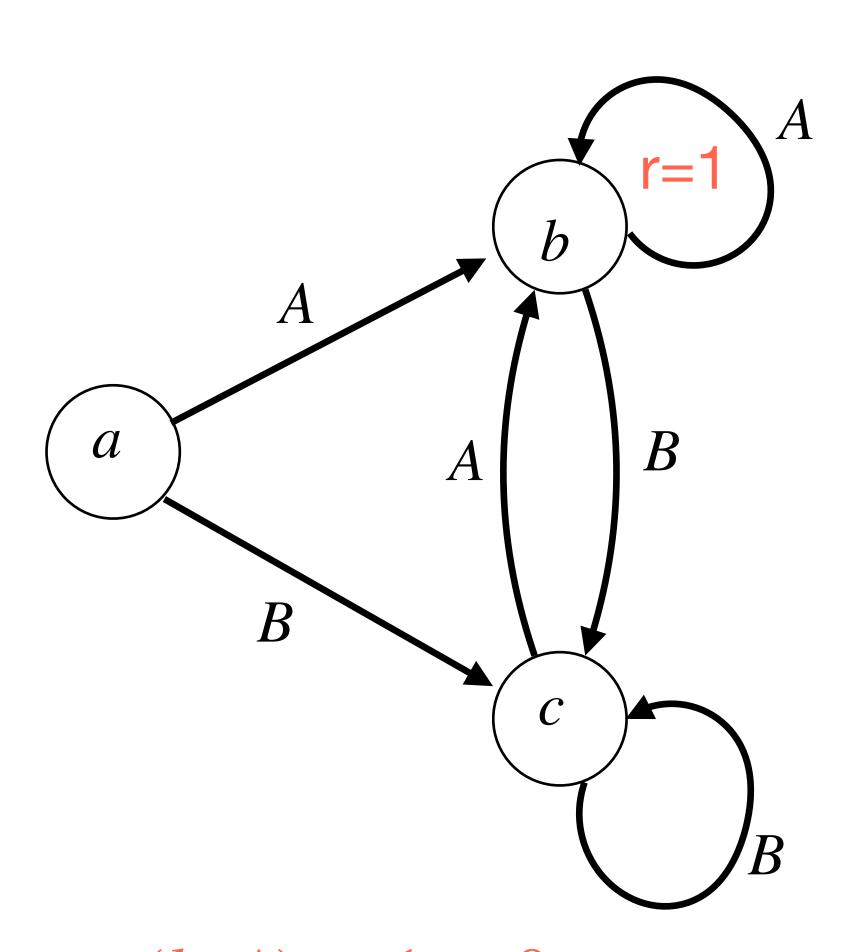
• Initialize:
$$V_H^\pi(s)=0,\ \forall s\in S$$
• For $h=H-1,\ldots 0$, set:
$$V_h^\pi(s)=r(s,\pi_h(s))+\mathbb{E}_{s'\sim P(\cdot|s,\pi_h(s))}\left[V_{h+1}^\pi(s')\right],\ \forall s\in S$$

Today

- RecapOptimality
- The Bellman Equations & Dynamic Programming
- Infinite Horizons

Example of Optimal Policy π^*

Consider the following deterministic MDP w/3 states & 2 actions, with H=3



- What's the optimal policy? $\pi_h^{\star}(s) = A, \ \forall s, h$
- What is optimal value function, $V^{\pi^{\star}} = V^{\star}$? $V_2^{\star}(a) = 0, \ V_2^{\star}(b) = 1, \ V_2^{\star}(c) = 0$

$$V_1^*(a) = 1, \ V_1^*(b) = 2, \ V_1^*(c) = 1$$

$$V_0^*(a) = 2$$
, $V_0^*(b) = 3$, $V_0^*(c) = 2$

Reward: r(b, A) = 1, & 0 everywhere else

How do we compute π^* and V^* ?

- Naively, we could compute the value of all policies and take the best one.
- Suppose |S| states, |A| actions, and horizon H. How many different polices there are?

Can we do better?

Properties of an Optimal Policy π^*

- ullet Let Π be the set of all time dependent, history dependent, stochastic policies.
- **Theorem:** Every finite horizon MDP has a deterministic, history-independent optimal policy, that dominates all other policies, everywhere.
 - i.e. there exists a deterministic policy $\pi^* := \{\pi_0^*, \pi_1^*, \dots, \pi_{H-1}^*\}, \pi_h^* : S \mapsto A$ such that

$$V_h^{\pi^*}(s) \ge V_h^{\pi}(s) \quad \forall s, h, \ \forall \pi \in \Pi$$

- \Longrightarrow we can write: $V_h^{\star} = V_h^{\pi^{\star}}$ and $Q_h^{\star} = Q_h^{\pi^{\star}}$.
- $\Longrightarrow \pi^*$ doesn't depend on the initial state distribution μ .

What's the Proof Intuition?

- **Theorem:** Every finite horizon MDP has a deterministic, history-independent optimal policy, that dominates all other policies, everywhere.
- What's the Proof Intuition?
 - "Only the state matters": how got here doesn't matter to where we go next, conditioned on the action.
 - This explains both determinism and history-independence
- Caveat: some legitimate reward functions are not additive/linear (so, naively, not an MDP). (But, RL is general: think about redefining the state so you can do these.)

Today

- RecapOptimality
 - The Bellman Equations & Dynamic Programming
 - Infinite Horizons

The Bellman Equations

• A function $V=\{V_0,\ldots V_{H-1}\},\ V_h:S\to R$ satisfies the Bellman equations if $V_h(s)=\max_a\Big\{r(s,a)+\mathbb{E}_{s'\sim P(\cdot|s,a)}\big[V_{h+1}(s')\big]\Big\}\ ,\ \forall s$ (assume $V_H=0$).

Theorem:

• V satisfies the Bellman equations if and only if $V = V^*$.

• The optimal policy is:
$$\pi_h^*(s) = \arg\max_a \left\{ r(s,a) + \mathbb{E}_{s'\sim P(\cdot|s,a)} \left[V_{h+1}^*(s') \right] \right\}$$
.

Computation of V^{\star} with Dynamic Programming

• Theorem: the following Dynamic Programming algorithm computes π^* and V^* Prf: the Bellman equations directly lead to this backwards induction.

- $$\begin{split} \bullet & \text{ Initialize: } V_H^\pi(s) = 0 \ \forall s \in S \\ & \text{For } \mathbf{t} = H-1, \ldots 0, \text{ set:} \\ & \bullet V_h^\star(s) = \max_{a} \left[r(s,a) + \mathbb{E}_{s' \sim P(\cdot \mid s,a)} \left[V_{h+1}^\star(s') \right] \right], \ \forall s \in S \\ & \bullet \pi_h^\star(s) = \arg\max_{a} \left[r(s,a) + \mathbb{E}_{s' \sim P(\cdot \mid s,a)} \left[V_{h+1}^\star(s') \right] \right], \ \forall s \in S \end{split}$$
- What is the per iteration computational complexity of DP? (assume scalar $+, -, \times, \div$ are O(1) operations)
- What is the total computational complexity of DP?

Today

RecapOptimality

- The Bellman Equations & Dynamic Programming
- Infinite Horizons

Infinite Horizon MDPs:

- An MDP: $\mathcal{M} = \{\mu, S, A, P, r, \gamma\}$
 - μ , S, A, $P: S \times A \mapsto \Delta(S)$, $r: S \times A \to [0,1]$ same as before
 - instead of finite horizon H, we have a discount factor $\gamma \in [0,1)$

• Objective: find policy
$$\pi$$
 that maximizes our expected, discounted future reward:
$$\max_{\pi} \mathbb{E}\left[r(s_0, a_0) + \gamma r(s_1, a_1) + \gamma^2 r(s_2, a_2) + \dots \mid s_0\right]$$

The Setting and Our Objective

- Consider a deterministic, stationary policy $\pi: S \mapsto A$
 - stationary means not history or time dependent
- Sampling a trajectory τ on an episode: for a given policy π
 - Sample an initial state $s_0 \sim \mu$:
 - For $t = 0, 1, 2, ... \infty$
 - Take action $a_t = \pi(s_t)$
 - Observe reward $r_t = r(s_t, a_t)$
 - Transition to (and observe) s_{t+1} where $s_{t+1} \sim P(\cdot \mid s_t, a_t)$
- The infinite trajectory: $\tau = \{s_0, a_0, r_0, s_1, a_1, r_1, ..., \}$

Value function and Q functions:

Quantities that allow us to reason about the policy's long-term effect:

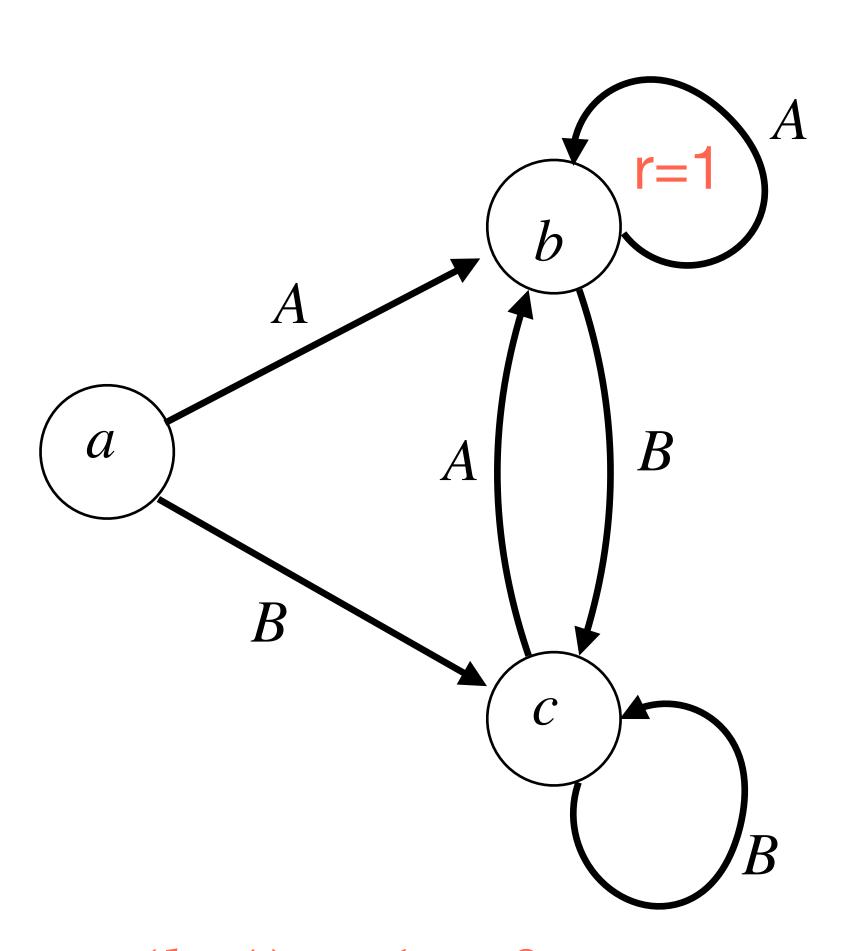
Value function
$$V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \,\middle|\, s_0 = s\right]$$

• Q function
$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h r(s_h,a_h) \middle| (s_0,a_0) = (s,a)\right]$$

• What are upper and lower bounds on V^π and Q^π

Example of Policy Evaluation (e.g. computing V^{π} and Q^{π})

Consider the following deterministic MDP w/ 3 states & 2 actions



- Consider the policy $\pi(a) = B, \pi(b) = A, \pi(c) = A$
- What is V^{π} ? $V^{\pi}(a) =$

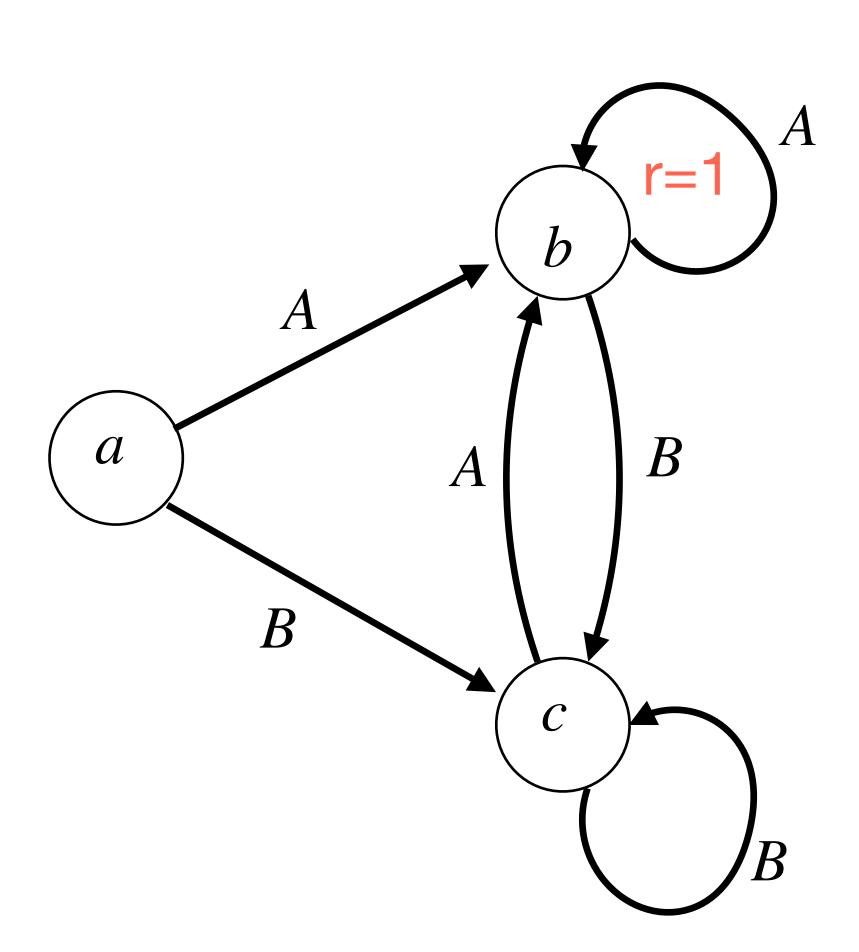
$$V^{\pi}(b) =$$

$$V^{\pi}(c) =$$

Reward: r(b, A) = 1, & 0 everywhere else

Example of Policy Evaluation (e.g. computing V^π and Q^π)

Consider the following deterministic MDP w/ 3 states & 2 actions



- Consider the policy $\pi(a) = B, \pi(b) = A, \pi(c) = A$
- What is V^{π} ? $V^{\pi}(a) = \gamma^2/(1-\gamma)$

$$V^{\pi}(b) = 1/(1-\gamma)$$

$$V^{\pi}(c) = \gamma/(1 - \gamma)$$

Reward: r(b, A) = 1, & 0 everywhere else

Bellman Consistency (theorem)

- Consider a fixed policy, $\pi: S \mapsto A$.
- By definition, $V^{\pi}(s) = Q^{\pi}(s, \pi(s))$
- Bellman consistency conditions:

•
$$V^{\pi}(s) = r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, \pi(s))}[V^{\pi}(s')]$$

•
$$Q^{\pi}(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} [V^{\pi}(s')]$$

(Optional) Proof: Bellman Consistency for V-function:

By definition and by the "tower" property of conditional expectations:

$$V^{\pi}(s) = \mathbb{E}\left[r(s_0, a_0) + \gamma r(s_1, a_1) + \gamma^2 r(s_2, a_2) + \dots \middle| s_0 = s\right]$$

$$= \mathbb{E}\left[r(s_0, a_0) + \mathbb{E}\left[\gamma r(s_1, a_1) + \gamma^2 r(s_2, a_2) + \dots \middle| s_0 = s, a_0, s_1\right] \middle| s_0 = s\right]$$

• By the Markov property:

$$= \mathbb{E}\left[r(s_0, a_0) + \gamma \mathbb{E}\left[r(s_1, a_1) + \gamma r(s_2, a_2) + \dots \middle| s_1\right] \middle| s_0 = s\right]$$

$$= \mathbb{E}\left[r(s_0, a_0) + \gamma V^{\pi}(s_1) \middle| s_h = s\right]$$

$$= r(s, \pi(s)) + \gamma \sum_{s'} P(s' | s, \pi(s)) V^{\pi}(s')$$

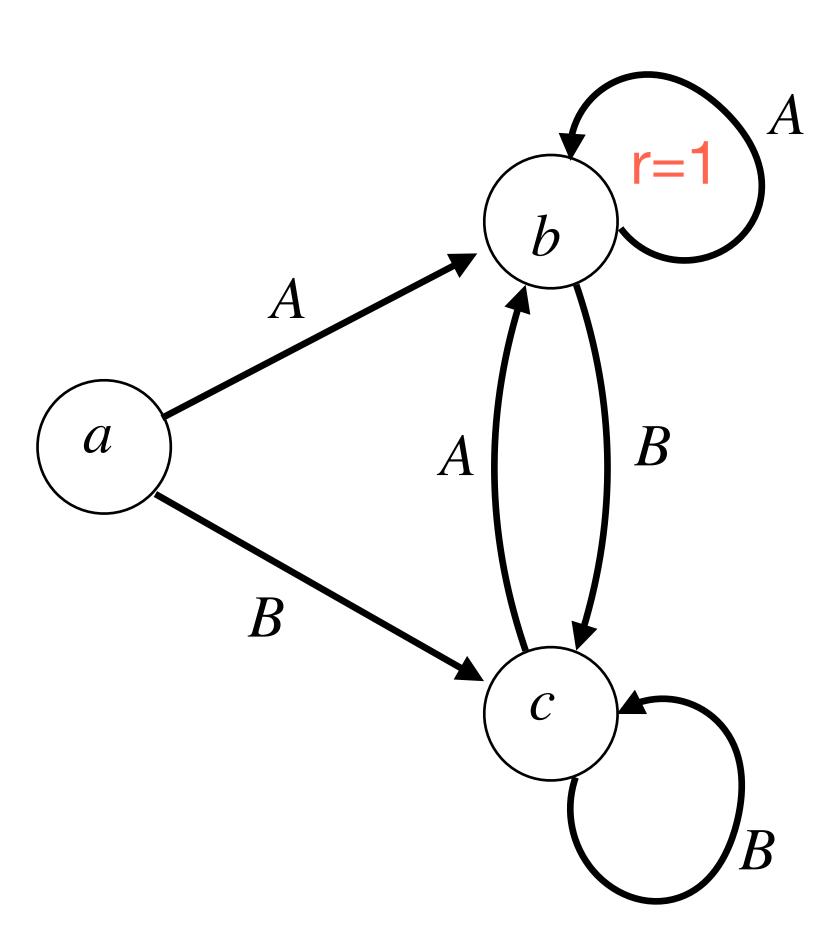
Computation of V^{π}

- For a fixed policy, $\pi: S \mapsto A$, let's compute its V (and Q) value functions.
- We have the Bellman consistency conditions, for a given policy π $V^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s'} P(s'|s, \pi(s)) V^{\pi}(s')$
- How do we use this to find a solution?

What is the time complexity?

Example of Optimal Policy π^* , discounted case

Consider the following deterministic MDP w/ 3 states & 2 actions



- What's the optimal policy? $\pi^*(s) = A, \forall s$
- What is optimal value function, $V^{\pi^*} = V^*$?

$$V^{\star}(a) = \frac{\gamma}{1 - \gamma}, \ V^{\star}(b) = \frac{1}{1 - \gamma}, \ V^{\star}(c) = \frac{\gamma}{1 - \gamma}$$

How do we compute π^* and V^* ?

- Naively, we could compute the value of all policies and take the best one.
- Suppose |S| states, |A| actions. How many different stationary polices are there?

Properties of an Optimal Policy π^*

- **Theorem:** Every infinite horizon MDP has a stationary, history independent, deterministic optimal policy, that dominates all other policies, everywhere.
 - i.e. there exists a policy $\pi^{\star}:S\mapsto A$ such that

$$V^{\pi^*}(s) \geq V^{\pi}(s) \quad \forall s, \ \forall \pi \in \Pi$$

(again Π is the set of all time dependent, history dependent, stochastic policies)

• \Longrightarrow we can write: $V^* = V^{\pi^*}$ and $Q^* = Q^{\pi^*}$.

Summary:

- Dynamic Programming lets us efficiently compute optimal policies.
 - We remember the results on "sub-problems"
 - Optimal policies are history independent.
- Discounted infinite horizon MDP analogous to finite-horizon case

Attendance:

bit.ly/3RcTC9T

Feedback:

bit.ly/3RHtlxy

