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Finite Horizon Markov Decision Processes (MDPs):

• An MDP: 

•  is a distribution over initial states 

(sometimes we assume we start a given state )

•  a set of states

•  a set of actions

•  specifies the dynamics model, 

i.e.  is the probability of transitioning to  from state  via action 

• 

• For now, let’s assume this is a deterministic function

• (sometimes we use a cost )


• A time horizon 

ℳ = {μ, S, A, P, r, H}
μ

s0
S
A
P : S × A ↦ Δ(S)

P(s′￼|s, a) s′￼ s a
r : S × A → [0,1]

c : S × A → [0,1]
H ∈ ℕ
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Policy Evaluation = Computing Value function and/or Q function

We evaluate policies via quantities that allow us to reason about the policy’s long-term effect:


• Value function  

• Q function 


• For deterministic policy , Bellman consistency:

• 


• 


• DP:  

Vπ
h (s) = 𝔼 [

H−1

∑
t=h

r(st, at) sh = s]
Qπ

h (s, a) = 𝔼 [
H−1

∑
t=h

r(st, at) (sh, ah) = (s, a)]
π

Vπ
h (s) = r(s, πh(s)) + 𝔼s′￼∼P(⋅|s,πh(s)) [Vπ

h+1(s′￼)]
Qπ

h (s, a) = r(s, a) + 𝔼s′￼∼P(⋅|s,a) [Vπ
h+1(s′￼)]
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• Initialize: ,  


• For , set: 

Vπ
H(s) = 0 ∀s ∈ S

h = H − 1,…0
Vπ

h (s) = r(s, πh(s)) + 𝔼s′￼∼P(⋅|s,πh(s)) [Vπ
h+1(s′￼)], ∀s ∈ S
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Consider the following deterministic MDP w/ 3 states & 2 actions, with H = 3

a

b

c

A

B

A B

A

B

Reward: , &  everywhere elser(b, A) = 1 0

• What’s the optimal policy? 
 

• What is optimal value function, ? 
 

 
 

 

π⋆
h (s) = A, ∀s, h

Vπ⋆ = V⋆

V⋆
2 (a) = 0, V⋆

2 (b) = 1, V⋆
2 (c) = 0

V⋆
1 (a) = 1, V⋆

1 (b) = 2, V⋆
1 (c) = 1

V⋆
0 (a) = 2, V⋆

0 (b) = 3, V⋆
0 (c) = 2

Example of Optimal Policy π⋆
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How do we compute  and ?π⋆ V⋆

• Naively, we could compute the value of all policies and take the best one.

• Suppose  states,  actions, and horizon .  

How many different polices there are? 
 
 

• Can we do better?

|S | |A | H
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Properties of an Optimal Policy π⋆

• Let  be the set of all time dependent, history dependent, stochastic policies. 

• Theorem: Every finite horizon MDP has a deterministic, history-independent 
optimal policy, that dominates all other policies, everywhere.


• i.e. there exists a deterministic policy   
such that 
	 	    ,  
 

•  we can write:  and  .


•   doesn’t depend on the initial state distribution .

Π

π⋆ := {π⋆
0 , π⋆

1 , …, π⋆
H−1}, π⋆

h : S ↦ A

Vπ⋆

h (s) ≥ Vπ
h (s) ∀s, h ∀π ∈ Π

⟹ V⋆
h = Vπ⋆

h Q⋆
h = Qπ⋆

h

⟹ π⋆ μ



What's the Proof Intuition?
• Theorem: Every finite horizon MDP has a deterministic, history-independent 

optimal policy, that dominates all other policies, everywhere. 

• What's the Proof Intuition?

• “Only the state matters”: how got here doesn’t matter to where we go next, conditioned on 

the action.

• This explains both determinism and history-independence


• Caveat: some legitimate reward functions are not additive/linear (so, naively, not an MDP). 
(But, RL is general: think about redefining the state so you can do these.) 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The Bellman Equations
• A function ,   satisfies the Bellman equations if 

	  ,  

(assume ). 

• Theorem:  


• V satisfies the Bellman equations if and only if . 

• The optimal policy is:  .

V = {V0, …VH−1} Vh : S → R
Vh(s) = max

a {r(s, a) + 𝔼s′￼∼P(⋅|s,a)[Vh+1(s′￼)]} ∀s

VH = 0

V = V⋆

π⋆
h (s) = arg max

a {r(s, a) + 𝔼s′￼∼P(⋅|s,a)[V⋆
h+1(s′￼)]}
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Computation of  with Dynamic ProgrammingV⋆

• Theorem: the following Dynamic Programming algorithm computes  and  
Prf: the Bellman equations directly lead to this backwards induction.

π⋆ V⋆

• Initialize:   
For t= , set:


• , 


• , 

Vπ
H(s) = 0 ∀s ∈ S

H − 1,…0
V⋆

h (s) = max
a [r(s, a) + 𝔼s′￼∼P(⋅|s,a) [V⋆

h+1(s′￼)]] ∀s ∈ S

π⋆
h (s) = arg max

a [r(s, a) + 𝔼s′￼∼P(⋅|s,a) [V⋆
h+1(s′￼)]] ∀s ∈ S

• What is the per iteration computational complexity of DP? 
(assume scalar  are  operations)


• What is the total computational complexity of DP?
+, − , × , ÷ O(1)
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• An MDP: 

• ,  same as before

• instead of finite horizon , we have a discount factor 

ℳ = {μ, S, A, P, r, γ}
μ S, A, P : S × A ↦ Δ(S), r : S × A → [0,1]

H γ ∈ [0,1)

Infinite Horizon MDPs:
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• Objective: find policy  that maximizes our expected, discounted future reward: 
 

π
max

π
𝔼 [r(s0, a0) + γr(s1, a1) + γ2r(s2, a2) + … . . s0]



• Consider a deterministic, stationary policy  

• stationary means not history or time dependent


• Sampling a trajectory  on an episode: for a given policy  

• Sample an initial state :

• For 

• Take action 

• Observe reward 

• Transition to (and observe)  where 


• The infinite trajectory:  

π : S ↦ A

τ π
s0 ∼ μ

t = 0,1,2,…∞
at = π(st)

rt = r(st, at)
st+1 st+1 ∼ P( ⋅ |st, at)

τ = {s0, a0, r0, s1, a1, r1, …, }

The Setting and Our Objective
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Value function and Q functions:
• Quantities that allow us to reason about the policy’s long-term effect:


• Value function  

 
 

• Q function  

 

• What are upper and lower bounds on  and  
 

Vπ(s) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) s0 = s]

Qπ(s, a) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) (s0, a0) = (s, a)]
Vπ Qπ
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Example of Policy Evaluation (e.g. computing  and )Vπ Qπ

Consider the following deterministic MDP w/ 3 states & 2 actions

a

b

c

A

B

A B

A

B

Reward: , &  everywhere elser(b, A) = 1 0

• Consider the policy  



• What is ? 
 

 
 

 
 
 

π(a) = B, π(b) = A, π(c) = A
Vπ

Vπ(a) =

Vπ(b) =

Vπ(c) =
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Example of Policy Evaluation (e.g. computing  and )Vπ Qπ

Consider the following deterministic MDP w/ 3 states & 2 actions

a

b

c

A

B

A B

A

B

Reward: , &  everywhere elser(b, A) = 1 0

• Consider the policy  



• What is ? 
 

 
 

 
 
 

π(a) = B, π(b) = A, π(c) = A
Vπ

Vπ(a) = γ2/(1 − γ)

Vπ(b) = 1/(1 − γ)

Vπ(c) = γ/(1 − γ)
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Bellman Consistency (theorem)
• Consider a fixed policy, .


• By definition, 

• Bellman consistency conditions:


•  
 
 

•

π : S ↦ A
Vπ(s) = Qπ(s, π(s))

Vπ(s) = r(s, π(s)) + γ𝔼s′￼∼P(⋅|s,π(s))[Vπ(s′￼)]

Qπ(s, a) = r(s, a) + γ𝔼s′￼∼P(⋅|s,a) [Vπ(s′￼)]
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(Optional) Proof: Bellman Consistency for V-function:
• By definition and by the “tower” property of conditional expectations: 

 

• By the Markov property: 

 

Vπ(s) = 𝔼 [r(s0, a0) + γr(s1, a1) + γ2r(s2, a2) + … s0 = s]
= 𝔼 [r(s0, a0) + 𝔼 [γr(s1, a1) + γ2r(s2, a2) + … s0 = s, a0, s1] s0 = s]

= 𝔼 [r(s0, a0) + γ𝔼 [r(s1, a1) + γr(s2, a2) + … s1] s0 = s]
= 𝔼 [r(s0, a0) + γVπ(s1) sh = s]
= r(s, π(s)) + γ∑

s′￼

P(s′￼|s, π(s)) Vπ(s′￼)

20



Computation of Vπ

• For a fixed policy, , let’s compute its V (and Q) value functions.

• We have the Bellman consistency conditions, for a given policy   

 

• How do we use this to find a solution? 
 

• What is the time complexity?

π : S ↦ A
π

Vπ(s) = r(s, π(s)) + γ∑
s′￼

P(s′￼|s, π(s))Vπ(s′￼)
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Consider the following deterministic MDP w/ 3 states & 2 actions

a

b

c

A

B

A B

A

B

Reward: , &  everywhere elser(b, A) = 1 0

• What’s the optimal policy? 
 

• What is optimal value function, ? 
 

  

π⋆(s) = A, ∀s

Vπ⋆ = V⋆

V⋆(a) =
γ

1 − γ
, V⋆(b) =

1
1 − γ

, V⋆(c) =
γ

1 − γ

Example of Optimal Policy , discounted caseπ⋆
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How do we compute  and ?π⋆ V⋆

• Naively, we could compute the value of all policies and take the best one. 

• Suppose  states,  actions. 
How many different stationary polices are there?

|S | |A |
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Properties of an Optimal Policy π⋆

• Theorem: Every infinite horizon MDP has a stationary, history independent, 
deterministic optimal policy, that dominates all other policies, everywhere.


• i.e. there exists a policy   such that 
	 	      
 
(again  is the set of all time dependent, history dependent, stochastic policies) 

•  we can write:  and  .

π⋆ : S ↦ A
Vπ⋆(s) ≥ Vπ(s) ∀s, ∀π ∈ Π

Π

⟹ V⋆ = Vπ⋆ Q⋆ = Qπ⋆



Summary:
• Dynamic Programming lets us efficiently compute optimal policies. 
• We remember the results on “sub-problems”

• Optimal policies are history independent.


• Discounted infinite horizon MDP analogous to finite-horizon case
Feedback: 

bit.ly/3RHtlxy
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Attendance: 
bit.ly/3RcTC9T

http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

