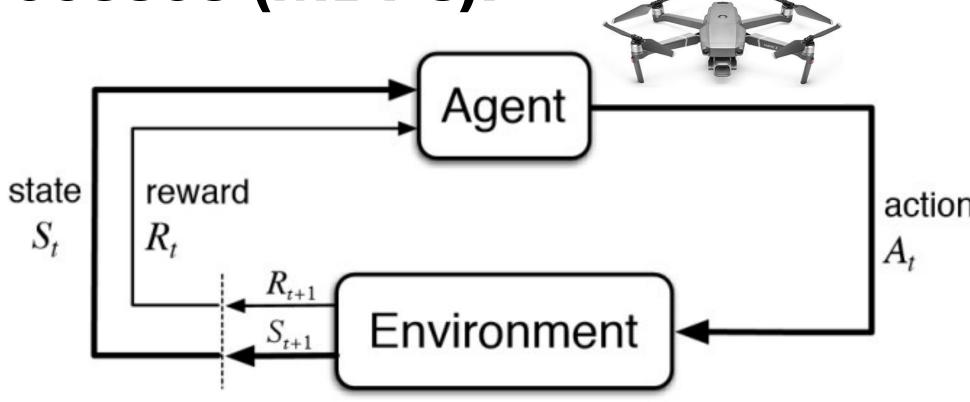
# Markov Decision Processes & Dynamic Programming

# Lucas Janson

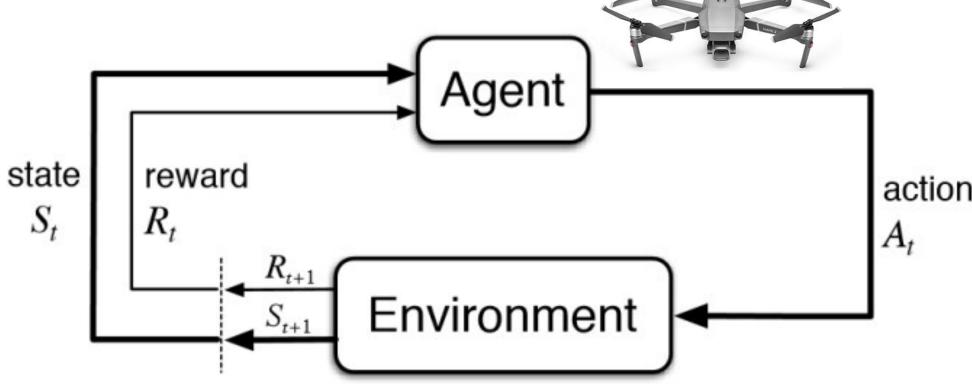
CS/Stat 184(0): Introduction to Reinforcement Learning Fall 2024

# Today

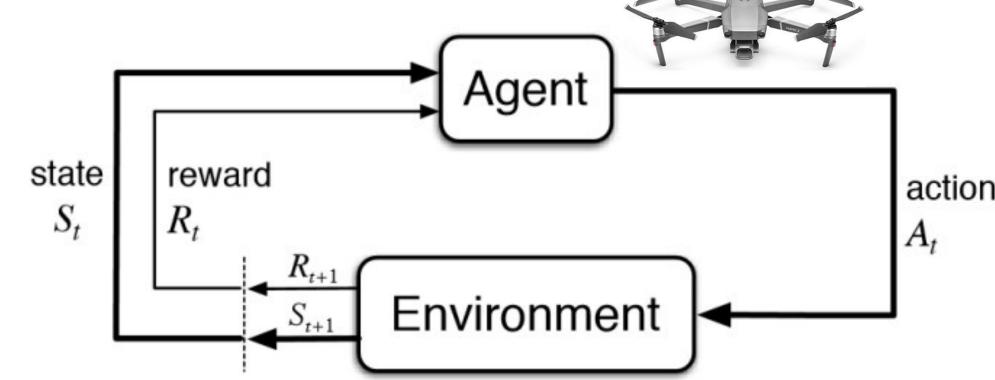
- Recap
- Problem Statement
- Bellman Consistency & Policy Evaluation
- Optimality
- The Bellman Equations & Dynamic Programming



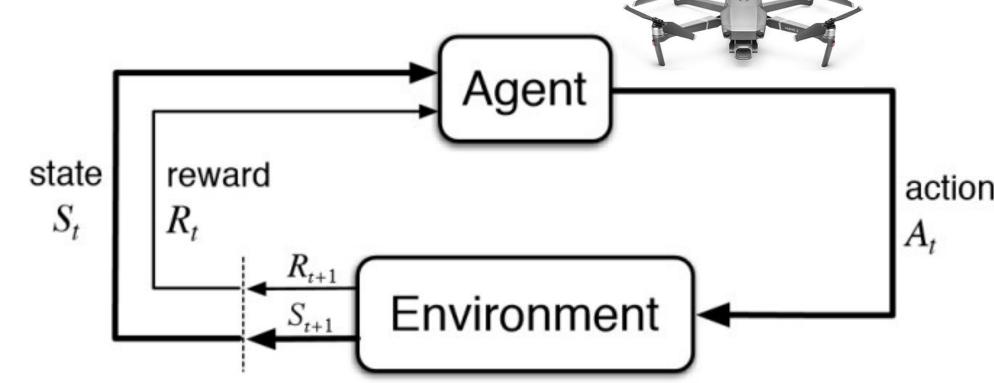
• An MDP:  $\mathcal{M} = \{\mu, S, A, P, r, H\}$ 



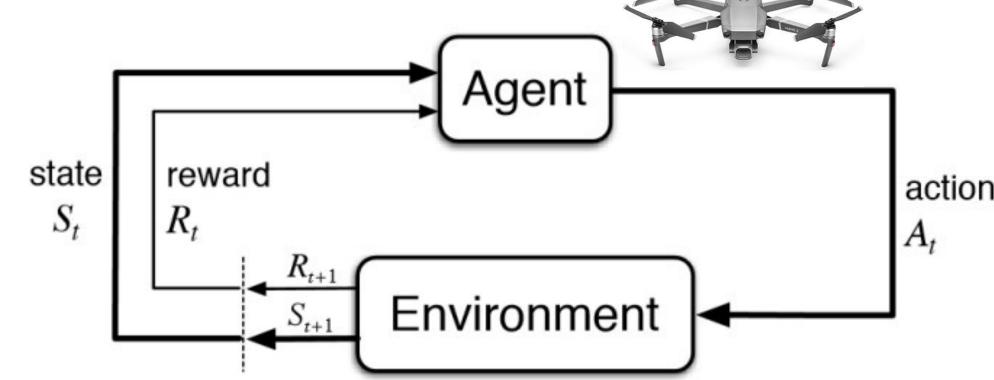
- An MDP:  $\mathcal{M} = \{\mu, S, A, P, r, H\}$ 
  - $\mu$  is a distribution over initial states (sometimes we assume we start a given state  $s_0$ )



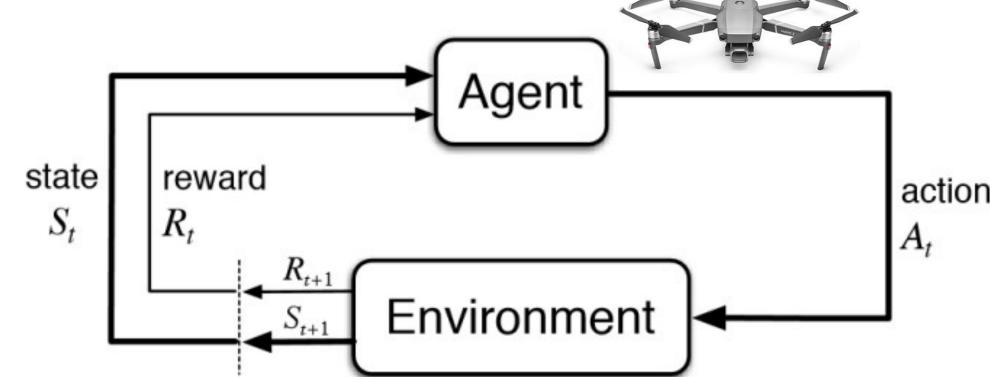
- An MDP:  $\mathcal{M} = \{\mu, S, A, P, r, H\}$ 
  - $\mu$  is a distribution over initial states (sometimes we assume we start a given state  $s_0$ )
  - S a set of states



- An MDP:  $\mathcal{M} = \{\mu, S, A, P, r, H\}$ 
  - $\mu$  is a distribution over initial states (sometimes we assume we start a given state  $s_0$ )
  - S a set of states
  - A a set of actions



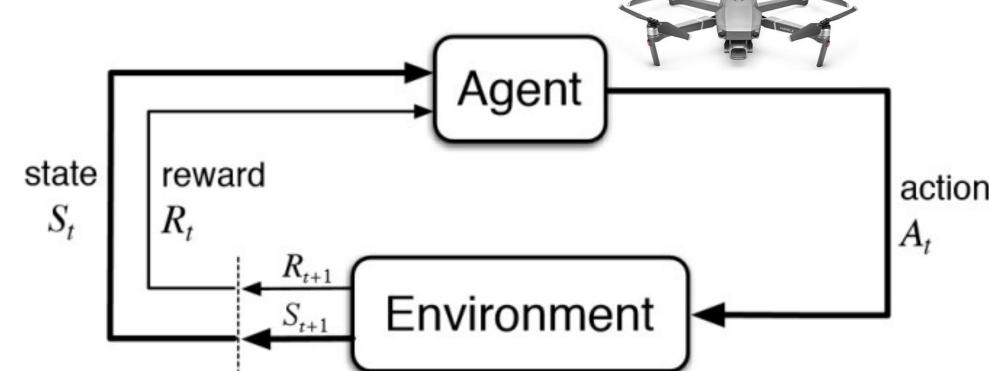
- An MDP:  $\mathcal{M} = \{\mu, S, A, P, r, H\}$ 
  - $\mu$  is a distribution over initial states (sometimes we assume we start a given state  $s_0$ )
  - S a set of states
  - A a set of actions
  - $P: S \times A \mapsto \Delta(S)$  specifies the dynamics model, i.e. P(s' | s, a) is the probability of transitioning to s' from state s via action a



- An MDP:  $\mathcal{M} = \{\mu, S, A, P, r, H\}$ 
  - $\mu$  is a distribution over initial states (sometimes we assume we start a given state  $s_0$ )



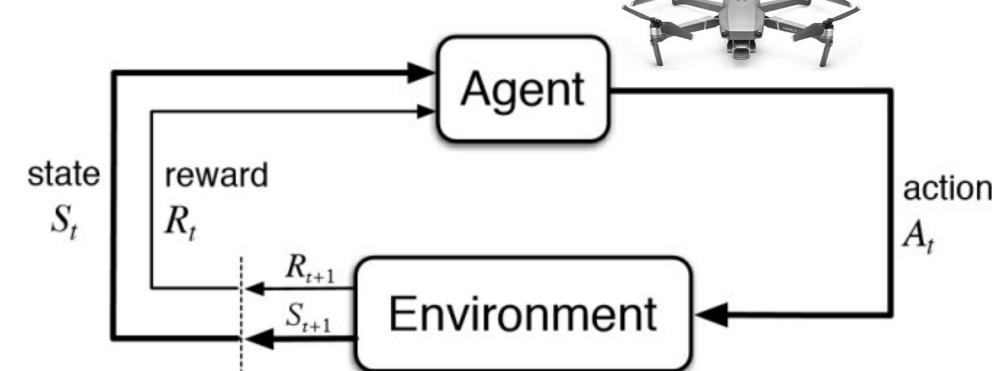
- A a set of actions
- $P: S \times A \mapsto \Delta(S)$  specifies the dynamics model, i.e. P(s' | s, a) is the probability of transitioning to s' from state s via action a
- $r: S \times A \rightarrow [0,1]$ 
  - For now, let's assume this is a deterministic function
  - (sometimes we use a cost  $c: S \times A \rightarrow [0,1]$ )



- An MDP:  $\mathcal{M} = \{\mu, S, A, P, r, H\}$ 
  - $\mu$  is a distribution over initial states (sometimes we assume we start a given state  $s_0$ )



- A a set of actions
- $P: S \times A \mapsto \Delta(S)$  specifies the dynamics model, i.e. P(s' | s, a) is the probability of transitioning to s' from state s via action a
- $r: S \times A \rightarrow [0,1]$ 
  - For now, let's assume this is a deterministic function
  - (sometimes we use a cost  $c: S \times A \rightarrow [0,1]$ )
- A time horizon  $H \in \mathbb{N}$



Example: robot hand needs to pick the ball and hold it in a goal (x,y,z) position



### robot hand needs to pick the ball and hold it in a goal (x,y,z) position



**State** *s*: robot configuration (e.g., joint angles) and the ball's position

#### robot hand needs to pick the ball and hold it in a goal (x,y,z) position



**State** *s*: robot configuration (e.g., joint angles) and the ball's position

Action a: Torque on joints in arm & fingers

#### robot hand needs to pick the ball and hold it in a goal (x,y,z) position



**State** *s*: robot configuration (e.g., joint angles) and the ball's position

**Action** *a*: Torque on joints in arm & fingers

**Transition**  $s' \sim P(\cdot \mid s, a)$ : physics + some noise

#### robot hand needs to pick the ball and hold it in a goal (x,y,z) position



**State** *s*: robot configuration (e.g., joint angles) and the ball's position

**Action** a: Torque on joints in arm & fingers **Transition**  $s' \sim P(\cdot \mid s, a)$ : physics + some noise **Policy**  $\pi(s)$ : a function mapping from robot state to action (i.e., torque)

#### robot hand needs to pick the ball and hold it in a goal (x,y,z) position



**State** *s*: robot configuration (e.g., joint angles) and the ball's position

**Action** *a*: Torque on joints in arm & fingers

**Transition**  $s' \sim P(\cdot \mid s, a)$ : physics + some noise

**Policy**  $\pi(s)$ : a function mapping from robot state to action (i.e., torque)

#### **Reward/Cost:**

r(s, a): immediate reward at state (s, a), or

c(s, a): torque magnitude + dist to goal

#### robot hand needs to pick the ball and hold it in a goal (x,y,z) position



**State** *s*: robot configuration (e.g., joint angles) and the ball's position

Action a: Torque on joints in arm & fingers

**Transition**  $s' \sim P(\cdot \mid s, a)$ : physics + some noise

**Policy**  $\pi(s)$ : a function mapping from robot state to action (i.e., torque)

#### **Reward/Cost:**

r(s, a): immediate reward at state (s, a), or

c(s, a): torque magnitude + dist to goal

Horizon: timescale H

#### robot hand needs to pick the ball and hold it in a goal (x,y,z) position



**State** *s*: robot configuration (e.g., joint angles) and the ball's position

**Action** *a*: Torque on joints in arm & fingers

**Transition**  $s' \sim P(\cdot | s, a)$ : physics + some noise

**Policy**  $\pi(s)$ : a function mapping from robot state to action (i.e., torque)

#### Reward/Cost:

r(s, a): immediate reward at state (s, a), or

c(s, a): torque magnitude + dist to goal

Horizon: timescale H

$$\pi^* = \arg\min_{\pi} \mathbb{E} \left[ c(s_0, a_0) + c(s_1, a_1) + c(s_2, a_2) + \dots + c(s_{H-1}, a_{H-1}) \middle| s_0, \right]$$

## Today



- Recap
- Problem Statement
- Bellman Consistency & Policy Evaluation
- Optimality
- The Bellman Equations & Dynamic Programming

- Policy  $\pi := \left\{\pi_0, \pi_1, \ldots, \pi_{H-1}\right\}$ 
  - deterministic policies:  $\pi_t: S \mapsto A$ ; stochastic policies:  $\pi_t: S \mapsto \Delta(A)$
  - we also consider time-dependent policies (but not a function of the history)

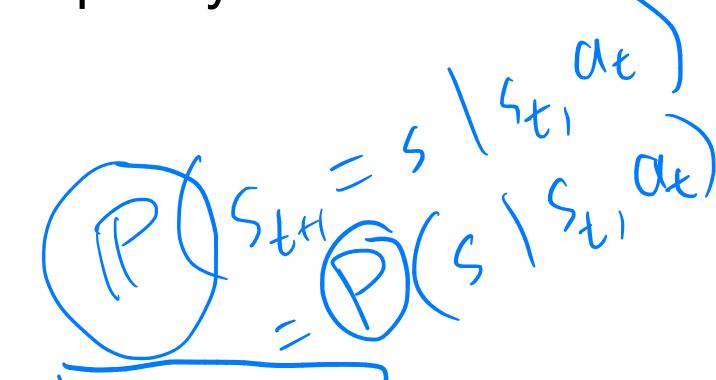
- Policy  $\pi := \left\{\pi_0, \pi_1, \ldots, \pi_{H-1}\right\}$ 
  - deterministic policies:  $\pi_t: S \mapsto A$ ; stochastic policies:  $\pi_t: S \mapsto \Delta(A)$
  - we also consider time-dependent policies (but not a function of the history)
- Sampling a trajectory  $\tau$  on an episode: for a given policy  $\pi$

- Policy  $\pi := \left\{\pi_0, \pi_1, \ldots, \pi_{H-1}\right\}$ 
  - deterministic policies:  $\pi_t : S \mapsto A$ ; stochastic policies:  $\pi_t : S \mapsto \Delta(A)$
  - we also consider time-dependent policies (but not a function of the history)
- Sampling a trajectory  $\tau$  on an episode: for a given policy  $\pi$ 
  - Sample an initial state  $s_0 \sim \mu$ :

- Policy  $\pi := \left\{\pi_0, \pi_1, \ldots, \pi_{H-1}\right\}$ 
  - deterministic policies:  $\pi_t : S \mapsto A$ ; stochastic policies:  $\pi_t : S \mapsto \Delta(A)$
  - we also consider time-dependent policies (but not a function of the history)
- Sampling a trajectory  $\tau$  on an episode: for a given policy  $\pi$ 
  - Sample an initial state  $s_0 \sim \mu$ :
  - For t = 0, 1, 2, ... H 1
    - Take action  $a_t \sim \pi_t(\cdot \mid s_t)$

- Policy  $\pi := \left\{\pi_0, \pi_1, \ldots, \pi_{H-1}\right\}$ 
  - deterministic policies:  $\pi_t : S \mapsto A$ ; stochastic policies:  $\pi_t : S \mapsto \Delta(A)$
  - we also consider time-dependent policies (but not a function of the history)
- Sampling a trajectory  $\tau$  on an episode: for a given policy  $\pi$ 
  - Sample an initial state  $s_0 \sim \mu$ :
  - For t = 0, 1, 2, ... H 1
    - Take action  $a_t \sim \pi_t(\cdot \mid s_t)$
    - Observe reward  $r_t = r(s_t, a_t)$

- Policy  $\pi := \left\{\pi_0, \pi_1, \ldots, \pi_{H-1}\right\}$ 
  - deterministic policies:  $\pi_t: S \mapsto A$ ; stochastic policies:  $\pi_t: S \mapsto \Delta(A)$
  - we also consider time-dependent policies (but not a function of the history)
- Sampling a trajectory  $\tau$  on an episode: for a given policy  $\pi$ 
  - Sample an initial state  $s_0 \sim \mu$ :
  - For t = 0, 1, 2, ... H 1
    - Take action  $a_t \sim \pi_t(\cdot \mid s_t)$
    - Observe reward  $r_t = r(s_t, a_t)$
    - Transition to (and observe)  $s_{t+1}$  where  $s_{t+1} \sim P(\cdot \mid s_t, a_t)$



- Policy  $\pi := \left\{\pi_0, \pi_1, \ldots, \pi_{H-1}\right\}$ 
  - deterministic policies:  $\pi_t : S \mapsto A$ ; stochastic policies:  $\pi_t : S \mapsto \Delta(A)$
  - we also consider time-dependent policies (but not a function of the history)
- Sampling a trajectory  $\tau$  on an episode: for a given policy  $\pi$ 
  - Sample an initial state  $s_0 \sim \mu$ :
  - For t = 0, 1, 2, ... H 1
    - Take action  $a_t \sim \pi_t(\cdot \mid s_t)$
    - Observe reward  $r_t = r(s_t, a_t)$
    - Transition to (and observe)  $s_{t+1}$  where  $s_{t+1} \sim P(\cdot \mid s_t, a_t)$
  - The sampled trajectory is  $\tau = \{s_0, a_0, r_0, s_1, a_1, r_1, \ldots, s_{H-1}, a_{H-1}, r_{H-1}\}$

• Probability of trajectory: let  $\rho_{\pi,\mu}(\tau)$  denote the probability of observing trajectory  $\tau = \{s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{H-1}, a_{H-1}, r_{H-1}\}$  when acting under  $\pi$  with  $s_0 \sim \mu$ .

- Probability of trajectory: let  $\rho_{\pi,\mu}(\tau)$  denote the probability of observing trajectory  $\tau = \{s_0, a_0, r_0, s_1, a_1, r_1, ..., s_{H-1}, a_{H-1}, r_{H-1}\}$  when acting under  $\pi$  with  $s_0 \sim \mu$ .
  - Shorthand: we sometimes write  $\rho$  or  $\rho_{\pi}$  when  $\pi$  and/or  $\mu$  are clear from context.

- Probability of trajectory: let  $\rho_{\pi,\mu}(\tau)$  denote the probability of observing trajectory  $\tau = \{s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{H-1}, a_{H-1}, r_{H-1}\}$  when acting under  $\pi$  with  $s_0 \sim \mu$ .
  - Shorthand: we sometimes write  $\rho$  or  $\rho_\pi$  when  $\pi$  and/or  $\mu$  are clear from context.
  - The rewards in this trajectory must be  $r_t = r(s_t, a_t)$  (else  $\rho_{\pi}(\tau) = 0$ ).

- Probability of trajectory: let  $\rho_{\pi,\mu}(\tau)$  denote the probability of observing trajectory  $\tau = \{s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{H-1}, a_{H-1}, r_{H-1}\}$  when acting under  $\pi$  with  $s_0 \sim \mu$ .
  - Shorthand: we sometimes write ho or  $ho_\pi$  when  $\pi$  and/or  $\mu$  are clear from context.
  - The rewards in this trajectory must be  $r_t = r(s_t, a_t)$  (else  $\rho_{\pi}(\tau) = 0$ ).
  - For  $\pi$  stochastic:

$$\rho_{\pi}(\tau) = \mu(s_0)\pi(a_0 | s_0)P(s_1 | s_0, a_0)\dots\pi(a_{H-2} | s_{H-2})P(s_{H-1} | s_{H-2}, a_{H-2})\pi(a_{H-1} | s_{H-1})$$

- Probability of trajectory: let  $\rho_{\pi,\mu}(\tau)$  denote the probability of observing trajectory  $\tau = \{s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{H-1}, a_{H-1}, r_{H-1}\}$  when acting under  $\pi$  with  $s_0 \sim \mu$ .
  - Shorthand: we sometimes write  $\rho$  or  $\rho_{\pi}$  when  $\pi$  and/or  $\mu$  are clear from context.
  - The rewards in this trajectory must be  $r_t = r(s_t, a_t)$  (else  $\rho_{\pi}(\tau) = 0$ ).
  - For  $\pi$  stochastic:

$$\rho_{\pi}(\tau) = \mu(s_0)\pi(a_0 \mid s_0)P(s_1 \mid s_0, a_0)\dots\pi(a_{H-2} \mid s_{H-2})P(s_{H-1} \mid s_{H-2}, a_{H-2})\pi(a_{H-1} \mid s_{H-1})$$

• For  $\pi$  deterministic:

$$\rho_{\pi}(\tau) = \mu(s_0) \mathbf{1} \left( a_0 = \pi(s_0) \right) P(s_1 \mid s_0, a_0) \dots P(s_{H-1} \mid s_{H-2}, a_{H-2}) \mathbf{1} \left( a_{H-1} = \pi(s_{H-1}) \right)$$

- Probability of trajectory: let  $\rho_{\pi,\mu}(\tau)$  denote the probability of observing trajectory  $\tau = \{s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{H-1}, a_{H-1}, r_{H-1}\}$  when acting under  $\pi$  with  $s_0 \sim \mu$ .
  - Shorthand: we sometimes write  $\rho$  or  $\rho_{\pi}$  when  $\pi$  and/or  $\mu$  are clear from context.
  - The rewards in this trajectory must be  $r_t = r(s_t, a_t)$  (else  $\rho_{\pi}(\tau) = 0$ ).
  - For  $\pi$  stochastic:

$$\rho_{\pi}(\tau) = \mu(s_0)\pi(a_0 \mid s_0)P(s_1 \mid s_0, a_0)\dots\pi(a_{H-2} \mid s_{H-2})P(s_{H-1} \mid s_{H-2}, a_{H-2})\pi(a_{H-1} \mid s_{H-1})$$

• For  $\pi$  deterministic:

$$\rho_{\pi}(\tau) = \mu(s_0) \mathbf{1} \left( a_0 = \pi(s_0) \right) P(s_1 \mid s_0, a_0) \dots P(s_{H-1} \mid s_{H-2}, a_{H-2}) \mathbf{1} \left( a_{H-1} = \pi(s_{H-1}) \right)$$

• Objective: find policy  $\pi$  that maximizes our expected cumulative episodic reward:

$$\max \mathbb{E}_{\tau \sim \rho_{\pi}} \left[ r(s_0, a_0) + r(s_1, a_1) + \dots + r(s_{H-1}, a_{H-1}) \right]$$

## Today



- RecapProblem Statement
  - Bellman Consistency & Policy Evaluation
  - Optimality
  - The Bellman Equations & Dynamic Programming

Policy Evaluation = Computing Value function and/or Q function

Value function 
$$V_h^{\pi}(s) = \mathbb{E}\left[ \sum_{t=h}^{H-1} r(s_t, a_t) \middle| s_h = s \right]$$

Value function 
$$V_h^{\pi}(s) = \mathbb{E} \left| \sum_{t=h}^{H-1} r(s_t, a_t) \right| s_h = s$$

• Q function 
$$Q_h^{\pi}(s, a) = \mathbb{E}\left[\left.\sum_{t=h}^{H-1} r(s_t, a_t)\right| (s_h, a_h) = (s, a)\right]$$

We evaluate policies via quantities that allow us to reason about the policy's long-term effect:

Value function 
$$V_h^{\pi}(s) = \mathbb{E} \left[ \sum_{t=h}^{H-1} r(s_t, a_t) \middle| s_h = s \right]$$

• Q function 
$$Q_h^{\pi}(s, a) = \mathbb{E}\left[\left.\sum_{t=h}^{H-1} r(s_t, a_t)\right| (s_h, a_h) = (s, a)\right]$$

At the last stage, what are:

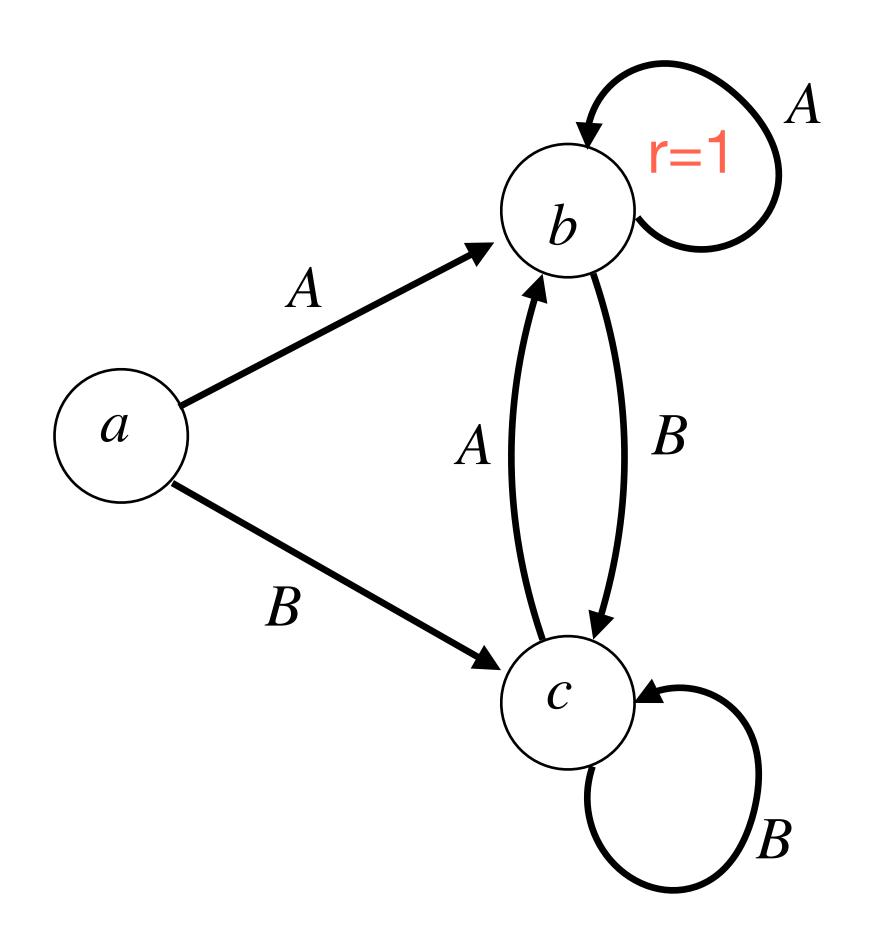
$$Q_{H-1}^{\pi}(s,a) = V_{H-1}^{\pi}(s) =$$

Value function 
$$V_h^{\pi}(s) = \mathbb{E}\left[\sum_{t=h}^{H-1} r(s_t, a_t) \middle| s_h = s\right]$$

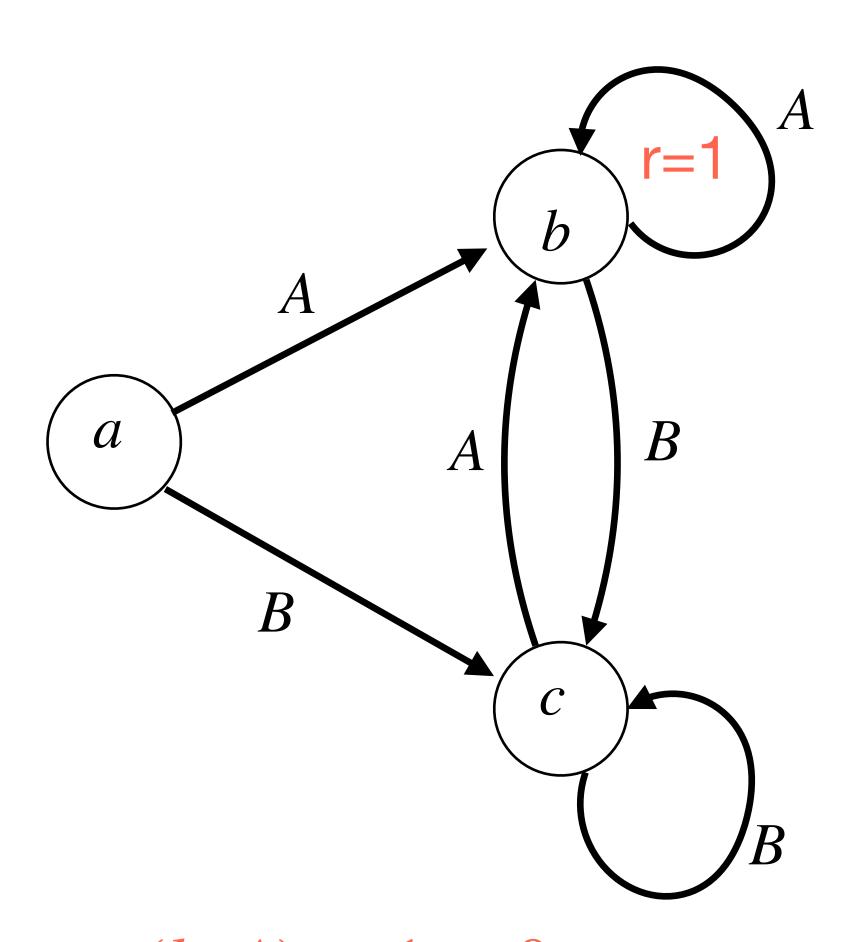
$$Q_{H-1}^{\pi}(s,a) = r(s,a)$$

$$V_{H-1}^{\pi}(s) = \sum_{a} \pi_{H-1}(a \mid s) r(s,a)$$

Consider the following deterministic MDP w/3 states & 2 actions, with H=3

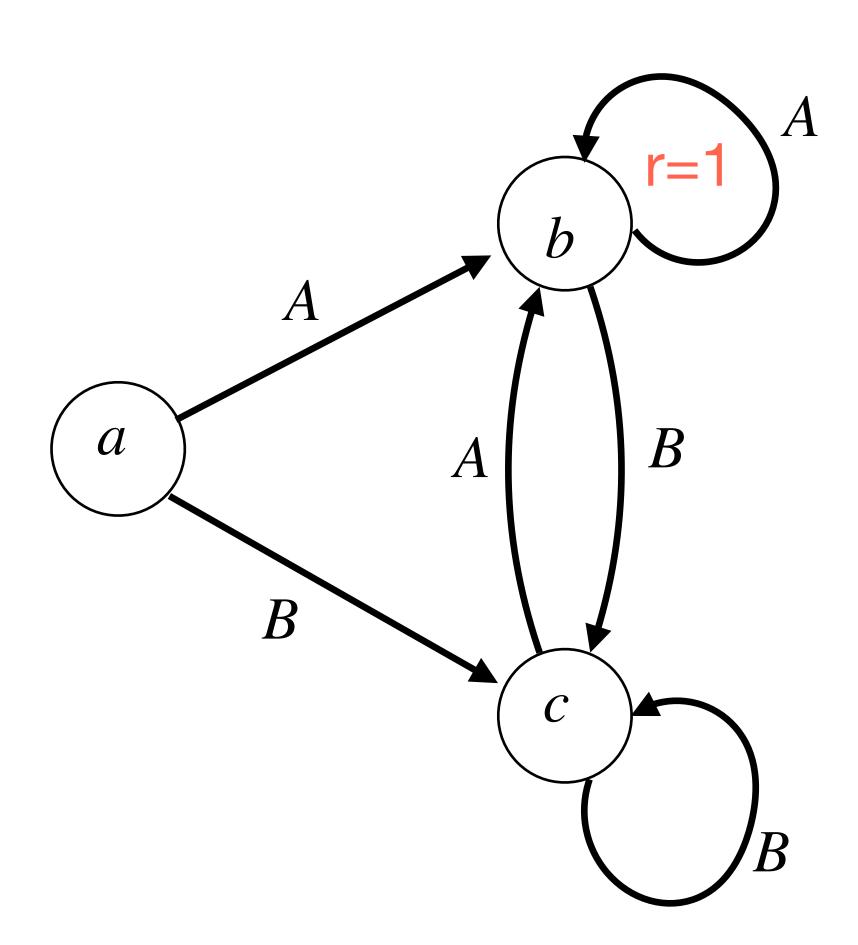


Consider the following deterministic MDP w/3 states & 2 actions, with H=3



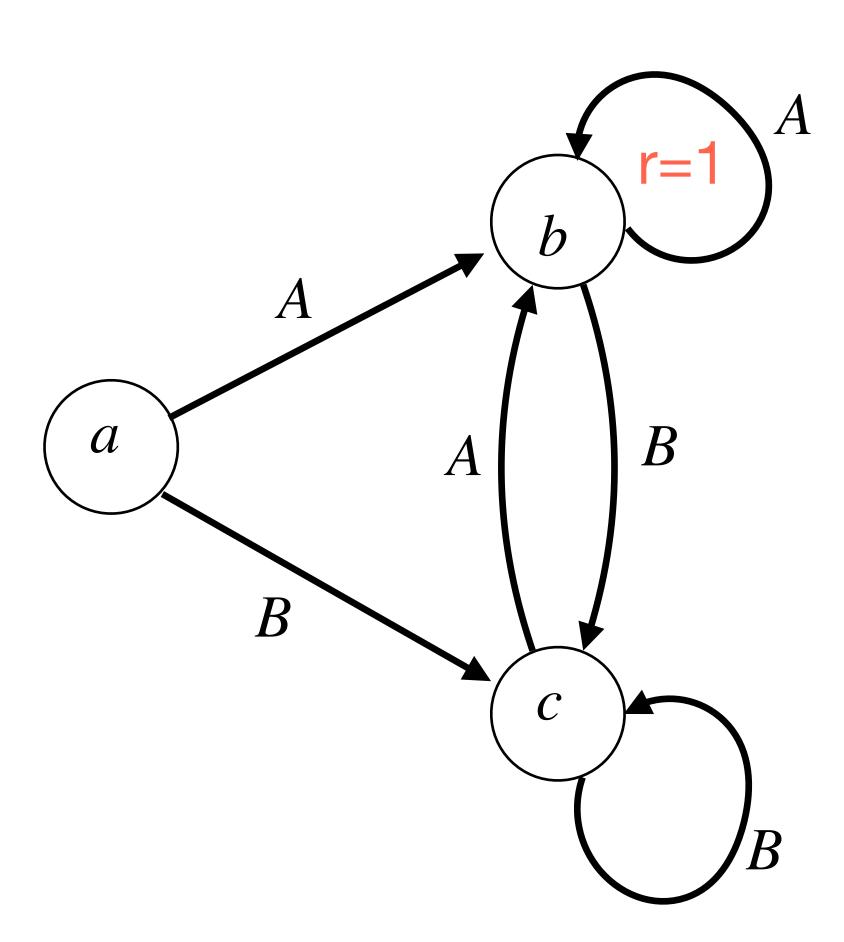
• Consider the deterministic policy  $\pi_0(s) = A, \ \pi_1(s) = A, \ \pi_2(s) = B, \ \forall s$ 

Consider the following deterministic MDP w/3 states & 2 actions, with H=3



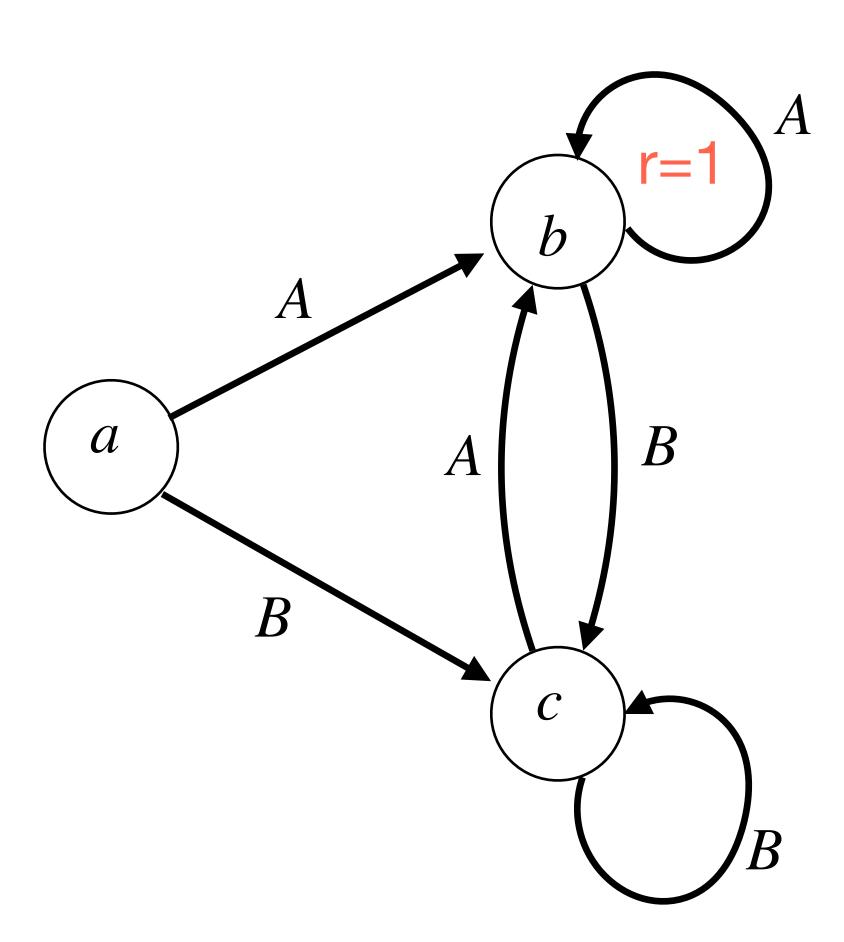
- Consider the deterministic policy  $\pi_0(s) = A, \ \pi_1(s) = A, \ \pi_2(s) = B, \ \forall s$
- What is  $V^{\pi}$ ?

Consider the following deterministic MDP w/3 states & 2 actions, with H=3



- Consider the deterministic policy  $\pi_0(s) = A, \ \pi_1(s) = A, \ \pi_2(s) = B, \ \forall s$
- What is  $V^{\pi}$ ?  $V_2^{\pi}(a) = 0, \ V_2^{\pi}(b) = 0, \ V_2^{\pi}(c) = 0$

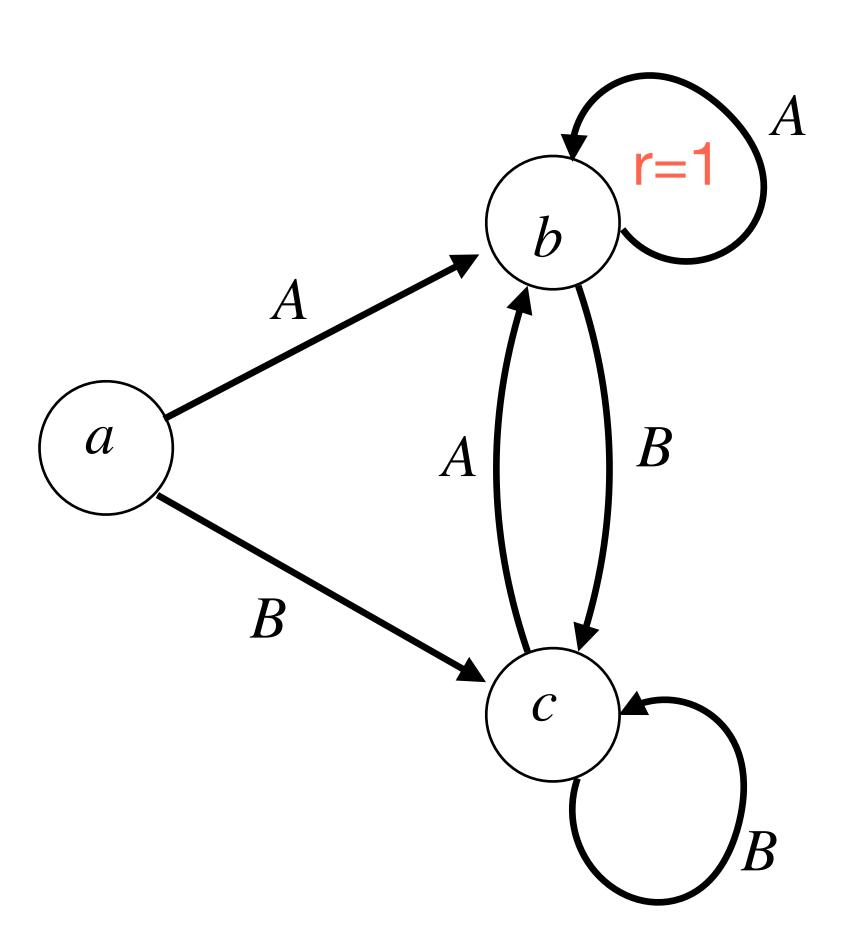
Consider the following deterministic MDP w/3 states & 2 actions, with H=3



- Consider the deterministic policy  $\pi_0(s) = A$ ,  $\pi_1(s) = A$ ,  $\pi_2(s) = B$ ,  $\forall s$
- What is  $V^{\pi}$ ?  $V_2^{\pi}(a) = 0, \ V_2^{\pi}(b) = 0, \ V_2^{\pi}(c) = 0$

$$V_1^{\pi}(a) = 0, \ V_1^{\pi}(b) = 1, \ V_1^{\pi}(c) = 0$$

Consider the following deterministic MDP w/3 states & 2 actions, with H=3



- Consider the deterministic policy  $\pi_0(s) = A, \ \pi_1(s) = A, \ \pi_2(s) = B, \ \forall s$
- What is  $V^{\pi}$ ?  $V_2^{\pi}(a) = 0, \ V_2^{\pi}(b) = 0, \ V_2^{\pi}(c) = 0$

$$V_1^{\pi}(a) = 0, \ V_1^{\pi}(b) = 1, \ V_1^{\pi}(c) = 0$$

$$V_0^{\pi}(a) = 1, \ V_0^{\pi}(b) = 2, \ V_0^{\pi}(c) = 1$$

•  $x \sim D$  means sampling from D

- $x \sim D$  means sampling from D
- $a \sim \pi(\cdot \mid s)$  means sampling from the distribution  $\pi(\cdot \mid s)$ , i.e. choosing action a with probability  $\pi(a \mid s)$

- $x \sim D$  means sampling from D
- $a \sim \pi(\cdot \mid s)$  means sampling from the distribution  $\pi(\cdot \mid s)$ , i.e. choosing action a with probability  $\pi(a \mid s)$
- For a distribution D over a finite set  $\mathcal{X}$ ,

$$E_{x \sim D}[f(x)] = \sum_{x \in \mathcal{X}} D(x)f(x)$$

- $x \sim D$  means sampling from D
- $a \sim \pi(\cdot | s)$  means sampling from the distribution  $\pi(\cdot | s)$ , i.e. choosing action a with probability  $\pi(a | s)$
- For a distribution D over a finite set  $\mathcal{X}$ ,

$$E_{x \sim D}[f(x)] = \sum_{x \in \mathcal{X}} D(x)f(x)$$

We use the notation:

$$E_{s'\sim P(\cdot|s,a)}[f(s')] = \sum_{s'\in S} P(s'|s,a)f(s')$$

• For a deterministic policy,  $\pi:=\left\{\pi_0,\pi_1,...,\pi_{H-1}\right\},\,\pi_h:S\mapsto A,\,\forall h,$ 

- For a deterministic policy,  $\pi:=\left\{\pi_0,\pi_1,...,\pi_{H-1}\right\},\,\pi_h:S\mapsto A,\,\forall h,$
- By definition,  $V_h^{\pi}(s) = Q_h^{\pi}(s, \pi_h(s))$

- For a deterministic policy,  $\pi:=\left\{\pi_0,\pi_1,...,\pi_{H-1}\right\},\,\pi_h:S\mapsto A,\,\forall h,$
- By definition,  $V_h^{\pi}(s) = Q_h^{\pi}(s, \pi_h(s))$
- At H-1,  $Q_{H-1}^{\pi}(s,a)=r(s,a)$ ,  $V_{H-1}^{\pi}(s)=r(s,\pi_{H-1}(s))$

- For a deterministic policy,  $\pi:=\left\{\pi_0,\pi_1,...,\pi_{H-1}\right\},\,\pi_h:S\mapsto A,\,\forall h,$
- By definition,  $V_h^{\pi}(s) = Q_h^{\pi}(s, \pi_h(s))$
- At H-1,  $Q_{H-1}^{\pi}(s,a)=r(s,a)$ ,  $V_{H-1}^{\pi}(s)=r(s,\pi_{H-1}(s))$
- Bellman consistency conditions: for a given policy  $\pi$ ,

- For a deterministic policy,  $\pi:=\left\{\pi_0,\pi_1,...,\pi_{H-1}\right\},\,\pi_h:S\mapsto A,\,\forall h,$
- By definition,  $V_h^{\pi}(s) = Q_h^{\pi}(s, \pi_h(s))$
- At H-1,  $Q_{H-1}^{\pi}(s,a)=r(s,a)$ ,  $V_{H-1}^{\pi}(s)=r(s,\pi_{H-1}(s))$
- Bellman consistency conditions: for a given policy  $\pi$ ,
  - $V_h^{\pi}(s) = r(s, \pi_h(s)) + \mathbb{E}_{s' \sim P(\cdot | s, \pi_h(s))} \left[ V_{h+1}^{\pi}(s') \right]$

- For a deterministic policy,  $\pi:=\left\{\pi_0,\pi_1,...,\pi_{H-1}\right\},\,\pi_h:S\mapsto A,\,\forall h,$
- By definition,  $V_h^{\pi}(s) = Q_h^{\pi}(s, \pi_h(s))$
- At H-1,  $Q_{H-1}^{\pi}(s,a)=r(s,a)$ ,  $V_{H-1}^{\pi}(s)=r(s,\pi_{H-1}(s))$
- Bellman consistency conditions: for a given policy  $\pi$ ,

• 
$$V_h^{\pi}(s) = r(s, \pi_h(s)) + \mathbb{E}_{s' \sim P(\cdot | s, \pi_h(s))} \left[ V_{h+1}^{\pi}(s') \right]$$

• 
$$Q_h^{\pi}(s, a) = r(s, a) + \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[ V_{h+1}^{\pi}(s') \right]$$

Let  $r_h = r(s_h, \pi(s_h))$  (note it's random via  $s_h$ )

Let  $r_h = r(s_h, \pi(s_h))$  (note it's random via  $s_h$ )

By definition and by the law of total expectation:

$$V_h^{\pi}(s) = \mathbb{E}\left[r_h + r_{h+1} + \dots + r_{H-1} \middle| s_h = s\right]$$

Let  $r_h = r(s_h, \pi(s_h))$  (note it's random via  $s_h$ )

By definition and by the law of total expectation:

$$V_{h}^{\pi}(s) = \mathbb{E}\left[r_{h} + r_{h+1} + \dots + r_{H-1} \middle| s_{h} = s\right]$$

$$= \mathbb{E}\left[r_{h} + \mathbb{E}\left[r_{h+1} + \dots + r_{H-1} \middle| s_{h} = s, s_{h+1} \right] \middle| s_{h} = s\right]$$

Let  $r_h = r(s_h, \pi(s_h))$  (note it's random via  $s_h$ )

By definition and by the law of total expectation:

$$V_{h}^{\pi}(s) = \mathbb{E}\left[r_{h} + r_{h+1} + \dots + r_{H-1} \middle| s_{h} = s\right]$$

$$= \mathbb{E}\left[r_{h} + \mathbb{E}\left[r_{h+1} + \dots + r_{H-1} \middle| s_{h} = s, s_{h+1}\right] \middle| s_{h} = s\right]$$

By the Markov property:

$$= \mathbb{E}\left[r_h + \mathbb{E}\left[r_{h+1} + \dots + r_{H-1} \middle| s_{h+1}\right] \middle| s_h = s\right]$$

Let  $r_h = r(s_h, \pi(s_h))$  (note it's random via  $s_h$ )

By definition and by the law of total expectation:

$$V_h^{\pi}(s) = \mathbb{E}\left[r_h + r_{h+1} + \dots + r_{H-1} \middle| s_h = s\right]$$

$$= \mathbb{E}\left[r_h + \mathbb{E}\left[r_{h+1} + \dots + r_{H-1} \middle| s_h = s, s_{h+1}\right] \middle| s_h = s\right]$$

By the Markov property:

$$= \mathbb{E} \left[ r_h + \mathbb{E} \left[ r_{h+1} + \dots + r_{H-1} \middle| s_{h+1} \right] \middle| s_h = s \right]$$

$$= \mathbb{E} \left[ r_h + V_{h+1}^{\pi}(s_{h+1}) \middle| s_h = s \right]$$

Let  $r_h = r(s_h, \pi(s_h))$  (note it's random via  $s_h$ )

By definition and by the law of total expectation:

$$V_h^{\pi}(s) = \mathbb{E}\left[r_h + r_{h+1} + \dots + r_{H-1} \middle| s_h = s\right]$$

$$= \mathbb{E}\left[r_h + \mathbb{E}\left[r_{h+1} + \dots + r_{H-1} \middle| s_h = s, s_{h+1}\right] \middle| s_h = s\right]$$

By the Markov property:

$$= \mathbb{E} \left[ r_h + \mathbb{E} \left[ r_{h+1} + \dots + r_{H-1} \middle| s_{h+1} \right] \middle| s_h = s \right]$$

$$= \mathbb{E} \left[ r_h + V_{h+1}^{\pi}(s_{h+1}) \middle| s_h = s \right]$$

$$= r(s, \pi_h(s)) + \mathbb{E}_{s' \sim P(\cdot | s, \pi_h(s))} \left[ V_{h+1}^{\pi}(s') \right]$$

• For a deterministic policy,  $\pi:=\left\{\pi_0,\pi_1,...,\pi_{H-1}\right\},\,\pi_h:S\mapsto A,\forall h,$  Bellman consistency  $\Longrightarrow$  we can compute  $V_h^\pi$ , assuming we know the MDP.

- For a deterministic policy,  $\pi:=\left\{\pi_0,\pi_1,\ldots,\pi_{H-1}\right\},\,\pi_h:S\mapsto A,\forall h,$  Bellman consistency  $\Longrightarrow$  we can compute  $V_h^\pi$ , assuming we know the MDP.
  - Initialize:  $V_H^{\pi}(s) = 0$ ,  $\forall s \in S$

- For a deterministic policy,  $\pi:=\left\{\pi_0,\pi_1,\ldots,\pi_{H-1}\right\},\,\pi_h:S\mapsto A,\,\forall h,$ Bellman consistency  $\Longrightarrow$  we can compute  $V_h^{\pi}$ , assuming we know the MDP.

• Initialize: 
$$V_H^\pi(s)=0,\ \forall s\in S$$
  
• For  $h=H-1,\ldots 0$ , set: 
$$V_h^\pi(s)=r(s,\pi_h(s))+\mathbb{E}_{s'\sim P(\cdot|s,\pi_h(s))}\left[V_{h+1}^\pi(s')\right],\ \forall s\in S$$

- For a deterministic policy,  $\pi:=\left\{\pi_0,\pi_1,\ldots,\pi_{H-1}\right\},\,\pi_h:S\mapsto A,\,\forall h,$ Bellman consistency  $\Longrightarrow$  we can compute  $V_h^{\pi}$ , assuming we know the MDP.

• Initialize: 
$$V_H^\pi(s)=0,\ \forall s\in S$$
• For  $h=H-1,\ldots 0$ , set: 
$$V_h^\pi(s)=r(s,\pi_h(s))+\mathbb{E}_{s'\sim P(\cdot|s,\pi_h(s))}\left[V_{h+1}^\pi(s')\right],\ \forall s\in S$$

• What is the per iteration computational complexity of  $\overline{DP}$ ? Upwarming (assume scalar + -  $\vee$   $\div$  are O(1)(assume scalar  $+, -, \times, \div$  are O(1) operations)

- For a deterministic policy,  $\pi:=\left\{\pi_0,\pi_1,\ldots,\pi_{H-1}\right\},\,\pi_h:S\mapsto A,\,\forall h,$ Bellman consistency  $\Longrightarrow$  we can compute  $V_h^{\pi}$ , assuming we know the MDP.

• Initialize: 
$$V_H^\pi(s)=0,\ \forall s\in S$$
  
• For  $h=H-1,\ldots 0$ , set: 
$$V_h^\pi(s)=r(s,\pi_h(s))+\mathbb{E}_{s'\sim P(\cdot|s,\pi_h(s))}\left[V_{h+1}^\pi(s')\right],\ \forall s\in S$$

- What is the per iteration computational complexity of DP? (assume scalar  $+, -, \times, \div$  are O(1) operations)
- What is the total computational complexity of DP?

# Today





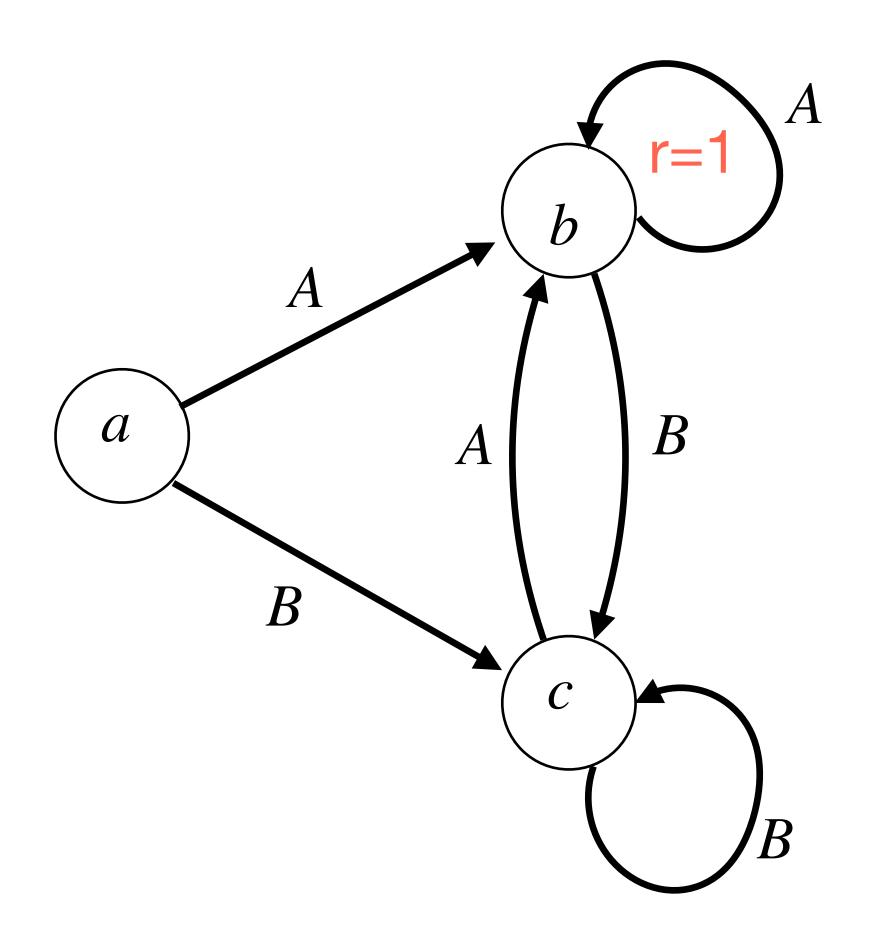
RecapProblem Statement



- Bellman Consistency & Policy Evaluation
- Optimality
- The Bellman Equations & Dynamic Programming

# Example of Optimal Policy $\pi^*$

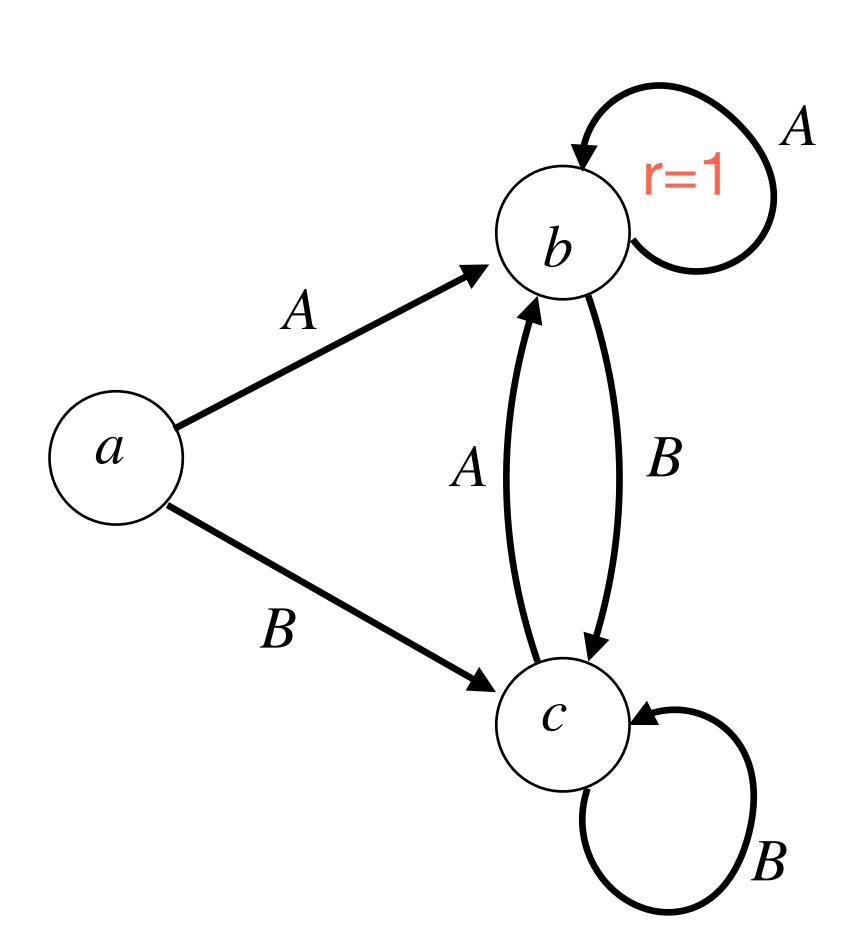
Consider the following deterministic MDP w/3 states & 2 actions, with H=3



Reward: r(b, A) = 1, & 0 everywhere else

# Example of Optimal Policy $\pi^*$

Consider the following deterministic MDP w/3 states & 2 actions, with H=3

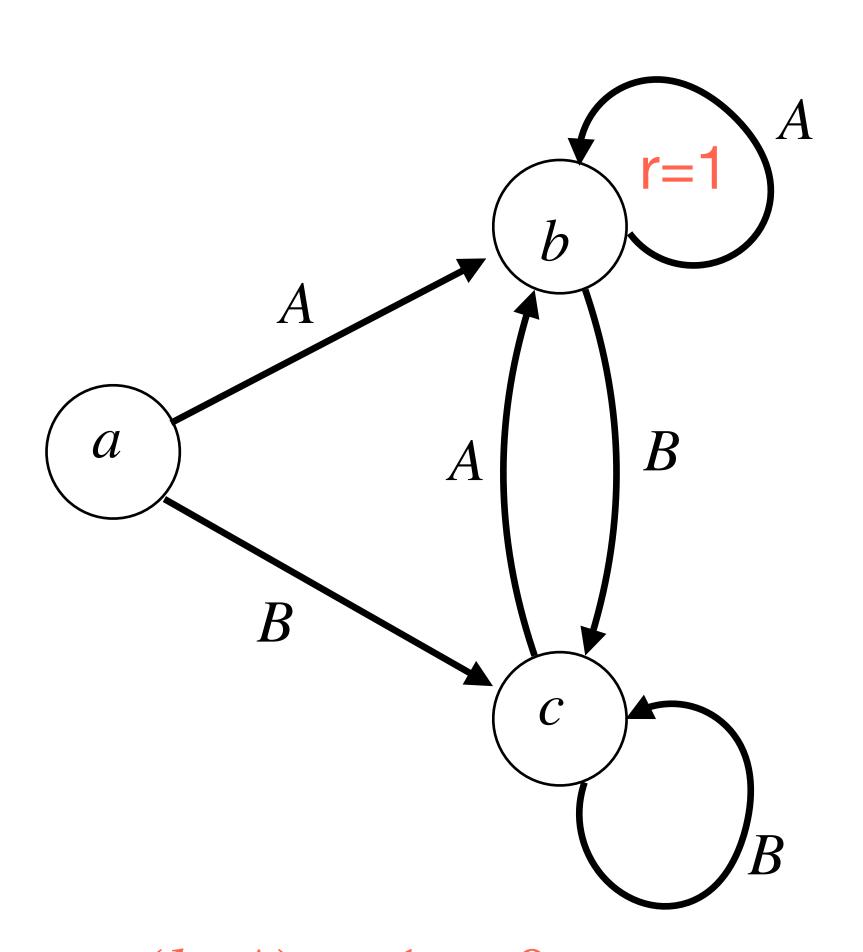


• What's the optimal policy?  $\pi_h^{\star}(s) = A, \ \forall s, h$ 

Reward: r(b, A) = 1, & 0 everywhere else

# Example of Optimal Policy $\pi^*$

Consider the following deterministic MDP w/3 states & 2 actions, with H=3



- What's the optimal policy?  $\pi_h^{\star}(s) = A, \ \forall s, h$
- What is optimal value function,  $V^{\pi^{\star}} = V^{\star}$ ?  $V_2^{\star}(a) = 0, \ V_2^{\star}(b) = 1, \ V_2^{\star}(c) = 0$

$$V_1^*(a) = 1, \ V_1^*(b) = 2, \ V_1^*(c) = 1$$

$$V_0^{\star}(a) = 2, \ V_0^{\star}(b) = 3, \ V_0^{\star}(c) = 2$$

Naively, we could compute the value of all policies and take the best one.

- Naively, we could compute the value of all policies and take the best one.
- Suppose |S| states, |A| actions, and horizon H. How many different polices there are?

- Naively, we could compute the value of all policies and take the best one.
- Suppose |S| states, |A| actions, and horizon H. How many different polices there are?

• Can we do better?

• Let  $\Pi$  be the set of all time dependent, history dependent, stochastic policies.

- Let  $\Pi$  be the set of all time dependent, history dependent, stochastic policies.
- **Theorem:** Every finite horizon MDP has a deterministic, history-independent optimal policy, that dominates all other policies, everywhere.

- ullet Let  $\Pi$  be the set of all time dependent, history dependent, stochastic policies.
- **Theorem:** Every finite horizon MDP has a deterministic, history-independent optimal policy, that dominates all other policies, everywhere.
  - i.e. there exists a deterministic policy  $\pi^* := \{\pi_0^*, \pi_1^*, ..., \pi_{H-1}^*\}, \pi_h^* : S \mapsto A$  such that

$$V_h^{\pi^*}(s) \ge V_h^{\pi}(s) \quad \forall s, h, \ \forall \pi \in \Pi$$

- ullet Let  $\Pi$  be the set of all time dependent, history dependent, stochastic policies.
- **Theorem:** Every finite horizon MDP has a deterministic, history-independent optimal policy, that dominates all other policies, everywhere.
  - i.e. there exists a deterministic policy  $\pi^* := \{\pi_0^*, \pi_1^*, ..., \pi_{H-1}^*\}, \pi_h^* : S \mapsto A$  such that

$$V_h^{\pi^*}(s) \ge V_h^{\pi}(s) \quad \forall s, h, \ \forall \pi \in \Pi$$

•  $\Longrightarrow$  we can write:  $V_h^{\star} = V_h^{\pi^{\star}}$  and  $Q_h^{\star} = Q_h^{\pi^{\star}}$ .

- ullet Let  $\Pi$  be the set of all time dependent, history dependent, stochastic policies.
- **Theorem:** Every finite horizon MDP has a deterministic, history-independent optimal policy, that dominates all other policies, everywhere.
  - i.e. there exists a deterministic policy  $\pi^* := \{\pi_0^*, \pi_1^*, \dots, \pi_{H-1}^*\}, \pi_h^* : S \mapsto A$  such that

$$V_h^{\pi^*}(s) \ge V_h^{\pi}(s) \quad \forall s, h, \ \forall \pi \in \Pi$$

- $\Longrightarrow$  we can write:  $V_h^{\star} = V_h^{\pi^{\star}}$  and  $Q_h^{\star} = Q_h^{\pi^{\star}}$ .
- $\Longrightarrow \pi^*$  doesn't depend on the initial state distribution  $\mu$ .

• **Theorem:** Every finite horizon MDP has a deterministic, history-independent optimal policy, that dominates all other policies, everywhere.

- **Theorem:** Every finite horizon MDP has a deterministic, history-independent optimal policy, that dominates all other policies, everywhere.
- What's the Proof Intuition?

- **Theorem:** Every finite horizon MDP has a deterministic, history-independent optimal policy, that dominates all other policies, everywhere.
- What's the Proof Intuition?
  - "Only the state matters": how got here doesn't matter to where we go next, conditioned on the action.

- **Theorem:** Every finite horizon MDP has a deterministic, history-independent optimal policy, that dominates all other policies, everywhere.
- What's the Proof Intuition?
  - "Only the state matters": how got here doesn't matter to where we go next, conditioned on the action.
    - This explains both determinism and history-independence

- **Theorem:** Every finite horizon MDP has a deterministic, history-independent optimal policy, that dominates all other policies, everywhere.
- What's the Proof Intuition?
  - "Only the state matters": how got here doesn't matter to where we go next, conditioned on the action.
    - This explains both determinism and history-independence
- Caveat: some legitimate reward functions are not additive/linear (so, naively, not an MDP). (But, RL is general: think about redefining the state so you can do these.)

# Today





RecapProblem Statement



Bellman Consistency & Policy Evaluation



- Optimality
- The Bellman Equations & Dynamic Programming

• A function  $V=\{V_0,\ldots V_{H-1}\},\ V_h:S\to R$  satisfies the Bellman equations if  $V_h(s)=\max_a\Big\{r(s,a)+\mathbb{E}_{s'\sim P(\cdot|s,a)}\big[V_{h+1}(s')\big]\Big\}\ ,\ \forall s$  (assume  $V_H=0$ ).

• A function  $V=\{V_0,\ldots V_{H-1}\},\ V_h:S\to R$  satisfies the Bellman equations if  $V_h(s)=\max_a\Big\{r(s,a)+\mathbb{E}_{s'\sim P(\cdot|s,a)}\big[V_{h+1}(s')\big]\Big\}\ ,\ \forall s$  (assume  $V_H=0$ ).

#### Theorem:

• A function  $V=\{V_0,\ldots V_{H-1}\},\ V_h:S\to R$  satisfies the Bellman equations if  $V_h(s)=\max_a\Big\{r(s,a)+\mathbb{E}_{s'\sim P(\cdot|s,a)}\big[V_{h+1}(s')\big]\Big\}\ ,\ \forall s$  (assume  $V_H=0$ ).

#### Theorem:

• V satisfies the Bellman equations if and only if  $V = V^*$ .

• A function  $V=\{V_0,\ldots V_{H-1}\},\ V_h:S\to R$  satisfies the Bellman equations if  $V_h(s)=\max_a\Big\{r(s,a)+\mathbb{E}_{s'\sim P(\cdot|s,a)}\big[V_{h+1}(s')\big]\Big\}\ ,\ \forall s$  (assume  $V_H=0$ ).

#### Theorem:

- V satisfies the Bellman equations if and only if  $V=V^{\star}$ .
- The optimal policy is:  $\pi_h^{\star}(s) = \arg\max_a \left\{ r(s,a) + \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[ V_{h+1}^{\star}(s') \right] \right\}$ .

• Theorem: the following Dynamic Programming algorithm computes  $\pi^*$  and  $V^*$  Prf: the Bellman equations directly lead to this backwards induction.

• Theorem: the following Dynamic Programming algorithm computes  $\pi^*$  and  $V^*$  Prf: the Bellman equations directly lead to this backwards induction.

• Initialize:  $V_H^{\pi}(s) = 0 \ \forall s \in S$ For  $t = H - 1, \dots 0$ , set:

• Theorem: the following Dynamic Programming algorithm computes  $\pi^*$  and  $V^*$  Prf: the Bellman equations directly lead to this backwards induction.

• Initialize: 
$$V_H^\pi(s) = 0 \ \forall s \in S$$
  
For  $t = H - 1, \dots 0$ , set:  
•  $V_h^\star(s) = \max_a \left[ r(s, a) + \mathbb{E}_{s' \sim P(\cdot \mid s, a)} \left[ V_{h+1}^\star(s') \right] \right]$ ,  $\forall s \in S$ 

• Theorem: the following Dynamic Programming algorithm computes  $\pi^*$  and  $V^*$  Prf: the Bellman equations directly lead to this backwards induction.

• Initialize: 
$$V_H^\pi(s) = 0 \ \forall s \in S$$

For  $t = H - 1, \dots 0$ , set:

•  $V_h^\star(s) = \max_a \left[ r(s, a) + \mathbb{E}_{s' \sim P(\cdot \mid s, a)} \left[ V_{h+1}^\star(s') \right] \right], \ \forall s \in S$ 

•  $\pi_h^\star(s) = \arg\max_a \left[ r(s, a) + \mathbb{E}_{s' \sim P(\cdot \mid s, a)} \left[ V_{h+1}^\star(s') \right] \right], \ \forall s \in S$ 

• Theorem: the following Dynamic Programming algorithm computes  $\pi^*$  and  $V^*$  Prf: the Bellman equations directly lead to this backwards induction.

• Initialize: 
$$V_H^\pi(s) = 0 \ \forall s \in S$$

For  $t = H - 1, \dots 0$ , set:

•  $V_h^\star(s) = \max_a \left[ r(s, a) + \mathbb{E}_{s' \sim P(\cdot \mid s, a)} \left[ V_{h+1}^\star(s') \right] \right], \ \forall s \in S$ 

•  $\pi_h^\star(s) = \arg\max_a \left[ r(s, a) + \mathbb{E}_{s' \sim P(\cdot \mid s, a)} \left[ V_{h+1}^\star(s') \right] \right], \ \forall s \in S$ 

• What is the per iteration computational complexity of DP? (assume scalar  $+, -, \times, \div$  are O(1) operations)

• Theorem: the following Dynamic Programming algorithm computes  $\pi^*$  and  $V^*$  Prf: the Bellman equations directly lead to this backwards induction.

- $$\begin{split} \bullet & \text{ Initialize: } V_H^\pi(s) = 0 \ \forall s \in S \\ & \text{For } \mathbf{t} = H-1, \ldots 0, \text{ set:} \\ & \bullet V_h^\star(s) = \max_{a} \left[ r(s,a) + \mathbb{E}_{s' \sim P(\cdot \mid s,a)} \left[ V_{h+1}^\star(s') \right] \right], \ \forall s \in S \\ & \bullet \pi_h^\star(s) = \arg\max_{a} \left[ r(s,a) + \mathbb{E}_{s' \sim P(\cdot \mid s,a)} \left[ V_{h+1}^\star(s') \right] \right], \ \forall s \in S \end{split}$$
- What is the per iteration computational complexity of DP? (assume scalar  $+, -, \times, \div$  are O(1) operations)
- What is the total computational complexity of DP?

### Summary:

- Dynamic Programming lets us efficiently compute optimal policies.
  - We remember the results on "sub-problems"
  - Optimal policies are history independent.

#### Attendance:

bit.ly/3RcTC9T



#### Feedback:

bit.ly/3RHtlxy

