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One of the main things that distinguishes most of RL from other types of machine 
learning is its interactive nature: learning is interlaced with data collection

This “online” RL setting is the most like how humans learn, and as we’ve learned in 
this class about exploration/exploitation, it is critical for the best performance

Offline methods exist but come with serious challenges unless the data collection 
policy already happens to be essentially optimal (e.g., imitation learning)

Online RL is focused on how we can learn while interacting with the environment

Today we’ll talk about how to draw probabilistic conclusions about the environment 
based on the thus-far adaptively collected data



Contextual bandits

6

Primarily today we’ll focus on contextual bandits, so a reminder:

Formally, a contextual bandit is the following interactive learning process:

For t = 0 → T − 1

2. Learner pulls arm at = πt(xt) ∈ {1,…, K}

3. Learner observes reward  from arm  in context rt ∼ ν(at)(xt) at xt

1. Learner sees context xt ∼ νx
 policy learned from 

all data seen so far

πt

Independent of any previous data
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Consider a clinical trial (modeled as contextual bandit):
•  patients total, arriving one at a timeT
• Patient  has context  drawn from t xt νx

• demographics, medical history, etc.
• Receives treatment according to current policy at ∈ {0,1} πt(xt)

• treatment, control1 = 0 =
• We observe reward rt ∼ ν(at)(xt)

• recovery, not recovery1 = 0 =
• Assume condition being treated is acute so reward is immediate

Ethical reasons to run bandit: maximize outcomes of patients in trial
Typical clinical trial:  is coin flip for all , i.e., patients/treatments are i.i.d.πt t

Challenge: statistically rigorous test of whether treatment worked (e.g., for FDA)
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Consider online advertising (modeled as contextual bandit):
• Viewer  has context  drawn from t xt νx

• Browsing cookies, site being viewed, properties of ad space, etc.
• Sees ad  according to current policy at πt(xt)

• Choosing among some carefully curated set of ads (maybe 5-10)
• We observe reward rt ∼ ν(at)(xt)

• click, not click1 = 0 =

But when we want to design a new set of ads, want to know what worked
Clear we want to maximize clicks—this is the whole point of placing ads!

Challenge: bandit learns good policy, but won’t say what about good ads works
E.g., maybe ads with red click buttons worked better than those with blue buttons
How can we learn this? Standard statistics question! “Between-study” learning
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Assume 2 arms, and for now no context
Question: is there any difference between these two arms?

In clinical trial: is the treatment making any difference?

In online advertising: does it matter what ad I show?

Idea: look at how often arms are pulled by bandit algorithm
• If one arm pulled more than another, conclude there is a difference?
• If one arm pulled a lot more than another? How much is “a lot”?
• By their nature, RL algorithms are “streaky”, even when ν(0) = ν(1)

• E.g., Gittins index (optimal alg for Bayesian Bernoulli bandit) will never pull 
other arm if first arm it pulls always returns a 1

Want to focus on rewards for different arms, rather than which arms are pulled
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Question: is there any difference between these two arms?

This kind of question is asked all the time in statistics, but usually for i.i.d. data

Standard framework: null hypothesis H0 : ν(0) = ν(1)

A hypothesis test is a binary function  of the data  such that:

• when  is true

•  as high as possible when  is false

Φ D
ℙ(Φ(D) = 1) ≤ 5 % H0
ℙ(Φ(D) = 1) H0

Conclude there is a difference between the two arms if Φ(D) = 1
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A standard approach for testing  is the t-testH0

Central limit theorem:  for T/2( ̂μ(k)
T − μ(k)) → 𝒩(0,σ2) k = 0,1

Use sample standard deviations to estimate  via  such that σ2 ̂σ2
T ̂σ2

T → σ2

Then when  is true and  is large ( ),     H0 T ⪆ 20 ZT := T
̂μ(1)
T − ̂μ(0)

T

2 ̂σT
≈ 𝒩(0,1)

Let , where  is the 97.5th percentile of Φ(D) = 1{ |ZT | > z0.975} z0.975 𝒩(0,1)
Then when  is true, H0 ℙ(Φ(D) = 1) = ℙ( |ZT | > z0.975) = 2ℙ(ZT > z0.975) = 5 %

And when ,  and hence μ(0) ≠ μ(1) |ZT | → ∞ ℙ(Φ(D) = 1) → 1
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As we’ve discussed before, data is not i.i.d., and CLT doesn’t hold

Our solution in the past was Hoeffding’s inequality:


ℙ (∀k = 1,2 : | ̂μ(k)
T − μ(k) | ≤ ln(4T/δ)/2N(k)

T ) ≥ 1 − δ

Then when  true:     H0 ℙ(Φ(D) = 1) ≤ 5 %

Set :  when δ = 5 % Φ(D) = 1 | ̂μ(1)
T − ̂μ(0)

T | > ln(80T)
1

2N(0)
T

+
1

2N(1)
T

When , if RL never stops exploring, 

while threshold , so 

μ(0) ≠ μ(1) | ̂μ(1)
T − ̂μ(0)

T | → |μ(1) − μ(0) | > 0
→ 0 ℙ(Φ(D) = 1) → 1
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Concentration inequalities like Hoeffding have two main limitations:
1. Assumptions: e.g., bounded rewards (in clinical trial reward could be 

unbounded if it’s cholesterol level or survival time) 

2. Conservative: e.g., Hoeffding’s proof upper-bounds the reward by 1 (in online 
advertising where reward is binary, this bound is very loose since vast  
majority of ad viewers don’t click)

Can we test  with adaptive data non-conservatively, without assumptions on ?H0 ν(k)
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∥r − r̄∥∥a − ā∥
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Let  w/ mean  and  w/ mean ; note r := (r0, …, rT−1) r̄ a := (a0, …, aT−1) ā D = (r, a)

Consider the empirical correlation ρ :=
(r − r̄)⊤(a − ā)
∥r − r̄∥∥a − ā∥

When  is true, we expect  since the rewards when  look no different 
from the rewards when 

H0 ρ ≈ 0 at = 0
at = 1

When , we expect  since the rewards when  are 
systematically shifted relative to the rewards when 
μ(0) ≠ μ(1) ρ ≉ 0 at = 0

at = 1

Suggests , but how to find  such that ?Φ(D) = 1{ |ρ | > c} c ℙ( |ρ | > c) = 5 %
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Suppose data is fully i.i.d., e.g.,  for all at ∼ Bernoulli(0.5) t

If we resample  as  and define  and ,a ãt ∼ Bernoulli(0.5) ã := (ã0, …, ãT−1) r̃ := r

Want:  such that c ℙ( |ρ | > c) = 5 %

our resampled data  has exactly the same distribution as D̃ := (r̃, ã) D := (r, a)

Thus also  has the same distribution as ρ̃ :=
(r̃ − ¯̃r)⊤(ã − ¯̃a)
∥r̃ − ¯̃r∥∥ã − ¯̃a∥

ρ

Idea: independently sample  and use the  largest  as ρ̃1, …, ρ̃100,000 950,000th | ρ̃i | c
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ã a ∣ r

Want: resampled data  to have same distribution as D̃ := (r̃, ã) D := (r, a)
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Now what about when data is not i.i.d.?

When  is true, the  are i.i.d. regardless of , so can still set , and just need 
to sample  from the conditional distribution of 

H0 rt at r̃ := r
ã a ∣ r

But the  in a bandit depends on previous , so they are not i.i.d.at rt

Idea: simply run bandit to choose  as if the rewards you’re getting are the ãt rt

Want: resampled data  to have same distribution as D̃ := (r̃, ã) D := (r, a)

Then this  is exactly a sample from , and we have the property we want:

 has same distribution as 

ã a ∣ r
D̃ := (r̃, ã) D := (r, a)
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A bandit algorithm  determines the arm sampling distribution given : 𝒜 Ht
ℙ𝒜( ⋅ ∣ a0, r0, …, at−1, rt−1)

Sample ãt ∼ ℙ𝒜( ⋅ ∣ ã0, r̃0, …, ãt−1, r̃t−1)

Set r̃t = rt

For : t = 0,…, T − 1

To sample :D̃ = (r̃, ã)
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Since the  are i.i.d. anyway, can randomize their order:rt

Sample ãt ∼ ℙ𝒜( ⋅ ∣ ã0, r̃0, …, ãt−1, r̃t−1)
Set r̃t = rp(t)

For : t = 0,…, T − 1
Sample permutation  uniformly from permutations of  p {0,…, T − 1}

Can also add back context , treat it like  since it’s i.i.d.:xt rt

Sample ãt ∼ ℙ𝒜( ⋅ ∣ x̃0, ã0, r̃0, …, x̃t−1, ãt−1, r̃t−1, x̃t)
Set r̃t = rp(t)

For : t = 0,…, T − 1
Sample permutation  uniformly from permutations of  p {0,…, T − 1}

Set x̃t = xp(t)
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Nothing about previous argument used any properties of , just that it was a function 
of the data and the same function could be computed on resampled data

ρ

Thus, test statistic can be anything we think would take different values when  is 
true than when it is false

H0

Without context we were looking for differences between  when  versus when 
, generally by comparing estimates of means  and 

rt at = 0
at = 1 ̂μ(0)

T ̂μ(1)
T

With context, want to compare estimates of conditional means given context:

The functions  and ̂μ(0)

T (x) ̂μ(1)
T (x)

 and  could be fitted via supervised learning in totally black-box way 
(e.g., neural networks)

̂μ(0)
T (x) ̂μ(1)

T (x)
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Summary

23

Resample the data by shuffling the  pairs and sampling  per your algorithm(xt, rt) at

Compute a test statistic  on the original data and many resampled data setsρ
Reject  if  above the 95th percentile of resampled H0 ρ ρ̃

Works for any contextual bandit algorithm

Works for any test statistic

Makes no assumptions about the conditional reward distributions ν(k)(x)
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With more than two arms, can test more specific hypotheses like ν(1)(x) = ν(3)(x)

Under some assumptions, same idea gives a confidence interval for difference 
between two arms: uncertainty quantification

Can also give prediction interval, i.e., interval that contains next (unseen) reward with 
high probability

For these prior two extensions, need sophisticated importance sampling!

Can extend beyond (contextual) bandits to MDPs, but it gets hard…
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• Feedback from last lecture


• Recap


• Motivation: analyzing data from RL


• Hypothesis testing


• Randomization testing



Summary:

Feedback: 

bit.ly/3RHtlxy
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Attendance: 
bit.ly/3RcTC9T

•Uncertainty quantification is a critical aspect of RL, and independently useful

•Randomization testing can answer questions non-conservatively 

•Thanks for a great semester, and good luck on your final projects!

http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

