
Contextual Bandits
 

Lucas Janson 
CS/Stat 184(0): Introduction to Reinforcement Learning 

Fall 2024

Today

2

• Feedback from last lecture

• Recap

• UCB-VI for linear MDPs

• Recall: Contextual Bandits

• LinUCB

Feedback from feedback forms

3

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

3

Today

4

• Feedback from last lecture

• Recap

• UCB-VI for linear MDPs

• Recall: Contextual Bandits

• LinUCB

Exploration in MDP: make it a bandit and do UCB?

Q: given a discrete MDP, how many unique deterministic policies are there?

(|A ||S|)
H

So treating each policy as an “arm” and running UCB gives us regret Õ(|A ||S|H N)

This seems bad, so are MDPs just super hard or can we do better?

5

Tabular UCB-VI
For n = 1 → N :

3. Estimate ̂Pn : ̂Pn
h(s′￼|s, a) =

Nn
h(s, a, s′￼)
Nn

h(s, a)
, ∀s, a, s′￼, h

1. Set Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h

2. Set Nn
h(s, a, s′￼) =

n−1

∑
i=1

1{(si
h, ai

h, si
h+1) = (s, a, s′￼)}, ∀s, a, a′￼, h

4. Plan: πn = VI ({ ̂Pn
h, rh + bn

h}h), with bn
h(s, a) = cH

log(|S | |A |HN/δ)
Nn

h(s, a)

5. Execute πn : {sn
0 , an

0 , rn
0 , …, sn

H−1, an
H−1, rn

H−1, sn
H}

6

High-level Idea: Exploration Exploitation Tradeof
Upper bound per-episode regret: by construction of V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂Vn
0(s0) − Vπn

0 (s0) bn
h

2. What if is large? ̂Vn
0(s0) − Vπn

0 (s0)

1. What if is small? ̂Vn
0(s0) − Vπn

0 (s0)

Then is close to , i.e., we are doing exploitationπn π⋆

𝔼 [RegretN] := 𝔼 [
N

∑
n=1

(V⋆ − Vπn)] ≤ Õ (H2 |S | |A |N)
7

Some must be large (or some estimation errors must be large, but with high probability
any with high error must have small and hence high)

bn
h(s, a) ̂Pn

h(⋅ |s, a)
̂Pn
h(⋅ |s, a) Nn

h(s, a) bn
h(s, a)

Large means is being encouraged to do , since it will apparently have very high reward,
i.e., exploration

bn
h(s, a) πn (s, a)

Today

8

• Feedback from last lecture

• Recap

• UCB-VI for linear MDPs

• Recall: Contextual Bandits

• LinUCB

Linear MDP Definition

Finite horizon time-dependent episodic MDP ℳ = {S, A, H, {r}h, {P}h, s0}

 could be large or even continuous, hence poly is not acceptableS & A (|S | , |A |)

9

Linear MDP Definition

Finite horizon time-dependent episodic MDP ℳ = {S, A, H, {r}h, {P}h, s0}

 could be large or even continuous, hence poly is not acceptableS & A (|S | , |A |)

Ph(s′￼|s, a) = μ⋆
h (s′￼) ⋅ ϕ(s, a), μ⋆

h : S ↦ ℝd, ϕ : S × A ↦ ℝd

9

Linear MDP Definition

Finite horizon time-dependent episodic MDP ℳ = {S, A, H, {r}h, {P}h, s0}

 could be large or even continuous, hence poly is not acceptableS & A (|S | , |A |)

Ph(s′￼|s, a) = μ⋆
h (s′￼) ⋅ ϕ(s, a), μ⋆

h : S ↦ ℝd, ϕ : S × A ↦ ℝd

rh(s, a) = θ⋆
h ⋅ ϕ(s, a), θ⋆

h ∈ ℝd

9

Linear MDP Definition

Feature map is known to the learner!
(We assume reward is known, i.e., is known)

ϕ
θ⋆

Finite horizon time-dependent episodic MDP ℳ = {S, A, H, {r}h, {P}h, s0}

 could be large or even continuous, hence poly is not acceptableS & A (|S | , |A |)

Ph(s′￼|s, a) = μ⋆
h (s′￼) ⋅ ϕ(s, a), μ⋆

h : S ↦ ℝd, ϕ : S × A ↦ ℝd

rh(s, a) = θ⋆
h ⋅ ϕ(s, a), θ⋆

h ∈ ℝd

9

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝ|S|×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

10

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝ|S|×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

V⋆
H(s) = 0,∀s,

10

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝ|S|×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

V⋆
H(s) = 0,∀s,

Q⋆
h (s, a) = rh(s, a) + 𝔼s′￼∼Ph(⋅|s,a)V⋆

h+1(s′￼)

10

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝ|S|×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

V⋆
H(s) = 0,∀s,

Q⋆
h (s, a) = rh(s, a) + 𝔼s′￼∼Ph(⋅|s,a)V⋆

h+1(s′￼)

= θ⋆
h ⋅ ϕ(s, a) + (μ⋆

h ϕ(s, a))⊤ V⋆
h+1

10

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝ|S|×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

V⋆
H(s) = 0,∀s,

Q⋆
h (s, a) = rh(s, a) + 𝔼s′￼∼Ph(⋅|s,a)V⋆

h+1(s′￼)

= θ⋆
h ⋅ ϕ(s, a) + (μ⋆

h ϕ(s, a))⊤ V⋆
h+1

= ϕ(s, a)⊤(θ⋆
h + (μ⋆

h)⊤V⋆
h+1)

10

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝ|S|×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

V⋆
H(s) = 0,∀s,

Q⋆
h (s, a) = rh(s, a) + 𝔼s′￼∼Ph(⋅|s,a)V⋆

h+1(s′￼)

= θ⋆
h ⋅ ϕ(s, a) + (μ⋆

h ϕ(s, a))⊤ V⋆
h+1

= ϕ(s, a)⊤(θ⋆
h + (μ⋆

h)⊤V⋆
h+1)

= ϕ(s, a)⊤wh

10

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝ|S|×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

V⋆
H(s) = 0,∀s,

Q⋆
h (s, a) = rh(s, a) + 𝔼s′￼∼Ph(⋅|s,a)V⋆

h+1(s′￼)

= θ⋆
h ⋅ ϕ(s, a) + (μ⋆

h ϕ(s, a))⊤ V⋆
h+1

= ϕ(s, a)⊤(θ⋆
h + (μ⋆

h)⊤V⋆
h+1)

= ϕ(s, a)⊤wh

V⋆
h (s) = max

a
ϕ(s, a)⊤wh, π⋆

h (s) = arg max
a

ϕ(s, a)⊤wh

10

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝ|S|×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

V⋆
H(s) = 0,∀s,

Q⋆
h (s, a) = rh(s, a) + 𝔼s′￼∼Ph(⋅|s,a)V⋆

h+1(s′￼)

= θ⋆
h ⋅ ϕ(s, a) + (μ⋆

h ϕ(s, a))⊤ V⋆
h+1

= ϕ(s, a)⊤(θ⋆
h + (μ⋆

h)⊤V⋆
h+1)

= ϕ(s, a)⊤wh

V⋆
h (s) = max

a
ϕ(s, a)⊤wh, π⋆

h (s) = arg max
a

ϕ(s, a)⊤wh

Indeed we can show that

Is linear with respect to as well, for any

Qπ
h (⋅ , ⋅)

ϕ π, h

10

UCBVI in Linear MDPs

At the beginning of iteration n:

11

UCBVI in Linear MDPs

1. Learn transition model from all previous data { ̂Pn
h}

H−1
h=0 {si

h, ai
h, si

h+1}
n−1
i=0

At the beginning of iteration n:

11

UCBVI in Linear MDPs

1. Learn transition model from all previous data { ̂Pn
h}

H−1
h=0 {si

h, ai
h, si

h+1}
n−1
i=0

2. Design reward bonus bn
h(s, a), ∀s, a

At the beginning of iteration n:

11

UCBVI in Linear MDPs

1. Learn transition model from all previous data { ̂Pn
h}

H−1
h=0 {si

h, ai
h, si

h+1}
n−1
i=0

2. Design reward bonus bn
h(s, a), ∀s, a

3. Plan: πn+1 = VI ({ ̂Pn}h, {rh + bn
h})

At the beginning of iteration n:

11

How to estimate ?{ ̂Pn
h}

H−1
h=0

12

How to estimate ?{ ̂Pn
h}

H−1
h=0

Denote with zero everywhere except the entry corresponding to δ(s) ∈ ℝ|S| s

12

How to estimate ?{ ̂Pn
h}

H−1
h=0

Denote with zero everywhere except the entry corresponding to δ(s) ∈ ℝ|S| s

Given , note that s, a 𝔼s′￼∼Ph(⋅|s,a) [δ(s′￼)] = Ph(⋅ |s, a) = μ⋆
h ϕ(s, a)

12

How to estimate ?{ ̂Pn
h}

H−1
h=0

Denote with zero everywhere except the entry corresponding to δ(s) ∈ ℝ|S| s

Penalized Linear Regression:

min
μ

n−1

∑
i=1

∥μϕ(si
h, ai

h) − δ(si
h+1)∥

2
2 + λ∥μ∥2

F

Given , note that s, a 𝔼s′￼∼Ph(⋅|s,a) [δ(s′￼)] = Ph(⋅ |s, a) = μ⋆
h ϕ(s, a)

12

How to estimate ?{ ̂Pn
h}

H−1
h=0

Denote with zero everywhere except the entry corresponding to δ(s) ∈ ℝ|S| s

Penalized Linear Regression:

min
μ

n−1

∑
i=1

∥μϕ(si
h, ai

h) − δ(si
h+1)∥

2
2 + λ∥μ∥2

F

Given , note that s, a 𝔼s′￼∼Ph(⋅|s,a) [δ(s′￼)] = Ph(⋅ |s, a) = μ⋆
h ϕ(s, a)

̂μn
h = (An

h)−1
n−1

∑
i=1

δ(si
h+1)ϕ(si

h, ai
h)

⊤An
h =

n−1

∑
i=1

ϕ(si
h, ai

h)ϕ(si
h, ai

h)
⊤ + λI

12

How to estimate ?{ ̂Pn
h}

H−1
h=0

Denote with zero everywhere except the entry corresponding to δ(s) ∈ ℝ|S| s

Penalized Linear Regression:

min
μ

n−1

∑
i=1

∥μϕ(si
h, ai

h) − δ(si
h+1)∥

2
2 + λ∥μ∥2

F

Given , note that s, a 𝔼s′￼∼Ph(⋅|s,a) [δ(s′￼)] = Ph(⋅ |s, a) = μ⋆
h ϕ(s, a)

̂μn
h = (An

h)−1
n−1

∑
i=1

δ(si
h+1)ϕ(si

h, ai
h)

⊤An
h =

n−1

∑
i=1

ϕ(si
h, ai

h)ϕ(si
h, ai

h)
⊤ + λI

̂Pn
h(⋅ |s, a) = ̂μn

hϕ(s, a)

12

How to choose ?bn
h(s, a)

Chebyshev-like approach, similar to in linUCB (will cover later this lecture):

bn
h(s, a) = β ϕ(s, a)⊤(An

h)−1ϕ(s, a), β = Õ (dH)

13

linUCB-VI: Put All Together
For n = 1 → N :

3. Estimate ̂Pn : ̂Pn
h(⋅ |s, a) = ̂μn

hϕ(s, a)

1. Set An
h =

n−1

∑
i=1

ϕ(si
h, ai

h)ϕ(si
h, ai

h)
⊤ + λI

2. Set ̂μn
h = (An

h)−1
n−1

∑
i=1

δ(si
h+1)ϕ(si

h, ai
h)

⊤

4. Plan: πn = VI ({ ̂Pn
h, rh + bn

h}h), with bn
h(s, a) = cdH ϕ(s, a)⊤(An

h)−1ϕ(s, a)

5. Execute πn : {sn
0 , an

0 , rn
0 , …, sn

H−1, an
H−1, rn

H−1, sn
H}

14

linUCB-VI: Put All Together
For n = 1 → N :

3. Estimate ̂Pn : ̂Pn
h(⋅ |s, a) = ̂μn

hϕ(s, a)

1. Set An
h =

n−1

∑
i=1

ϕ(si
h, ai

h)ϕ(si
h, ai

h)
⊤ + λI

2. Set ̂μn
h = (An

h)−1
n−1

∑
i=1

δ(si
h+1)ϕ(si

h, ai
h)

⊤

4. Plan: πn = VI ({ ̂Pn
h, rh + bn

h}h), with bn
h(s, a) = cdH ϕ(s, a)⊤(An

h)−1ϕ(s, a)

5. Execute πn : {sn
0 , an

0 , rn
0 , …, sn

H−1, an
H−1, rn

H−1, sn
H}

14

𝔼 [RegretN] := 𝔼 [
N

∑
n=1

(V⋆ − Vπn)] ≤ Õ (H2d1.5 N)

linUCB-VI: Put All Together
For n = 1 → N :

3. Estimate ̂Pn : ̂Pn
h(⋅ |s, a) = ̂μn

hϕ(s, a)

1. Set An
h =

n−1

∑
i=1

ϕ(si
h, ai

h)ϕ(si
h, ai

h)
⊤ + λI

2. Set ̂μn
h = (An

h)−1
n−1

∑
i=1

δ(si
h+1)ϕ(si

h, ai
h)

⊤

4. Plan: πn = VI ({ ̂Pn
h, rh + bn

h}h), with bn
h(s, a) = cdH ϕ(s, a)⊤(An

h)−1ϕ(s, a)

5. Execute πn : {sn
0 , an

0 , rn
0 , …, sn

H−1, an
H−1, rn

H−1, sn
H}

14

𝔼 [RegretN] := 𝔼 [
N

∑
n=1

(V⋆ − Vπn)] ≤ Õ (H2d1.5 N)
No dependence!S, A

Today

15

• Feedback from last lecture

• Recap

• UCB-VI for linear MDPs

• Recall: Contextual Bandits

• LinUCB

Recall: (non-contextual) bandit

16

We have K many arms; label them 1,…, K

Each arm has an unknown reward distribution, i.e., ,

w/ mean

νk ∈ Δ([0,1])
μk = 𝔼r∼νk

[r]

Recall: (non-contextual) bandit

For t = 0 → T − 1

16

We have K many arms; label them 1,…, K

Each arm has an unknown reward distribution, i.e., ,

w/ mean

νk ∈ Δ([0,1])
μk = 𝔼r∼νk

[r]

Recall: (non-contextual) bandit

For t = 0 → T − 1

1. Learner pulls arm at ∈ {1,…, K}

16

We have K many arms; label them 1,…, K

Each arm has an unknown reward distribution, i.e., ,

w/ mean

νk ∈ Δ([0,1])
μk = 𝔼r∼νk

[r]

Recall: (non-contextual) bandit

For t = 0 → T − 1

1. Learner pulls arm at ∈ {1,…, K}
(based on historical information)

16

We have K many arms; label them 1,…, K

Each arm has an unknown reward distribution, i.e., ,

w/ mean

νk ∈ Δ([0,1])
μk = 𝔼r∼νk

[r]

Recall: (non-contextual) bandit

For t = 0 → T − 1

1. Learner pulls arm at ∈ {1,…, K}

2. Learner observes an i.i.d reward of arm rt ∼ νat
at

(based on historical information)

16

We have K many arms; label them 1,…, K

Each arm has an unknown reward distribution, i.e., ,

w/ mean

νk ∈ Δ([0,1])
μk = 𝔼r∼νk

[r]

Recall: (non-contextual) bandit

For t = 0 → T − 1

1. Learner pulls arm at ∈ {1,…, K}

2. Learner observes an i.i.d reward of arm rt ∼ νat
at

(based on historical information)

16

We have K many arms; label them 1,…, K

Each arm has an unknown reward distribution, i.e., ,

w/ mean

νk ∈ Δ([0,1])
μk = 𝔼r∼νk

[r]

RegretT = Tμ⋆ −
T−1

∑
t=0

μat
=

T−1

∑
t=0

(μ⋆ − μat
)

Recall: Beyond simple bandits

17

Recall: Beyond simple bandits

17

In a bandit, we are presented with the same decision at every time

Recall: Beyond simple bandits

17

In a bandit, we are presented with the same decision at every time
In practice, often decisions are not the same every time

Recall: Beyond simple bandits

17

E.g., in online advertising there may not be a single best ad to show all users
on all websites:

In a bandit, we are presented with the same decision at every time
In practice, often decisions are not the same every time

Recall: Beyond simple bandits

17

E.g., in online advertising there may not be a single best ad to show all users
on all websites:
• maybe some types of users prefer one ad while others prefer another, or

In a bandit, we are presented with the same decision at every time
In practice, often decisions are not the same every time

Recall: Beyond simple bandits

17

E.g., in online advertising there may not be a single best ad to show all users
on all websites:
• maybe some types of users prefer one ad while others prefer another, or
• maybe one type of ad works better on certain websites while another

works better on other websites

In a bandit, we are presented with the same decision at every time
In practice, often decisions are not the same every time

Recall: Beyond simple bandits

17

E.g., in online advertising there may not be a single best ad to show all users
on all websites:
• maybe some types of users prefer one ad while others prefer another, or
• maybe one type of ad works better on certain websites while another

works better on other websites
Which user comes in next is random, but we have some context to tell
situations apart and hence learn different optimal actions

In a bandit, we are presented with the same decision at every time
In practice, often decisions are not the same every time

Recall: Contextual bandit environment

18

Recall: Contextual bandit environment

18

Context at time encoded into a variable that we see before choosing our actiont xt

Recall: Contextual bandit environment

18

Context at time encoded into a variable that we see before choosing our actiont xt

 is drawn i.i.d. at each time point from a distribution on sample space xt νx 𝒳

Recall: Contextual bandit environment

18

Context at time encoded into a variable that we see before choosing our actiont xt

 then affects the reward distributions of each arm, i.e., if we choose arm , we get a
reward that is drawn from a distribution that depends on , namely,

xt k
xt ν(k)(xt)

 is drawn i.i.d. at each time point from a distribution on sample space xt νx 𝒳

Recall: Contextual bandit environment

18

Context at time encoded into a variable that we see before choosing our actiont xt

Accordingly, we should also choose our action in a way that depends on , i.e.,
our action should be chosen by a function of (a policy), namely,

at xt
xt πt(xt)

 then affects the reward distributions of each arm, i.e., if we choose arm , we get a
reward that is drawn from a distribution that depends on , namely,

xt k
xt ν(k)(xt)

 is drawn i.i.d. at each time point from a distribution on sample space xt νx 𝒳

Recall: Contextual bandit environment

18

Context at time encoded into a variable that we see before choosing our actiont xt

Accordingly, we should also choose our action in a way that depends on , i.e.,
our action should be chosen by a function of (a policy), namely,

at xt
xt πt(xt)

If we knew everything about the environment, we’d want to use the optimal policy

π⋆(xt) := arg max

k∈{1,…,K}
μ(k)(xt), where μ(k)(x) := 𝔼r∼ν(k)(x)[r]

 then affects the reward distributions of each arm, i.e., if we choose arm , we get a
reward that is drawn from a distribution that depends on , namely,

xt k
xt ν(k)(xt)

 is drawn i.i.d. at each time point from a distribution on sample space xt νx 𝒳

Recall: Contextual bandit environment

18

Context at time encoded into a variable that we see before choosing our actiont xt

Accordingly, we should also choose our action in a way that depends on , i.e.,
our action should be chosen by a function of (a policy), namely,

at xt
xt πt(xt)

If we knew everything about the environment, we’d want to use the optimal policy

π⋆(xt) := arg max

k∈{1,…,K}
μ(k)(xt), where μ(k)(x) := 𝔼r∼ν(k)(x)[r]

 then affects the reward distributions of each arm, i.e., if we choose arm , we get a
reward that is drawn from a distribution that depends on , namely,

xt k
xt ν(k)(xt)

 is drawn i.i.d. at each time point from a distribution on sample space xt νx 𝒳

 is the policy we compare to in computing regretπ⋆

Recall: Contextual bandit environment

19

Formally, a contextual bandit is the following interactive learning process:

For t = 0 → T − 1

2. Learner pulls arm at = πt(xt) ∈ {1,…, K}

3. Learner observes reward from arm in context rt ∼ ν(at)(xt) at xt

1. Learner sees context xt ∼ νx
 policy learned from

all data seen so far

πt

Note that if the context distribution always returns the same value (e.g., 0), then
the contextual bandit reduces to the original multi-armed bandit

νx

Independent of any previous data

Recall: UCB for contextual bandits

20

Recall: UCB for contextual bandits

20

UCB algorithm conceptually identical as long as finite:
|𝒳|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |𝒳| /δ)/2N(k)

t (xt)

Recall: UCB for contextual bandits

20

UCB algorithm conceptually identical as long as finite:
|𝒳|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |𝒳| /δ)/2N(k)

t (xt)

• Added argument to and since we now keep track of the sample
mean and number of arm pulls separately for each value of the context

xt ̂μ(k)
t N(k)

t

Recall: UCB for contextual bandits

20

UCB algorithm conceptually identical as long as finite:
|𝒳|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |𝒳| /δ)/2N(k)

t (xt)

• Added argument to and since we now keep track of the sample
mean and number of arm pulls separately for each value of the context

xt ̂μ(k)
t N(k)

t

• Added inside the log because our union bound argument is now over
all arm mean estimates , of which there are instead of just

|𝒳|
̂μ(k)
t (x) K |𝒳| K

Recall: UCB for contextual bandits

20

UCB algorithm conceptually identical as long as finite:
|𝒳|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |𝒳| /δ)/2N(k)

t (xt)

• Added argument to and since we now keep track of the sample
mean and number of arm pulls separately for each value of the context

xt ̂μ(k)
t N(k)

t

• Added inside the log because our union bound argument is now over
all arm mean estimates , of which there are instead of just

|𝒳|
̂μ(k)
t (x) K |𝒳| K

But when is really big (or even infinite), this will be really bad!|𝒳|

Recall: UCB for contextual bandits

20

UCB algorithm conceptually identical as long as finite:
|𝒳|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |𝒳| /δ)/2N(k)

t (xt)

• Added argument to and since we now keep track of the sample
mean and number of arm pulls separately for each value of the context

xt ̂μ(k)
t N(k)

t

• Added inside the log because our union bound argument is now over
all arm mean estimates , of which there are instead of just

|𝒳|
̂μ(k)
t (x) K |𝒳| K

But when is really big (or even infinite), this will be really bad!|𝒳|
Solution: share information across contexts , i.e., don’t treat and as

completely different distributions which have nothing to do with one another
xt ν(k)(x) ν(k)(x′￼)

Recall: UCB for contextual bandits

20

UCB algorithm conceptually identical as long as finite:
|𝒳|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |𝒳| /δ)/2N(k)

t (xt)

• Added argument to and since we now keep track of the sample
mean and number of arm pulls separately for each value of the context

xt ̂μ(k)
t N(k)

t

• Added inside the log because our union bound argument is now over
all arm mean estimates , of which there are instead of just

|𝒳|
̂μ(k)
t (x) K |𝒳| K

But when is really big (or even infinite), this will be really bad!|𝒳|
Solution: share information across contexts , i.e., don’t treat and as

completely different distributions which have nothing to do with one another
xt ν(k)(x) ν(k)(x′￼)

Example: showing an ad on a NYT article on politics vs a NYT article on sports:

Recall: UCB for contextual bandits

20

UCB algorithm conceptually identical as long as finite:
|𝒳|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |𝒳| /δ)/2N(k)

t (xt)

• Added argument to and since we now keep track of the sample
mean and number of arm pulls separately for each value of the context

xt ̂μ(k)
t N(k)

t

• Added inside the log because our union bound argument is now over
all arm mean estimates , of which there are instead of just

|𝒳|
̂μ(k)
t (x) K |𝒳| K

But when is really big (or even infinite), this will be really bad!|𝒳|
Solution: share information across contexts , i.e., don’t treat and as

completely different distributions which have nothing to do with one another
xt ν(k)(x) ν(k)(x′￼)

Example: showing an ad on a NYT article on politics vs a NYT article on sports:
Not identical readership, but still both on NYT, so probably still similar readership!

Recall: Modeling in contextual bandits

21

Recall: Modeling in contextual bandits

21

Need a model for , e.g., a linear model: μ(k)(x) μ(k)(x) = θ⊤
k x

Recall: Modeling in contextual bandits

21

Need a model for , e.g., a linear model: μ(k)(x) μ(k)(x) = θ⊤
k x

E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of), for articles
on politics or sports (encoded as 0 or 1 in the second entry of)

x
x ⇒ x ∈ {0,1}2

Recall: Modeling in contextual bandits

21

Need a model for , e.g., a linear model: μ(k)(x) μ(k)(x) = θ⊤
k x

 w/o linear model, need to learn 4 different values for each arm |𝒳| = 4 ⇒ μ(k)(x) k

E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of), for articles
on politics or sports (encoded as 0 or 1 in the second entry of)

x
x ⇒ x ∈ {0,1}2

Recall: Modeling in contextual bandits

21

Need a model for , e.g., a linear model: μ(k)(x) μ(k)(x) = θ⊤
k x

 w/o linear model, need to learn 4 different values for each arm |𝒳| = 4 ⇒ μ(k)(x) k

E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of), for articles
on politics or sports (encoded as 0 or 1 in the second entry of)

x
x ⇒ x ∈ {0,1}2

With linear model there are just 2 parameters: the two entries of θk ∈ ℝ2

Recall: Modeling in contextual bandits

21

Need a model for , e.g., a linear model: μ(k)(x) μ(k)(x) = θ⊤
k x

 w/o linear model, need to learn 4 different values for each arm |𝒳| = 4 ⇒ μ(k)(x) k

E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of), for articles
on politics or sports (encoded as 0 or 1 in the second entry of)

x
x ⇒ x ∈ {0,1}2

With linear model there are just 2 parameters: the two entries of θk ∈ ℝ2

Lower dimension makes learning easier, but model could be wrong/biased

Today

22

• Feedback from last lecture

• Recap

• UCB-VI for linear MDPs

• Recall: Contextual Bandits

• LinUCB

Linear model fitting

23

Linear model for rewards: μ(k)(x) = x⊤θ(k)

Linear model fitting

23

Linear model for rewards: μ(k)(x) = x⊤θ(k)

How to estimate ? Linear regressionθ(k)

Linear model fitting

23

Linear model for rewards: μ(k)(x) = x⊤θ(k)

How to estimate ? Linear regressionθ(k)

Least squares estimator: ̂θ(k)
t = arg min

θ∈ℝd

t−1

∑
τ=0

(rτ − x⊤
τ θ)21{aτ=k}

Minimize squared error over time points when arm selectedk

Linear model fitting

23

Linear model for rewards: μ(k)(x) = x⊤θ(k)

How to estimate ? Linear regressionθ(k)

Least squares estimator: ̂θ(k)
t = arg min

θ∈ℝd

t−1

∑
τ=0

(rτ − x⊤
τ θ)21{aτ=k}

Minimize squared error over time points when arm selectedk

Claim: ̂θ(k)
t = (

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k})

−1 t−1

∑
τ=0

xτrτ1{aτ=k}

Linear model fitting

23

Linear model for rewards: μ(k)(x) = x⊤θ(k)

How to estimate ? Linear regressionθ(k)

Least squares estimator: ̂θ(k)
t = arg min

θ∈ℝd

t−1

∑
τ=0

(rτ − x⊤
τ θ)21{aτ=k}

Minimize squared error over time points when arm selectedk

Claim: ̂θ(k)
t = (

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k})

−1 t−1

∑
τ=0

xτrτ1{aτ=k}

proof: ∇θ[
t−1

∑
τ=0

(rτ − x⊤
τ θ)21{aτ=k}] = 2

t−1

∑
τ=0

xτ(rτ − x⊤
τ θ)1{aτ=k} = 0 ⇒

t−1

∑
τ=0

xτrτ1{aτ=k} = θ
t−1

∑
τ=0

xτx⊤
τ 1{aτ=k}

Linear model fitting (cont’d)

24

Recall: ̂θ(k)
t = (

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k})

−1 t−1

∑
τ=0

xτrτ1{aτ=k}

Linear model fitting (cont’d)

24

Recall: ̂θ(k)
t = (

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k})

−1 t−1

∑
τ=0

xτrτ1{aτ=k}

Let and A(k)
t =

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k} b(k)

t =
t−1

∑
τ=0

xτrτ1{aτ=k}

Linear model fitting (cont’d)

24

Recall: ̂θ(k)
t = (

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k})

−1 t−1

∑
τ=0

xτrτ1{aτ=k}

Let and A(k)
t =

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k} b(k)

t =
t−1

∑
τ=0

xτrτ1{aτ=k}

Then ̂θ(k)
t = (A(k)

t)
−1

b(k)
t

Linear model fitting (cont’d)

24

Recall: ̂θ(k)
t = (

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k})

−1 t−1

∑
τ=0

xτrτ1{aτ=k}

Let and A(k)
t =

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k} b(k)

t =
t−1

∑
τ=0

xτrτ1{aτ=k}

Then ̂θ(k)
t = (A(k)

t)
−1

b(k)
t

 like empirical covariance matrix of the contexts when arm was chosenA(k)
t k

Linear model fitting (cont’d)

24

Recall: ̂θ(k)
t = (

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k})

−1 t−1

∑
τ=0

xτrτ1{aτ=k}

Let and A(k)
t =

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k} b(k)

t =
t−1

∑
τ=0

xτrτ1{aτ=k}

Then ̂θ(k)
t = (A(k)

t)
−1

b(k)
t

 like empirical covariance matrix of the contexts when arm was chosenA(k)
t k

 like empirical covariance between contexts and rewards when arm was chosenb(k)
t k

Linear model fitting (cont’d)

24

Recall: ̂θ(k)
t = (

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k})

−1 t−1

∑
τ=0

xτrτ1{aτ=k}

Let and A(k)
t =

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k} b(k)

t =
t−1

∑
τ=0

xτrτ1{aτ=k}

Then ̂θ(k)
t = (A(k)

t)
−1

b(k)
t

 like empirical covariance matrix of the contexts when arm was chosenA(k)
t k

 like empirical covariance between contexts and rewards when arm was chosenb(k)
t k

 must be invertible, which basically requires A(k)
t N(k)

t ≥ d

Uncertainty quantification

25

Uncertainty quantification

25

For UCB, recall that we need confidence bounds on

the expected reward of each arm (given context)xt

Uncertainty quantification

25

For UCB, recall that we need confidence bounds on

the expected reward of each arm (given context)xt

Hoeffding was the main tool so far, but it used the fact that our estimate for the
expected reward was a sample mean of the rewards we’d seen so far in the same

setting (action, context)

Uncertainty quantification

25

For UCB, recall that we need confidence bounds on

the expected reward of each arm (given context)xt

Hoeffding was the main tool so far, but it used the fact that our estimate for the
expected reward was a sample mean of the rewards we’d seen so far in the same

setting (action, context)

With a model, we can use rewards we’ve seen in other settings better estimation→

Uncertainty quantification

25

For UCB, recall that we need confidence bounds on

the expected reward of each arm (given context)xt

Hoeffding was the main tool so far, but it used the fact that our estimate for the
expected reward was a sample mean of the rewards we’d seen so far in the same

setting (action, context)

With a model, we can use rewards we’ve seen in other settings better estimation→
But not using sample mean as estimator, so need something other than Hoeffding

Uncertainty quantification

25

For UCB, recall that we need confidence bounds on

the expected reward of each arm (given context)xt

Hoeffding was the main tool so far, but it used the fact that our estimate for the
expected reward was a sample mean of the rewards we’d seen so far in the same

setting (action, context)

Chebyshev’s inequality: for a mean-zero random variable ,

 with probability

Y
|Y | ≤ β 𝔼[Y2] ≥ 1 − 1/β2

With a model, we can use rewards we’ve seen in other settings better estimation→
But not using sample mean as estimator, so need something other than Hoeffding

Uncertainty quantification

25

For UCB, recall that we need confidence bounds on

the expected reward of each arm (given context)xt

Hoeffding was the main tool so far, but it used the fact that our estimate for the
expected reward was a sample mean of the rewards we’d seen so far in the same

setting (action, context)

Chebyshev’s inequality: for a mean-zero random variable ,

 with probability

Y
|Y | ≤ β 𝔼[Y2] ≥ 1 − 1/β2

With a model, we can use rewards we’ve seen in other settings better estimation→
But not using sample mean as estimator, so need something other than Hoeffding

Apply to x⊤
t

̂θ(k)
t − x⊤

t θ(k)

Uncertainty quantification (cont’d)

26

Uncertainty quantification (cont’d)

26

Want confidence bounds on our estimated mean rewards for each arm: x⊤
t

̂θ(k)
t

Uncertainty quantification (cont’d)

26

Want confidence bounds on our estimated mean rewards for each arm: x⊤
t

̂θ(k)
t

Strategy: apply Chebyshev’s inequality to x⊤
t

̂θ(k)
t − x⊤

t θ(k)

Uncertainty quantification (cont’d)

26

Want confidence bounds on our estimated mean rewards for each arm: x⊤
t

̂θ(k)
t

Strategy: apply Chebyshev’s inequality to x⊤
t

̂θ(k)
t − x⊤

t θ(k)

Need: (make sure it’s zero) and 𝔼[x⊤
t

̂θ(k)
t − x⊤

t θ(k)] 𝔼 [(x⊤
t

̂θ(k)
t − x⊤

t θ(k))2]

Uncertainty quantification (cont’d)

26

Want confidence bounds on our estimated mean rewards for each arm: x⊤
t

̂θ(k)
t

Strategy: apply Chebyshev’s inequality to x⊤
t

̂θ(k)
t − x⊤

t θ(k)

Need: (make sure it’s zero) and 𝔼[x⊤
t

̂θ(k)
t − x⊤

t θ(k)] 𝔼 [(x⊤
t

̂θ(k)
t − x⊤

t θ(k))2]
Let , and we derive a useful expression for :wt = rt − 𝔼r∼ν(k)(xt)[r] = rt − x⊤

t θ(k) ̂θ(k)
t

Uncertainty quantification (cont’d)

26

Want confidence bounds on our estimated mean rewards for each arm: x⊤
t

̂θ(k)
t

Strategy: apply Chebyshev’s inequality to x⊤
t

̂θ(k)
t − x⊤

t θ(k)

Need: (make sure it’s zero) and 𝔼[x⊤
t

̂θ(k)
t − x⊤

t θ(k)] 𝔼 [(x⊤
t

̂θ(k)
t − x⊤

t θ(k))2]

̂θ(k)
t = (A(k)

t)−1
t−1

∑
τ=0

xτrτ1{aτ=k} = (A(k)
t)−1

t−1

∑
τ=0

xτ(x⊤
τ θ(k) + wτ)1{aτ=k}

Let , and we derive a useful expression for :wt = rt − 𝔼r∼ν(k)(xt)[r] = rt − x⊤
t θ(k) ̂θ(k)

t

Uncertainty quantification (cont’d)

26

Want confidence bounds on our estimated mean rewards for each arm: x⊤
t

̂θ(k)
t

Strategy: apply Chebyshev’s inequality to x⊤
t

̂θ(k)
t − x⊤

t θ(k)

Need: (make sure it’s zero) and 𝔼[x⊤
t

̂θ(k)
t − x⊤

t θ(k)] 𝔼 [(x⊤
t

̂θ(k)
t − x⊤

t θ(k))2]

̂θ(k)
t = (A(k)

t)−1
t−1

∑
τ=0

xτrτ1{aτ=k} = (A(k)
t)−1

t−1

∑
τ=0

xτ(x⊤
τ θ(k) + wτ)1{aτ=k}

Let , and we derive a useful expression for :wt = rt − 𝔼r∼ν(k)(xt)[r] = rt − x⊤
t θ(k) ̂θ(k)

t

= (A(k)
t)−1

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k}θ(k) + (A(k)

t)−1
t−1

∑
τ=0

xτwτ1{aτ=k} = θ(k) + (A(k)
t)−1

t−1

∑
τ=0

xτ1{aτ=k}wτ

Uncertainty quantification (cont’d)

27

Recall: ̂θ(k)
t = θ(k) + (A(k)

t)−1
t−1

∑
τ=0

xτ1{aτ=k}wτ

Uncertainty quantification (cont’d)

27

Recall: ̂θ(k)
t = θ(k) + (A(k)

t)−1
t−1

∑
τ=0

xτ1{aτ=k}wτ

Assume for simplicity that we are doing pure exploration, so the actions at each time
step are totally independent of everything else.

Uncertainty quantification (cont’d)

27

𝔼wτ
[x⊤

t
̂θ(k)
t − x⊤

t θ(k)]

Recall: ̂θ(k)
t = θ(k) + (A(k)

t)−1
t−1

∑
τ=0

xτ1{aτ=k}wτ

Assume for simplicity that we are doing pure exploration, so the actions at each time
step are totally independent of everything else.

Uncertainty quantification (cont’d)

27

𝔼wτ
[x⊤

t
̂θ(k)
t − x⊤

t θ(k)]

Recall: ̂θ(k)
t = θ(k) + (A(k)

t)−1
t−1

∑
τ=0

xτ1{aτ=k}wτ

Assume for simplicity that we are doing pure exploration, so the actions at each time
step are totally independent of everything else.

= 𝔼wτ
[x⊤

t (A(k)
t)−1

t−1

∑
τ=0

xτ1{aτ=k}wτ]

Uncertainty quantification (cont’d)

27

𝔼wτ
[x⊤

t
̂θ(k)
t − x⊤

t θ(k)]

Recall: ̂θ(k)
t = θ(k) + (A(k)

t)−1
t−1

∑
τ=0

xτ1{aτ=k}wτ

Assume for simplicity that we are doing pure exploration, so the actions at each time
step are totally independent of everything else.

= 𝔼wτ
[x⊤

t (A(k)
t)−1

t−1

∑
τ=0

xτ1{aτ=k}wτ] = x⊤
t (A(k)

t)−1
t−1

∑
τ=0

xτ1{aτ=k}𝔼wτ
[wτ]

Uncertainty quantification (cont’d)

27

𝔼wτ
[x⊤

t
̂θ(k)
t − x⊤

t θ(k)]

Recall: ̂θ(k)
t = θ(k) + (A(k)

t)−1
t−1

∑
τ=0

xτ1{aτ=k}wτ

Assume for simplicity that we are doing pure exploration, so the actions at each time
step are totally independent of everything else.

= 𝔼wτ
[x⊤

t (A(k)
t)−1

t−1

∑
τ=0

xτ1{aτ=k}wτ] = x⊤
t (A(k)

t)−1
t−1

∑
τ=0

xτ1{aτ=k}𝔼wτ
[wτ] = 0

Uncertainty quantification (cont’d)

27

𝔼wτ
[x⊤

t
̂θ(k)
t − x⊤

t θ(k)]

Recall: ̂θ(k)
t = θ(k) + (A(k)

t)−1
t−1

∑
τ=0

xτ1{aτ=k}wτ

𝔼wτ
[(x⊤

t
̂θ(k)
t − x⊤

t θ(k))2] = 𝔼wτ (x⊤
t (A(k)

t)−1
t−1

∑
τ=0

xτ1{aτ=k}wτ)
2

Assume for simplicity that we are doing pure exploration, so the actions at each time
step are totally independent of everything else.

= 𝔼wτ
[x⊤

t (A(k)
t)−1

t−1

∑
τ=0

xτ1{aτ=k}wτ] = x⊤
t (A(k)

t)−1
t−1

∑
τ=0

xτ1{aτ=k}𝔼wτ
[wτ] = 0

Uncertainty quantification (cont’d)

27

𝔼wτ
[x⊤

t
̂θ(k)
t − x⊤

t θ(k)]

Recall: ̂θ(k)
t = θ(k) + (A(k)

t)−1
t−1

∑
τ=0

xτ1{aτ=k}wτ

𝔼wτ
[(x⊤

t
̂θ(k)
t − x⊤

t θ(k))2] = 𝔼wτ (x⊤
t (A(k)

t)−1
t−1

∑
τ=0

xτ1{aτ=k}wτ)
2

= x⊤
t (A(k)

t)−1
t−1

∑
τ=0

t−1

∑
τ′￼=0

xτx⊤
τ′￼

1{aτ=k}1{aτ′￼=k}𝔼wτ [wτwτ′￼](A(k)
t)−1xt

Assume for simplicity that we are doing pure exploration, so the actions at each time
step are totally independent of everything else.

= 𝔼wτ
[x⊤

t (A(k)
t)−1

t−1

∑
τ=0

xτ1{aτ=k}wτ] = x⊤
t (A(k)

t)−1
t−1

∑
τ=0

xτ1{aτ=k}𝔼wτ
[wτ] = 0

Uncertainty quantification (cont’d)

27

𝔼wτ
[x⊤

t
̂θ(k)
t − x⊤

t θ(k)]

Recall: ̂θ(k)
t = θ(k) + (A(k)

t)−1
t−1

∑
τ=0

xτ1{aτ=k}wτ

𝔼wτ
[(x⊤

t
̂θ(k)
t − x⊤

t θ(k))2] = 𝔼wτ (x⊤
t (A(k)

t)−1
t−1

∑
τ=0

xτ1{aτ=k}wτ)
2

= x⊤
t (A(k)

t)−1
t−1

∑
τ=0

t−1

∑
τ′￼=0

xτx⊤
τ′￼

1{aτ=k}1{aτ′￼=k}𝔼wτ [wτwτ′￼](A(k)
t)−1xt

Assume for simplicity that we are doing pure exploration, so the actions at each time
step are totally independent of everything else.

= x⊤
t (A(k)

t)−1
t−1

∑
τ=0

xτx⊤
τ 1{aτ=k}𝔼wτ

[w2
τ](A(k)

t)−1xt

= 𝔼wτ
[x⊤

t (A(k)
t)−1

t−1

∑
τ=0

xτ1{aτ=k}wτ] = x⊤
t (A(k)

t)−1
t−1

∑
τ=0

xτ1{aτ=k}𝔼wτ
[wτ] = 0

Uncertainty quantification (cont’d)

27

𝔼wτ
[x⊤

t
̂θ(k)
t − x⊤

t θ(k)]

Recall: ̂θ(k)
t = θ(k) + (A(k)

t)−1
t−1

∑
τ=0

xτ1{aτ=k}wτ

𝔼wτ
[(x⊤

t
̂θ(k)
t − x⊤

t θ(k))2] = 𝔼wτ (x⊤
t (A(k)

t)−1
t−1

∑
τ=0

xτ1{aτ=k}wτ)
2

= x⊤
t (A(k)

t)−1
t−1

∑
τ=0

t−1

∑
τ′￼=0

xτx⊤
τ′￼

1{aτ=k}1{aτ′￼=k}𝔼wτ [wτwτ′￼](A(k)
t)−1xt

Assume for simplicity that we are doing pure exploration, so the actions at each time
step are totally independent of everything else.

= x⊤
t (A(k)

t)−1
t−1

∑
τ=0

xτx⊤
τ 1{aτ=k}𝔼wτ

[w2
τ](A(k)

t)−1xt

= 𝔼wτ
[x⊤

t (A(k)
t)−1

t−1

∑
τ=0

xτ1{aτ=k}wτ] = x⊤
t (A(k)

t)−1
t−1

∑
τ=0

xτ1{aτ=k}𝔼wτ
[wτ] = 0

≤ x⊤
t (A(k)

t)−1A(k)
t (A(k)

t)−1xt

Uncertainty quantification (cont’d)

27

𝔼wτ
[x⊤

t
̂θ(k)
t − x⊤

t θ(k)]

Recall: ̂θ(k)
t = θ(k) + (A(k)

t)−1
t−1

∑
τ=0

xτ1{aτ=k}wτ

𝔼wτ
[(x⊤

t
̂θ(k)
t − x⊤

t θ(k))2] = 𝔼wτ (x⊤
t (A(k)

t)−1
t−1

∑
τ=0

xτ1{aτ=k}wτ)
2

= x⊤
t (A(k)

t)−1
t−1

∑
τ=0

t−1

∑
τ′￼=0

xτx⊤
τ′￼

1{aτ=k}1{aτ′￼=k}𝔼wτ [wτwτ′￼](A(k)
t)−1xt

Assume for simplicity that we are doing pure exploration, so the actions at each time
step are totally independent of everything else.

= x⊤
t (A(k)

t)−1
t−1

∑
τ=0

xτx⊤
τ 1{aτ=k}𝔼wτ

[w2
τ](A(k)

t)−1xt

= 𝔼wτ
[x⊤

t (A(k)
t)−1

t−1

∑
τ=0

xτ1{aτ=k}wτ] = x⊤
t (A(k)

t)−1
t−1

∑
τ=0

xτ1{aτ=k}𝔼wτ
[wτ] = 0

≤ x⊤
t (A(k)

t)−1A(k)
t (A(k)

t)−1xt = x⊤
t (A(k)

t)−1xt

Chebyshev confidence bounds + intuition

28

Chebyshev confidence bounds + intuition

28

Chebyshev: with probability x⊤
t θ(k) ≤ x⊤

t
̂θ(k)
t + β x⊤

t (A(k)
t)−1xt ≥ 1 − 1/β2

A(k)
t =

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k}

Chebyshev confidence bounds + intuition

Intuition:

28

Chebyshev: with probability x⊤
t θ(k) ≤ x⊤

t
̂θ(k)
t + β x⊤

t (A(k)
t)−1xt ≥ 1 − 1/β2

A(k)
t =

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k}

Chebyshev confidence bounds + intuition

Intuition:

UCB term 1: large when context and coefficient estimate alignedx⊤
t

̂θ(k)

28

Chebyshev: with probability x⊤
t θ(k) ≤ x⊤

t
̂θ(k)
t + β x⊤

t (A(k)
t)−1xt ≥ 1 − 1/β2

A(k)
t =

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k}

Chebyshev confidence bounds + intuition

Intuition:

UCB term 1: large when context and coefficient estimate alignedx⊤
t

̂θ(k)

UCB term 2: , where

 is the empirical covariance

matrix of contexts when arm chosen

x⊤
t (A(k)

t)−1xt =
1

N(k)
t

x⊤
t (Σ(k)

t)−1xt

Σ(k)
t =

1
N(k)

t
A(k)

t =
1

N(k)
t

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k}

k

28

Chebyshev: with probability x⊤
t θ(k) ≤ x⊤

t
̂θ(k)
t + β x⊤

t (A(k)
t)−1xt ≥ 1 − 1/β2

A(k)
t =

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k}

Chebyshev confidence bounds + intuition

Intuition:

UCB term 1: large when context and coefficient estimate alignedx⊤
t

̂θ(k)

UCB term 2: , where

 is the empirical covariance

matrix of contexts when arm chosen

x⊤
t (A(k)

t)−1xt =
1

N(k)
t

x⊤
t (Σ(k)

t)−1xt

Σ(k)
t =

1
N(k)

t
A(k)

t =
1

N(k)
t

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k}

k
Large when small or not aligned with historical dataN(k)

t xt
28

Chebyshev: with probability x⊤
t θ(k) ≤ x⊤

t
̂θ(k)
t + β x⊤

t (A(k)
t)−1xt ≥ 1 − 1/β2

A(k)
t =

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k}

Some issues

29

Some issues

29

Issue 1: All this assumed pure exploration!

Some issues

29

Issue 1: All this assumed pure exploration!
Recall from HW 1 that we don’t even expect unbiasedness for our arm

mean estimates in the simple bandit case, due to adaptivity

Some issues

29

Issue 1: All this assumed pure exploration!
Recall from HW 1 that we don’t even expect unbiasedness for our arm

mean estimates in the simple bandit case, due to adaptivity

So actually, the bounds we got don’t really apply…

Some issues

29

Issue 1: All this assumed pure exploration!
Recall from HW 1 that we don’t even expect unbiasedness for our arm

mean estimates in the simple bandit case, due to adaptivity

Issue 2: has to be invertibleA(k)
t

So actually, the bounds we got don’t really apply…

Some issues

29

Issue 1: All this assumed pure exploration!
Recall from HW 1 that we don’t even expect unbiasedness for our arm

mean estimates in the simple bandit case, due to adaptivity

Issue 2: has to be invertibleA(k)
t

So actually, the bounds we got don’t really apply…

Before the th time that arm gets pulled, undefinedd k ̂θ(k)
t

Some issues

29

Issue 1: All this assumed pure exploration!
Recall from HW 1 that we don’t even expect unbiasedness for our arm

mean estimates in the simple bandit case, due to adaptivity

Issue 2: has to be invertibleA(k)
t

So actually, the bounds we got don’t really apply…

Before the th time that arm gets pulled, undefinedd k ̂θ(k)
t

Solution (to both issues): regularize

Some issues

29

Issue 1: All this assumed pure exploration!
Recall from HW 1 that we don’t even expect unbiasedness for our arm

mean estimates in the simple bandit case, due to adaptivity

Issue 2: has to be invertibleA(k)
t

So actually, the bounds we got don’t really apply…

Before the th time that arm gets pulled, undefinedd k ̂θ(k)
t

Solution (to both issues): regularize

Replace for some A(k)
t ← A(k)

t + λI λ > 0

Some issues

29

Issue 1: All this assumed pure exploration!
Recall from HW 1 that we don’t even expect unbiasedness for our arm

mean estimates in the simple bandit case, due to adaptivity

Issue 2: has to be invertibleA(k)
t

So actually, the bounds we got don’t really apply…

Before the th time that arm gets pulled, undefinedd k ̂θ(k)
t

Solution (to both issues): regularize

Replace for some A(k)
t ← A(k)

t + λI λ > 0
Makes invertible always, and it turns out a bound just like Chebyshev’s applies

(with more details and a much more complicated proof, which we won’t get into)
A(k)

t

LinUCB algorithm

30

For t = 0 → T − 1

LinUCB algorithm

30

For t = 0 → T − 1

1. , define and ∀ k A(k)
t =

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k} + λI ̂θ(k)

t = (A(k)
t)−1

t−1

∑
τ=0

xτrτ1{aτ=k}

LinUCB algorithm

30

For t = 0 → T − 1

1. , define and ∀ k A(k)
t =

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k} + λI ̂θ(k)

t = (A(k)
t)−1

t−1

∑
τ=0

xτrτ1{aτ=k}

Regularization makes invertibleA(k)
t

LinUCB algorithm

30

For t = 0 → T − 1

2. Observe context and choose xt at = arg max
k {x⊤

t
̂θ(k)
t + ct x⊤

t (A(k)
t)−1xt}

1. , define and ∀ k A(k)
t =

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k} + λI ̂θ(k)

t = (A(k)
t)−1

t−1

∑
τ=0

xτrτ1{aτ=k}

Regularization makes invertibleA(k)
t

LinUCB algorithm

30

For t = 0 → T − 1

2. Observe context and choose xt at = arg max
k {x⊤

t
̂θ(k)
t + ct x⊤

t (A(k)
t)−1xt}

3. Observe reward rt ∼ ν(at)(xt)

1. , define and ∀ k A(k)
t =

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k} + λI ̂θ(k)

t = (A(k)
t)−1

t−1

∑
τ=0

xτrτ1{aτ=k}

Regularization makes invertibleA(k)
t

LinUCB algorithm

30

For t = 0 → T − 1

2. Observe context and choose xt at = arg max
k {x⊤

t
̂θ(k)
t + ct x⊤

t (A(k)
t)−1xt}

3. Observe reward rt ∼ ν(at)(xt)

1. , define and ∀ k A(k)
t =

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k} + λI ̂θ(k)

t = (A(k)
t)−1

t−1

∑
τ=0

xτrτ1{aτ=k}

 similar to log term in (non-lin)UCB, in that it depends logarithmically on

i. (is probability you want the bound to hold with)

ii. and implicitly via

ct
1/δ δ
t d det(A(k)

t)

Regularization makes invertibleA(k)
t

LinUCB algorithm

30

For t = 0 → T − 1

2. Observe context and choose xt at = arg max
k {x⊤

t
̂θ(k)
t + ct x⊤

t (A(k)
t)−1xt}

3. Observe reward rt ∼ ν(at)(xt)

1. , define and ∀ k A(k)
t =

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k} + λI ̂θ(k)

t = (A(k)
t)−1

t−1

∑
τ=0

xτrτ1{aτ=k}

 similar to log term in (non-lin)UCB, in that it depends logarithmically on

i. (is probability you want the bound to hold with)

ii. and implicitly via

ct
1/δ δ
t d det(A(k)

t)
Can prove regret boundÕ(T)

Regularization makes invertibleA(k)
t

Extensions

31

Extensions

31

1. Can always replace contexts with any fixed (vector-valued) function xt ϕ(xt)

Extensions

31

1. Can always replace contexts with any fixed (vector-valued) function xt ϕ(xt)
E.g., if believe rewards quadratic in scalar , could make xt ϕ(xt) = (xt, x2

t)

Extensions

31

1. Can always replace contexts with any fixed (vector-valued) function xt ϕ(xt)
E.g., if believe rewards quadratic in scalar , could make xt ϕ(xt) = (xt, x2

t)
2. Instead of fitting different for each arm, we could assume the mean reward

is linear in some function of both the context and the action, i.e.,

θ(k)

𝔼r∼νat(xt)[r] = ϕ(xt, at)⊤θ

Extensions

31

1. Can always replace contexts with any fixed (vector-valued) function xt ϕ(xt)
E.g., if believe rewards quadratic in scalar , could make xt ϕ(xt) = (xt, x2

t)
2. Instead of fitting different for each arm, we could assume the mean reward

is linear in some function of both the context and the action, i.e.,

θ(k)

𝔼r∼νat(xt)[r] = ϕ(xt, at)⊤θ
This is what we did in the linear MDP model! Helpful especially when is large,
since in that case there would be a lot of to fit

K
θ(k)

Extensions

31

1. Can always replace contexts with any fixed (vector-valued) function xt ϕ(xt)
E.g., if believe rewards quadratic in scalar , could make xt ϕ(xt) = (xt, x2

t)
2. Instead of fitting different for each arm, we could assume the mean reward

is linear in some function of both the context and the action, i.e.,

θ(k)

𝔼r∼νat(xt)[r] = ϕ(xt, at)⊤θ
This is what we did in the linear MDP model! Helpful especially when is large,
since in that case there would be a lot of to fit

K
θ(k)

Both cases allow a version of linUCB by extension of the same ideas: fit coefficients
via least squares and use Chebyshev-like uncertainty quantification to get UCB

More detail on the combined linear model

32

For t = 0 → T − 1

More detail on the combined linear model

32

For t = 0 → T − 1

1. , define and ∀ k At =
t−1

∑
τ=0

ϕ(xτ, aτ)ϕ(xτ, aτ)⊤ + λI ̂θt = A−1
t

t−1

∑
τ=0

ϕ(xτ, aτ)rτ

More detail on the combined linear model

32

For t = 0 → T − 1

2. Observe & choose xt at = arg max
k {ϕ(xt, k)⊤ ̂θt + ct ϕ(xt, k)⊤A−1

t ϕ(xt, k)}
1. , define and ∀ k At =

t−1

∑
τ=0

ϕ(xτ, aτ)ϕ(xτ, aτ)⊤ + λI ̂θt = A−1
t

t−1

∑
τ=0

ϕ(xτ, aτ)rτ

More detail on the combined linear model

32

For t = 0 → T − 1

2. Observe & choose xt at = arg max
k {ϕ(xt, k)⊤ ̂θt + ct ϕ(xt, k)⊤A−1

t ϕ(xt, k)}
3. Observe reward rt ∼ ν(at)(xt)

1. , define and ∀ k At =
t−1

∑
τ=0

ϕ(xτ, aτ)ϕ(xτ, aτ)⊤ + λI ̂θt = A−1
t

t−1

∑
τ=0

ϕ(xτ, aτ)rτ

More detail on the combined linear model

32

For t = 0 → T − 1

2. Observe & choose xt at = arg max
k {ϕ(xt, k)⊤ ̂θt + ct ϕ(xt, k)⊤A−1

t ϕ(xt, k)}
3. Observe reward rt ∼ ν(at)(xt)

1. , define and ∀ k At =
t−1

∑
τ=0

ϕ(xτ, aτ)ϕ(xτ, aτ)⊤ + λI ̂θt = A−1
t

t−1

∑
τ=0

ϕ(xτ, aτ)rτ

Comments:

More detail on the combined linear model

32

For t = 0 → T − 1

2. Observe & choose xt at = arg max
k {ϕ(xt, k)⊤ ̂θt + ct ϕ(xt, k)⊤A−1

t ϕ(xt, k)}
3. Observe reward rt ∼ ν(at)(xt)

1. , define and ∀ k At =
t−1

∑
τ=0

ϕ(xτ, aτ)ϕ(xτ, aτ)⊤ + λI ̂θt = A−1
t

t−1

∑
τ=0

ϕ(xτ, aτ)rτ

Comments:
i. There is only one and (not one per arm), so more info shared across At

̂θt k

More detail on the combined linear model

32

For t = 0 → T − 1

2. Observe & choose xt at = arg max
k {ϕ(xt, k)⊤ ̂θt + ct ϕ(xt, k)⊤A−1

t ϕ(xt, k)}
3. Observe reward rt ∼ ν(at)(xt)

1. , define and ∀ k At =
t−1

∑
τ=0

ϕ(xτ, aτ)ϕ(xτ, aτ)⊤ + λI ̂θt = A−1
t

t−1

∑
τ=0

ϕ(xτ, aτ)rτ

Comments:
i. There is only one and (not one per arm), so more info shared across At

̂θt k
ii. Good for large , but step 2’s argmax may be hardK

Continuous bandit action spaces

33

Continuous bandit action spaces

33

In bandits / contextual bandits, we have always treated the action space as discrete

Continuous bandit action spaces

33

In bandits / contextual bandits, we have always treated the action space as discrete

This is because we to some extent treated each arm separately, necessitating trying
each arm at least a fixed number of times before real learning could begin

Continuous bandit action spaces

33

In bandits / contextual bandits, we have always treated the action space as discrete

But now with the new combined formulation, there is sufficient sharing across actions
that we can learn and its UCB without sampling all armŝθt

This is because we to some extent treated each arm separately, necessitating trying
each arm at least a fixed number of times before real learning could begin

Continuous bandit action spaces

33

In bandits / contextual bandits, we have always treated the action space as discrete

But now with the new combined formulation, there is sufficient sharing across actions
that we can learn and its UCB without sampling all armŝθt

This is because we to some extent treated each arm separately, necessitating trying
each arm at least a fixed number of times before real learning could begin

This means that in principle, we can now consider continuous action spaces!

Continuous bandit action spaces

33

In bandits / contextual bandits, we have always treated the action space as discrete

But now with the new combined formulation, there is sufficient sharing across actions
that we can learn and its UCB without sampling all armŝθt

This is because we to some extent treated each arm separately, necessitating trying
each arm at least a fixed number of times before real learning could begin

This means that in principle, we can now consider continuous action spaces!

This is the power of having a strong model for , and a neural network
would serve a similar purpose in place of the combined linear model (UQ less clear)

𝔼r∼ν(at)(xt)[r]

Continuous bandit action spaces

33

In bandits / contextual bandits, we have always treated the action space as discrete

But now with the new combined formulation, there is sufficient sharing across actions
that we can learn and its UCB without sampling all armŝθt

This is because we to some extent treated each arm separately, necessitating trying
each arm at least a fixed number of times before real learning could begin

This means that in principle, we can now consider continuous action spaces!

This is the power of having a strong model for , and a neural network
would serve a similar purpose in place of the combined linear model (UQ less clear)

𝔼r∼ν(at)(xt)[r]

But in principle, there is no “free lunch”, i.e., the hardness of the problem now
transfers over to choosing a good model (a bad model will lead to bad performance)

Today

34

• Feedback from last lecture

• Recap

• UCB-VI for linear MDPs

• Recall: Contextual Bandits

• LinUCB

Summary:

Feedback:

bit.ly/3RHtlxy

35

Attendance: 
bit.ly/3RcTC9T

•Modeling in MDPs and bandits with large state/action spaces is critical

•When model is linear (in feature space), can still rigorously quantify uncertainty 
and balance exploration/exploitation

http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

