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1. Thank you to everyone who filled out the forms!
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Exploration in MDP: make it a bandit and do UCB?

Q: given a discrete MDP, how many unique deterministic policies are there?

( |A ||S| )
H

So treating each policy as an “arm” and running UCB gives us regret Õ( |A ||S|H N)

This seems bad, so are MDPs just super hard or can we do better?
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Tabular UCB-VI
For n = 1 → N :

3. Estimate  ̂Pn : ̂Pn
h(s′￼|s, a) =

Nn
h(s, a, s′￼)
Nn

h(s, a)
, ∀s, a, s′￼, h

1. Set Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h

2. Set Nn
h(s, a, s′￼) =

n−1

∑
i=1

1{(si
h, ai

h, si
h+1) = (s, a, s′￼)}, ∀s, a, a′￼, h

4. Plan: πn = VI ({ ̂Pn
h, rh + bn

h}h), with bn
h(s, a) = cH

log( |S | |A |HN/δ)
Nn

h(s, a)

5. Execute  πn : {sn
0 , an

0 , rn
0 , …, sn

H−1, an
H−1, rn

H−1, sn
H}
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High-level Idea: Exploration Exploitation Tradeof
Upper bound per-episode regret:  by construction of V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂Vn
0(s0) − Vπn

0 (s0) bn
h

2. What if  is large? ̂Vn
0(s0) − Vπn

0 (s0)

1. What if  is small? ̂Vn
0(s0) − Vπn

0 (s0)

Then  is close to , i.e., we are doing exploitationπn π⋆

𝔼 [RegretN] := 𝔼 [
N

∑
n=1

(V⋆ − Vπn)] ≤ Õ (H2 |S | |A |N)
7

Some  must be large (or some  estimation errors must be large, but with high probability 
any  with high error must have small  and hence high )

bn
h(s, a) ̂Pn

h( ⋅ |s, a)
̂Pn
h( ⋅ |s, a) Nn

h(s, a) bn
h(s, a)

Large  means  is being encouraged to do , since it will apparently have very high reward, 
i.e., exploration

bn
h(s, a) πn (s, a)
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Linear MDP Definition

Finite horizon time-dependent episodic MDP ℳ = {S, A, H, {r}h, {P}h, s0}

 could be large or even continuous, hence poly  is not acceptableS & A ( |S | , |A | )
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Linear MDP Definition

Feature map  is known to the learner! 
(We assume reward is known, i.e.,  is known)

ϕ
θ⋆
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Planning in Linear MDP: Value Iteration
Ph( ⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝ|S|×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h )⊤ϕ(s, a), θ⋆

h ∈ ℝd
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Planning in Linear MDP: Value Iteration
Ph( ⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝ|S|×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
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= θ⋆
h ⋅ ϕ(s, a) + (μ⋆

h ϕ(s, a))⊤ V⋆
h+1

= ϕ(s, a)⊤(θ⋆
h + (μ⋆

h )⊤V⋆
h+1)

= ϕ(s, a)⊤wh

V⋆
h (s) = max

a
ϕ(s, a)⊤wh, π⋆

h (s) = arg max
a

ϕ(s, a)⊤wh

Indeed we can show that  

Is linear with respect to  as well, for any 

Qπ
h ( ⋅ , ⋅ )

ϕ π, h
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UCBVI in Linear MDPs

At the beginning of iteration n:
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UCBVI in Linear MDPs

1. Learn transition model  from all previous data { ̂Pn
h}

H−1
h=0 {si

h, ai
h, si

h+1}
n−1
i=0

2. Design reward bonus bn
h(s, a), ∀s, a

3. Plan: πn+1 = VI ({ ̂Pn}h, {rh + bn
h})

At the beginning of iteration n:
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How to estimate ?{ ̂Pn
h}

H−1
h=0
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How to estimate ?{ ̂Pn
h}

H−1
h=0

Denote  with zero everywhere except the entry corresponding to δ(s) ∈ ℝ|S| s

Penalized Linear Regression:
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How to choose ?bn
h(s, a)

Chebyshev-like approach, similar to in linUCB (will cover later this lecture):

bn
h(s, a) = β ϕ(s, a)⊤(An

h)−1ϕ(s, a), β = Õ (dH)
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linUCB-VI: Put All Together
For n = 1 → N :

3. Estimate  ̂Pn : ̂Pn
h( ⋅ |s, a) = ̂μn

hϕ(s, a)

1. Set An
h =

n−1

∑
i=1

ϕ(si
h, ai

h)ϕ(si
h, ai

h)
⊤ + λI

2. Set ̂μn
h = (An

h)−1
n−1

∑
i=1

δ(si
h+1)ϕ(si

h, ai
h)

⊤

4. Plan: πn = VI ({ ̂Pn
h, rh + bn

h}h), with bn
h(s, a) = cdH ϕ(s, a)⊤(An

h)−1ϕ(s, a)

5. Execute  πn : {sn
0 , an

0 , rn
0 , …, sn

H−1, an
H−1, rn

H−1, sn
H}
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No  dependence!S, A
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Recall: (non-contextual) bandit

For t = 0 → T − 1

1. Learner pulls arm at ∈ {1,…, K}

2. Learner observes an i.i.d reward  of arm rt ∼ νat
at

(based on historical information)

16

We have K many arms; label them 1,…, K

Each arm has an unknown reward distribution, i.e., , 

w/ mean 

νk ∈ Δ([0,1])
μk = 𝔼r∼νk

[r]

RegretT = Tμ⋆ −
T−1

∑
t=0

μat
=

T−1

∑
t=0

(μ⋆ − μat
)
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Recall: Beyond simple bandits

17

E.g., in online advertising there may not be a single best ad to show all users 
on all websites:
• maybe some types of users prefer one ad while others prefer another, or 
• maybe one type of ad works better on certain websites while another 

works better on other websites
Which user comes in next is random, but we have some context to tell 
situations apart and hence learn different optimal actions

In a bandit, we are presented with the same decision at every time
In practice, often decisions are not the same every time



Recall: Contextual bandit environment

18



Recall: Contextual bandit environment

18

Context at time  encoded into a variable  that we see before choosing our actiont xt



Recall: Contextual bandit environment

18

Context at time  encoded into a variable  that we see before choosing our actiont xt

 is drawn i.i.d. at each time point from a distribution  on sample space xt νx 𝒳



Recall: Contextual bandit environment

18

Context at time  encoded into a variable  that we see before choosing our actiont xt

 then affects the reward distributions of each arm, i.e., if we choose arm , we get a 
reward that is drawn from a distribution that depends on , namely, 

xt k
xt ν(k)(xt)

 is drawn i.i.d. at each time point from a distribution  on sample space xt νx 𝒳



Recall: Contextual bandit environment

18

Context at time  encoded into a variable  that we see before choosing our actiont xt

Accordingly, we should also choose our action  in a way that depends on , i.e., 
our action should be chosen by a function of  (a policy), namely, 

at xt
xt πt(xt)

 then affects the reward distributions of each arm, i.e., if we choose arm , we get a 
reward that is drawn from a distribution that depends on , namely, 

xt k
xt ν(k)(xt)

 is drawn i.i.d. at each time point from a distribution  on sample space xt νx 𝒳



Recall: Contextual bandit environment

18

Context at time  encoded into a variable  that we see before choosing our actiont xt

Accordingly, we should also choose our action  in a way that depends on , i.e., 
our action should be chosen by a function of  (a policy), namely, 

at xt
xt πt(xt)

If we knew everything about the environment, we’d want to use the optimal policy

π⋆(xt) := arg max

k∈{1,…,K}
μ(k)(xt), where μ(k)(x) := 𝔼r∼ν(k)(x)[r]

 then affects the reward distributions of each arm, i.e., if we choose arm , we get a 
reward that is drawn from a distribution that depends on , namely, 

xt k
xt ν(k)(xt)

 is drawn i.i.d. at each time point from a distribution  on sample space xt νx 𝒳



Recall: Contextual bandit environment

18

Context at time  encoded into a variable  that we see before choosing our actiont xt

Accordingly, we should also choose our action  in a way that depends on , i.e., 
our action should be chosen by a function of  (a policy), namely, 

at xt
xt πt(xt)

If we knew everything about the environment, we’d want to use the optimal policy

π⋆(xt) := arg max

k∈{1,…,K}
μ(k)(xt), where μ(k)(x) := 𝔼r∼ν(k)(x)[r]

 then affects the reward distributions of each arm, i.e., if we choose arm , we get a 
reward that is drawn from a distribution that depends on , namely, 

xt k
xt ν(k)(xt)

 is drawn i.i.d. at each time point from a distribution  on sample space xt νx 𝒳

 is the policy we compare to in computing regretπ⋆



Recall: Contextual bandit environment

19

Formally, a contextual bandit is the following interactive learning process:

For t = 0 → T − 1

2. Learner pulls arm at = πt(xt) ∈ {1,…, K}

3. Learner observes reward  from arm  in context rt ∼ ν(at)(xt) at xt

1. Learner sees context xt ∼ νx
 policy learned from 

all data seen so far

πt

Note that if the context distribution  always returns the same value (e.g., 0), then 
the contextual bandit reduces to the original multi-armed bandit

νx

Independent of any previous data
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|𝒳|
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t (xt)

• Added  argument to  and  since we now keep track of the sample 
mean and number of arm pulls separately for each value of the context

xt ̂μ(k)
t N(k)

t

• Added  inside the log because our union bound argument is now over 
all arm mean estimates , of which there are  instead of just 

|𝒳|
̂μ(k)
t (x) K |𝒳| K

But when  is really big (or even infinite), this will be really bad!|𝒳|
Solution: share information across contexts , i.e., don’t treat  and  as 

completely different distributions which have nothing to do with one another
xt ν(k)(x) ν(k)(x′￼)

Example: showing an ad on a NYT article on politics vs a NYT article on sports: 
Not identical readership, but still both on NYT, so probably still similar readership!
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Need a model for , e.g., a linear model: μ(k)(x) μ(k)(x) = θ⊤
k x

   w/o linear model, need to learn 4 different  values for each arm |𝒳| = 4 ⇒ μ(k)(x) k

E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of ), for articles 
on politics or sports (encoded as 0 or 1 in the second entry of ) 

x
x ⇒ x ∈ {0,1}2

With linear model there are just 2 parameters: the two entries of θk ∈ ℝ2

Lower dimension makes learning easier, but model could be wrong/biased
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• Feedback from last lecture


• Recap


• UCB-VI for linear MDPs


• Recall: Contextual Bandits


• LinUCB
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t = (

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k})

−1 t−1

∑
τ=0

xτrτ1{aτ=k}

proof: ∇θ[
t−1

∑
τ=0

(rτ − x⊤
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t = (
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t =
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t = (A(k)

t )
−1

b(k)
t

 like empirical covariance matrix of the contexts when arm  was chosenA(k)
t k

 like empirical covariance between contexts and rewards when arm  was chosenb(k)
t k

 must be invertible, which basically requires A(k)
t N(k)

t ≥ d
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For UCB, recall that we need confidence bounds on 
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Hoeffding was the main tool so far, but it used the fact that our estimate for the 
expected reward was a sample mean of the rewards we’d seen so far in the same 

setting (action, context)

Chebyshev’s inequality: for a mean-zero random variable ,


   with probability 

Y
|Y | ≤ β 𝔼[Y2] ≥ 1 − 1/β2

With a model, we can use rewards we’ve seen in other settings  better estimation→
But not using sample mean as estimator, so need something other than Hoeffding

Apply to x⊤
t

̂θ(k)
t − x⊤

t θ(k)
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Issue 1: All this assumed pure exploration!
Recall from HW 1 that we don’t even expect unbiasedness for our arm


mean estimates in the simple bandit case, due to adaptivity

Issue 2:  has to be invertibleA(k)
t

So actually, the bounds we got don’t really apply…

Before the th time that arm  gets pulled,  undefinedd k ̂θ(k)
t

Solution (to both issues): regularize

Replace  for some A(k)
t ← A(k)

t + λI λ > 0
Makes  invertible always, and it turns out a bound just like Chebyshev’s applies 

(with more details and a much more complicated proof, which we won’t get into)
A(k)

t
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2. Observe context  and choose xt at = arg max
k {x⊤
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̂θ(k)
t + ct x⊤

t (A(k)
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 similar to log term in (non-lin)UCB, in that it depends logarithmically on

i.  (  is probability you want the bound to hold with) 

ii.  and  implicitly via 

ct
1/δ δ
t d det(A(k)

t )
Can prove  regret boundÕ( T)

Regularization makes  invertibleA(k)
t
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1. Can always replace contexts  with any fixed (vector-valued) function xt ϕ(xt)
E.g., if believe rewards quadratic in scalar , could make xt ϕ(xt) = (xt, x2

t )
2. Instead of fitting different  for each arm, we could assume the mean reward 

is linear in some function of both the context and the action, i.e.,

θ(k)

𝔼r∼νat(xt)[r] = ϕ(xt, at)⊤θ
This is what we did in the linear MDP model! Helpful especially when  is large, 
since in that case there would be a lot of  to fit

K
θ(k)

Both cases allow a version of linUCB by extension of the same ideas: fit coefficients 
via least squares and use Chebyshev-like uncertainty quantification to get UCB
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For t = 0 → T − 1

2. Observe  & choose xt at = arg max
k {ϕ(xt, k)⊤ ̂θt + ct ϕ(xt, k)⊤A−1

t ϕ(xt, k)}
3. Observe reward rt ∼ ν(at)(xt)

1. , define      and   ∀ k At =
t−1

∑
τ=0

ϕ(xτ, aτ)ϕ(xτ, aτ)⊤ + λI ̂θt = A−1
t

t−1

∑
τ=0

ϕ(xτ, aτ)rτ

Comments:
i. There is only one  and  (not one per arm), so more info shared across At

̂θt k
ii. Good for large , but step 2’s argmax may be hardK



Continuous bandit action spaces

33



Continuous bandit action spaces

33

In bandits / contextual bandits, we have always treated the action space as discrete



Continuous bandit action spaces

33

In bandits / contextual bandits, we have always treated the action space as discrete

This is because we to some extent treated each arm separately, necessitating trying 
each arm at least a fixed number of times before real learning could begin



Continuous bandit action spaces

33

In bandits / contextual bandits, we have always treated the action space as discrete

But now with the new combined formulation, there is sufficient sharing across actions 
that we can learn  and its UCB without sampling all armŝθt
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In bandits / contextual bandits, we have always treated the action space as discrete

But now with the new combined formulation, there is sufficient sharing across actions 
that we can learn  and its UCB without sampling all armŝθt

This is because we to some extent treated each arm separately, necessitating trying 
each arm at least a fixed number of times before real learning could begin

This means that in principle, we can now consider continuous action spaces!

This is the power of having a strong model for , and a neural network 
would serve a similar purpose in place of the combined linear model (UQ less clear)

𝔼r∼ν(at)(xt)[r]

But in principle, there is no “free lunch”, i.e., the hardness of the problem now 
transfers over to choosing a good model (a bad model will lead to bad performance)
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• Feedback from last lecture


• Recap


• UCB-VI for linear MDPs


• Recall: Contextual Bandits


• LinUCB



Summary:
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Attendance: 
bit.ly/3RcTC9T

•Modeling in MDPs and bandits with large state/action spaces is critical

•When model is linear (in feature space), can still rigorously quantify uncertainty 
and balance exploration/exploitation

http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

