Contextual Bandits

Lucas Janson CS/Stat 184(0): Introduction to Reinforcement Learning Fall 2024

- Feedback from last lecture
- Recap
- UCB-VI for linear MDPs
- Recall: Contextual Bandits
- LinUCB

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

- Recap
- UCB-VI for linear MDPs
- Recall: Contextual Bandits
- LinUCB

Exploration in MDP: make it a bandit and do UCB?

Q: given a discrete MDP, how many unique deterministic policies are there?

˜ $(\sqrt{|A|}^{|S|H}N)$

(|*A*| |*S*|) *H*

So treating each policy as an "arm" and running UCB gives us regret *O*

This seems bad, so are MDPs just super hard or can we do better?

Tabular UCB-VI

For $n = 1 \rightarrow N$: 3. Estimate \hat{P}^n : $\hat{P}^n_{h}(s' | s, a) =$ ̂ ̂ *Nn ^h*(*s*, *a*,*s*′) *Nn* $\frac{n(s, a)}{h}$, $\forall s, a, s'$ 1. Set N_h^n $h^{n}(s, a) =$ *n*−1 ∑ $i=1$ $\mathbf{1}\{(s_h^i, a_h^i) = (s, a)\}, \forall s, a, h$ 2. Set *Nⁿ* $\frac{m}{h}(s, a, s') =$ *n*−1 ∑ *i*=1 $\mathbf{1}\{(s_h^i, a_h^i, s_{h+1}^i) = (s, a, s')\}, \forall s, a, a', h$ 4. Plan: $\pi^n = \textsf{VI}\left(\{\hat{P}_h^n,r_h+b_h^n\}_h\right)$, with b_h^n ̂ 5. Execute $\pi^n : \{s_0^n, a_0^n, r_0^n, ..., s_{H-1}^n, a_{H-1}^n, r_{H-1}^n, s_H^n\}$

-
-

$$
\frac{s'}{a}
$$
, $\forall s, a, s', h$

$$
b_h^n(s, a) = cH \sqrt{\frac{\log(|S| | A | H N/\delta)}{N_h^n(s, a)}}
$$

High-level Idea: Exploration Exploitation Tradeoff

Upper bound per-episode regret: $V_0^{\star}(s_0) - V_0^{\pi^n}(s_0) \leq \hat{V}_0^n(s_0) - V_0^{\pi^n}(s_0)$ by construction of ̂ $\frac{n}{0}(s_0) - V_0^{\pi^n}(s_0)$ by construction of b_h^n

̂

2. What if $V_{0}^{n}(s_{0}) - V_{0}^{\pi^{n}}(s_{0})$ is large? ̂ $V_0^n(s_0) - V_0^{\pi^n}(s_0)$

Some $b_h^n(s, a)$ must be large (or some $\hat{P}_h^n(\,\cdot\,|\,s, a)$ estimation errors must be large, but with high probability any $\hat{P}_h^n(\;\cdot\;|\;s,a)$ with high error must have small $N_h^n(s,a)$ and hence high $b_h^n(s,a)$) ̂ ̂

$$
\mathbb{E}\left[\mathsf{Regret}_N\right] := \mathbb{E}\left[\sum_{n=1}^N \left(V^\star - V^{\pi^n}\right)\right] \le \widetilde{O}\left(H^2 \sqrt{|S| |A| N}\right)
$$

1. What if $V_0^n(s_0) - V_0^{\pi^n}(s_0)$ is small? $V_0^n(s_0) - V_0^{\pi^n}(s_0)$

Then π^n is close to π^* , i.e., we are doing exploitation

Large $b_h^n(s, a)$ means π^n is being encouraged to do (s, a) , since it will apparently have very high reward, i.e., exploration

- Recap
	- UCB-VI for linear MDPs
	- Recall: Contextual Bandits
	- LinUCB

Linear MDP Definition

S & *A* could be large or even continuous, hence poly(|*S*|, |*A*|) is not acceptable

$$
P_h(s' | s, a) = \mu_h^{\star}(s') \cdot \phi(s, a), \quad \mu_h^{\star} : S \mapsto \mathbb{R}^d, \quad \phi : S \times A \mapsto \mathbb{R}^d
$$

$$
r(s, a) = \theta_h^{\star} \cdot \phi(s, a), \quad \theta_h^{\star} \in \mathbb{R}^d
$$

Finite horizon time-dependent episodic MDP $\mathcal{M} = \{S, A, H, \{r\}_h, \{P\}_h, s_0\}$

Feature map ϕ is known to the learner! **(We assume reward is known, i.e.,** θ^{\star} **is known)**

Planning in Linear MDP: Value Iteration $P_h(\cdot | s, a) = \mu_h^{\star} \phi(s, a), \quad \mu_h^{\star} \in \mathbb{R}^{|S| \times d}, \ \phi(s, a) \in \mathbb{R}^d$ $r_h(s, a) = (\theta_h^{\star})$ $\begin{aligned} \nabla \phi(s, a), \quad \theta_h^{\star} \in \mathbb{R}^d \n\end{aligned}$

$$
V_H^{\star}(s) = 0, \forall s,
$$

\n
$$
Q_h^{\star}(s, a) = r_h(s, a) + \mathbb{E}_{s' \sim P_h(\cdot | s, a)} V_{h+1}^{\star}(s')
$$

\n
$$
= \theta_h^{\star} \cdot \phi(s, a) + (\mu_h^{\star} \phi(s, a))^{\top} V_{h+1}^{\star}
$$

\n
$$
= \phi(s, a)^{\top} (\theta_h^{\star} + (\mu_h^{\star})^{\top} V_{h+1}^{\star})
$$

\n
$$
= \phi(s, a)^{\top} w_h
$$

\n
$$
V_h^{\star}(s) = \max_{a} \phi(s, a)^{\top} w_h, \quad \pi_h^{\star}(s) = \arg \max_{a} \phi(s, a)^{\top} w_h
$$

a

Indeed we can show that \mathcal{Q}_h^{π} Is linear with respect to ϕ as well, for any π,h $\frac{d\pi}{h}(\;\cdot\;,\;\cdot\;)$

a

UCBVI in Linear MDPs

 $h_h^n(S, a), \forall s, a$

1. Learn transition model $\{\hat{P}_h^n\}_{h=0}^{H-1}$ from all previous data $\{s_h^i, a_h^i, s_{h+1}^i\}_{i=0}^{n-1}$ ̂

2. Design reward bonus *bⁿ*

3. Plan: $\pi^{n+1} =$

$$
\mathsf{VI}\left(\{\hat{P}^n\}_h, \{r_h + b_h^n\}\right)
$$

At the beginning of iteration n:

How to estimate {*P* ? *ⁿ h*}*H*−¹ *h*=0

Penalized Linear Regression:

$$
\min_{\mu} \sum_{i=1}^{n-1} ||\mu \phi(s_h^i, a_h^i) - \delta(s_{h+1}^i) ||_2^2 + \lambda ||\mu||_F^2
$$

Given *s*, *a*, note that
$$
\mathbb{E}_{s' \sim P_h(\cdot | s, a)} [\delta(s')] = P_h(\cdot | s, a) = \mu_h^{\star} \phi(s, a)
$$

$$
\widehat{\mu}_h^n = (A_h^n)^{-1} \sum_{i=1}^{n-1} \delta(s_{h+1}^i) \phi(s_h^i, a_h^i)^\top
$$

$$
A_h^n = \sum_{i=1}^{n-1} \phi(s_h^i, a_h^i) \phi(s_h^i, a_h^i)^\top + \lambda I \qquad \hat{\mu}_h^n = (A_h^n)^{-1} \sum_{i=1}^{n-1} \delta(s_{h+1}^i) \phi(s_h^i, a_h^i)^\top
$$

 $\hat{P}_h^n(\cdot | s, a) = \hat{\mu}_h^n$ ̂ ̂ ${}^n_h\phi(s,a)$

Denote $\delta(s) \in \mathbb{R}^{|S|}$ with zero everywhere except the entry corresponding to *s*

Chebyshev-like approach, similar to in linUCB (will cover later this lecture):

 $b_hⁿ$ $h_l^n(s, a) = \beta \sqrt{\phi(s, a)}$

How to choose $b_h^n(s, a)$? $\frac{n}{h}(S, a)$

 $\mathsf{T}(A_h^n)$ $\binom{n}{h}$ −1 $\phi(s, a), \quad \beta =$ \widetilde{O} *O*(*dH*)

linUCB-VI: Put All Together

For $n = 1 \rightarrow N$: 1. Set A_h^n $\frac{n}{h}$ = *n*−1 ∑ *i*=1 $\phi(s_h^i, a_h^i)\phi(s_h^i, a_h^i)$ [⊤] + *λI* 2. Set *μ* ̂ $\binom{n}{h}$ = (A_n^h) −1 *n*−1 ∑ $i=1$ $\delta(s_{h+1}^i)\phi(s_h^i, a_h^i)$ ⊤

3. Estimate \hat{P}^n : $\hat{P}^n_h(\cdot | s, a) = \hat{\mu}^n_h$ ̂ ̂ ̂ ${}^n_h\phi(s,a)$

4. Plan: $\pi^n = \text{VI}\left(\{\hat{P}_h^n, r_h + b_h^n\}_h\right)$, with $b_h^n(s, a) = c dH\sqrt{\phi(s, a)}$ ̂ $T(A_h^n)$ $\binom{n}{h}$ −1 *ϕ*(*s*, *a*)

5. Execute *πⁿ* : {*sⁿ* a_0^n , a_0^n n_0 , r_0^n ⁰ ,…,*sⁿ*

$$
\pi^{n}: \{s_{0}^{n}, a_{0}^{n}, r_{0}^{n}, ..., s_{H-1}^{n}, a_{H-1}^{n}, r_{H-1}^{n}, s_{H}^{n}\}\
$$

$$
\mathbb{E}\left[\text{Regret}_{N}\right] := \mathbb{E}\left[\sum_{n=1}^{N} \left(V^{\star} - V^{\pi^{n}}\right)\right] \leq \widetilde{O}\left(H^{2}d^{1.5}\sqrt{N}\right)
$$

No *S*, *A* dependence!

- Recap
- UCB-VI for linear MDPs
	- Recall: Contextual Bandits
	- LinUCB

Recall: (non-contextual) bandit

For
$$
t = 0 \rightarrow T - 1
$$

- 1. Learner pulls arm $a_t \in \{1,...,K\}$
- 2. Learner observes an i.i.d reward $r_{t} \thicksim \nu_{a_{t}}$ of arm a_{t}
-
- Each arm has an <u>unknown</u> reward distribution, i.e., $\nu_k \in \Delta([0,1]),$ w / mean $\mu_k = \mathbb{E}_{r \sim \nu_k}$ [*r*]

(based on historical information)

We have K many arms; label them 1,…,*K*

$$
\text{Regret}_{T} = T\mu^{\star} - \sum_{t=0}^{T-1} \mu_{a_t} = \sum_{t=0}^{T-1} (\mu^{\star} - \mu_{a_t})
$$

Recall: Beyond simple bandits

E.g., in online advertising there may not be a single best ad to show all users

on all websites:

Which user comes in next is random, but we have some context to tell situations apart and hence learn different optimal actions

In a bandit, we are presented with the same decision at every time In practice, often decisions are not the same every time

- maybe some types of users prefer one ad while others prefer another, or • maybe one type of ad works better on certain websites while another
- works better on other websites

Recall: Contextual bandit environment

- Context at time *t* encoded into a variable x_t that we see before choosing our action x_t is drawn i.i.d. at each time point from a distribution ν_x on sample space $\mathscr X$
-
- x_{t} then affects the reward distributions of each arm, i.e., if we choose arm k , we get a reward that is drawn from a distribution that depends on x_t , namely, x_t , namely, $\nu^{(k)}(x_t)$
	- Accordingly, we should also choose our action a_t in a way that depends on x_t , i.e., our action should be chosen by a function of x_{t} (a policy), namely, $\pi_{t}(x_{t})$
	- If we knew everything about the environment, we'd want to use the optimal policy $\pi^{\star}(x_t)$) := arg max *k*∈{1,…,*K*} *μ*(*k*) $(x_t$), where $\mu^{(k)}$ $(x) :=$ *r*∼*ν*(*k*) (*x*) [*r*]

 π^{\star} is the policy we compare to in computing regret

Recall: Contextual bandit environment

Formally, a contextual bandit is the following interactive learning process:

For
$$
t = 0 \rightarrow T - 1
$$

- 2. Learner pulls arm $a_t = \pi_t(x_t) \in \{1, ..., K\}$
-

Note that if the context distribution ν_x always returns the same value (e.g., 0), then the contextual bandit reduces to the original multi-armed bandit

3. Learner observes reward $r_{t} \thicksim \nu^{(a_{t})}(x_{t})$ from arm a_{t} in context t $\sim \nu^{(a_t)}$ (x_t) from arm a_t in context x_t 1. Learner sees context $x_t \sim \nu_x$ Independent of any previous data π _{*t*} policy learned from all data seen so far

Recall: UCB for contextual bandits

 $\pi_t(x_t) = \arg \max_t$ *k μ* ̂ (*k*) $\binom{K}{t}$ $\left(\mathcal{X}_t\right)$

- mean and number of arm pulls *separately* for each value of the context all arm mean estimates $\hat{\mu}_t^{(\kappa)}\!(x)$, of which there are $K|\mathscr{X}|$ instead of just ̂ $\binom{k}{t}$ and $N_t^{(k)}$ ̂ (*k*)
- Added x_t argument to $\hat{\mu}_t^{(k)}$ and $N_t^{(k)}$ since we now keep track of the sample • Added $|\mathcal{X}|$ inside the log because our union bound argument is now over $\alpha^{(K)}(x)$, of which there are $K|\mathscr{X}|$ instead of just K

- UCB algorithm conceptually identical as long as $|\mathcal{X}|$ finite:
	-)+ $\sqrt{\ln(2TK|\mathcal{X}|/\delta)/2N_t^{(k)}}$ $f^{(K)}(x_t)$

- But when $|\mathcal{X}|$ is really big (or even infinite), this will be really bad!
- <u>Solution</u>: share information across contexts x_{t} , i.e., <u>don't</u> treat $\nu^{(K)}(x)$ and $\nu^{(K)}(x')$ as completely different distributions which have nothing to do with one another *x*_t, i.e., <u>don't</u> treat $\nu^{(k)}(x)$ and $\nu^{(k)}(x')$ Example: showing an ad on a NYT article on politics vs a NYT article on sports:
	- Not *identical* readership, but still both on NYT, so probably still *similar* readership!

Recall: Modeling in contextual bandits

 N eed a model for $\mu^{(k)}(x)$, e.g., a linear model: $\mu^{(k)}(x) = \theta_k^\top x$ $\int_k^1 x$

E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of x), for articles on politics or sports (encoded as 0 or 1 in the second entry of x) $x) \Rightarrow x \in \{0,1\}^2$

Lower dimension makes learning easier, but model could be wrong/biased

 $|\mathcal{X}| = 4 \Rightarrow$ w/o linear model, need to learn 4 different $\mu^{(k)}(x)$ values for each arm k

With linear model there are just 2 parameters: the two entries of $\theta_k \in \mathbb{R}^2$

- Recap
- UCB-VI for linear MDPs
- Recall: Contextual Bandits
	- LinUCB

Linear model fitting

How to estimate $θ^{(k)}$? Linear regression

Least squares estimator:

̂

t

Linear model for rewards: $\mu^{(k)}(x) = x^{\top} \theta^{(k)}$

$$
\hat{\theta}_{t}^{(k)} = \arg\min_{\theta \in \mathbb{R}^{d}} \sum_{\tau=0}^{t-1} (r_{\tau} - x_{\tau}^{\top}\theta)^{2} 1_{\{a_{\tau} = k\}}
$$

Minimize squared error over time points when arm *k* selected

$$
\text{Claim: } \hat{\theta}_{t}^{(k)} = \left(\sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top} 1_{\{a_{\tau}=k\}}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} r_{\tau} 1_{\{a_{\tau}=k\}}
$$
\n
$$
\text{proof: } \nabla_{\theta} \left[\sum_{\tau=0}^{t-1} (r_{\tau} - x_{\tau}^{\top} \theta)^{2} 1_{\{a_{\tau}=k\}} \right] = 2 \sum_{\tau=0}^{t-1} x_{\tau} (r_{\tau} - x_{\tau}^{\top} \theta) 1_{\{a_{\tau}=k\}} = 0 \quad \Rightarrow \quad \sum_{\tau=0}^{t-1} x_{\tau} r_{\tau} 1_{\{a_{\tau}=k\}} = \theta \sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top}
$$

Linear model fitting (cont'd)

Recall:
$$
\hat{\theta}_t^{(k)} = \left(\sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top} 1_{\{a_{\tau}=k\}}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} r_{\tau} 1_{\{a_{\tau}=k\}}
$$

Let $A_t^{(k)} = \sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top} 1_{\{a_{\tau}=k\}}$ and $b_t^{(k)} = \sum_{\tau=0}^{t-1} x_{\tau} r_{\tau} 1_{\{a_{\tau}=k\}}$
Then $\hat{\theta}_t^{(k)} = \left(A_t^{(k)}\right)^{-1} b_t^{(k)}$

 $A_t^{(k)}$ like <u>empirical covariance matrix</u> of the contexts when arm k was chosen $t^{(K)}$ like <u>empirical covariance matrix</u> of the contexts when arm k $b_t^{(k)}$ like <u>empirical covariance</u> between contexts and rewards when arm k was chosen $t^{(\mathcal{K})}_t$ like <u>empirical covariance</u> between contexts and rewards when arm k $A_t^{(k)}$ must be invertible, which basically requires $N_t^{(k)} \geq d$

Uncertainty quantification

- For UCB, recall that we need confidence bounds on the expected reward of each arm (given context x_{t}) *t*
- Hoeffding was the main tool so far, but it used the fact that our estimate for the expected reward was a sample mean of the rewards we'd seen so far in the same setting (action, context)
- With a model, we can use rewards we've seen in other settings \rightarrow better estimation
	- But not using sample mean as estimator, so need something other than Hoeffding
		- $Chebyshev's inequality:$ for a mean-zero random variable Y ,
			- with probability $|Y| \leq \beta \sqrt{\mathbb{E}[Y^2]}$ with probability $\geq 1 - 1/\beta^2$
				- Apply to x_t^\top

Uncertainty quantification (cont'd)

- Want confidence bounds on our estimated mean rewards for each arm: *x*[⊤] *t* ̂ $\hat{\theta}_t^{(k)}$ *t* ̂
	- Strategy: apply Chebyshev's inequality to *x*[⊤] *t* $\hat{\theta}_t^{(k)} - x_t^\mathsf{T} \theta^{(k)}$
	- Need: $\mathbb{E}[x_t^\top \hat{\theta}_t^{(k)} x_t^\top \theta^{(k)}]$ (make sure it's zero) and *t* ̂ $\hat{\theta}^{(k)}_t - x_t^\mathsf{T} \theta^{(k)}$] (make sure it's zero) and $\mathbb{E}\left[(x_t^\mathsf{T}\right)]$ ̂ $\hat{\theta}_t^{(k)} - x_t^{\mathsf{T}} \theta^{(k)}$) 2]

Let
$$
w_t = r_t - \mathbb{E}_{r \sim \nu^{(k)}(x_t)}[r] = r_t - x_t^\top \theta^{(k)}
$$
, and we derive a useful expression for $\hat{\theta}_t^{(k)}$:

$$
\hat{\theta}_{t}^{(k)} = (A_{t}^{(k)})^{-1} \sum_{\tau=0}^{t-1} x_{\tau} r_{\tau} 1_{\{a_{\tau}=k\}} = (A_{t}^{(k)})^{-1} \sum_{\tau=0}^{t-1} x_{\tau} (x_{\tau}^{\top} \theta^{(k)} + w_{\tau}) 1_{\{a_{\tau}=k\}}
$$
\n
$$
= (A_{t}^{(k)})^{-1} \sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top} 1_{\{a_{\tau}=k\}} \theta^{(k)} + (A_{t}^{(k)})^{-1} \sum_{\tau=0}^{t-1} x_{\tau} w_{\tau} 1_{\{a_{\tau}=k\}} = \theta^{(k)} + (A_{t}^{(k)})^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\{a_{\tau}=k\}}
$$

Uncertainty quantification (cont'd)

Recall:
$$
\hat{\theta}_t^{(k)} = \theta^{(k)} + (A_t^{(k)})^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\{a_{\tau}=k\}} w_{\tau}
$$

$$
\mathbb{E}_{w_{t}}[x_{t}^{\top}\hat{\theta}_{t}^{(k)} - x_{t}^{\top}\theta_{t}^{(k)}] = \mathbb{E}_{w_{t}}[x_{t}^{\top}(A_{t}^{(k)})^{-1} \sum_{\tau=0}^{t-1} x_{\tau}1_{\{a_{\tau}=k\}} w_{\tau}] = x_{t}^{\top}(A_{t}^{(k)})^{-1} \sum_{\tau=0}^{t-1} x_{\tau}1_{\{a_{\tau}=k\}} \mathbb{E}_{w_{\tau}}[w_{\tau}] = 0
$$
\n
$$
\mathbb{E}_{w_{t}}[(x_{t}^{\top}\hat{\theta}_{t}^{(k)} - x_{t}^{\top}\theta_{t}^{(k)})^{2}] = \mathbb{E}_{w_{t}}\left[\left(x_{t}^{\top}(A_{t}^{(k)})^{-1} \sum_{\tau=0}^{t-1} x_{\tau}1_{\{a_{\tau}=k\}} w_{\tau}\right)^{2}\right]
$$
\n
$$
= x_{t}^{\top}(A_{t}^{(k)})^{-1} \sum_{\tau=0}^{t-1} \sum_{\tau'=0}^{t-1} x_{\tau}x_{\tau'}^{\top}1_{\{a_{\tau}=k\}}1_{\{a_{\tau}=k\}} \mathbb{E}_{w_{\tau}}[w_{\tau}w_{\tau}](A_{t}^{(k)})^{-1}x_{t}
$$
\n
$$
= x_{t}^{\top}(A_{t}^{(k)})^{-1} \sum_{\tau=0}^{t-1} x_{\tau}x_{\tau}^{\top}1_{\{a_{\tau}=k\}} \mathbb{E}_{w_{\tau}}[w_{\tau}^{2}](A_{t}^{(k)})^{-1}x_{t} \leq x_{t}^{\top}(A_{t}^{(k)})^{-1}A_{t}^{(k)}(A_{t}^{(k)})^{-1}x_{t} = x_{t}^{\top}(A_{t}^{(k)})^{-1}x_{t}
$$

Assume for simplicity that we are doing pure exploration, so the actions at each time step are totally independent of everything else.

Chebyshev confidence bounds + intuition Chebyshev: $x_t^\top \theta^{(k)} \le x_t^\top \hat{\theta}_t^{(k)} + \beta \sqrt{x_t^\top (A_t^{(k)})^{-1} x_t}$ with probability ̂ $\hat{\theta}_t^{(k)} + \beta \sqrt{x_t^T(A_t^{(k)})}$

Intuition:

UCB term 1: $x_{t}^{\top} \hat{\theta}^{(k)}$ large when context and coefficient estimate aligned *t* **゙゙゙゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚** *θ*(*k*) UCB term 2: $x_t^+(A_t^{(k)})^{-1}x_t = \frac{1}{\sqrt{N}}x_t^+(\Sigma_t^{(k)})^{-1}x_t$, where matrix of contexts when arm k chosen $x_t^{\mathsf{T}}(A_t^{(k)})$ −1 $x_t =$ 1 $N_t^{(k)}$ *t* $x_t^{\mathsf{T}}(\mathbf{\Sigma}_t^{(k)})$ −1 *xt* $\sum_{t}^{(k)}$ *t* = 1 $N_t^{(k)}$ *t* $A_t^{(k)}$ *t* = 1 $N_t^{(k)}$ *t t*−1 ∑ *τ*=0 x_{τ} *x*_{*τ*} 1_{{*a*_{*τ*}=*k*}} $\int_t^{(K)}$ small or x_t

 $-1x$ _t with probability $\geq 1-1/\beta^2$ $A_t^{(k)}$ *t* = *t*−1 ∑ *τ*=0 x_{τ} x_{τ} ^T 1_{{*a*^{τ}} =*k*}

is the empirical covariance

Large when $N_t^{(k)}$ small or x_t not aligned with historical data

Some issues

Issue 1: All this assumed pure exploration!

Issue 2: $A_t^{(k)}$ has to be invertible *t*

-
- Recall from HW 1 that we don't even expect unbiasedness for our arm mean estimates in the simple bandit case, due to adaptivity
	- So actually, the bounds we got don't really apply…

Before the d th time that arm k gets pulled, $\widehat{\theta}_{t}^{(k)}$ undefined ̂ *t*

- $\mathsf{Replace}\ A_{t}^{(k)} \leftarrow A_{t}^{(k)} + \lambda I$ for some $\lambda > 0$
- Makes $A_t^{(k)}$ invertible always, and it turns out a bound just like Chebyshev's applies (with more details and a much more complicated proof, which we won't get into)

 $A_t^{(k)}$ *t*

Solution (to both issues): regularize

LinUCB algorithm

3. Observe reward *rt* $\sim \nu^{(a_t)}$ (x_t)

 c_{t} similar to log term in (non-lin)UCB, in that it depends logarithmically on i. 1/ δ (δ is probability you want the bound to hold with) ii. t and d implicitly via t and d implicitly via $\det(A_t^{(k)})$ $\binom{K}{t}$

For $t = 0 \rightarrow T - 1$ 1. $\forall k$, define $A_t^{(k)} = \sum x_{\tau} x_{\tau}^{\top} 1_{\{a_{\tau}=k\}} + \lambda I$ and *t* = *t*−1 ∑ *τ*=0

2. Observe context x_t and choose $a_t = \arg \max_{t=1}$

Can prove *O* ˜

$$
(\sqrt{T})\ \text{regret bound}
$$

Extensions

- 1. Can always replace contexts x_t with any fixed (vector-valued) function $\boldsymbol{\phi}(x_t)$ E.g., if believe rewards quadratic in scalar x_t , could make $\phi(x_t) = (x_t)$, x_t^2 $\binom{L}{t}$
- 2. Instead of fitting different $\theta^{(\kappa)}$ for each arm, we could assume the mean reward is linear in some function of both the context and the action, i.e., *θ*(*k*) $r \sim \nu^{a} t(x_t)} [r] = \phi(x_t, a_t)^{\top} \theta$
	- This is what we did in the linear MDP model! Helpful especially when K is large, since in that case there would be a lot of $\theta^{(\kappa)}$ to fit *θ*(*k*)

Both cases allow a version of linUCB by extension of the same ideas: fit coefficients via least squares and use Chebyshev-like uncertainty quantification to get UCB

More detail on the combined linear model

For $t = 0 \rightarrow T - 1$ 1. $\forall k$, define $A_t = \sum \phi(x_\tau, a_\tau) \phi(x_\tau, a_\tau) + \lambda I$ and *t*−1 ∑ *τ*=0 $\phi(x_{\tau}, a_{\tau})\phi(x_{\tau}, a_{\tau})$

2. Observe x_t & choose $a_t = \arg \max_{t \in \mathcal{X}_t} a_t$ 3. Observe reward *rt* $\sim \nu^{(a_t)}$ (x_t)

$$
b(x_{\tau}, a_{\tau})^{\top} + \lambda I \text{ and } \hat{\theta}_{t} = A_{t}^{-1} \sum_{\tau=0}^{t-1} \phi(x_{\tau}, a_{\tau})
$$

ax
$$
\oint_{k} \phi(x_{t}, k)^{\top} \hat{\theta}_{t} + c_{t} \sqrt{\phi(x_{t}, k)^{\top} A_{t}^{-1} \phi(x_{t})}
$$

i. There is only one A_t and θ_t (not one per arm), so more info shared across k

- ̂
- ii. Good for large K , but step 2's argmax may be hard

Comments:

Continuous bandit action spaces

- This is because we to some extent treated each arm separately, necessitating trying each arm at least a fixed number of times before real learning could begin
- But now with the new combined formulation, there is sufficient sharing across actions that we can learn θ_t and its UCB *without* sampling all arms ̂
	- This means that in principle, we can now consider continuous action spaces!
	- This is the power of having a strong model for $\mathbb{E}_{r\sim \nu^{(a_t)}(\tau)}[r]$, and a neural network would serve a similar purpose in place of the combined linear model (UQ less clear) $r \sim \nu^{(a_t)}(x_t)$ [*r*]
- But in principle, there is no "free lunch", i.e., the hardness of the problem now transfers over to choosing a good model (a bad model will lead to bad performance)

In bandits / contextual bandits, we have always treated the action space as discrete

- Recap
- UCB-VI for linear MDPs
- Recall: Contextual Bandits
- LinUCB

Summary:

Feedback: bit.ly/3RHtlxy

Attendance: bit.ly/3RcTC9T

- Modeling in MDPs and bandits with large state/action spaces is critical
- and balance exploration/exploitation

•When model is linear (in feature space), can still rigorously quantify uncertainty