UCB-VIi

CS/Stat 184(0): Introduction to Reinforcement Learning
Fall 2024

Today

Feedback from last lecture

Recap

Warm-up: ExploreThenExploit for deterministic MDPs
Why we don’t want to treat MDPs as big bandits
UCB-VI for tabular MDPs

UCB-VI for linear MDPs

Feedback from feedback forms

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

Today

Feedback from last lecture

Recap

Warm-up: ExploreThenExploit for deterministic MDPs
Why we don’t want to treat MDPs as big bandits
UCB-VI for tabular MDPs

UCB-VI for linear MDPs

“Lack of Exploration” leads to Optimization and Statistical Challenges

N\~ 9
TEAVER"
So T R=1
- S states - Thrun 92

Suppose [~ poly(|S|) & p(sy) = 1 (i.e. we start at).
A randomly initialized policy z° has prob. O(1/3!°!) of hitting the goal state in a trajectory.
Thus a sample-based approach, with 1i(s,) = |, require O(3P) trajectories.

 Holds for (sample based) Fitted DP
 Holds for (sample based) PG/TRPO/NPG/PPO

Basically, for these approaches, there is no hope of learning the optimal policy if 1.(s,) = 1.

Let’'s examine the role of i

» Suppose that somehow the distribution 1 had better coverage. > states fhrun 52

e e.qg, If 4 was uniform overall states in our toy problem, then all approaches we
covered would work (with mild assumptions)

* Theory:
(assuming some “coverage”)

* |f we have a simulator, sometimes we can design 1 to have better coverage.
* this is helpful for robustness as well.
e |mitation learning (next time).

* An expert gives us samples from a “good” /.

« UCB-VI: we’ll merge two good ideas!
* Encourage exploration in PG methods.
* Try with reward shaping

Recall: Value lteration (VI)

VI = DP is a backwards in time approach for computing the optimal policy:

Recall: Value lteration (VI)

VI = DP is a backwards in time approach for computing the optimal policy:

1. Startat H — 1,

Recall: Value lteration (VI)

VI = DP is a backwards in time approach for computing the optimal policy:

1. Startat H — 1,

Q7 (s,a) = r(s, a)

Recall: Value lteration (VI)

VI = DP is a backwards in time approach for computing the optimal policy:

1. Startat H — 1,

Q5 _((s,a) =r(s,a) =m7;_,(s) =argmax QF_,(s,a)

Recall: Value lteration (VI)

VI = DP is a backwards in time approach for computing the optimal policy:

1. Startat H — 1,

Q5 _((s,a) =r(s,a) =m7;_,(s) =argmax QF_,(s,a)

V;_l = max Q[j—]‘(_l(sa a) = Q;;_l(sa ﬂg_l(s))

Recall: Value lteration (VI)

VI = DP is a backwards in time approach for computing the optimal policy:

1. Startat H — 1,

Q5 _((s,a) =r(s,a) =m7;_,(s) =argmax QF_,(s,a)

V;_l = max Q[j—]‘(_l(sa a) = Q;;_l(sa ﬂg_l(s))

2. Assuming we have computed V ,, h < H — 2, i.e., assuming
we know how to perform optimally starting at 7 + 1, then:

Recall: Value lteration (VI)

VI = DP is a backwards in time approach for computing the optimal policy:

1. Startat H — 1,

Q5 _((s,a) =r(s,a) =m7;_,(s) =argmax QF_,(s,a)

V;_l = max Q[j—]‘(_l(sa a) = Q;;_l(sa ﬂg_l(s))

2. Assuming we have computed V ,, h < H — 2, i.e., assuming
we know how to perform optimally starting at 7 + 1, then:

Q]:lk(sa a) — r(Sa a) + _S’NP(S,a)V};:_](S,)

Recall: Value lteration (VI)

VI = DP is a backwards in time approach for computing the optimal policy:

1. Startat H — 1,

Q5 _((s,a) =r(s,a) =m7;_,(s) =argmax QF_,(s,a)

V;_l = max Q[j—]‘(_l(sa a) = Q;;_l(sa ﬂg_l(s))

2. Assuming we have computed V ,, h < H — 2, i.e., assuming
we know how to perform optimally starting at 7 + 1, then:

Q]:lk(sa a) — r(Sa a) + _S’NP(S,a)V};:_](S,)

7 (s) = arg max Q(s, a),

14

Recall: Value lteration (VI)

VI = DP is a backwards in time approach for computing the optimal policy:

1. Startat H — 1,

Q5 _((s,a) =r(s,a) =m7;_,(s) =argmax QF_,(s,a)

V;_l = max Q[j—]‘(_l(sa a) = Q;;_l(sa ﬂg_l(s))

2. Assuming we have computed V ,, h < H — 2, i.e., assuming
we know how to perform optimally starting at 7 + 1, then:

Q]:lk(sa a) — r(Sa a) + _S’NP(S,a)V};:_](S,)

7 (s) = arg mfx Qr(s,a), Vr= mfx Q7 (s, a)

14

Recall: Upper Confidence Bound (UCB)

Fort=0,..., 7T — 1:
Choose the arm with the highest upper confidence bound, i.e.,

a, = arg max ﬂgk) +4/In(2T K/(S)/ZNt(k)
kell,....K}

Recall: Upper Confidence Bound (UCB)

Fort=0,..., 7T — 1:
Choose the arm with the highest upper confidence bound, i.e.,

a, = arg max ﬂgk) +4/In(2T K/(S)/ZNt(k)
kell,....K}

High-level summary: estimate action quality, add exploration bonus, then argmax

Today

Feedback from last lecture

Recap

Warm-up: ExploreThenExploit for deterministic MDPs
Why we don’t want to treat MDPs as big bandits
UCB-VI for tabular MDPs

UCB-VI for linear MDPs

How we do find 7* in an unknown MDP?

o~ "‘\\
/7 N\
/ - \'\‘ TN
/'/ / 4B \v / N

;N\ /

"..‘ /,

://

N
4 \
\\“ J‘,/‘

S0

* Episodic setting with an unknown MDP;
* Suppose we start at s, ~ U.

 We act for H steps.
* Then repeat.

» How do we find 7*7?
* How do we get low regret?

» So both r(s,a) and P(- | s, a) are deterministic.

10

Algorithm: ExploreThenExploit
(for deterministic MDPSs)

11

R=1

S states

Thrun 92

Algorithm: ExploreThenExploit
(for deterministic MDPSs)

Let’s say a state-action pair (s,a) Is

R=1

S states

if both NextState(s, a) and r(s, a) are known.

11

Thrun 92

Algorithm: ExploreThenExploit TRV 9
(for deterministic MDPs) So 1 R=1
- S states -
Let’s say a state-action pair (s,a) is if both NextState(s, a) and r(s, a) are known.

When is (s,a) known after a set of episodes?

11

Thrun 92

Algorithm: ExploreThenExploit TRV
(for deterministic MDPs) So 1 R=1
- S states -
Let’s say a state-action pair (s,a) is if both NextState(s, a) and r(s, a) are known.

When is (s,a) known after a set of episodes?
Let K be the set of known state-action pairs after a set of episodes

11

Thrun 92

Algorithm: ExploreThenExploit Tava ()
(for deterministic MDPs) So © R=1
- S states -
» Let’s say a state-action pair (s,a) is if both NextState(s, a) and r(s, a) are known.

 \When is (s,a) known after a set of episodes?
« Let K be the set of known state-action pairs after a set of episodes
 Define the BonusMDP M . with respect to the current (known) set K:

11

Thrun 92

Algorithm: ExploreThenExploit Tava ()
(for deterministic MDPs) So © R=1
- S states -
» Let’s say a state-action pair (s,a) is if both NextState(s, a) and r(s, a) are known.

 \When is (s,a) known after a set of episodes?
« Let K be the set of known state-action pairs after a set of episodes
 Define the BonusMDP M . with respect to the current (known) set K:

¢ For(s,a) € K,

11

Thrun 92

Algorithm: ExploreThenExploit ”\ -
(for deterministic MDPs) So

R=1

 Let’s say a state-action pair (s,a) is
 \When is (s,a) known after a set of episodes?
« Let K be the set of known state-action pairs after a set of episodes

 Define the BonusMDP M . with respect to the current (known) set K:
¢ For(s,a) € K,
« define the dynamics in //,- to be same as in the true MDP.
(note this is possible for us to do for (s, a) € K)

11

S states

if both NextState(s, a) and r(s, a) are known.

Thrun 92

Algorithm: ExploreThenExploit TRV
(for deterministic MDPs) So + R=1
- S states -
» Let’s say a state-action pair (s,a) is if both NextState(s, a) and r(s, a) are known.

 \When is (s,a) known after a set of episodes?
« Let K be the set of known state-action pairs after a set of episodes
 Define the BonusMDP M . with respect to the current (known) set K:

¢ For(s,a) € K,
« define the dynamics in //,- to be same as in the true MDP.

(note this is possible for us to do for (s, a) € K)
 define the reward as (O for these state-action pairs.

11

Thrun 92

Algorithm: ExploreThenExploit TRV
(for deterministic MDPs) So + R=1
- S states -
» Let’s say a state-action pair (s,a) is if both NextState(s, a) and r(s, a) are known.

 \When is (s,a) known after a set of episodes?
« Let K be the set of known state-action pairs after a set of episodes
 Define the BonusMDP M . with respect to the current (known) set K:
¢ For(s,a) € K,
« define the dynamics in //,- to be same as in the true MDP.
(note this is possible for us to do for (s, a) € K)
+ define the reward as O for these state-action pairs.
 For (s,a) & K, assume we transition to a special state s* which is absorbing (i.e., we
stay at S*) and we always achieve a reward of 1 at this absorbing state.

11

Thrun 92

Algorithm: ExploreThenExploit AV 9
(for deterministic MDPs) So T R=1

» Let’s say a state-action pair (s,a) is if both NextState(s, a) and r(s, a) are known.
 \When is (s,a) known after a set of episodes?

« Let K be the set of known state-action pairs after a set of episodes
 Define the BonusMDP M . with respect to the current (known) set K:
¢ For(s,a) € K,
« define the dynamics in //,- to be same as in the true MDP.
(note this is possible for us to do for (s, a) € K)
+ define the reward as O for these state-action pairs.
 For (s,a) & K, assume we transition to a special state s* which is absorbing (i.e., we
stay at S*) and we always achieve a reward of 1 at this absorbing state.
o |et ﬂl’g and Vl’é be the optimal policy and value in M.

11

Algorithm: ExploreThenExploit ZAVER 9
(for deterministic MDPs) So T R=1

Let’s say a state-action pair (s,a) is if both NextState(s, a) and r(s, a) are known.
 \When is (s,a) known after a set of episodes?

« Let K be the set of known state-action pairs after a set of episodes
Define the BonusMDP M - with respect to the current (known) set K:

¢ For(s,a) € K,

« define the dynamics in //,- to be same as in the true MDP.

(note this is possible for us to do for (s, a) € K)

+ define the reward as O for these state-action pairs.
 For (s,a) & K, assume we transition to a special state s* which is absorbing (i.e., we

stay at S*) and we always achieve a reward of 1 at this absorbing state.
Let ﬂl’g and Vl’é be the optimal policy and value in M.

Assume H > | §|.

If K does not contain all state-action pairs, then V > 0 and z7 will reach some (s,a) & K
(in at most | S| steps).

11

Algorithm: ExploreThenExploit
(for deterministic MDPSs)

12

R=1

S states

Thrun 92

Algorithm: ExploreThenExploit
(for deterministic MDPSs)

Let’s say a state-action pair (s,a) is

R=1

S states

if both NextState(s, a) and r(s, a) are known.

12

Thrun 92

Algorithm: ExploreThenExploit

(for deterministic MDPs) Sg & R=1
X
- S states -
Let’s say a state-action pair (s,a) is if both NextState(s, a) and r(s, a) are known.

Let K be the set of known state-action pairs after a set of episodes

12

Thrun 92

Algorithm: ExploreThenExploit
(for deterministic MDPSs)

Let’s say a state-action pair (s,a) is known if both NextState(s, a) and r(s, a) are known.
¢ Let K be the set of known state-action pairs after a set of episodes

nt: K=

12

ava

S0

X

R=1

S states

Thrun 92

Algorithm: ExploreThenExploit
(for deterministic MDPSs)

Let’s say a state-action pair (s,a) is known if both NextState(s, a) and r(s, a) are known.
¢ Let K be the set of known state-action pairs after a set of episodes

nt: £ =09
\While not terminated

12

ava

S0

X

R=1

S states

Thrun 92

Algorithm: ExploreThenExploit
(for deterministic MDPSs)

Let’s say a state-action pair (s,a) is known if both NextState(s, a) and r(s, a) are known.
¢ Let K be the set of known state-action pairs after a set of episodes

nt: £ =09
\While not terminated
. Compute 7y and V7 for M.

12

ava

S0

X

R=1

S states

Thrun 92

Algorithm: ExploreThenExploit
(for deterministic MDPSs)

Let’s say a state-action pair (s,a) is known if both NextState(s, a) and r(s, a) are known.
¢ Let K be the set of known state-action pairs after a set of episodes

nt: £ =09
\While not terminated
. Compute 7y and V7 for M.

o |f Vl’é > (), execute ﬂl’é and update the known set K

12

X

R=1

S states

Thrun 92

Let’s say a state-action pair (s,a) is known if both NextState(s, a) and r(s, a) are known.
Let K be the set of known state-action pairs after a set of episodes

INIt:

Algorithm: ExploreThenExploit
(for deterministic MDPSs)

K=g

\While not terminated
. Compute 7y and V7 for M.

o |f Vl’é > (), execute ﬂl’é and update the known set K

Else: terminate

12

X

R=1

S states

Thrun 92

Algorithm: ExploreThenExploit
(for deterministic MDPSs)

Let’s say a state-action pair (s,a) is known if both NextState(s, a) and r(s, a) are known.
¢ Let K be the set of known state-action pairs after a set of episodes

nt: £ =09
\While not terminated
. Compute 7y and V7 for M.

o |f Vl’é > (), execute ﬂl’é and update the known set K

* Else: terminate
Return: the optimal policy in the known MDP.

12

X

R=1

S states

Thrun 92

Algorithm: ExploreThenExploit O
(for deterministic MDPSs) SO//%V‘ o

« Let’s say a state-action pair (s,a) is known if both NextState(s, a) and r(s, a) are known.
¢ Let K be the set of known state-action pairs after a set of episodes

e Init: K=¢
e \While not terminated
. Compute 7y and V7 for M.
o |f Vl’é > (), execute ﬂl’é and update the known set K

* Else: terminate
 Return: the optimal policy in the known MDP.

Theorem: Assuming H > | S|, this algorithm returns an optimal policy in most |S]| - |A]
trajectories.

12

Comments:

13

Comments:

* Basically formulating shortest path as an optimal policy in some modified MDP

13

Comments:

* Basically formulating shortest path as an optimal policy in some modified MDP

« How do we modify the algorithm for general H?

13

Comments:

* Basically formulating shortest path as an optimal policy in some modified MDP

« How do we modify the algorithm for general H?
« |[gnore any states that can’t be reached in at most H steps!

13

Comments:

* Basically formulating shortest path as an optimal policy in some modified MDP

« How do we modify the algorithm for general H?
« |[gnore any states that can’t be reached in at most H steps!

* What is the regret of this algorithm?

13

Comments:

* Basically formulating shortest path as an optimal policy in some modified MDP

« How do we modify the algorithm for general H?
« |[gnore any states that can’t be reached in at most H steps!

* What is the regret of this algorithm?
» Can be arbitrarily bad while searching, and searches for |S||A| steps: | S| |A | H

13

Comments:

Basically formulating shortest path as an optimal policy in some modified MDP

How do we modify the algorithm for general H*?
« |[gnore any states that can’t be reached in at most H steps!

What is the regret of this algorithm?
» Can be arbitrarily bad while searching, and searches for |S||A| steps: | S| |A | H

Really nheeded determinism; for non-deterministic MDPs, need to think more like bandits...

13

Today

Feedback from last lecture

Recap

Warm-up: ExploreThenExploit for deterministic MDPs
Why we don’t want to treat MDPs as big bandits
UCB-VI for tabular MDPs

UCB-VI for linear MDPs

14

Exploration in MDP: make it a bandit and do UCB?

Q: given a discrete MDP, how many unigue deterministic policies are there?

Exploration in MDP: make it a bandit and do UCB?

Q: given a discrete MDP, how many unigue deterministic policies are there?

(1a19)"

Exploration in MDP: make it a bandit and do UCB?

Q: given a discrete MDP, how many unigue deterministic policies are there?

(1a19)"

So treating each policy as an “arm” and running UCB gives us regret 0(\/ | A |‘S‘HN)

Exploration in MDP: make it a bandit and do UCB?

Q: given a discrete MDP, how many unigue deterministic policies are there?

(1a19)"

So treating each policy as an “arm” and running UCB gives us regret 0(\/ | A \‘S‘HN)

This seems bad, so are MDPs just super hard or can we do better?

15

An example of MDP as bandit

S={ab), A={12), H=2

All state transitions happen with probability 1/2 for all actions

Reward function: ra,1) =rb1)=0

ra,2) =r(b2) =1

An example of MDP as bandit

S={ab), A={12), H=2

All state transitions happen with probability 1/2 for all actions

Reward function: ra,1) =rb1)=0

ra,2) =r(b2) =1

Suppose we have a lot of data already on a policy 7D that always takes action 1
and a policy 7% that always takes action 2 (note e Jr*)

16

An example of MDP as bandit

S={ab), A={12), H=2

All state transitions happen with probability 1/2 for all actions

Reward function: ra,1) =rb1)=0

ra,2) =r(b2) =1

Suppose we have a lot of data already on a policy 7D that always takes action 1
and a policy 7% that always takes action 2 (note e Jr*)

What do we know about a policy 7) which always takes action 1 in the first time step, and
always takes action 2 at the second time step?

16

An example of MDP as bandit

S={ab), A={12), H=2

All state transitions happen with probability 1/2 for all actions

Reward function: ra,1) =rb1)=0

ra,2) =r(b2) =1

Suppose we have a lot of data already on a policy 7D that always takes action 1
and a policy 7% that always takes action 2 (note e ﬂ*)

What do we know about a policy 7) which always takes action 1 in the first time step, and
always takes action 2 at the second time step?

Everything: we have a lot of data on every state-action reward and transition!

16

An example of MDP as bandit

S={ab), A={12), H=2

All state transitions happen with probability 1/2 for all actions

Reward function: ra,1) =rb1)=0

ra,2) =r(b2) =1

Suppose we have a lot of data already on a policy 7D that always takes action 1
and a policy 7% that always takes action 2 (note e ﬂ*)

What do we know about a policy 7) which always takes action 1 in the first time step, and
always takes action 2 at the second time step?

Everything: we have a lot of data on every state-action reward and transition!

If we treat the MDP as a bandit, we treat 7) as a new “arm” about which we know nothing...

16

An example of MDP as bandit

S={a,b}, A={12}, H=2 AP =24 =16

All state transitions happen with probability 1/2 for all actions

Reward function: ra,1) =rb1)=0

ra,2) =r(b2) =1

Suppose we have a lot of data already on a policy 7D that always takes action 1
and a policy 7% that always takes action 2 (note e ﬂ*)

What do we know about a policy 7) which always takes action 1 in the first time step, and
always takes action 2 at the second time step?

Everything: we have a lot of data on every state-action reward and transition!

If we treat the MDP as a bandit, we treat 7) as a new “arm” about which we know nothing...

16

Today

Feedback from last lecture

Recap

Warm-up: ExploreThenExploit for deterministic MDPs
Why we don’t want to treat MDPs as big bandits
UCB-VI for tabular MDPs

UCB-VI for linear MDPs

17

UCB-VI: Tabular optimism in the face of uncertainty

Assume reward function r;,(s, a) known

Inside 1teration 7 :

UCB-VI: Tabular optimism in the face of uncertainty

Assume reward function r;,(s, a) known

Inside 1teration 7 :

Use all previous data to estimate dynamics {}A’Z IZ:_Ol

UCB-VI: Tabular optimism in the face of uncertainty

Assume reward function r;,(s, a) known

Inside 1teration 7 :

Use all previous data to estimate dynamics {}A’Z IZ:_Ol

Design reward bonus b, (s, a), Vs, a, h

UCB-VI: Tabular optimism in the face of uncertainty

Assume reward function r;,(s, a) known

Inside 1teration 7 :

Use all previous data to estimate dynamics {P il 01

Design reward bonus b, (s, a), Vs, a, h

Optimistic planning with learned model: 7" = VI ({P”, r,+ b}, f)

18

UCB-VI: Tabular optimism in the face of uncertainty

Assume reward function r;,(s, a) known

Inside 1teration 7 :

Use all previous data to estimate dynamics {P” il 01

Design reward bonus b, (s, a), Vs, a, h

Optimistic planning with learned model: 7" = VI ({P”, r,+ b}, f)

Collect a new trajectory by executing 7" in the true system {Ph}H o Starting from s

18

Model Estimation

Let us consider the very beginning of episode n:

n __ l [.1 n—1
Dy = S A 1 Vimy s VI

19

Model Estimation

Let us consider the very beginning of episode n:
Dy = s}y @ 5), V1T

Let’s also maintain some statistics using these datasets:

19

Model Estimation

Let us consider the very beginning of episode n:
Dy = s}y @ 5), V1T

Let’s also maintain some statistics using these datasets:

n—1
N, (s,a) = 2 1{(S;;, a,;;) =(s,a)}, Vs,a,h,
i=1

19

Model Estimation

Let us consider the very beginning of episode n:
Dy = s}y @ 5), V1T

Let’s also maintain some statistics using these datasets:

n—1
N, (s,a) = 2 1{(S;;, a,;;) =(s,a)}, Vs,a,h,
i=1

n—1
N,/ (s,a,s’) = Z 1{(s},a;,s;) =(s,a,8)}, Vs,a,s,h
=1

19

Model Estimation

Let us consider the very beginning of episode n:
Dy = s}y @ 5), V1T

Let’s also maintain some statistics using these datasets:

n—1
N, (s,a) = Z 1{(S;;, a,,’;) =(s,a)}, Vs,a,h,
i=1

n—1
N,/ (s,a,s’) = Z 1{(s},a,,s;) =(s,a,s")}, Vs,a,s’h
=1

Estimate model }A’Z(S’\ s,a),Vs,a,s', h:

N;(s,a,s’)
Ni(s, a)

}A’Z(s’\ S,a) =

19

Reward Bonus Design and Value lteration

Recall: 9, = {Sh ah Sh+1}” LVh, Nj(s,a) = Z 1{(S;f,, Cl;i) = (s,a)},Vs,a,h,

Reward Bonus Design and Value lteration

Recall: 2, = {Sh ah Sh+1}” LVh, Nj(s,a) = Z 1{(S;f,, Cl;i) = (s,a)},Vs,a,h,

log (|S||A|HNIS)
Define: b, (s,a) = cH

Nj(s, a)

Reward Bonus Design and Value lteration

Recall: 2, = {Sh ah Sh+1}” LVh, Nj(s,a) = Z 1{(S;f,, Cl;i) = (s,a)},Vs,a,h,

log (|ST]A ‘HN/é) Encoura

o B ge to explore

Define: b;(s, a) = cH ; new state-actions
Nh (Sa Cl)

Reward Bonus Design and Value lteration

Recall: 2, = {Sh, ah, Sh_|_1}l 1,‘v’h N, (s,a) = Z 1{(Sh, ah) =(s,a)},Vs,a,h,
=1

. " log ([ST1A ‘HN/5> Encourage to explore
Define: b) (s, a) = cH Ni(s, a) new state-actions

Value Iteration (aka DP) at episode 7 using {P | , and {rh + b”} I

20

Reward Bonus Design and Value lteration

=1

n—1
Recall: 2, = {S;;, a;;, S,flJrl}”_1 Vh, N;(s,a) = Z 1{(S;f,, Cl;i) = (s,a)},Vs,a,h,
i=1

log (|ST]A ‘HN/5> Encoura

o B ge to explore

Define: b;(s, a) = cH ; new state-actions
Nh (Sa Cl)

Value Iteration (aka DP) at episode 7 using {IA’Z} pand {r,+ b},

Vi(s) =0, Vs

20

Reward Bonus Design and Value lteration

Recall: 2, = {Sh, ah, Sh_H}l 1,‘v’h N, (s,a) = Z 1{(Sh, ah) =(s,a)},Vs,a,h,

=1

log (|S||A|HNIS)
Define: b, (s,a) = cH

Nj(s, a)

Value Iteration (aka DP) at episode 7 using {P | , and {rh + b”} I

‘A/?](S) =0, Vs QZ(S, @) = min {rh(s, a) + b,’;’(s, a) + E

20

S’NﬁZ(* |s,a)

Encourage to explore
new state-actions

‘A/ZH(S ’) ’

H}, Vs, a

Reward Bonus Design and Value lteration

Recall: 9, = {Sh, ah, Sh+1}z 1,‘v’h N, (s,a) = Z 1{(Sh, ah) =(s,a)},Vs,a,h,

Define: b, (s,a) = cH \/

Value Iteration (aka DP) at episode 7 using {P | , and {rh + b”} I

=1

log (| S||A|HN/S)

Nj(s, a)

‘A/fi](s) =0, Vs QZ(S, a) = min {rh(s, a)+ b, (s,a) + Y PI(-]5,0)

‘A/Z(S) = max QZ(S, a),

20

m,(s) = arg mjx QZ(S, a), Vs

Encourage to explore
new state-actions

‘A/ZH(S ’) ’

H}, Vs, a

Reward Bonus Design and Value lteration

Recall: 2, = {Sh, ah, Sh+1}z 1,‘v’h N, (s,a) = Z 1{(Sh, ah) =(s,a)},Vs,a,h,

=1

log (|S||A|HNIS)
Define: b, (s,a) = cH
Nj(s, a)

Encourage to explore
new state-actions

Value Iteration (aka DP) at episode 7 using {P | , and {rh + b”} I

‘A/fi](s) =0, Vs QZ(S, a) = min {rh(s, a)+ b, (s,a) + Y PI(-]5,0)

Vi(s) = max Qj(s,a), m'(s) = argmax Q}}(s,a), Vs

20

‘A/ZH(S ’) ’

H}, Vs, a

<H, Vh,n

o0

A\

Vi

Reward Bonus Design and Value lteration

n—1
Recall: 2, = {S,i, a}’;, Slfl+1}?=_11,Vh, N, (s,a) = Z 1{(S;f,, Cl;i) = (s,a)},Vs,a,h,
i=1

log (|ST]A ‘HN/5> Encoura

o B ge to explore

Define: b;(s, a) = cH ; new state-actions
Nh (Sa Cl)

Value Iteration (aka DP) at episode 7 using {}A’Z} pand {r,+ b},

‘A/fi](s) =0, Vs QZ(S, a) = min {rh(s, a)+ b, (s,a) + §mPI(-|5,0) ‘A/Z LGN, H }, Vs, a

A

Vi

<H, Vh,n

o0

Vi(s) = max Q'(s,a), m'(s) = arg max Q'(s,a), Vs

b; (s, a) specifically chosen so that V}f (5) < ‘A/Z(S) with high probability

20

UCBVI: Put All Together

Forn=1—-> N:

n—1
1.Set Ni'(s,a) =) 1{(s,a) = (s.a)},Vs,a,h

i=1
n—1
2.Set N)(s,a,s’) = Z 1{(5;;, a;;, S;;+1) = (s,a,s)},Vs,a,a’, h
i=1
Ny (s,a,s’)

3. Estimate P" :]A’Z(S’\ S,a) = Vs, a,s' h
Nj(s,a)

log(|S||A|HN/S)

4. Plan: ﬂ'n:V|(IA’”,r + b),with b'(s,a) = cH
{ n byl n (S, a) \/ Nii(s, a)

5. Execute 7" 1 {8y, Ays 1gys ++ s Spy_15 Q15 Ty 1> Spy)

21

High-level Idea: Exploration Exploitation Tradeoft

Upper bound per-episode regret: Vg((Sg) — V(’)’n(so) < ‘A/g(so) — Vgn(so) by construction of b/

High-level Idea: Exploration Exploitation Tradeoft
Upper bound per-episode regret: Vg((Sg) — V(’)’n(so) < ‘A/g(so) — Vgn(so) by construction of b/

1. What if V7'(s,) — V¥ (s,) is small?

High-level Idea: Exploration Exploitation Tradeoft
Upper bound per-episode regret: Vg((Sg) — V(’)’n(so) < ‘A/g(so) — V(’)”n(so) by construction of b/
1. What if V7'(s,) — V¥ (s,) is small?

Then "t is close to 7™, i.e., we are doing exploitation

High-level Idea: Exploration Exploitation Tradeoft
Upper bound per-episode regret: Vg((Sg) — V(’)’n(so) < ‘A/g(so) — V(’)”n(so) by construction of b/

1. What if V7'(s,) — V¥ (s,) is small?

Then "t is close to 7™, i.e., we are doing exploitation

2. What if VS(SO) — V(’)Tn(so) is large?

22

High-level Idea: Exploration Exploitation Tradeoft
Upper bound per-episode regret: Vg((Sg) — V(’)’n(so) < ‘A/g(so) — V(’)”n(so) by construction of b/
1. What if V7'(s,) — V¥ (s,) is small?

Then 7" is close to 7™, i.e., we are doing exploitation

2. What if V(j(sp) — V{j (5) is large?
Some b}’f(s, a) must be large (or some PZ(- | 5, a) estimation errors must be large, but with high probability
any IA’Z(- | s, a) with high error must have small N} (s, a) and hence high b;'(s, a))

22

High-level Idea: Exploration Exploitation Tradeoft
Upper bound per-episode regret: Vg((Sg) — V(’)’n(so) < ‘A/g(so) — V(’)”n(so) by construction of b/
1. What if V7'(s,) — V¥ (s,) is small?

Then 7" is close to 7™, i.e., we are doing exploitation

2. What if V(j(sp) — V{j (5) is large?
Some b}’f(s, a) must be large (or some PZ(- | 5, a) estimation errors must be large, but with high probability

any IA’Z(- | s, a) with high error must have small N} (s, a) and hence high b;'(s, a))

Large b; (s, a) means " is being encouraged to do (s, a), since it will apparently have very high reward,
l.e., exploration

22

High-level Idea: Exploration Exploitation Tradeoft
Upper bound per-episode regret: Vg((Sg) — V(’)’n(so) < ‘A/g(so) — V(’)’n(so) by construction of b/
1. What if V7'(s,) — V¥ (s,) is small?

Then " is close to 7™, i.e., we are doing exploitation

2. What if V(j(sp) — V{j (5) is large?
Some b;f(s, a) must be large (or some PZ(- | 5, a) estimation errors must be large, but with high probability

any }A’Z(- | s, a) with high error must have small N} (s, a) and hence high b;'(s, a))

Large b; (s, a) means " is being encouraged to do (s, a), since it will apparently have very high reward,
l.e., exploration

N

— lRegretN] = [E 2 (V¥ =V | < H(HZ\/\SHA\N)

n=1

22

Today

Feedback from last lecture

Recap

Warm-up: ExploreThenExploit for deterministic MDPs
Why we don’t want to treat MDPs as big bandits
UCB-VI for tabular MDPs

UCB-VI for linear MDPs

23

Linear MDP Definition

Finite horizon time-dependent episodic MDP ./ = {S,A,H, {r},, { P}, Sy}

S & A could be large or even continuous, hence poly(| S|, |A|) is not acceptable

24

Linear MDP Definition

Finite horizon time-dependent episodic MDP ./ = {S,A,H, {r},, { P}, Sy}

S & A could be large or even continuous, hence poly(|S |, |A|) is not acceptable

Py(s'|s,a) =) (s") - Pp(s,a), w:SHRYL ¢:SXAH R?

24

Linear MDP Definition

Finite horizon time-dependent episodic MDP ./ = {S,A,H, {r},, { P}, Sy}

S & A could be large or even continuous, hence poly(|S |, |A|) is not acceptable

Py(s'|s,a) =) (s") - Pp(s,a), w:SHRYL ¢:SXAH R?

r(s,a) = 6’; - (s, a), H,f e R

24

Linear MDP Definition

Finite horizon time-dependent episodic MDP ./ = {S,A,H, {r},, { P}, Sy}

S & A could be large or even continuous, hence poly(| S|, |A]) is not acceptable

Py(s'|s,a) = p[(s) - p(s,a), pr:S—>RYL ¢p:SxA - R?

r(s,a) = 6’; - (s, a), H,ff e R

Feature map ¢ is known to the learner!
(We assume reward is known, i.e., 8* is known)

24

Planning in Linear MDP: Value lteration

P,(-|s,a)=p d(s.a), preRPX ¢(s,a) € R?

r(s,a) = (HZ;)T¢(S, a), 6’; c R

Planning in Linear MDP: Value lteration
P, |s,a)= //t}fgb(s, a), //t}f c RP>4 (s, a) € R?

r(s,a) = (HZ;)T¢(S, a), 6’; c R

VZ(s) = 0,Vs,

Planning in Linear MDP: Value lteration
P, |s,a)= //t}fgb(s, a), //t}f c RP>4 (s, a) € R?

r(s,a) = (HZ;)T¢(S, a), 6’; c R

VZ(s) = 0,Vs,

* — — * /

Planning in Linear MDP: Value lteration
P, |s,a)= //t}fgb(s, a), //t}f c RP>4 (s, a) € R?

r(s,a) = (HZ;)T¢(S, a), 6’; c R

VZ(s) = 0,Vs,

* — — * /

=07 - pls.0) + (w1 (5. @) Vi,

Planning in Linear MDP: Value lteration
P, |s,a)= //t}fgb(s, a), //t}f c RP>4 (s, a) € R?

r(s,a) = (HZ;)T¢(S, a), 6’; c R

VZ(s) = 0,Vs,

* — — * /

=07 - pls.0) + (w1 (5. @) Vi,

= ¢(s, @) (07 + () Vi)

25

Planning in Linear MDP: Value lteration
P, |s,a)= //t}fgb(s, a), //t}f c RP>4 (s, a) € R?

r(s,a) = (HZ;)T¢(S, a), 6’; c R

VZ(s) = 0,Vs,

* — — * /

=07 - pls.0) + (w1 (5. @) Vi,

= ¢(s, @) (07 + () Vi)

= (s, a)Twh

25

Planning in Linear MDP: Value lteration
P, |s,a)= //t}fgb(s, a), //t}f c RP>4 (s, a) € R?

r(s,a) = (HZ;)T¢(S, a), 6’; c R

VZ(s) = 0,Vs,

* — — * /

=07 - pls.0) + (w1 (5. @) Vi,

= ¢(s, @) (07 + () Vi)
= (s, a)Twh

V¥(s) = max ¢(s,a)'w,, m(s) = argmax ¢(s,a)'w,

25

Planning in Linear MDP: Value lteration
P, |s,a)= //t}fgb(s, a), ,l/t};k c RP>4 (s, a) € R?

r(s,a) = (9;;)T¢(S, a), 6’; c R

VZ(s) = 0,Vs,
Indeed we can show that Q;'(-, -)

* —_ — * /
Oy, (s, a) = 1(s, @) + By p . fs.0) Vi1 () s linear with respect to ¢ as well, for any x, h

=07 - pls.0) + (w1 (5. @) Vi,

= ¢(s, @) (07 + () Vi)
= (s, a)Twh

VX(s) = max ¢(s,a)'w,, m(s) = argmax ¢(s,a)' w,

25

UCBVI in Linear MDPs

At the beginning of iteration n:

UCBVI in Linear MDPs

At the beginning of iteration n:

s pn H—1 - i 0 o0 n—l1
1. Learn transition model { P} },_, from all previous data {s;,a,, s, }:

26

UCBVI in Linear MDPs

At the beginning of iteration n:

s pn H—1 - i 0 o0 n—l1
1. Learn transition model { P} },_, from all previous data {s;,a,, s, }:

2. Design reward bonus b, (s, a), Vs, a

26

UCBVI in Linear MDPs

At the beginning of iteration n:

s pn H—1 - i 0 o0 n—l1
1. Learn transition model { P} },_, from all previous data {s;,a,, s, }:

2. Design reward bonus b, (s, a), Vs, a

3. Plan: 7"t = VI ({}A’”}h, i, + b;,l})

26

- pn\ H—1
How to estimate { P}, _y?

- pn\ H—1
How to estimate { P}, _y?

Denote 0(s) € RIS with zero everywhere except the entry corresponding to s

- pn\ H—1
How to estimate { P}, _y?

Denote 0(s) € R I3 with zero everywhere except the entry corresponding to §

Given s, a, note that E¢_p (54 [5(S’)] =P,(-|s,a) = /,t;gb(s, a)

27

- pn\ H—1
How to estimate { P}, _y?

Denote 0(s) € RIS with zero everywhere except the entry corresponding to s

Given s, a, note that ;. _p (5.4 [5(S’)] = Py(- |s,a) = u d(s,a)

Penalized Linear Regression:

n—1
min) [lug(sp, aj) = 6(sj, I3 + Allull;
=l

27

- pn\ H—1
How to estimate { P}, _y?

Denote 0(s) € RIS with zero everywhere except the entry corresponding to s

Given s, a, note that ;. _p (5.4 [5(&’)] = P,(-|s,a) = ur¢(s, a)

Penalized Linear Regression:

n—1
min) [lug(sp, aj) = 6(sj, I3 + Allull;
=l

n—1 n—1
Al =Y (st ab(st,a)T + Al ar = AN~y 8Gsi, bisiai)
i=1 =1

27

- pn\ H—1
How to estimate { P}, _y?

Denote 0(s) € RIS with zero everywhere except the entry corresponding to s

Given s, a, note that ;. _p (5.4 [5(S’)] = Py(- |s,a) = u d(s,a)

Penalized Linear Regression:

n—1
min) [lug(sp, aj) = 6(sj, I3 + Allull;
=l

n—1 n—1
AP =Y (st ah(st,a)T + Al ar = AN~y 8Gsi, bisiai)
i=1 =1

ﬁZ(|5, a) = ﬂ\th(Sa a)

27

How to choose b, (s, a)?

Chebyshev-like approach, similar to in linUCB (will cover next lecture):

bji(s, @) = y/ (s, AN (s @), f= O(dH)

INUCB-VI: Put All Together

Form=1—> N_:

n—1
1.Set Al =) (s, ap(si,al)" + Al
=1

n—1
2.Set i7l = (A"~ Z 5(sp)P (s) @)
=1

3. Estimate P" : IA’Z(s, a) = /ft\Zgb(S, a)

4. Plan: 7" = VI ({ﬁ”, ry, + b;l’}h), with b, (s, a) = cdH\/¢(s, Cl)T(AZ)_1¢(S, a)

5. EXGCUte ﬂn : {Sg, Clg, r(l)/l, s e oo SI’;—I’CZI’;—I, }/'IZ_I,SZ}

29

INUCB-VI: Put All Together

Form=1—> N_:

n—1
1.Set Al =) (s, ap(si,al)" + Al
=1

2. Set An) 1 Z 5(Sh+1)¢(sha ah)T

3. Estimate P" : PZ(- |s,a) = urg(s, a)

4. Plan: 7" = VI ({ﬁ”, ry, + b;l’}h), with b, (s, a) = cdH\/qb(s, CZ)T(AZ)_1¢(S, a)

n n n n
 Spr—1> Q1> Y1 SH)

- |Regret, | =T [EN: (V29 w)] 0 (Hd">/N)

n=1

5. Execute " : {5, dy, 1y, - -

INUCB-VI: Put All Together

Form=1—> N_:

n—1
1.Set Al =) (s, ap(si,al)" + Al
=1

2. Set An) 1 Z 5(Sh+1)¢(sha ah)T

3. Estimate P" : IA’Z(s, a) = /ft\Zgb(S, a)

4. Plan: 7" = VI ({ﬁ”, ry, + b}’l”‘}h), with b, (s, a) = cdH\/qb(s, CZ)T(AZ)_1¢(S, a)

n n n n
 Spr—1> Q1> Y1 SH)

- |Regret, | =T [EN: (V29 V”)] 0 (Hd">/N)

n=1

5. Execute " : {5, dy, 1y, - -

No S, A dependence!

Today

Feedback from last lecture

Recap

Warm-up: ExploreThenExploit for deterministic MDPs
Why we don’t want to treat MDPs as big bandits
UCB-VI for tabular MDPs

UCB-VI for linear MDPs

30

Summary:

UCBVI algorithm applies UCB idea to MDPs to achieve exploration/exploitation trade-off

Attendance: Feedback:
bit.ly/3RcTCOT bit.ly/3RHtIxy

31

http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

