Lucas Janson **CS/Stat 184(0): Introduction to Reinforcement Learning** Fall 2024

UCB-VI

- Feedback from last lecture
- Recap
- Warm-up: ExploreThenExploit for deterministic MDPs
- Why we don't want to treat MDPs as big bandits
- UCB-VI for tabular MDPs
- UCB-VI for linear MDPs

Feedback from feedback forms

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

- Recap
- Warm-up: ExploreThenExploit for deterministic MDPs
- Why we don't want to treat MDPs as big bandits
- UCB-VI for tabular MDPs
- UCB-VI for linear MDPs

"Lack of Exploration" leads to Optimization and Statistical Challenges

- Suppose $H \approx \text{poly}(|S|) \& \mu(s_0) = 1$ (i.e. we start at s_0).
- A randomly initialized policy π^0 has prob. $O(1/3^{|S|})$ of hitting the goal state in a trajectory. Thus a sample-based approach, with $\mu(s_0) = 1$, require $O(3^{|S|})$ trajectories.
- - Holds for (sample based) Fitted DP
 - Holds for (sample based) PG/TRPO/NPG/PPO
- Basically, for these approaches, there is no hope of learning the optimal policy if $\mu(s_0) = 1$.

Let's examine the role of μ

- Suppose that somehow the distribution μ had better coverage.
 - e.g, if μ was uniform overall states in our toy problem, then all approaches we covered would work (with mild assumptions)
 - Theory: TRPO/NPG/PPO have better guarantees than fitted DP methods (assuming some "coverage")
- Strategies without coverage:
 - If we have a simulator, sometimes we can design μ to have better coverage.
 - this is helpful for robustness as well.
 - Imitation learning (next time).
 - An expert gives us samples from a "good" μ .
 - Explicit exploration:
 - UCB-VI: we'll merge two good ideas!
 - Encourage exploration in PG methods.
 - Try with reward shaping

S states

s! ds

VI = DP is a backwards in time approach for computing the optimal policy: $\pi^{\star} = \{\pi_0^{\star}, \pi_1^{\star}, \dots, \pi_{H-1}^{\star}\}$

VI = DP is a backwards in time approach for computing the optimal policy: $\pi^{\star} = \{\pi_0^{\star}, \pi_1^{\star}, ..., \pi_{H-1}^{\star}\}$

1. Start at H - 1,

1. Start at H - 1,

 $Q_{H-1}^{\star}(s,a) = r(s,a)$

VI = DP is a backwards in time approach for computing the optimal policy: $\pi^{\star} = \{\pi_0^{\star}, \pi_1^{\star}, \dots, \pi_{H-1}^{\star}\}$

VI = DP is a backwards in time approach for computing the optimal policy: $\pi^* = \{\pi_0^*, \pi_1^*, \dots, \pi_{H-1}^*\}$

1. Start at H - 1,

 $Q_{H-1}^{\star}(s,a) = r(s,$

a)
$$\pi_{H-1}^{\star}(s) = \arg\max_{a} Q_{H-1}^{\star}(s, a)$$

VI = DP is a backwards in time approach for computing the optimal policy: $\pi^* = \{\pi_0^*, \pi_1^*, \dots, \pi_{H-1}^*\}$

1. Start at H - 1,

 $Q_{H-1}^{\star}(s,a) = r(s,$

$$V_{H-1}^{\star} = \max_{a} Q_{H-1}^{\star}$$

a)
$$\pi_{H-1}^{\star}(s) = \arg\max_{a} Q_{H-1}^{\star}(s, a)$$

 $_{-1}(s,a) = Q_{H-1}^{\star}(s,\pi_{H-1}^{\star}(s))$

VI = DP is a backwards in time approach for computing the optimal policy: $\pi^{\star} = \{\pi_0^{\star}, \pi_1^{\star}, \dots, \pi_{H-1}^{\star}\}$

1. Start at H - 1,

 $Q_{H-1}^{\star}(s,a) = r(s,$

$$V_{H-1}^{\star} = \max_{a} Q_{H-1}^{\star}(s, a) = Q_{H-1}^{\star}(s, \pi_{H-1}^{\star}(s))$$

a)
$$\pi_{H-1}^{\star}(s) = \arg\max_{a} Q_{H-1}^{\star}(s, a)$$

2. Assuming we have computed V_{h+1}^{\star} , $h \leq H - 2$, i.e., assuming we know how to perform optimally starting at h + 1, then:

VI = DP is a backwards in time approach for computing the optimal policy: $\pi^{\star} = \{\pi_0^{\star}, \pi_1^{\star}, \dots, \pi_{H-1}^{\star}\}$

1. Start at H - 1,

 $Q_{H-1}^{\star}(s,a) = r(s,a)$

$$V_{H-1}^{\star} = \max_{a} Q_{H-1}^{\star}(s, a) = Q_{H-1}^{\star}(s, \pi_{H-1}^{\star}(s))$$

 $Q_h^\star(s,a) = r(s,a)$

a)
$$\pi_{H-1}^{\star}(s) = \arg\max_{a} Q_{H-1}^{\star}(s, a)$$

2. Assuming we have computed V_{h+1}^{\star} , $h \leq H - 2$, i.e., assuming we know how to perform optimally starting at h + 1, then:

$$a) + \mathbb{E}_{s' \sim P(s,a)} V_{h+1}^{\star}(s')$$

VI = DP is a backwards in time approach for computing the optimal policy: $\pi^{\star} = \{\pi_0^{\star}, \pi_1^{\star}, \dots, \pi_{H-1}^{\star}\}$

1. Start at H - 1,

 $Q_{H-1}^{\star}(s,a) = r(s,a)$

$$V_{H-1}^{\star} = \max_{a} Q_{H-1}^{\star}(s, a) = Q_{H-1}^{\star}(s, \pi_{H-1}^{\star}(s))$$

 $Q_h^\star(s,a) = r(s,a)$

$$\pi_h^\star(s) = \arg\max_a Q_h^\star(s,$$

a)
$$\pi_{H-1}^{\star}(s) = \arg\max_{a} Q_{H-1}^{\star}(s, a)$$

2. Assuming we have computed V_{h+1}^{\star} , $h \leq H - 2$, i.e., assuming we know how to perform optimally starting at h + 1, then:

$$a) + \mathbb{E}_{s' \sim P(s,a)} V_{h+1}^{\star}(s')$$

(s, a),

VI = DP is a backwards in time approach for computing the optimal policy: $\pi^{\star} = \{\pi_0^{\star}, \pi_1^{\star}, \dots, \pi_{H-1}^{\star}\}$

1. Start at H - 1,

 $Q_{H-1}^{\star}(s,a) = r(s,a)$

$$V_{H-1}^{\star} = \max_{a} Q_{H-1}^{\star}(s, a) = Q_{H-1}^{\star}(s, \pi_{H-1}^{\star}(s))$$

$$Q_h^{\star}(s,a) = r(s,a) + \mathbb{E}_{s' \sim P(s,a)} V_{h+1}^{\star}(s')$$
$$\pi_h^{\star}(s) = \arg\max_a Q_h^{\star}(s,a), \quad V_h^{\star} = \max_a Q_h^{\star}(s,a)$$

a)
$$\pi_{H-1}^{\star}(s) = \arg\max_{a} Q_{H-1}^{\star}(s, a)$$

2. Assuming we have computed V_{h+1}^{\star} , $h \leq H - 2$, i.e., assuming we know how to perform optimally starting at h + 1, then:

Recall: Upper Confidence Bound (UCB)

For t = 0, ..., T - 1:

Choose the arm with the highest upper confidence bound, i.e., $a_t = \arg \max_{k \in \{1, \dots, K\}} \hat{\mu}_t^{(k)} + \sqrt{\ln(2TK/\delta)/2N_t^{(k)}}$

Recall: Upper Confidence Bound (UCB)

For t = 0, ..., T - 1:

<u>High-level summary</u>: estimate action quality, add exploration bonus, then argmax

Choose the arm with the highest upper confidence bound, i.e., $a_t = \arg \max_{k \in \{1, \dots, K\}} \hat{\mu}_t^{(k)} + \sqrt{\ln(2TK/\delta)/2N_t^{(k)}}$

- Feedback from last lecture
- Recap
 - Warm-up: ExploreThenExploit for deterministic MDPs
 - Why we don't want to treat MDPs as big bandits
 - UCB-VI for tabular MDPs
 - UCB-VI for linear MDPs

How we do find π^{\star} in an unknown MDP?

- Episodic setting with an unknown MDP:
 - suppose we start at $s_0 \sim \mu$.
 - We act for H steps. ullet
 - Then repeat. lacksquare
- How do we find π^* ?
- How do we get low regret? \bullet
- Let's start with the setting where the MDP is deterministic.
 - So both r(s, a) and $P(\cdot | s, a)$ are deterministic.

S states

S states

 \bullet

S states

Let's say a state-action pair (s,a) is known if both NextState(s, a) and r(s, a) are known.

- \bullet
 - When is (s,a) known after a set of episodes? \bullet

S states

Let's say a state-action pair (s,a) is known if both NextState(s, a) and r(s, a) are known.

- Let's say a state-action pair (s,a) is known if both NextState(s, a) and r(s, a) are known. \bullet When is (s,a) known after a set of episodes? \bullet

 - Let *K* be the set of known state-action pairs after a set of episodes

- Let's say a state-action pair (s,a) is known if both NextState(s, a) and r(s, a) are known. \bullet When is (s,a) known after a set of episodes? \bullet

 - Let *K* be the set of known state-action pairs after a set of episodes
- Define the BonusMDP M_{K} with respect to the current (known) set K:

- Let's say a state-action pair (s,a) is known if both NextState(s, a) and r(s, a) are known. \bullet When is (s,a) known after a set of episodes? \bullet

 - Let K be the set of known state-action pairs after a set of episodes
- Define the BonusMDP M_{K} with respect to the current (known) set K:
 - For $(s, a) \in K$,

- Let's say a state-action pair (s,a) is known if both NextState(s, a) and r(s, a) are known. When is (s,a) known after a set of episodes?

 - Let K be the set of known state-action pairs after a set of episodes
- Define the BonusMDP M_{K} with respect to the current (known) set K:
 - For $(s, a) \in K$,
 - define the dynamics in M_{K} to be same as in the true MDP. (note this is possible for us to do for $(s, a) \in K$)

- Let's say a state-action pair (s,a) is known if both NextState(s, a) and r(s, a) are known. When is (s,a) known after a set of episodes?

 - Let K be the set of known state-action pairs after a set of episodes
- Define the BonusMDP M_{K} with respect to the current (known) set K:
 - For $(s, a) \in K$,
 - define the dynamics in M_{K} to be same as in the true MDP. (note this is possible for us to do for $(s, a) \in K$)
 - define the reward as 0 for these state-action pairs.

- Let's say a state-action pair (s,a) is known if both NextState(s, a) and r(s, a) are known. lacksquareWhen is (s,a) known after a set of episodes?

 - Let K be the set of known state-action pairs after a set of episodes lacksquare
- Define the BonusMDP M_{K} with respect to the current (known) set K:
 - For $(s, a) \in K$,
 - define the dynamics in M_{K} to be same as in the true MDP. (note this is possible for us to do for $(s, a) \in K$)
 - define the reward as 0 for these state-action pairs.
 - For $(s, a) \notin K$, assume we transition to a special state s^{\star} which is absorbing (i.e., we stay at s^{\star}) and we always achieve a reward of 1 at this absorbing state.

- Let's say a state-action pair (s,a) is known if both NextState(s, a) and r(s, a) are known. \bullet When is (s,a) known after a set of episodes?

 - Let *K* be the set of known state-action pairs after a set of episodes lacksquare
- Define the BonusMDP M_{K} with respect to the current (known) set K:
 - For $(s, a) \in K$,
 - define the dynamics in M_{K} to be same as in the true MDP. (note this is possible for us to do for $(s, a) \in K$)
 - define the reward as 0 for these state-action pairs.
 - stay at s^{\star}) and we always achieve a reward of 1 at this absorbing state.
- For $(s, a) \notin K$, assume we transition to a special state s^* which is absorbing (i.e., we • Let π_K^{\star} and V_K^{\star} be the optimal policy and value in M_K .

- Let's say a state-action pair (s,a) is known if both NextState(s, a) and r(s, a) are known. \bullet When is (s,a) known after a set of episodes?

 - Let *K* be the set of known state-action pairs after a set of episodes
- Define the BonusMDP M_{K} with respect to the current (known) set K:
 - For $(s, a) \in K$,
 - define the dynamics in M_{K} to be same as in the true MDP. (note this is possible for us to do for $(s, a) \in K$)
 - define the reward as 0 for these state-action pairs.
 - stay at s^{\star}) and we always achieve a reward of 1 at this absorbing state.
- For $(s, a) \notin K$, assume we transition to a special state s^* which is absorbing (i.e., we • Let π_K^{\star} and V_K^{\star} be the optimal policy and value in M_K .
- Theorem: Assume $H \ge |S|$. (in at most |S| steps).

If K does not contain all state-action pairs, then $V_K^* > 0$ and π_K^* will reach some $(s, a) \notin K$

ullet

S states

Let's say a state-action pair (s,a) is known if both NextState(s, a) and r(s, a) are known.

- Let's say a state-action pair (s,a) is known if both NextState(s, a) and r(s, a) are known. \bullet Let K be the set of known state-action pairs after a set of episodes \bullet

S states

- \bullet
 - Let *K* be the set of known state-action pairs after a set of episodes \bullet
- Init: $K = \emptyset$

S states

Let's say a state-action pair (s,a) is known if both NextState(s, a) and r(s, a) are known.

- \bullet
 - Let K be the set of known state-action pairs after a set of episodes \bullet
- Init: $K = \emptyset$
- While not terminated

S states

Let's say a state-action pair (s,a) is known if both NextState(s, a) and r(s, a) are known.
- \bullet
 - Let K be the set of known state-action pairs after a set of episodes \bullet
- Init: $K = \emptyset$
- While not terminated
 - Compute π_K^{\star} and V_K^{\star} for M_K .

S states

Let's say a state-action pair (s,a) is known if both NextState(s, a) and r(s, a) are known.

- Let's say a state-action pair (s,a) is known if both NextState(s, a) and r(s, a) are known. \bullet Let K be the set of known state-action pairs after a set of episodes \bullet
- Init: $K = \emptyset$
- While not terminated
 - Compute π_K^{\star} and V_K^{\star} for M_K .
 - If $V_{\kappa}^{\star} > 0$, execute π_{κ}^{\star} and update the known set K

S states

- Let's say a state-action pair (s,a) is known if both NextState(s, a) and r(s, a) are known. \bullet Let K be the set of known state-action pairs after a set of episodes \bullet
- Init: $K = \emptyset$
- While not terminated
 - Compute π_{K}^{\star} and V_{K}^{\star} for M_{K} .
 - If $V_K^{\star} > 0$, execute π_K^{\star} and update the known set K
 - Else: terminate \bullet

S states

- Let's say a state-action pair (s,a) is known if both NextState(s, a) and r(s, a) are known. \bullet Let K be the set of known state-action pairs after a set of episodes \bullet
- Init: $K = \emptyset$
- While not terminated
 - Compute π_{K}^{\star} and V_{K}^{\star} for M_{K} .
 - If $V_{\kappa}^{\star} > 0$, execute π_{κ}^{\star} and update the known set K
 - Else: terminate \bullet
- Return: the optimal policy in the known MDP.

S states

- Let's say a state-action pair (s,a) is known if both NextState(s, a) and r(s, a) are known. \bullet Let K be the set of known state-action pairs after a set of episodes \bullet
- Init: $K = \emptyset$
- While not terminated
 - Compute π_{K}^{\star} and V_{K}^{\star} for M_{K} .
 - If $V_K^{\star} > 0$, execute π_K^{\star} and update the known set K
 - Else: terminate \bullet
- Return: the optimal policy in the known MDP.

Theorem: Assuming $H \ge |S|$, this algorithm returns an optimal policy in most $|S| \cdot |A|$ trajectories.

S states

• Basically formulating shortest path as an optimal policy in some modified MDP

- Basically formulating shortest path as an optimal policy in some modified MDP •
- How do we modify the algorithm for general H? •

- Basically formulating shortest path as an optimal policy in some modified MDP ullet
- How do we modify the algorithm for general H? lacksquare
 - Ignore any states that can't be reached in at most H steps! ullet

- Basically formulating shortest path as an optimal policy in some modified MDP lacksquare
- How do we modify the algorithm for general H? ullet
 - Ignore any states that can't be reached in at most H steps! \bullet
- What is the regret of this algorithm? lacksquare

- Basically formulating shortest path as an optimal policy in some modified MDP lacksquare
- How do we modify the algorithm for general H? ullet
 - Ignore any states that can't be reached in at most H steps! \bullet
- What is the regret of this algorithm? lacksquare
 - Can be arbitrarily bad while searching, and searches for |S||A| steps: |S||A|Hlacksquare

- Basically formulating shortest path as an optimal policy in some modified MDP
- How do we modify the algorithm for general H?
 - Ignore any states that can't be reached in at most H steps!
- What is the regret of this algorithm?
 - Can be arbitrarily bad while searching, and searches for |S||A| steps: |S||A|H
- Really needed determinism; for non-deterministic MDPs, need to think more like bandits...

I H? n at most H steps

- Feedback from last lecture
- Recap
- Warm-up: ExploreThenExploit for deterministic MDPs
 - Why we don't want to treat MDPs as big bandits
 - UCB-VI for tabular MDPs
 - UCB-VI for linear MDPs

Q: given a discrete MDP, how many unique deterministic policies are there?

Q: given a discrete MDP, how many unique deterministic policies are there?

 $\left(|A|^{|S|} \right)^{H}$

Q: given a discrete MDP, how many unique deterministic policies are there?

So treating each policy as an "arm" and running UCB gives us regret $\tilde{O}(\sqrt{|A|^{|S|H}N})$

 $\left(|A|^{|S|} \right)^{H}$

Q: given a discrete MDP, how many unique deterministic policies are there?

This seems bad, so are MDPs just super hard or can we do better?

 $\left(|A|^{|S|} \right)^{H}$

So treating each policy as an "arm" and running UCB gives us regret $\tilde{O}(\sqrt{|A|^{|S|H}N})$

 $S = \{a, b\},\$

All state transitions happen with probability 1/2 for all actions

Reward function

$$A = \{1, 2\}, H = 2$$

n:
$$r(a,1) = r(b,1) = 0$$

 $r(a,2) = r(b,2) = 1$

- - **Reward function**

 $S = \{a, b\}, A = \{1, 2\}, H = 2$

All state transitions happen with probability 1/2 for all actions

n:
$$r(a,1) = r(b,1) = 0$$

 $r(a,2) = r(b,2) = 1$

Suppose we have a lot of data already on a policy $\pi^{(1)}$ that always takes action 1 and a policy $\pi^{(2)}$ that always takes action 2 (note $\pi^{(2)} = \pi^{\star}$)

- - Reward function
- What do we know about a policy $\pi^{(3)}$ which always takes action 1 in the first time step, and

 $S = \{a, b\}, A = \{1, 2\}, H = 2$

All state transitions happen with probability 1/2 for all actions

n:
$$r(a,1) = r(b,1) = 0$$

 $r(a,2) = r(b,2) = 1$

Suppose we have a lot of data already on a policy $\pi^{(1)}$ that always takes action 1 and a policy $\pi^{(2)}$ that always takes action 2 (note $\pi^{(2)} = \pi^{\star}$)

always takes action 2 at the second time step?

- - **Reward function**
- What do we know about a policy $\pi^{(3)}$ which always takes action 1 in the first time step, and

 $S = \{a, b\}, A = \{1, 2\}, H = 2$

All state transitions happen with probability 1/2 for all actions

n:
$$r(a,1) = r(b,1) = 0$$

 $r(a,2) = r(b,2) = 1$

Suppose we have a lot of data already on a policy $\pi^{(1)}$ that always takes action 1 and a policy $\pi^{(2)}$ that always takes action 2 (note $\pi^{(2)} = \pi^{\star}$)

always takes action 2 at the second time step?

Everything: we have a lot of data on every state-action reward and transition!

- - **Reward function**
- What do we know about a policy $\pi^{(3)}$ which always takes action 1 in the first time step, and

 $S = \{a, b\}, A = \{1, 2\}, H = 2$

All state transitions happen with probability 1/2 for all actions

n:
$$r(a,1) = r(b,1) = 0$$
$$r(a,2) = r(b,2) = 1$$

Suppose we have a lot of data already on a policy $\pi^{(1)}$ that always takes action 1 and a policy $\pi^{(2)}$ that always takes action 2 (note $\pi^{(2)} = \pi^{\star}$)

always takes action 2 at the second time step?

Everything: we have a lot of data on every state-action reward and transition!

If we treat the MDP as a bandit, we treat $\pi^{(3)}$ as a new "arm" about which we know nothing...

- - **Reward function**
- What do we know about a policy $\pi^{(3)}$ which always takes action 1 in the first time step, and

 $|A|^{|S|H} = 2^4 = 16$ $S = \{a, b\}, A = \{1, 2\}, H = 2$

All state transitions happen with probability 1/2 for all actions

n:
$$r(a,1) = r(b,1) = 0$$

 $r(a,2) = r(b,2) = 1$

Suppose we have a lot of data already on a policy $\pi^{(1)}$ that always takes action 1 and a policy $\pi^{(2)}$ that always takes action 2 (note $\pi^{(2)} = \pi^{\star}$)

always takes action 2 at the second time step?

Everything: we have a lot of data on every state-action reward and transition!

If we treat the MDP as a bandit, we treat $\pi^{(3)}$ as a new "arm" about which we know nothing...

- Feedback from last lecture
- Recap
- Warm-up: ExploreThenExploit for deterministic MDPs
- Why we don't want to treat MDPs as big bandits
 - UCB-VI for tabular MDPs
 - UCB-VI for linear MDPs

Assume reward function $r_h(s, a)$ known

Inside iteration *n* :

Assume reward function $r_h(s, a)$ known

Inside iteration *n* :

Use all previous data to estimate dynamics $\{\hat{P}_{h}^{n}\}_{h=0}^{H-1}$

Assume reward function $r_h(s, a)$ known

Inside iteration *n* :

Use all previous data to estimate dynamics $\{\hat{P}_{h}^{n}\}_{h=0}^{H-1}$

Design reward bonus $b_h^n(s, a), \forall s, a, h$

Assume reward function $r_h(s, a)$ known

Inside iteration *n* :

Use all previous data to estimate dynamics $\{\hat{P}_{h}^{n}\}_{h=0}^{H-1}$

Design reward bonus $b_h^n(s, a), \forall s, a, h$

Optimistic planning with learned model: $\pi^n = VI\left(\{\hat{P}_h^n, r_h + b_h^n\}_{h=1}^{H-1}\right)$

Assume reward function $r_h(s, a)$ known

Inside iteration *n* :

- Use all previous data to estimate dynamics $\{\hat{P}_{h}^{n}\}_{h=0}^{H-1}$
 - Design reward bonus $b_h^n(s, a), \forall s, a, h$
- Optimistic planning with learned model: $\pi^n = VI\left(\{\hat{P}_h^n, r_h + b_h^n\}_{h=1}^{H-1}\right)$
- Collect a new trajectory by executing π^n in the true system $\{P_h\}_{h=0}^{H-1}$ starting from s_0

$$\mathcal{D}_h^n = \{s_h^i\}$$

Model Estimation

 $\{a_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\}_{i=1}^{n-1}, \forall h$

$$\mathcal{D}_{h}^{n} = \{s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\}_{i=1}^{n-1}, \forall h$$

Let's also maintain some statistics using these datasets:

$$\mathcal{D}_{h}^{n} = \{s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\}_{i=1}^{n-1}, \forall h$$

Let's also maintain some statistics using these datasets:

$$N_h^n(s,a) = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i) = (s,a)\}, \quad \forall s, a, h,$$

$$\mathcal{D}_{h}^{n} = \{s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\}_{i=1}^{n-1}, \forall h$$

Let's also maintain some statistics using these datasets:

$$N_h^n(s,a) = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i) = (s,a)\}, \quad \forall s, a, h,$$
$$N_h^n(s, a, s') = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i, s_{h+1}^i) = (s, a, s')\}, \quad \forall s, a, s', h$$

$$\mathcal{D}_{h}^{n} = \{s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\}_{i=1}^{n-1}, \forall h$$

Let's also maintain some statistics using these datasets:

$$N_h^n(s,a) = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i) = (s,a)\}, \quad \forall s, a, h,$$
$$N_h^n(s, a, s') = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i, s_{h+1}^i) = (s, a, s')\}, \quad \forall s, a, s', h$$

Estimate model *I*

 $\hat{P}^n_h(s' \mid s, a)$

$$\hat{P}_h^n(s'|s,a), \forall s,a,s',h$$
:

$$u) = \frac{N_h^n(s, a, s')}{N_h^n(s, a)}$$

Reward Bonus Design and Value Iteration

Recall: $\mathscr{D}_{h}^{n} = \{s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\}_{i=1}^{n-1}, \forall h, \Lambda$

$$N_h^n(s,a) = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i) = (s,a)\}, \forall s, a, h,$$

Reward Bonus Design and Value Iteration

Recall: $\mathscr{D}_{h}^{n} = \{s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\}_{i=1}^{n-1}, \forall h, \Lambda$

Define: $b_h^n(s, a) = cH$

$$N_h^n(s,a) = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i) = (s,a)\}, \forall s, a, h,$$

$$\frac{\log(|S||A|HN/\delta)}{N_h^n(s,a)}$$
Recall: $\mathcal{D}_{h}^{n} = \{s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\}_{i=1}^{n-1}, \forall h, \Lambda$

Define: $b_h^n(s, a) = cH$

$$N_h^n(s,a) = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i) = (s,a)\}, \forall s, a, h,$$

$$\sqrt{\frac{\log(|S||A|HN/\delta)}{N_h^n(s,a)}}$$

Encourage to explore new state-actions

 $\mathcal{D}_{h}^{n} = \{s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\}_{i=1}^{n-1}, \forall h, \Lambda$ Recall:

Define: $b_h^n(s, a) = cH$

$$N_h^n(s,a) = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i) = (s,a)\}, \forall s, a, h,$$

$$\sqrt{\frac{\log(|S||A|HN/\delta)}{N_h^n(s,a)}}$$

Encourage to explore new state-actions

Value Iteration (aka DP) at episode *n* using $\{\hat{P}_{h}^{n}\}_{h}$ and $\{r_{h} + b_{h}^{n}\}_{h}$

Recall:
$$\mathscr{D}_h^n = \{s_h^i, a_h^i, s_{h+1}^i\}_{i=1}^{n-1}, \forall h, N_h^n(s, a) = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i) = (s, a)\}, \forall s, a, h, ds \in \mathbb{N}$$

Define: $b_h^n(s, a) = cH$

$$\hat{V}_{H}^{n}(s) = 0, \ \forall s$$

$$\sqrt{\frac{\log(|S||A|HN/\delta)}{N_h^n(s,a)}}$$

Encourage to explore new state-actions

Value Iteration (aka DP) at episode *n* using $\{\hat{P}_{h}^{n}\}_{h}$ and $\{r_{h} + b_{h}^{n}\}_{h}$

Recall:
$$\mathscr{D}_h^n = \{s_h^i, a_h^i, s_{h+1}^i\}_{i=1}^{n-1}, \forall h, N_h^n(s, a) = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i) = (s, a)\}, \forall s, a, h, ds \in \mathbb{N}$$

Define: $b_h^n(s, a) = cH$

$$\hat{V}_{H}^{n}(s) = 0, \ \forall s \qquad \hat{Q}_{h}^{n}(s,a) = \min \left\{ \right.$$

$$\sqrt{\frac{\log(|S||A|HN/\delta)}{N_h^n(s,a)}}$$

Encourage to explore new state-actions

Value Iteration (aka DP) at episode *n* using $\{\hat{P}_{h}^{n}\}_{h}$ and $\{r_{h} + b_{h}^{n}\}_{h}$ $\left\{r_h(s,a) + b_h^n(s,a) + \mathbb{E}_{s' \sim \hat{P}_h^n(\cdot|s,a)}\left[\hat{V}_{h+1}^n(s')\right], \quad H\right\}, \ \forall s, a$

Recall:
$$\mathscr{D}_h^n = \{s_h^i, a_h^i, s_{h+1}^i\}_{i=1}^{n-1}, \forall h, N_h^n(s, a) = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i) = (s, a)\}, \forall s, a, h, ds \in \mathbb{N}$$

Define: $b_h^n(s, a) = cH_1$

Value Iteration (aka DP) at episode *n* using
$$\{\hat{P}_{h}^{n}\}_{h}$$
 and $\{r_{h} + b_{h}^{n}\}_{h}$
 $\hat{V}_{H}^{n}(s) = 0, \forall s$ $\hat{Q}_{h}^{n}(s, a) = \min\left\{r_{h}(s, a) + b_{h}^{n}(s, a) + \mathbb{E}_{s' \sim \hat{P}_{h}^{n}(\cdot|s, a)}\left[\hat{V}_{h+1}^{n}(s')\right], H\right\}, \forall s, a$

$$\hat{V}_h^n(s) = \max_a \hat{Q}_h^n(s, a),$$

$$\frac{\log(|S||A|HN/\delta)}{N_h^n(s,a)}$$

Encourage to explore new state-actions

$$\pi_h^n(s) = \arg\max_a \hat{Q}_h^n(s, a), \ \forall s$$

Recall:
$$\mathscr{D}_h^n = \{s_h^i, a_h^i, s_{h+1}^i\}_{i=1}^{n-1}, \forall h, N_h^n(s, a) = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i) = (s, a)\}, \forall s, a, h, ds \in \mathbb{N}$$

Define: $b_h^n(s, a) = cH_1$

Value Iteration (aka DP) at episode *n* using
$$\{\hat{P}_{h}^{n}\}_{h}$$
 and $\{r_{h} + b_{h}^{n}\}_{h}$
 $\hat{V}_{H}^{n}(s) = 0, \forall s$ $\hat{Q}_{h}^{n}(s, a) = \min\left\{r_{h}(s, a) + b_{h}^{n}(s, a) + \mathbb{E}_{s' \sim \hat{P}_{h}^{n}(\cdot|s, a)}\left[\hat{V}_{h+1}^{n}(s')\right], H\right\}, \forall s, a$
 $\hat{V}_{h}^{n}(s) = \max_{a} \hat{Q}_{h}^{n}(s, a), \quad \pi_{h}^{n}(s) = \arg\max_{a} \hat{Q}_{h}^{n}(s, a), \forall s$ $\left\|\hat{V}_{h}^{n}\right\|_{\infty} \leq H, \forall$

$$\hat{V}_h^n(s) = \max_a \hat{Q}_h^n(s, a),$$

$$\sqrt{\frac{\log(|S||A|HN/\delta)}{N_h^n(s,a)}}$$

Encourage to explore new state-actions

Recall:
$$\mathscr{D}_h^n = \{s_h^i, a_h^i, s_{h+1}^i\}_{i=1}^{n-1}, \forall h, N_h^n(s, a) = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i) = (s, a)\}, \forall s, a, h, ds \in \mathbb{N}$$

Define: $b_h^n(s, a) = cH_1$

Value Iteration (aka DP) at episode *n* using
$$\{\hat{P}_{h}^{n}\}_{h}$$
 and $\{r_{h} + b_{h}^{n}\}_{h}$
 $\hat{V}_{H}^{n}(s) = 0, \forall s$ $\hat{Q}_{h}^{n}(s, a) = \min\left\{r_{h}(s, a) + b_{h}^{n}(s, a) + \mathbb{E}_{s' \sim \hat{P}_{h}^{n}(\cdot|s, a)}\left[\hat{V}_{h+1}^{n}(s')\right], H\right\}, \forall s, a$
 $\hat{V}_{h}^{n}(s) = \max_{a} \hat{Q}_{h}^{n}(s, a), \quad \pi_{h}^{n}(s) = \arg\max_{a} \hat{Q}_{h}^{n}(s, a), \forall s$ $\left\|\hat{V}_{h}^{n}\right\|_{\infty} \leq H, \forall$

$$\hat{V}_h^n(s) = \max_a \hat{Q}_h^n(s, a),$$

 $b_h^n(s, a)$ specifically chosen so that $V_h^{\star}(s) \leq \hat{V}_h^n(s)$ with high probability

$$\sqrt{\frac{\log(|S||A|HN/\delta)}{N_h^n(s,a)}}$$

Encourage to explore new state-actions

UCBVI: Put All Together

For $n = 1 \rightarrow N$:

1. Set
$$N_h^n(s, a) = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i) = (s, a)\}$$

2. Set $N_h^n(s, a, s') = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i, s_{h+1}^i)\}$
3. Estimate $\hat{P}^n : \hat{P}_h^n(s' | s, a) = \frac{N_h^n(s, a, a)}{N_h^n(s, a)}$

4. Plan: $\pi^n = \operatorname{VI}\left(\{\hat{P}_h^n, r_h + b_h^n\}_h\right)$, with

5. Execute π^n : { $s_0^n, a_0^n, r_0^n, \dots, s_{H-1}^n, a_{H-1}^n, r_{H-1}^n, s_H^n$ }

- $a)\}, \forall s, a, h$
- $) = (s, a, s') \}, \forall s, a, a', h$

$$\frac{s')}{p}, \forall s, a, s', h$$

$$b_h^n(s, a) = cH_{\sqrt{\frac{\log(|S||A|HN/\delta)}{N_h^n(s, a)}}}$$

Upper bound per-episode regret: $V_0^{\star}(s_0) - V_0^{\pi^n}(s_0) \leq \hat{V}_0^n(s_0) - V_0^{\pi^n}(s_0)$ by construction of b_h^n

1. What if $\hat{V}_0^n(s_0) - V_0^{\pi^n}(s_0)$ is small?

Upper bound per-episode regret: $V_0^{\star}(s_0) - V_0^{\pi^n}(s_0) \leq \hat{V}_0^n(s_0) - V_0^{\pi^n}(s_0)$ by construction of b_h^n

Upper bound per-episode regret: $V_0^{\star}(s_0) - V_0^{\pi^n}(s_0) \leq \hat{V}_0^n(s_0) - V_0^{\pi^n}(s_0)$ by construction of b_h^n

1. What if $\hat{V}_0^n(s_0) - V_0^{\pi^n}(s_0)$ is small?

Then π^n is close to π^* , i.e., we are doing <u>exploitation</u>

Upper bound per-episode regret: $V_0^{\star}(s_0) - V_0^{\pi^n}(s_0) \leq \hat{V}_0^n(s_0) - V_0^{\pi^n}(s_0)$ by construction of b_h^n

2. What if $\hat{V}_0^n(s_0) - V_0^{\pi^n}(s_0)$ is large?

1. What if $\hat{V}_0^n(s_0) - V_0^{\pi^n}(s_0)$ is small?

Then π^n is close to π^* , i.e., we are doing <u>exploitation</u>

Upper bound per-episode regret: $V_0^{\star}(s_0) - V_0^{\pi^n}(s_0) \leq \hat{V}_0^n(s_0) - V_0^{\pi^n}(s_0)$ by construction of b_h^n

2. What if $\hat{V}_0^n(s_0) - V_0^{\pi^n}(s_0)$ is large? Some $b_h^n(s, a)$ must be large (or some $\hat{P}_h^n(\cdot | s, a)$ estimation errors must be large, but with high probability any $\hat{P}_{h}^{n}(\cdot | s, a)$ with high error must have small $N_{h}^{n}(s, a)$ and hence high $b_{h}^{n}(s, a)$

1. What if $\hat{V}_0^n(s_0) - V_0^{\pi^n}(s_0)$ is small?

Then π^n is close to π^* , i.e., we are doing <u>exploitation</u>

Upper bound per-episode regret: $V_0^{\star}(s_0) - V_0^{\pi^n}(s_0) \leq \hat{V}_0^n(s_0) - V_0^{\pi^n}(s_0)$ by construction of b_h^n

2. What if $\hat{V}_0^n(s_0) - V_0^{\pi^n}(s_0)$ is large?

Some $b_h^n(s, a)$ must be large (or some $\hat{P}_h^n(\cdot | s, a)$ estimation errors must be large, but with high probability

1. What if $\hat{V}_0^n(s_0) - V_0^{\pi^n}(s_0)$ is small?

Then π^n is close to π^* , i.e., we are doing <u>exploitation</u>

any $\hat{P}_{h}^{n}(\cdot | s, a)$ with high error must have small $N_{h}^{n}(s, a)$ and hence high $b_{h}^{n}(s, a)$

Large $b_h^n(s, a)$ means π^n is being encouraged to do (s, a), since it will apparently have very high reward, i.e., exploration

Upper bound per-episode regret: $V_0^{\star}(s_0) - V_0^{\pi^n}(s_0) \leq \hat{V}_0^n(s_0) - V_0^{\pi^n}(s_0)$ by construction of b_h^n

2. What if $\hat{V}_0^n(s_0) - V_0^{\pi^n}(s_0)$ is large?

Some $b_h^n(s, a)$ must be large (or some $\hat{P}_h^n(\cdot | s, a)$ estimation errors must be large, but with high probability any $\hat{P}_{h}^{n}(\cdot | s, a)$ with high error must have small $N_{h}^{n}(s, a)$ and hence high $b_{h}^{n}(s, a)$

$$\mathbb{E}\left[\mathsf{Regret}_{N}\right] := \mathbb{E}\left[\sum_{n=1}^{N} \left(V^{\star} - V^{\pi^{n}}\right)\right] \leq \widetilde{O}\left(H^{2}\sqrt{|S||A|N}\right)$$

1. What if $\hat{V}_0^n(s_0) - V_0^{\pi^n}(s_0)$ is small?

Then π^n is close to π^* , i.e., we are doing <u>exploitation</u>

Large $b_h^n(s, a)$ means π^n is being encouraged to do (s, a), since it will apparently have very high reward, i.e., exploration

- Feedback from last lecture
- Recap
- Warm-up: ExploreThenExploit for deterministic MDPs
- Why we don't want to treat MDPs as big bandits
- UCB-VI for tabular MDPs
 - UCB-VI for linear MDPs

Finite horizon time-dependent episodic MDP $\mathcal{M} = \{S, A, H, \{r\}_h, \{P\}_h, s_0\}$

S & A could be large or even continuous, hence poly(|S|, |A|) is not acceptable

S & A could be large or even continuous, hence poly(|S|, |A|) is not acceptable

$$P_h(s'|s,a) = \mu_h^{\star}(s') \cdot \phi(s,a), \quad \mu_h^{\star} : S \mapsto \mathbb{R}^d, \quad \phi : S \times A \mapsto \mathbb{R}^d$$

Finite horizon time-dependent episodic MDP $\mathcal{M} = \{S, A, H, \{r\}_h, \{P\}_h, s_0\}$

S & A could be large or even continuous, hence poly(|S|, |A|) is not acceptable

$$P_{h}(s'|s,a) = \mu_{h}^{\star}(s') \cdot \phi(s,a), \quad \mu_{h}^{\star} : S \mapsto \mathbb{R}^{d}, \quad \phi : S \times A \mapsto \mathbb{R}^{d}$$
$$r(s,a) = \theta_{h}^{\star} \cdot \phi(s,a), \quad \theta_{h}^{\star} \in \mathbb{R}^{d}$$

Finite horizon time-dependent episodic MDP $\mathcal{M} = \{S, A, H, \{r\}_h, \{P\}_h, s_0\}$

S & A could be large or even continuous, hence poly(|S|, |A|) is not acceptable

$$P_{h}(s'|s,a) = \mu_{h}^{\star}(s') \cdot \phi(s,a), \quad \mu_{h}^{\star} : S \mapsto \mathbb{R}^{d}, \quad \phi : S \times A \mapsto \mathbb{R}^{d}$$
$$r(s,a) = \theta_{h}^{\star} \cdot \phi(s,a), \quad \theta_{h}^{\star} \in \mathbb{R}^{d}$$

Finite horizon time-dependent episodic MDP $\mathcal{M} = \{S, A, H, \{r\}_h, \{P\}_h, s_0\}$

Feature map ϕ is known to the learner! (We assume reward is known, i.e., θ^{\star} is known)

 $V_H^{\star}(s) = 0, \forall s,$

$$V_H^{\star}(s) = 0, \forall s,$$

$$Q_{h}^{\star}(s,a) = r_{h}(s,a) + \mathbb{E}_{s' \sim P_{h}(\cdot|s,a)} V_{h+1}^{\star}(s')$$

$$\begin{aligned} V_{H}^{\star}(s) &= 0, \forall s, \\ Q_{h}^{\star}(s,a) &= r_{h}(s,a) + \mathbb{E}_{s' \sim P_{h}(\cdot|s,a)} V_{h+1}^{\star}(s') \\ &= \theta_{h}^{\star} \cdot \phi(s,a) + \left(\mu_{h}^{\star}\phi(s,a)\right)^{\mathsf{T}} V_{h+1}^{\star} \end{aligned}$$

$$\begin{aligned} V_{H}^{\star}(s) &= 0, \forall s, \\ Q_{h}^{\star}(s,a) &= r_{h}(s,a) + \mathbb{E}_{s' \sim P_{h}(\cdot \mid s,a)} V_{h+1}^{\star}(s') \\ &= \theta_{h}^{\star} \cdot \phi(s,a) + \left(\mu_{h}^{\star} \phi(s,a)\right)^{\top} V_{h+1}^{\star} \\ &= \phi(s,a)^{\top} \left(\theta_{h}^{\star} + (\mu_{h}^{\star})^{\top} V_{h+1}^{\star}\right) \end{aligned}$$

$$\begin{aligned} V_{H}^{\star}(s) &= 0, \forall s, \\ Q_{h}^{\star}(s,a) &= r_{h}(s,a) + \mathbb{E}_{s' \sim P_{h}(\cdot \mid s,a)} V_{h+1}^{\star}(s') \\ &= \theta_{h}^{\star} \cdot \phi(s,a) + \left(\mu_{h}^{\star}\phi(s,a)\right)^{\top} V_{h+1}^{\star} \\ &= \phi(s,a)^{\top} \left(\theta_{h}^{\star} + (\mu_{h}^{\star})^{\top} V_{h+1}^{\star}\right) \\ &= \phi(s,a)^{\top} w_{h} \end{aligned}$$

$$V_{H}^{\star}(s) = 0, \forall s,$$

$$Q_{h}^{\star}(s, a) = r_{h}(s, a) + \mathbb{E}_{s' \sim P_{h}(\cdot | s, a)} V_{h+1}^{\star}(s')$$

$$= \theta_{h}^{\star} \cdot \phi(s, a) + (\mu_{h}^{\star} \phi(s, a))^{\top} V_{h+1}^{\star}$$

$$= \phi(s, a)^{\top} (\theta_{h}^{\star} + (\mu_{h}^{\star})^{\top} V_{h+1}^{\star})$$

$$= \phi(s, a)^{\top} w_{h}$$

$$T_{h}^{\star}(s) = \max \phi(s, a)^{\top} w_{h}, \quad \pi_{h}^{\star}(s) = \arg \max \phi(s, a)^{\top} w_{h}$$

a

$$V_{H}^{\star}(s) = 0, \forall s,$$

$$Q_{h}^{\star}(s, a) = r_{h}(s, a) + \mathbb{E}_{s' \sim P_{h}(\cdot | s, a)} V_{h+1}^{\star}(s')$$

$$= \theta_{h}^{\star} \cdot \phi(s, a) + (\mu_{h}^{\star} \phi(s, a))^{\top} V_{h+1}^{\star}$$

$$= \phi(s, a)^{\top} (\theta_{h}^{\star} + (\mu_{h}^{\star})^{\top} V_{h+1}^{\star})$$

$$= \phi(s, a)^{\top} w_{h}$$

$$T_{h}^{\star}(s) = \max \phi(s, a)^{\top} w_{h}, \quad \pi_{h}^{\star}(s) = \arg \max \phi(s, a)^{\top} w_{h}$$

Indeed we can show that $Q_h^{\pi}(\cdot, \cdot)$ Is linear with respect to ϕ as well, for any π, h

UCBVI in Linear MDPs

1. Learn transition model $\{\hat{P}_h^n\}_{h=0}^{H-1}$ from all previous data $\{s_h^i, a_h^i, s_{h+1}^i\}_{i=0}^{n-1}$

UCBVI in Linear MDPs

1. Learn transition model $\{\hat{P}_{h}^{n}\}_{h=0}^{H-1}$ from all previous data $\{s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\}_{i=0}^{n-1}$

2. Design reward bonus $b_h^n(s, a), \forall s, a$

UCBVI in Linear MDPs

1. Learn transition model $\{\hat{P}_{h}^{n}\}_{h=0}^{H-1}$ from all previous data $\{s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\}_{i=0}^{n-1}$

3. Plan: $\pi^{n+1} =$

UCBVI in Linear MDPs

2. Design reward bonus $b_h^n(s, a), \forall s, a$

$$\mathsf{VI}\left(\{\hat{P}^n\}_h,\{r_h+b_h^n\}\right)$$

Denote $\delta(s) \in \mathbb{R}^{|S|}$ with zero everywhere except the entry corresponding to s

Denote $\delta(s) \in \mathbb{R}^{|S|}$ with zero everywhere except the entry corresponding to s

Given *s*, *a*, note that $\mathbb{E}_{s' \sim P_h(\cdot | s, a)} \left[\delta(s') \right] = P_h(\cdot | s, a) = \mu_h^* \phi(s, a)$

Given s, a, note that $\mathbb{E}_{s' \sim P_{h}(\cdot | s, a)}$

Penalized Linear Regression:

$$\min_{\mu} \sum_{i=1}^{n-1} \|\mu \phi(s_h^i, a_h^i) - \delta(s_{h+1}^i)\|_2^2 + \lambda \|\mu\|_F^2$$

Denote $\delta(s) \in \mathbb{R}^{|S|}$ with zero everywhere except the entry corresponding to s

$$_{a)}\left[\delta(s')\right] = P_{h}(\cdot \mid s, a) = \mu_{h}^{\star}\phi(s, a)$$
How to estimate $\{\hat{P}_{h}^{n}\}_{h=0}^{H-1}$?

Given s, a, note that $\mathbb{E}_{s' \sim P_{h}(\cdot | s, a)}$

Penalized Linear Regression:

$$\min_{\mu} \sum_{i=1}^{n-1} \|\mu \phi(s_h^i, a_h^i) - \delta(s_{h+1}^i)\|_2^2 + \lambda \|\mu\|_F^2$$

$$A_{h}^{n} = \sum_{i=1}^{n-1} \phi(s_{h}^{i}, a_{h}^{i}) \phi(s_{h}^{i}, a_{h}^{i})^{\mathsf{T}} + \lambda I$$

Denote $\delta(s) \in \mathbb{R}^{|S|}$ with zero everywhere except the entry corresponding to s

$$_{a)}\left[\delta(s')\right] = P_{h}(\cdot \mid s, a) = \mu_{h}^{\star}\phi(s, a)$$

$$\widehat{\mu}_{h}^{n} = (A_{h}^{n})^{-1} \sum_{i=1}^{n-1} \delta(s_{h+1}^{i}) \phi(s_{h}^{i}, a_{h}^{i})^{\top}$$

How to estimate $\{\hat{P}_{h}^{n}\}_{h=0}^{H-1}$?

Given s, a, note that $\mathbb{E}_{s' \sim P_{h}(\cdot | s, a)}$

Penalized Linear Regression:

$$\min_{\mu} \sum_{i=1}^{n-1} \|\mu \phi(s_h^i, a_h^i) - \delta(s_{h+1}^i)\|_2^2 + \lambda \|\mu\|_F^2$$

$$A_{h}^{n} = \sum_{i=1}^{n-1} \phi(s_{h}^{i}, a_{h}^{i}) \phi(s_{h}^{i}, a_{h}^{i})^{\mathsf{T}} + \lambda I$$

 $\hat{P}_h^n(\cdot \mid s, a) = \hat{\mu}_h^n \phi(s, a)$

Denote $\delta(s) \in \mathbb{R}^{|S|}$ with zero everywhere except the entry corresponding to s

$$_{a)}\left[\delta(s')\right] = P_{h}(\cdot \mid s, a) = \mu_{h}^{\star}\phi(s, a)$$

$$\widehat{u}_{h}^{n} = (A_{h}^{n})^{-1} \sum_{i=1}^{n-1} \delta(s_{h+1}^{i}) \phi(s_{h}^{i}, a_{h}^{i})^{\mathsf{T}}$$

Chebyshev-like approach, similar to in linUCB (will cover next lecture):

How to choose $b_h^n(s, a)$?

 $b_h^n(s,a) = \beta \sqrt{\phi(s,a)^{\mathsf{T}}(A_h^n)^{-1}\phi(s,a)}, \quad \beta = \widetilde{O}(dH)$

linUCB-VI: Put All Together

For $n = 1 \rightarrow N$: 1. Set $A_h^n = \sum_{k=1}^{n-1} \phi(s_h^i, a_h^i) \phi(s_h^i, a_h^i)^{\top} + \lambda I$ $i=1 \qquad n-1 \\ \text{2. Set } \widehat{\mu}_h^n = (A_h^n)^{-1} \sum_{k=1}^{n-1} \delta(s_{h+1}^i) \phi(s_h^i, a_h^i)^\top$ i=1

3. Estimate \hat{P}^n : $\hat{P}^n_h(\cdot | s, a) = \hat{\mu}^n_h \phi(s, a)$

4. Plan: $\pi^n = \text{VI}\left(\{\hat{P}_h^n, r_h + b_h^n\}_h\right)$, with $b_h^n(s, a) = cdH_{\sqrt{\phi(s, a)^\top (A_h^n)^{-1} \phi(s, a)}}$

5. Execute π^n : { $s_0^n, a_0^n, r_0^n, \dots, s_{H-1}^n, a_{H-1}^n, r_{H-1}^n, s_H^n$ }

linUCB-VI: Put All Together

For $n = 1 \rightarrow N$: 1. Set $A_h^n = \sum_{k=1}^{n-1} \phi(s_h^i, a_h^i) \phi(s_h^i, a_h^i)^{\top} + \lambda I$ i=12. Set $\hat{\mu}_{h}^{n} = (A_{h}^{n})^{-1} \sum_{k=1}^{n-1} \delta(s_{h+1}^{i}) \phi(s_{h}^{i}, a_{h}^{i})^{\top}$ i=1

3. Estimate \hat{P}^n : $\hat{P}^n_h(\cdot | s, a) = \hat{\mu}^n_h \phi(s, a)$

4. Plan: $\pi^n = \text{VI}\left(\{\hat{P}_h^n, r_h + b_h^n\}_h\right)$, with $b_h^n(s, a) = cdH_{\sqrt{\phi(s, a)^{\top}(A_h^n)^{-1}\phi(s, a)}}$

5. Execute

$$\mathbb{E}\left[\mathsf{Regret}_{N}^{n}, a_{0}^{n}, r_{0}^{n}, \dots, s_{H-1}^{n}, a_{H-1}^{n}, r_{H-1}^{n}, s_{H}^{n}\right]$$

$$\mathbb{E}\left[\mathsf{Regret}_{N}^{n}\right] := \mathbb{E}\left[\sum_{n=1}^{N} \left(V^{\star} - V^{\pi^{n}}\right)\right] \leq \widetilde{O}\left(H^{2}d^{1.5}\sqrt{N}\right)$$

linUCB-VI: Put All Together

For $n = 1 \rightarrow N$: 1. Set $A_h^n = \sum_{k=1}^{n-1} \phi(s_h^i, a_h^i) \phi(s_h^i, a_h^i)^{\top} + \lambda I$ $i=1 \qquad n-1 \\ \text{2. Set } \hat{\mu}_h^n = (A_h^n)^{-1} \sum_{k=1}^{n-1} \delta(s_{h+1}^i) \phi(s_h^i, a_h^i)^\top$ i=1

3. Estimate \hat{P}^n : $\hat{P}^n_h(\cdot | s, a) = \hat{\mu}^n_h \phi(s, a)$

4. Plan: $\pi^n = \text{VI}\left(\{\hat{P}_h^n, r_h + b_h^n\}_h\right)$, with $b_h^n(s, a) = cdH_{\sqrt{\phi(s, a)^T(A_h^n)^{-1}\phi(s, a)}}$

5. Execute

$$\mathbb{E}\left[\mathsf{Regret}_{N}^{n}, a_{0}^{n}, r_{0}^{n}, \dots, s_{H-1}^{n}, a_{H-1}^{n}, r_{H-1}^{n}, s_{H}^{n}\right] \\ \mathbb{E}\left[\mathsf{Regret}_{N}^{n}\right] := \mathbb{E}\left[\sum_{n=1}^{N} \left(V^{\star} - V^{\pi^{n}}\right)\right] \leq \widetilde{O}\left(H^{2}d^{1.5}\sqrt{N}\right)$$

No *S*, *A* dependence!

- Feedback from last lecture
- Recap
- Warm-up: ExploreThenExploit for deterministic MDPs
- Why we don't want to treat MDPs as big bandits
- UCB-VI for tabular MDPs
- UCB-VI for linear MDPs

UCBVI algorithm applies UCB idea to MDPs to achieve exploration/exploitation trade-off

Attendance: bit.ly/3RcTC9T

Feedback: bit.ly/3RHtlxy

