
UCB-VI 
 

Lucas Janson 
CS/Stat 184(0): Introduction to Reinforcement Learning 

Fall 2024

Today

2

• Feedback from last lecture

• Recap

• Warm-up: ExploreThenExploit for deterministic MDPs

• Why we don’t want to treat MDPs as big bandits

• UCB-VI for tabular MDPs

• UCB-VI for linear MDPs

Feedback from feedback forms

3

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

3

Today

4

• Feedback from last lecture

• Recap

• Warm-up: ExploreThenExploit for deterministic MDPs

• Why we don’t want to treat MDPs as big bandits

• UCB-VI for tabular MDPs

• UCB-VI for linear MDPs

“Lack of Exploration” leads to Optimization and Statistical Challenges

• Suppose & (i.e. we start at).

• A randomly initialized policy has prob. of hitting the goal state in a trajectory.

• Thus a sample-based approach, with , require trajectories.

• Holds for (sample based) Fitted DP

• Holds for (sample based) PG/TRPO/NPG/PPO

• Basically, for these approaches, there is no hope of learning the optimal policy if .

H ≈ poly(|S |) μ(s0) = 1 s0

π0 O(1/3|S|)
μ(s0) = 1 O(3|S|)

μ(s0) = 1

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

5

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1
Let’s examine the role of μ

• Suppose that somehow the distribution had better coverage.

• e.g, if was uniform overall states in our toy problem, then all approaches we

covered would work (with mild assumptions)

• Theory: TRPO/NPG/PPO have better guarantees than fitted DP methods  

(assuming some “coverage”)

• Strategies without coverage:

• If we have a simulator, sometimes we can design to have better coverage.

• this is helpful for robustness as well.

• Imitation learning (next time).

• An expert gives us samples from a “good” .

• Explicit exploration:

• UCB-VI: we’ll merge two good ideas!

• Encourage exploration in PG methods.

• Try with reward shaping

μ
μ

μ

μ

6

Recall: Value Iteration (VI)
VI = DP is a backwards in time approach for computing the optimal policy: 

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

7

Recall: Value Iteration (VI)
VI = DP is a backwards in time approach for computing the optimal policy: 

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

7

Recall: Value Iteration (VI)
VI = DP is a backwards in time approach for computing the optimal policy: 

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a)

7

Recall: Value Iteration (VI)
VI = DP is a backwards in time approach for computing the optimal policy: 

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

7

Recall: Value Iteration (VI)
VI = DP is a backwards in time approach for computing the optimal policy: 

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

V⋆
H−1 = max

a
Q⋆

H−1(s, a) = Q⋆
H−1(s, π⋆

H−1(s))

7

Recall: Value Iteration (VI)
VI = DP is a backwards in time approach for computing the optimal policy: 

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

V⋆
H−1 = max

a
Q⋆

H−1(s, a) = Q⋆
H−1(s, π⋆

H−1(s))

2. Assuming we have computed , i.e., assuming
we know how to perform optimally starting at , then:

V⋆
h+1, h ≤ H − 2

h + 1

7

Recall: Value Iteration (VI)
VI = DP is a backwards in time approach for computing the optimal policy: 

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

V⋆
H−1 = max

a
Q⋆

H−1(s, a) = Q⋆
H−1(s, π⋆

H−1(s))

2. Assuming we have computed , i.e., assuming
we know how to perform optimally starting at , then:

V⋆
h+1, h ≤ H − 2

h + 1

Q⋆
h (s, a) = r(s, a) + 𝔼s′ ∼P(s,a)V⋆

h+1(s′)

7

Recall: Value Iteration (VI)
VI = DP is a backwards in time approach for computing the optimal policy: 

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

V⋆
H−1 = max

a
Q⋆

H−1(s, a) = Q⋆
H−1(s, π⋆

H−1(s))

2. Assuming we have computed , i.e., assuming
we know how to perform optimally starting at , then:

V⋆
h+1, h ≤ H − 2

h + 1

Q⋆
h (s, a) = r(s, a) + 𝔼s′ ∼P(s,a)V⋆

h+1(s′)

π⋆
h (s) = arg max

a
Q⋆

h (s, a),

7

Recall: Value Iteration (VI)
VI = DP is a backwards in time approach for computing the optimal policy: 

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

V⋆
H−1 = max

a
Q⋆

H−1(s, a) = Q⋆
H−1(s, π⋆

H−1(s))

2. Assuming we have computed , i.e., assuming
we know how to perform optimally starting at , then:

V⋆
h+1, h ≤ H − 2

h + 1

Q⋆
h (s, a) = r(s, a) + 𝔼s′ ∼P(s,a)V⋆

h+1(s′)

π⋆
h (s) = arg max

a
Q⋆

h (s, a), V⋆
h = max

a
Q⋆

h (s, a)

7

Recall: Upper Confidence Bound (UCB)

8

For :t = 0,…, T − 1
Choose the arm with the highest upper confidence bound, i.e.,

at = arg max
k∈{1,…,K}

̂μ(k)
t + ln(2TK/δ)/2N(k)

t

Recall: Upper Confidence Bound (UCB)

8

For :t = 0,…, T − 1
Choose the arm with the highest upper confidence bound, i.e.,

at = arg max
k∈{1,…,K}

̂μ(k)
t + ln(2TK/δ)/2N(k)

t

High-level summary: estimate action quality, add exploration bonus, then argmax

Today

9

• Feedback from last lecture

• Recap

• Warm-up: ExploreThenExploit for deterministic MDPs

• Why we don’t want to treat MDPs as big bandits

• UCB-VI for tabular MDPs

• UCB-VI for linear MDPs

How we do find in an unknown MDP?π⋆

• Episodic setting with an unknown MDP:

• suppose we start at .

• We act for steps.

• Then repeat.

• How do we find ?

• How do we get low regret?

• Let’s start with the setting where the MDP is deterministic.

• So both and are deterministic.

s0 ∼ μ
H

π⋆

r(s, a) P(⋅ |s, a)

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

10

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1
Algorithm: ExploreThenExploit

(for deterministic MDPs)

11

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1
Algorithm: ExploreThenExploit

(for deterministic MDPs)

• Let’s say a state-action pair (s,a) is known if both and are known.NextState(s, a) r(s, a)

11

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1
Algorithm: ExploreThenExploit

(for deterministic MDPs)

• Let’s say a state-action pair (s,a) is known if both and are known.NextState(s, a) r(s, a)
• When is (s,a) known after a set of episodes?

11

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1
Algorithm: ExploreThenExploit

(for deterministic MDPs)

• Let’s say a state-action pair (s,a) is known if both and are known.NextState(s, a) r(s, a)
• When is (s,a) known after a set of episodes?
• Let be the set of known state-action pairs after a set of episodesK

11

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1
Algorithm: ExploreThenExploit

(for deterministic MDPs)

• Let’s say a state-action pair (s,a) is known if both and are known.NextState(s, a) r(s, a)
• When is (s,a) known after a set of episodes?
• Let be the set of known state-action pairs after a set of episodesK

• Define the BonusMDP with respect to the current (known) set :MK K

11

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1
Algorithm: ExploreThenExploit

(for deterministic MDPs)

• Let’s say a state-action pair (s,a) is known if both and are known.NextState(s, a) r(s, a)
• When is (s,a) known after a set of episodes?
• Let be the set of known state-action pairs after a set of episodesK

• Define the BonusMDP with respect to the current (known) set :MK K
• For , (s, a) ∈ K

11

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1
Algorithm: ExploreThenExploit

(for deterministic MDPs)

• Let’s say a state-action pair (s,a) is known if both and are known.NextState(s, a) r(s, a)
• When is (s,a) known after a set of episodes?
• Let be the set of known state-action pairs after a set of episodesK

• Define the BonusMDP with respect to the current (known) set :MK K
• For , (s, a) ∈ K
• define the dynamics in to be same as in the true MDP. 

(note this is possible for us to do for)
MK

(s, a) ∈ K

11

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1
Algorithm: ExploreThenExploit

(for deterministic MDPs)

• Let’s say a state-action pair (s,a) is known if both and are known.NextState(s, a) r(s, a)
• When is (s,a) known after a set of episodes?
• Let be the set of known state-action pairs after a set of episodesK

• Define the BonusMDP with respect to the current (known) set :MK K
• For , (s, a) ∈ K
• define the dynamics in to be same as in the true MDP. 

(note this is possible for us to do for)
MK

(s, a) ∈ K
• define the reward as for these state-action pairs.0

11

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1
Algorithm: ExploreThenExploit

(for deterministic MDPs)

• Let’s say a state-action pair (s,a) is known if both and are known.NextState(s, a) r(s, a)
• When is (s,a) known after a set of episodes?
• Let be the set of known state-action pairs after a set of episodesK

• Define the BonusMDP with respect to the current (known) set :MK K
• For , (s, a) ∈ K
• define the dynamics in to be same as in the true MDP. 

(note this is possible for us to do for)
MK

(s, a) ∈ K
• define the reward as for these state-action pairs.0

• For , assume we transition to a special state which is absorbing (i.e., we
stay at) and we always achieve a reward of 1 at this absorbing state.

(s, a) ∉ K s⋆

s⋆

11

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1
Algorithm: ExploreThenExploit

(for deterministic MDPs)

• Let’s say a state-action pair (s,a) is known if both and are known.NextState(s, a) r(s, a)
• When is (s,a) known after a set of episodes?
• Let be the set of known state-action pairs after a set of episodesK

• Define the BonusMDP with respect to the current (known) set :MK K
• For , (s, a) ∈ K
• define the dynamics in to be same as in the true MDP. 

(note this is possible for us to do for)
MK

(s, a) ∈ K
• define the reward as for these state-action pairs.0

• For , assume we transition to a special state which is absorbing (i.e., we
stay at) and we always achieve a reward of 1 at this absorbing state.

(s, a) ∉ K s⋆

s⋆

• Let and be the optimal policy and value in .π⋆
K V⋆

K MK

11

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1
Algorithm: ExploreThenExploit

(for deterministic MDPs)

• Let’s say a state-action pair (s,a) is known if both and are known.NextState(s, a) r(s, a)
• When is (s,a) known after a set of episodes?
• Let be the set of known state-action pairs after a set of episodesK

• Define the BonusMDP with respect to the current (known) set :MK K
• For , (s, a) ∈ K
• define the dynamics in to be same as in the true MDP. 

(note this is possible for us to do for)
MK

(s, a) ∈ K
• define the reward as for these state-action pairs.0

• For , assume we transition to a special state which is absorbing (i.e., we
stay at) and we always achieve a reward of 1 at this absorbing state.

(s, a) ∉ K s⋆

s⋆

• Let and be the optimal policy and value in .π⋆
K V⋆

K MK
• Theorem: Assume . 

If does not contain all state-action pairs, then and will reach some
(in at most steps).

H ≥ |S |
K V⋆

K > 0 π⋆
K (s, a) ∉ K

|S |
11

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

Algorithm: ExploreThenExploit

(for deterministic MDPs)

12

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

Algorithm: ExploreThenExploit

(for deterministic MDPs)

• Let’s say a state-action pair (s,a) is known if both and are known.NextState(s, a) r(s, a)

12

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

Algorithm: ExploreThenExploit

(for deterministic MDPs)

• Let’s say a state-action pair (s,a) is known if both and are known.NextState(s, a) r(s, a)
• Let be the set of known state-action pairs after a set of episodesK

12

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

Algorithm: ExploreThenExploit

(for deterministic MDPs)

• Let’s say a state-action pair (s,a) is known if both and are known.NextState(s, a) r(s, a)
• Let be the set of known state-action pairs after a set of episodesK

12

• Init: K = ∅

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

Algorithm: ExploreThenExploit

(for deterministic MDPs)

• Let’s say a state-action pair (s,a) is known if both and are known.NextState(s, a) r(s, a)
• Let be the set of known state-action pairs after a set of episodesK

12

• Init: K = ∅
• While not terminated

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

Algorithm: ExploreThenExploit

(for deterministic MDPs)

• Let’s say a state-action pair (s,a) is known if both and are known.NextState(s, a) r(s, a)
• Let be the set of known state-action pairs after a set of episodesK

12

• Init: K = ∅
• While not terminated
• Compute and for . π⋆

K V⋆
K MK

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

Algorithm: ExploreThenExploit

(for deterministic MDPs)

• Let’s say a state-action pair (s,a) is known if both and are known.NextState(s, a) r(s, a)
• Let be the set of known state-action pairs after a set of episodesK

12

• Init: K = ∅
• While not terminated
• Compute and for . π⋆

K V⋆
K MK

• If , execute and update the known set V⋆
K > 0 π⋆

K K

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

Algorithm: ExploreThenExploit

(for deterministic MDPs)

• Let’s say a state-action pair (s,a) is known if both and are known.NextState(s, a) r(s, a)
• Let be the set of known state-action pairs after a set of episodesK

12

• Init: K = ∅
• While not terminated
• Compute and for . π⋆

K V⋆
K MK

• If , execute and update the known set V⋆
K > 0 π⋆

K K
• Else: terminate

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

Algorithm: ExploreThenExploit

(for deterministic MDPs)

• Let’s say a state-action pair (s,a) is known if both and are known.NextState(s, a) r(s, a)
• Let be the set of known state-action pairs after a set of episodesK

12

• Init: K = ∅
• While not terminated
• Compute and for . π⋆

K V⋆
K MK

• If , execute and update the known set V⋆
K > 0 π⋆

K K
• Else: terminate

• Return: the optimal policy in the known MDP.

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

Algorithm: ExploreThenExploit

(for deterministic MDPs)

• Let’s say a state-action pair (s,a) is known if both and are known.NextState(s, a) r(s, a)
• Let be the set of known state-action pairs after a set of episodesK

12

• Init: K = ∅
• While not terminated
• Compute and for . π⋆

K V⋆
K MK

• If , execute and update the known set V⋆
K > 0 π⋆

K K
• Else: terminate

• Return: the optimal policy in the known MDP.

Theorem: Assuming , this algorithm returns an optimal policy in most
trajectories.

H ≥ |S | |S | ⋅ |A |

Comments:

13

Comments:

13

• Basically formulating shortest path as an optimal policy in some modified MDP 

Comments:

13

• Basically formulating shortest path as an optimal policy in some modified MDP 

• How do we modify the algorithm for general ?H

Comments:

13

• Basically formulating shortest path as an optimal policy in some modified MDP 

• How do we modify the algorithm for general ?H
• Ignore any states that can’t be reached in at most steps! H

Comments:

13

• Basically formulating shortest path as an optimal policy in some modified MDP 

• How do we modify the algorithm for general ?H
• Ignore any states that can’t be reached in at most steps! H

• What is the regret of this algorithm?

Comments:

13

• Basically formulating shortest path as an optimal policy in some modified MDP 

• How do we modify the algorithm for general ?H
• Ignore any states that can’t be reached in at most steps! H

• What is the regret of this algorithm?
• Can be arbitrarily bad while searching, and searches for steps:  |S | |A | |S | |A |H

Comments:

13

• Basically formulating shortest path as an optimal policy in some modified MDP 

• How do we modify the algorithm for general ?H
• Ignore any states that can’t be reached in at most steps! H

• What is the regret of this algorithm?
• Can be arbitrarily bad while searching, and searches for steps:  |S | |A | |S | |A |H

• Really needed determinism; for non-deterministic MDPs, need to think more like bandits…

Today

14

• Feedback from last lecture

• Recap

• Warm-up: ExploreThenExploit for deterministic MDPs

• Why we don’t want to treat MDPs as big bandits

• UCB-VI for tabular MDPs

• UCB-VI for linear MDPs

Exploration in MDP: make it a bandit and do UCB?

Q: given a discrete MDP, how many unique deterministic policies are there?

15

Exploration in MDP: make it a bandit and do UCB?

Q: given a discrete MDP, how many unique deterministic policies are there?

(|A ||S|)
H

15

Exploration in MDP: make it a bandit and do UCB?

Q: given a discrete MDP, how many unique deterministic policies are there?

(|A ||S|)
H

So treating each policy as an “arm” and running UCB gives us regret Õ(|A ||S|H N)

15

Exploration in MDP: make it a bandit and do UCB?

Q: given a discrete MDP, how many unique deterministic policies are there?

(|A ||S|)
H

So treating each policy as an “arm” and running UCB gives us regret Õ(|A ||S|H N)

This seems bad, so are MDPs just super hard or can we do better?

15

An example of MDP as bandit

16

, , S = {a, b} A = {1,2} H = 2

All state transitions happen with probability 1/2 for all actions

Reward function:
r(a,1) = r(b,1) = 0
r(a,2) = r(b,2) = 1

An example of MDP as bandit

16

, , S = {a, b} A = {1,2} H = 2

All state transitions happen with probability 1/2 for all actions

Reward function:
r(a,1) = r(b,1) = 0
r(a,2) = r(b,2) = 1

Suppose we have a lot of data already on a policy that always takes action 1

and a policy that always takes action 2 (note)

π(1)

π(2) π(2) = π⋆

An example of MDP as bandit

16

, , S = {a, b} A = {1,2} H = 2

All state transitions happen with probability 1/2 for all actions

Reward function:
r(a,1) = r(b,1) = 0
r(a,2) = r(b,2) = 1

Suppose we have a lot of data already on a policy that always takes action 1

and a policy that always takes action 2 (note)

π(1)

π(2) π(2) = π⋆

What do we know about a policy which always takes action 1 in the first time step, and

always takes action 2 at the second time step?

π(3)

An example of MDP as bandit

16

, , S = {a, b} A = {1,2} H = 2

All state transitions happen with probability 1/2 for all actions

Reward function:
r(a,1) = r(b,1) = 0
r(a,2) = r(b,2) = 1

Suppose we have a lot of data already on a policy that always takes action 1

and a policy that always takes action 2 (note)

π(1)

π(2) π(2) = π⋆

What do we know about a policy which always takes action 1 in the first time step, and

always takes action 2 at the second time step?

π(3)

Everything: we have a lot of data on every state-action reward and transition!

An example of MDP as bandit

16

, , S = {a, b} A = {1,2} H = 2

All state transitions happen with probability 1/2 for all actions

Reward function:
r(a,1) = r(b,1) = 0
r(a,2) = r(b,2) = 1

Suppose we have a lot of data already on a policy that always takes action 1

and a policy that always takes action 2 (note)

π(1)

π(2) π(2) = π⋆

What do we know about a policy which always takes action 1 in the first time step, and

always takes action 2 at the second time step?

π(3)

Everything: we have a lot of data on every state-action reward and transition!

If we treat the MDP as a bandit, we treat as a new “arm” about which we know nothing…π(3)

An example of MDP as bandit

16

, , S = {a, b} A = {1,2} H = 2

All state transitions happen with probability 1/2 for all actions

Reward function:
r(a,1) = r(b,1) = 0
r(a,2) = r(b,2) = 1

Suppose we have a lot of data already on a policy that always takes action 1

and a policy that always takes action 2 (note)

π(1)

π(2) π(2) = π⋆

What do we know about a policy which always takes action 1 in the first time step, and

always takes action 2 at the second time step?

π(3)

Everything: we have a lot of data on every state-action reward and transition!

If we treat the MDP as a bandit, we treat as a new “arm” about which we know nothing…π(3)

|A ||S|H = 24 = 16

Today

17

• Feedback from last lecture

• Recap

• Warm-up: ExploreThenExploit for deterministic MDPs

• Why we don’t want to treat MDPs as big bandits

• UCB-VI for tabular MDPs

• UCB-VI for linear MDPs

UCB-VI: Tabular optimism in the face of uncertainty

Inside iteration n :

18

Assume reward function knownrh(s, a)

UCB-VI: Tabular optimism in the face of uncertainty

Inside iteration n :

Use all previous data to estimate dynamics { ̂Pn
h}

H−1
h=0

18

Assume reward function knownrh(s, a)

UCB-VI: Tabular optimism in the face of uncertainty

Inside iteration n :

Use all previous data to estimate dynamics { ̂Pn
h}

H−1
h=0

Design reward bonus bn
h(s, a), ∀s, a, h

18

Assume reward function knownrh(s, a)

UCB-VI: Tabular optimism in the face of uncertainty

Inside iteration n :

Use all previous data to estimate dynamics { ̂Pn
h}

H−1
h=0

Optimistic planning with learned model: πn = VI ({ ̂Pn
h, rh + bn

h}H−1
h=1)

Design reward bonus bn
h(s, a), ∀s, a, h

18

Assume reward function knownrh(s, a)

UCB-VI: Tabular optimism in the face of uncertainty

Inside iteration n :

Use all previous data to estimate dynamics { ̂Pn
h}

H−1
h=0

Optimistic planning with learned model: πn = VI ({ ̂Pn
h, rh + bn

h}H−1
h=1)

Collect a new trajectory by executing in the true system starting from πn {Ph}H−1
h=0 s0

Design reward bonus bn
h(s, a), ∀s, a, h

18

Assume reward function knownrh(s, a)

Model Estimation
Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h

19

Model Estimation
Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h

Let’s also maintain some statistics using these datasets:

19

Model Estimation
Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h

Let’s also maintain some statistics using these datasets:

Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

19

Model Estimation
Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h

Let’s also maintain some statistics using these datasets:

Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

Nn
h(s, a, s′) =

n−1

∑
i=1

1{(si
h, ai

h, si
h+1) = (s, a, s′)}, ∀s, a, s′ , h

19

Model Estimation
Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h

Let’s also maintain some statistics using these datasets:

Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

Nn
h(s, a, s′) =

n−1

∑
i=1

1{(si
h, ai

h, si
h+1) = (s, a, s′)}, ∀s, a, s′ , h

Estimate model :̂Pn
h(s′ |s, a), ∀s, a, s′ , h

̂Pn
h(s′ |s, a) =

Nn
h(s, a, s′)
Nn

h(s, a)
19

Reward Bonus Design and Value Iteration
Recall: 𝒟n

h = {si
h, ai

h, si
h+1}

n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

20

Reward Bonus Design and Value Iteration
Recall: 𝒟n

h = {si
h, ai

h, si
h+1}

n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

Define: bn
h(s, a) = cH

log (|S | |A |HN/δ)
Nn

h(s, a)

20

Reward Bonus Design and Value Iteration
Recall: 𝒟n

h = {si
h, ai

h, si
h+1}

n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

Define: bn
h(s, a) = cH

log (|S | |A |HN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

20

Reward Bonus Design and Value Iteration
Recall: 𝒟n

h = {si
h, ai

h, si
h+1}

n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

Define: bn
h(s, a) = cH

log (|S | |A |HN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

Value Iteration (aka DP) at episode using and n { ̂Pn
h}h {rh + bn

h}h

20

Reward Bonus Design and Value Iteration
Recall: 𝒟n

h = {si
h, ai

h, si
h+1}

n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

Define: bn
h(s, a) = cH

log (|S | |A |HN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

Value Iteration (aka DP) at episode using and n { ̂Pn
h}h {rh + bn

h}h

̂Vn
H(s) = 0, ∀s

20

Reward Bonus Design and Value Iteration
Recall: 𝒟n

h = {si
h, ai

h, si
h+1}

n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

Define: bn
h(s, a) = cH

log (|S | |A |HN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

Value Iteration (aka DP) at episode using and n { ̂Pn
h}h {rh + bn

h}h

̂Vn
H(s) = 0, ∀s Q̂n

h(s, a) = min {rh(s, a) + bn
h(s, a) + 𝔼s′ ∼ ̂Pn

h(⋅|s,a) [̂Vn
h+1(s′)], H}, ∀s, a

20

Reward Bonus Design and Value Iteration
Recall: 𝒟n

h = {si
h, ai

h, si
h+1}

n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

Define: bn
h(s, a) = cH

log (|S | |A |HN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

Value Iteration (aka DP) at episode using and n { ̂Pn
h}h {rh + bn

h}h

̂Vn
H(s) = 0, ∀s

̂Vn
h(s) = max

a
Q̂n

h(s, a), πn
h(s) = arg max

a
Q̂n

h(s, a), ∀s

Q̂n
h(s, a) = min {rh(s, a) + bn

h(s, a) + 𝔼s′ ∼ ̂Pn
h(⋅|s,a) [̂Vn

h+1(s′)], H}, ∀s, a

20

Reward Bonus Design and Value Iteration
Recall: 𝒟n

h = {si
h, ai

h, si
h+1}

n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

Define: bn
h(s, a) = cH

log (|S | |A |HN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

Value Iteration (aka DP) at episode using and n { ̂Pn
h}h {rh + bn

h}h

̂Vn
H(s) = 0, ∀s

̂Vn
h(s) = max

a
Q̂n

h(s, a), πn
h(s) = arg max

a
Q̂n

h(s, a), ∀s ̂Vn
h ∞

≤ H, ∀h, n

Q̂n
h(s, a) = min {rh(s, a) + bn

h(s, a) + 𝔼s′ ∼ ̂Pn
h(⋅|s,a) [̂Vn

h+1(s′)], H}, ∀s, a

20

Reward Bonus Design and Value Iteration
Recall: 𝒟n

h = {si
h, ai

h, si
h+1}

n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

Define: bn
h(s, a) = cH

log (|S | |A |HN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

Value Iteration (aka DP) at episode using and n { ̂Pn
h}h {rh + bn

h}h

̂Vn
H(s) = 0, ∀s

̂Vn
h(s) = max

a
Q̂n

h(s, a), πn
h(s) = arg max

a
Q̂n

h(s, a), ∀s ̂Vn
h ∞

≤ H, ∀h, n

Q̂n
h(s, a) = min {rh(s, a) + bn

h(s, a) + 𝔼s′ ∼ ̂Pn
h(⋅|s,a) [̂Vn

h+1(s′)], H}, ∀s, a

20

 specifically chosen so that with high probabilitybn
h(s, a) V⋆

h (s) ≤ ̂Vn
h(s)

UCBVI: Put All Together
For n = 1 → N :

3. Estimate ̂Pn : ̂Pn
h(s′ |s, a) =

Nn
h(s, a, s′)
Nn

h(s, a)
, ∀s, a, s′ , h

1. Set Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h

2. Set Nn
h(s, a, s′) =

n−1

∑
i=1

1{(si
h, ai

h, si
h+1) = (s, a, s′)}, ∀s, a, a′ , h

4. Plan: πn = VI ({ ̂Pn
h, rh + bn

h}h), with bn
h(s, a) = cH

log(|S | |A |HN/δ)
Nn

h(s, a)

5. Execute πn : {sn
0 , an

0 , rn
0 , …, sn

H−1, an
H−1, rn

H−1, sn
H}

21

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: by construction of V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂Vn
0(s0) − Vπn

0 (s0) bn
h

22

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: by construction of V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂Vn
0(s0) − Vπn

0 (s0) bn
h

1. What if is small? ̂Vn
0(s0) − Vπn

0 (s0)

22

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: by construction of V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂Vn
0(s0) − Vπn

0 (s0) bn
h

1. What if is small? ̂Vn
0(s0) − Vπn

0 (s0)

Then is close to , i.e., we are doing exploitationπn π⋆

22

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: by construction of V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂Vn
0(s0) − Vπn

0 (s0) bn
h

2. What if is large? ̂Vn
0(s0) − Vπn

0 (s0)

1. What if is small? ̂Vn
0(s0) − Vπn

0 (s0)

Then is close to , i.e., we are doing exploitationπn π⋆

22

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: by construction of V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂Vn
0(s0) − Vπn

0 (s0) bn
h

2. What if is large? ̂Vn
0(s0) − Vπn

0 (s0)

1. What if is small? ̂Vn
0(s0) − Vπn

0 (s0)

Then is close to , i.e., we are doing exploitationπn π⋆

22

Some must be large (or some estimation errors must be large, but with high probability
any with high error must have small and hence high)

bn
h(s, a) ̂Pn

h(⋅ |s, a)
̂Pn
h(⋅ |s, a) Nn

h(s, a) bn
h(s, a)

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: by construction of V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂Vn
0(s0) − Vπn

0 (s0) bn
h

2. What if is large? ̂Vn
0(s0) − Vπn

0 (s0)

1. What if is small? ̂Vn
0(s0) − Vπn

0 (s0)

Then is close to , i.e., we are doing exploitationπn π⋆

22

Some must be large (or some estimation errors must be large, but with high probability
any with high error must have small and hence high)

bn
h(s, a) ̂Pn

h(⋅ |s, a)
̂Pn
h(⋅ |s, a) Nn

h(s, a) bn
h(s, a)

Large means is being encouraged to do , since it will apparently have very high reward,
i.e., exploration

bn
h(s, a) πn (s, a)

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: by construction of V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂Vn
0(s0) − Vπn

0 (s0) bn
h

2. What if is large? ̂Vn
0(s0) − Vπn

0 (s0)

1. What if is small? ̂Vn
0(s0) − Vπn

0 (s0)

Then is close to , i.e., we are doing exploitationπn π⋆

𝔼 [RegretN] := 𝔼 [
N

∑
n=1

(V⋆ − Vπn)] ≤ Õ (H2 |S | |A |N)
22

Some must be large (or some estimation errors must be large, but with high probability
any with high error must have small and hence high)

bn
h(s, a) ̂Pn

h(⋅ |s, a)
̂Pn
h(⋅ |s, a) Nn

h(s, a) bn
h(s, a)

Large means is being encouraged to do , since it will apparently have very high reward,
i.e., exploration

bn
h(s, a) πn (s, a)

Today

23

• Feedback from last lecture

• Recap

• Warm-up: ExploreThenExploit for deterministic MDPs

• Why we don’t want to treat MDPs as big bandits

• UCB-VI for tabular MDPs

• UCB-VI for linear MDPs

Linear MDP Definition

Finite horizon time-dependent episodic MDP ℳ = {S, A, H, {r}h, {P}h, s0}

 could be large or even continuous, hence poly is not acceptableS & A (|S | , |A |)

24

Linear MDP Definition

Finite horizon time-dependent episodic MDP ℳ = {S, A, H, {r}h, {P}h, s0}

 could be large or even continuous, hence poly is not acceptableS & A (|S | , |A |)

Ph(s′ |s, a) = μ⋆
h (s′) ⋅ ϕ(s, a), μ⋆

h : S ↦ ℝd, ϕ : S × A ↦ ℝd

24

Linear MDP Definition

Finite horizon time-dependent episodic MDP ℳ = {S, A, H, {r}h, {P}h, s0}

 could be large or even continuous, hence poly is not acceptableS & A (|S | , |A |)

Ph(s′ |s, a) = μ⋆
h (s′) ⋅ ϕ(s, a), μ⋆

h : S ↦ ℝd, ϕ : S × A ↦ ℝd

r(s, a) = θ⋆
h ⋅ ϕ(s, a), θ⋆

h ∈ ℝd

24

Linear MDP Definition

Feature map is known to the learner!
(We assume reward is known, i.e., is known)

ϕ
θ⋆

Finite horizon time-dependent episodic MDP ℳ = {S, A, H, {r}h, {P}h, s0}

 could be large or even continuous, hence poly is not acceptableS & A (|S | , |A |)

Ph(s′ |s, a) = μ⋆
h (s′) ⋅ ϕ(s, a), μ⋆

h : S ↦ ℝd, ϕ : S × A ↦ ℝd

r(s, a) = θ⋆
h ⋅ ϕ(s, a), θ⋆

h ∈ ℝd

24

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝ|S|×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

25

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝ|S|×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

V⋆
H(s) = 0,∀s,

25

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝ|S|×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

V⋆
H(s) = 0,∀s,

Q⋆
h (s, a) = rh(s, a) + 𝔼s′ ∼Ph(⋅|s,a)V⋆

h+1(s′)

25

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝ|S|×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

V⋆
H(s) = 0,∀s,

Q⋆
h (s, a) = rh(s, a) + 𝔼s′ ∼Ph(⋅|s,a)V⋆

h+1(s′)

= θ⋆
h ⋅ ϕ(s, a) + (μ⋆

h ϕ(s, a))⊤ V⋆
h+1

25

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝ|S|×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

V⋆
H(s) = 0,∀s,

Q⋆
h (s, a) = rh(s, a) + 𝔼s′ ∼Ph(⋅|s,a)V⋆

h+1(s′)

= θ⋆
h ⋅ ϕ(s, a) + (μ⋆

h ϕ(s, a))⊤ V⋆
h+1

= ϕ(s, a)⊤(θ⋆
h + (μ⋆

h)⊤V⋆
h+1)

25

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝ|S|×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

V⋆
H(s) = 0,∀s,

Q⋆
h (s, a) = rh(s, a) + 𝔼s′ ∼Ph(⋅|s,a)V⋆

h+1(s′)

= θ⋆
h ⋅ ϕ(s, a) + (μ⋆

h ϕ(s, a))⊤ V⋆
h+1

= ϕ(s, a)⊤(θ⋆
h + (μ⋆

h)⊤V⋆
h+1)

= ϕ(s, a)⊤wh

25

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝ|S|×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

V⋆
H(s) = 0,∀s,

Q⋆
h (s, a) = rh(s, a) + 𝔼s′ ∼Ph(⋅|s,a)V⋆

h+1(s′)

= θ⋆
h ⋅ ϕ(s, a) + (μ⋆

h ϕ(s, a))⊤ V⋆
h+1

= ϕ(s, a)⊤(θ⋆
h + (μ⋆

h)⊤V⋆
h+1)

= ϕ(s, a)⊤wh

V⋆
h (s) = max

a
ϕ(s, a)⊤wh, π⋆

h (s) = arg max
a

ϕ(s, a)⊤wh

25

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝ|S|×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

V⋆
H(s) = 0,∀s,

Q⋆
h (s, a) = rh(s, a) + 𝔼s′ ∼Ph(⋅|s,a)V⋆

h+1(s′)

= θ⋆
h ⋅ ϕ(s, a) + (μ⋆

h ϕ(s, a))⊤ V⋆
h+1

= ϕ(s, a)⊤(θ⋆
h + (μ⋆

h)⊤V⋆
h+1)

= ϕ(s, a)⊤wh

V⋆
h (s) = max

a
ϕ(s, a)⊤wh, π⋆

h (s) = arg max
a

ϕ(s, a)⊤wh

Indeed we can show that

Is linear with respect to as well, for any

Qπ
h (⋅ , ⋅)

ϕ π, h

25

UCBVI in Linear MDPs

At the beginning of iteration n:

26

UCBVI in Linear MDPs

1. Learn transition model from all previous data { ̂Pn
h}

H−1
h=0 {si

h, ai
h, si

h+1}
n−1
i=0

At the beginning of iteration n:

26

UCBVI in Linear MDPs

1. Learn transition model from all previous data { ̂Pn
h}

H−1
h=0 {si

h, ai
h, si

h+1}
n−1
i=0

2. Design reward bonus bn
h(s, a), ∀s, a

At the beginning of iteration n:

26

UCBVI in Linear MDPs

1. Learn transition model from all previous data { ̂Pn
h}

H−1
h=0 {si

h, ai
h, si

h+1}
n−1
i=0

2. Design reward bonus bn
h(s, a), ∀s, a

3. Plan: πn+1 = VI ({ ̂Pn}h, {rh + bn
h})

At the beginning of iteration n:

26

How to estimate ?{ ̂Pn
h}

H−1
h=0

27

How to estimate ?{ ̂Pn
h}

H−1
h=0

Denote with zero everywhere except the entry corresponding to δ(s) ∈ ℝ|S| s

27

How to estimate ?{ ̂Pn
h}

H−1
h=0

Denote with zero everywhere except the entry corresponding to δ(s) ∈ ℝ|S| s

Given , note that s, a 𝔼s′ ∼Ph(⋅|s,a) [δ(s′)] = Ph(⋅ |s, a) = μ⋆
h ϕ(s, a)

27

How to estimate ?{ ̂Pn
h}

H−1
h=0

Denote with zero everywhere except the entry corresponding to δ(s) ∈ ℝ|S| s

Penalized Linear Regression:

min
μ

n−1

∑
i=1

∥μϕ(si
h, ai

h) − δ(si
h+1)∥

2
2 + λ∥μ∥2

F

Given , note that s, a 𝔼s′ ∼Ph(⋅|s,a) [δ(s′)] = Ph(⋅ |s, a) = μ⋆
h ϕ(s, a)

27

How to estimate ?{ ̂Pn
h}

H−1
h=0

Denote with zero everywhere except the entry corresponding to δ(s) ∈ ℝ|S| s

Penalized Linear Regression:

min
μ

n−1

∑
i=1

∥μϕ(si
h, ai

h) − δ(si
h+1)∥

2
2 + λ∥μ∥2

F

Given , note that s, a 𝔼s′ ∼Ph(⋅|s,a) [δ(s′)] = Ph(⋅ |s, a) = μ⋆
h ϕ(s, a)

̂μn
h = (An

h)−1
n−1

∑
i=1

δ(si
h+1)ϕ(si

h, ai
h)

⊤An
h =

n−1

∑
i=1

ϕ(si
h, ai

h)ϕ(si
h, ai

h)
⊤ + λI

27

How to estimate ?{ ̂Pn
h}

H−1
h=0

Denote with zero everywhere except the entry corresponding to δ(s) ∈ ℝ|S| s

Penalized Linear Regression:

min
μ

n−1

∑
i=1

∥μϕ(si
h, ai

h) − δ(si
h+1)∥

2
2 + λ∥μ∥2

F

Given , note that s, a 𝔼s′ ∼Ph(⋅|s,a) [δ(s′)] = Ph(⋅ |s, a) = μ⋆
h ϕ(s, a)

̂μn
h = (An

h)−1
n−1

∑
i=1

δ(si
h+1)ϕ(si

h, ai
h)

⊤An
h =

n−1

∑
i=1

ϕ(si
h, ai

h)ϕ(si
h, ai

h)
⊤ + λI

̂Pn
h(⋅ |s, a) = ̂μn

hϕ(s, a)

27

How to choose ?bn
h(s, a)

Chebyshev-like approach, similar to in linUCB (will cover next lecture):

bn
h(s, a) = β ϕ(s, a)⊤(An

h)−1ϕ(s, a), β = Õ (dH)

28

linUCB-VI: Put All Together
For n = 1 → N :

3. Estimate ̂Pn : ̂Pn
h(⋅ |s, a) = ̂μn

hϕ(s, a)

1. Set An
h =

n−1

∑
i=1

ϕ(si
h, ai

h)ϕ(si
h, ai

h)
⊤ + λI

2. Set ̂μn
h = (An

h)−1
n−1

∑
i=1

δ(si
h+1)ϕ(si

h, ai
h)

⊤

4. Plan: πn = VI ({ ̂Pn
h, rh + bn

h}h), with bn
h(s, a) = cdH ϕ(s, a)⊤(An

h)−1ϕ(s, a)

5. Execute πn : {sn
0 , an

0 , rn
0 , …, sn

H−1, an
H−1, rn

H−1, sn
H}

29

linUCB-VI: Put All Together
For n = 1 → N :

3. Estimate ̂Pn : ̂Pn
h(⋅ |s, a) = ̂μn

hϕ(s, a)

1. Set An
h =

n−1

∑
i=1

ϕ(si
h, ai

h)ϕ(si
h, ai

h)
⊤ + λI

2. Set ̂μn
h = (An

h)−1
n−1

∑
i=1

δ(si
h+1)ϕ(si

h, ai
h)

⊤

4. Plan: πn = VI ({ ̂Pn
h, rh + bn

h}h), with bn
h(s, a) = cdH ϕ(s, a)⊤(An

h)−1ϕ(s, a)

5. Execute πn : {sn
0 , an

0 , rn
0 , …, sn

H−1, an
H−1, rn

H−1, sn
H}

29

𝔼 [RegretN] := 𝔼 [
N

∑
n=1

(V⋆ − Vπn)] ≤ Õ (H2d1.5 N)

linUCB-VI: Put All Together
For n = 1 → N :

3. Estimate ̂Pn : ̂Pn
h(⋅ |s, a) = ̂μn

hϕ(s, a)

1. Set An
h =

n−1

∑
i=1

ϕ(si
h, ai

h)ϕ(si
h, ai

h)
⊤ + λI

2. Set ̂μn
h = (An

h)−1
n−1

∑
i=1

δ(si
h+1)ϕ(si

h, ai
h)

⊤

4. Plan: πn = VI ({ ̂Pn
h, rh + bn

h}h), with bn
h(s, a) = cdH ϕ(s, a)⊤(An

h)−1ϕ(s, a)

5. Execute πn : {sn
0 , an

0 , rn
0 , …, sn

H−1, an
H−1, rn

H−1, sn
H}

29

𝔼 [RegretN] := 𝔼 [
N

∑
n=1

(V⋆ − Vπn)] ≤ Õ (H2d1.5 N)
No dependence!S, A

Today

30

• Feedback from last lecture

• Recap

• Warm-up: ExploreThenExploit for deterministic MDPs

• Why we don’t want to treat MDPs as big bandits

• UCB-VI for tabular MDPs

• UCB-VI for linear MDPs

Summary:

Feedback:

bit.ly/3RHtlxy

31

Attendance: 
bit.ly/3RcTC9T

UCBVI algorithm applies UCB idea to MDPs to achieve exploration/exploitation trade-off

http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

