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“Lack of Exploration” leads to Optimization and Statistical Challenges

N\~ 9
TEAVER"
So T R=1
- S states - Thrun 92

Suppose [ ~ poly(|S|) & p(sy) = 1 (i.e. we start at ).
A randomly initialized policy z° has prob. O(1/3!°!) of hitting the goal state in a trajectory.
Thus a sample-based approach, with 1i(s,) = |, require O(3P) trajectories.

 Holds for (sample based) Fitted DP
 Holds for (sample based) PG/TRPO/NPG/PPO

Basically, for these approaches, there is no hope of learning the optimal policy if 1.(s,) = 1.



Let’'s examine the role of i

» Suppose that somehow the distribution 1 had better coverage. > states fhrun 52

e e.qg, If 4 was uniform overall states in our toy problem, then all approaches we
covered would work (with mild assumptions )

* Theory:
(assuming some “coverage”)

* |f we have a simulator, sometimes we can design 1 to have better coverage.
* this is helpful for robustness as well.
e |mitation learning (next time).

* An expert gives us samples from a “good” /.

« UCB-VI: we’ll merge two good ideas!
* Encourage exploration in PG methods.
* Try with reward shaping
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1. Startat H — 1,
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we know how to perform optimally starting at 7 + 1, then:

Q]:lk(sa a) — r(Sa a) + _S’NP(S,a)V};:_](S,)

7 (s) = arg mfx Qr(s,a), Vr= mfx Q7 (s, a)

14
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Recall: Upper Confidence Bound (UCB)

Fort=0,..., 7T — 1:
Choose the arm with the highest upper confidence bound, i.e.,

a, = arg max ﬂgk) +4/In(2T K/(S)/ZNt(k)
kell,....K}

High-level summary: estimate action quality, add exploration bonus, then argmax
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How we do find 7* in an unknown MDP?
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* Episodic setting with an unknown MDP;
* Suppose we start at s, ~ U.

 We act for H steps.
* Then repeat.

» How do we find 7*7?
* How do we get low regret?

» So both r(s,a) and P( - | s, a) are deterministic.

10
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Let’s say a state-action pair (s,a) is if both NextState(s, a) and r(s, a) are known.
 \When is (s,a) known after a set of episodes?

« Let K be the set of known state-action pairs after a set of episodes
Define the BonusMDP M - with respect to the current (known) set K:

¢ For(s,a) € K,

« define the dynamics in //,- to be same as in the true MDP.

(note this is possible for us to do for (s, a) € K)

+ define the reward as O for these state-action pairs.
 For (s,a) & K, assume we transition to a special state s* which is absorbing (i.e., we

stay at S*) and we always achieve a reward of 1 at this absorbing state.
Let ﬂl’g and Vl’é be the optimal policy and value in M.

Assume H > | §|.

If K does not contain all state-action pairs, then V > 0 and z7 will reach some (s,a) & K
(in at most | S| steps).
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Algorithm: ExploreThenExploit
(for deterministic MDPSs)
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o |f Vl’é > (), execute ﬂl’é and update the known set K
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Algorithm: ExploreThenExploit O
(for deterministic MDPSs) SO//%V‘ o

« Let’s say a state-action pair (s,a) is known if both NextState(s, a) and r(s, a) are known.
¢ Let K be the set of known state-action pairs after a set of episodes

e Init: K=¢
e \While not terminated
. Compute 7y and V7 for M.
o |f Vl’é > (), execute ﬂl’é and update the known set K

* Else: terminate
 Return: the optimal policy in the known MDP.

Theorem: Assuming H > | S|, this algorithm returns an optimal policy in most |S]| - |A]
trajectories.

12
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Comments:

Basically formulating shortest path as an optimal policy in some modified MDP

How do we modify the algorithm for general H*?
« |[gnore any states that can’t be reached in at most H steps!

What is the regret of this algorithm?
» Can be arbitrarily bad while searching, and searches for |S||A| steps: | S| |A | H

Really nheeded determinism; for non-deterministic MDPs, need to think more like bandits...

13
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Exploration in MDP: make it a bandit and do UCB?

Q: given a discrete MDP, how many unigue deterministic policies are there?

(1a19)"

So treating each policy as an “arm” and running UCB gives us regret 0(\/ | A \‘S‘HN)

This seems bad, so are MDPs just super hard or can we do better?

15
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UCB-VI: Tabular optimism in the face of uncertainty

Assume reward function r;,(s, a) known

Inside 1teration 7 :

Use all previous data to estimate dynamics {P” il 01

Design reward bonus b, (s, a), Vs, a, h

Optimistic planning with learned model: 7" = VI ({P”, r,+ b}, f)

Collect a new trajectory by executing 7" in the true system {Ph}H o Starting from s

18
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Model Estimation

Let us consider the very beginning of episode n:
Dy = s}y @ 5), V1T

Let’s also maintain some statistics using these datasets:

n—1
N, (s,a) = Z 1{(S;;, a,,’;) =(s,a)}, Vs,a,h,
i=1

n—1
N,/ (s,a,s’) = Z 1{(s},a,,s; ) =(s,a,s")}, Vs,a,s’h
=1

Estimate model }A’Z(S’\ s,a),Vs,a,s', h:

N;(s,a,s’)
Ni(s, a)

}A’Z(s’\ S,a) =

19



Reward Bonus Design and Value lteration

Recall: 9, = {Sh ah Sh+1}” LVh, Nj(s,a) = Z 1{(S;f,, Cl;i) = (s,a)},Vs,a,h,



Reward Bonus Design and Value lteration

Recall: 2, = {Sh ah Sh+1}” LVh, Nj(s,a) = Z 1{(S;f,, Cl;i) = (s,a)},Vs,a,h,

log (|S||A|HNIS)
Define: b, (s,a) = cH

Nj(s, a)



Reward Bonus Design and Value lteration

Recall: 2, = {Sh ah Sh+1}” LVh, Nj(s,a) = Z 1{(S;f,, Cl;i) = (s,a)},Vs,a,h,

log ( |ST]A ‘HN/é) Encoura

o B ge to explore

Define: b;(s, a) = cH ; new state-actions
Nh (Sa Cl)



Reward Bonus Design and Value lteration

Recall: 2, = {Sh, ah, Sh_|_1}l 1,‘v’h N, (s,a) = Z 1{(Sh, ah) =(s,a)},Vs,a,h,
=1

. " log ( [ST1A ‘HN/5> Encourage to explore
Define: b) (s, a) = cH Ni(s, a) new state-actions

Value Iteration (aka DP) at episode 7 using {P | , and {rh + b”} I

20



Reward Bonus Design and Value lteration

=1

n—1
Recall: 2, = {S;;, a;;, S,flJrl}”_1 Vh, N;(s,a) = Z 1{(S;f,, Cl;i) = (s,a)},Vs,a,h,
i=1

log ( |ST]A ‘HN/5> Encoura

o B ge to explore

Define: b;(s, a) = cH ; new state-actions
Nh (Sa Cl)

Value Iteration (aka DP) at episode 7 using {IA’Z} pand {r,+ b},

Vi(s) =0, Vs

20



Reward Bonus Design and Value lteration

Recall: 2, = {Sh, ah, Sh_H}l 1,‘v’h N, (s,a) = Z 1{(Sh, ah) =(s,a)},Vs,a,h,

=1
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Value Iteration (aka DP) at episode 7 using {P | , and {rh + b”} I
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=1

log (| S||A|HN/S)

Nj(s, a)

‘A/fi](s) =0, Vs QZ(S, a) = min {rh(s, a)+ b, (s,a) + Y PI(-]5,0)

‘A/Z(S) = max QZ(S, a),

20

m,(s) = arg mjx QZ(S, a), Vs

Encourage to explore
new state-actions

‘A/ZH(S ’) ’

H}, Vs, a



Reward Bonus Design and Value lteration

Recall: 2, = {Sh, ah, Sh+1}z 1,‘v’h N, (s,a) = Z 1{(Sh, ah) =(s,a)},Vs,a,h,

=1

log (|S||A|HNIS)
Define: b, (s,a) = cH
Nj(s, a)

Encourage to explore
new state-actions

Value Iteration (aka DP) at episode 7 using {P | , and {rh + b”} I

‘A/fi](s) =0, Vs QZ(S, a) = min {rh(s, a)+ b, (s,a) + Y PI(-]5,0)

Vi(s) = max Qj(s,a), m'(s) = argmax Q}}(s,a), Vs

20

‘A/ZH(S ’) ’

H}, Vs, a

<H, Vh,n

o0

A\

Vi




Reward Bonus Design and Value lteration

n—1
Recall: 2, = {S,i, a}’;, Slfl+1}?=_11,Vh, N, (s,a) = Z 1{(S;f,, Cl;i) = (s,a)},Vs,a,h,
i=1

log ( |ST]A ‘HN/5> Encoura

o B ge to explore

Define: b;(s, a) = cH ; new state-actions
Nh (Sa Cl)

Value Iteration (aka DP) at episode 7 using {}A’Z} pand {r,+ b},

‘A/fi](s) =0, Vs QZ(S, a) = min {rh(s, a)+ b, (s,a) + §mPI(-|5,0) ‘A/Z LGN, H }, Vs, a

A

Vi

<H, Vh,n

o0

Vi(s) = max Q'(s,a), m'(s) = arg max Q'(s,a), Vs

b; (s, a) specifically chosen so that V}f (5) < ‘A/Z(S) with high probability

20



UCBVI: Put All Together

Forn=1—-> N:

n—1
1.Set Ni'(s,a) = ) 1{(s,a) = (s.a)},Vs,a,h

i=1
n—1
2.Set N)(s,a,s’) = Z 1{(5;;, a;;, S;;+1) = (s,a,s)},Vs,a,a’, h
i=1
Ny (s,a,s’)

3. Estimate P" : ]A’Z(S’\ S,a) = Vs, a,s' h
Nj(s,a)

log(|S||A|HN/S)

4. Plan: ﬂ'n:V|( IA’”,r + b ),with b'(s,a) = cH
{ n byl n (S, a) \/ Nii(s, a)

5. Execute 7" 1 {8y, Ays 1gys ++ s Spy_15 Q15 Ty 1> Spy )

21
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High-level Idea: Exploration Exploitation Tradeoft
Upper bound per-episode regret: Vg( (Sg) — V(’)’n(so) < ‘A/g(so) — V(’)’n(so) by construction of b/
1. What if V7'(s,) — V¥ (s,) is small?

Then " is close to 7™, i.e., we are doing exploitation

2. What if V(j(sp) — V{j (5) is large?
Some b;f(s, a) must be large (or some PZ( - | 5, a) estimation errors must be large, but with high probability

any }A’Z( - | s, a) with high error must have small N} (s, a) and hence high b;'(s, a))

Large b; (s, a) means " is being encouraged to do (s, a), since it will apparently have very high reward,
l.e., exploration

N

— lRegretN] = [E 2 (V¥ =V | < H(HZ\/\SHA\N)

n=1
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Today

Feedback from last lecture

Recap

Warm-up: ExploreThenExploit for deterministic MDPs
Why we don’t want to treat MDPs as big bandits
UCB-VI for tabular MDPs

UCB-VI for linear MDPs

23



Linear MDP Definition

Finite horizon time-dependent episodic MDP ./ = {S,A,H, {r},, { P}, Sy}

S & A could be large or even continuous, hence poly(| S|, |A|) is not acceptable
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Linear MDP Definition

Finite horizon time-dependent episodic MDP ./ = {S,A,H, {r},, { P}, Sy}

S & A could be large or even continuous, hence poly(| S|, |A]) is not acceptable

Py(s'|s,a) = p[(s) - p(s,a), pr:S—>RYL ¢p:SxA - R?

r(s,a) = 6’; - (s, a), H,ff e R

Feature map ¢ is known to the learner!
(We assume reward is known, i.e., 8* is known)

24



Planning in Linear MDP: Value lteration

P,(-|s,a)=p d(s.a), preRPX ¢(s,a) € R?

r(s,a) = (HZ;)T¢(S, a), 6’; c R
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Planning in Linear MDP: Value lteration
P, |s,a)= //t}fgb(s, a), //t}f c RP>4 (s, a) € R?

r(s,a) = (HZ;)T¢(S, a), 6’; c R

VZ(s) = 0,Vs,

* — — * /

=07 - pls.0) + (w1 (5. @) Vi,

= ¢(s, @) (07 + () Vi)
= (s, a)Twh

V¥(s) = max ¢(s,a)'w,, m(s) = argmax ¢(s,a)'w,
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Planning in Linear MDP: Value lteration
P, |s,a)= //t}fgb(s, a), ,l/t};k c RP>4 (s, a) € R?

r(s,a) = (9;;)T¢(S, a), 6’; c R

VZ(s) = 0,Vs,
Indeed we can show that Q;'( -, - )

* —_ — * /
Oy, (s, a) = 1(s, @) + By p . fs.0) Vi1 () s linear with respect to ¢ as well, for any x, h

=07 - pls.0) + (w1 (5. @) Vi,

= ¢(s, @) (07 + () Vi)
= (s, a)Twh

VX(s) = max ¢(s,a)'w,, m(s) = argmax ¢(s,a)' w,

25
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UCBVI in Linear MDPs

At the beginning of iteration n:

s pn H—1 - i 0 o0 n—l1
1. Learn transition model { P} },_, from all previous data {s;,a,, s, }:

2. Design reward bonus b, (s, a), Vs, a

3. Plan: 7"t = VI ({}A’”}h, i, + b;,l})

26
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- pn\ H—1
How to estimate { P}, _y?

Denote 0(s) € RIS with zero everywhere except the entry corresponding to s

Given s, a, note that ;. _p (5.4 [5(S’)] = Py(- |s,a) = u d(s,a)

Penalized Linear Regression:

n—1
min ) [lug(sp, aj) = 6(sj, I3 + Allull;
=l

n—1 n—1
AP =Y (st ah(st,a)T + Al ar = AN~y 8Gsi, bisiai)
i=1 =1

ﬁZ( |5, a) = ﬂ\th(Sa a)

27



How to choose b, (s, a)?

Chebyshev-like approach, similar to in linUCB (will cover next lecture):

bji(s, @) = y/ (s, AN (s @), f= O(dH)




INUCB-VI: Put All Together

Form=1—> N_:

n—1
1.Set Al = ) (s, ap(si,al)" + Al
=1

n—1
2.Set i7l = (A"~ Z 5(sp )P (s) @)
=1

3. Estimate P" : IA’Z( s, a) = /ft\Zgb(S, a)

4. Plan: 7" = VI ({ﬁ”, ry, + b;l’}h), with b, (s, a) = cdH\/¢(s, Cl)T(AZ)_1¢(S, a)

5. EXGCUte ﬂn : {Sg, Clg, r(l)/l, s e oo SI’;—I’CZI’;—I, }/'IZ_I,SZ}
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INUCB-VI: Put All Together

Form=1—> N_:

n—1
1.Set Al = ) (s, ap(si,al)" + Al
=1

2. Set An) 1 Z 5(Sh+1)¢(sha ah)T

3. Estimate P" : PZ( - |s,a) = urg(s, a)
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INUCB-VI: Put All Together

Form=1—> N_:

n—1
1.Set Al = ) (s, ap(si,al)" + Al
=1

2. Set An) 1 Z 5(Sh+1)¢(sha ah)T

3. Estimate P" : IA’Z( s, a) = /ft\Zgb(S, a)

4. Plan: 7" = VI ({ﬁ”, ry, + b}’l”‘}h), with b, (s, a) = cdH\/qb(s, CZ)T(AZ)_1¢(S, a)

n n n n
 Spr—1> Q1> Y1 SH )

- |Regret, | =T [EN: (V29 V”)] 0 (Hd">/N)

n=1

5. Execute " : {5, dy, 1y, - -

No S, A dependence!
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UCB-VI for tabular MDPs
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Summary:

UCBVI algorithm applies UCB idea to MDPs to achieve exploration/exploitation trade-off

Attendance: Feedback:
bit.ly/3RcTCOT bit.ly/3RHtIxy
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http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

