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• Feedback from last lecture


• Recap


• Warm-up: ExploreThenExploit for deterministic MDPs


• Why we don’t want to treat MDPs as big bandits


• UCB-VI for tabular MDPs


• UCB-VI for linear MDPs
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“Lack of Exploration” leads to Optimization and Statistical Challenges

• Suppose  &  (i.e. we start at ).


• A randomly initialized policy  has prob.   of hitting the goal state in a trajectory. 


• Thus a sample-based approach, with , require  trajectories.

• Holds for (sample based) Fitted DP

• Holds for (sample based) PG/TRPO/NPG/PPO


• Basically, for these approaches, there is no hope of learning the optimal policy if .

H ≈ poly( |S | ) μ(s0) = 1 s0

π0 O(1/3|S|)
μ(s0) = 1 O(3|S|)

μ(s0) = 1

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1
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S states Thrun ‘92

R=1
Let’s examine the role of μ

• Suppose that somehow the distribution  had better coverage.

• e.g, if  was uniform overall states in our toy problem, then all approaches we 

covered would work (with mild assumptions )

• Theory: TRPO/NPG/PPO have better guarantees than fitted DP methods  

(assuming some “coverage”)

• Strategies without coverage:

• If we have a simulator, sometimes we can design  to have better coverage.

• this is helpful for robustness as well.


• Imitation learning (next time). 

• An expert gives us samples from a “good” .


• Explicit exploration:

• UCB-VI: we’ll merge two good ideas!

• Encourage exploration in PG methods.


• Try with reward shaping

μ
μ

μ

μ
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Recall: Value Iteration (VI)
VI = DP is a backwards in time approach for computing the optimal policy: 

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}
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Recall: Upper Confidence Bound (UCB)

8

For :t = 0,…, T − 1
Choose the arm with the highest upper confidence bound, i.e.,


at = arg max
k∈{1,…,K}

̂μ(k)
t + ln(2TK/δ)/2N(k)

t
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8

For :t = 0,…, T − 1
Choose the arm with the highest upper confidence bound, i.e.,


at = arg max
k∈{1,…,K}

̂μ(k)
t + ln(2TK/δ)/2N(k)

t

High-level summary: estimate action quality, add exploration bonus, then argmax
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How we do find  in an unknown MDP?π⋆

• Episodic setting with an unknown MDP: 

• suppose we start at . 

• We act for  steps. 

• Then repeat.


• How do we find ?

• How do we get low regret?


• Let’s start with the setting where the MDP is deterministic.

• So both  and  are deterministic.

s0 ∼ μ
H

π⋆

r(s, a) P( ⋅ |s, a)
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H ≥ |S |
K V⋆

K > 0 π⋆
K (s, a) ∉ K

|S |
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• Basically formulating shortest path as an optimal policy in some modified MDP 

• How do we modify the algorithm for general ?H
• Ignore any states that can’t be reached in at most  steps! H

• What is the regret of this algorithm?
• Can be arbitrarily bad while searching, and searches for  steps:  |S | |A | |S | |A |H

• Really needed determinism; for non-deterministic MDPs, need to think more like bandits…
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Q: given a discrete MDP, how many unique deterministic policies are there?

( |A ||S| )
H

So treating each policy as an “arm” and running UCB gives us regret Õ( |A ||S|H N)

This seems bad, so are MDPs just super hard or can we do better?
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Everything: we have a lot of data on every state-action reward and transition!

If we treat the MDP as a bandit, we treat  as a new “arm” about which we know nothing…π(3)

|A ||S|H = 24 = 16
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Inside iteration n :

Use all previous data to estimate dynamics  { ̂Pn
h}

H−1
h=0

Optimistic planning with learned model: πn = VI ({ ̂Pn
h, rh + bn

h}H−1
h=1 )

Collect a new trajectory by executing  in the true system  starting from πn {Ph}H−1
h=0 s0

Design reward bonus bn
h(s, a), ∀s, a, h

18

Assume reward function  knownrh(s, a)
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∑
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h(s′ |s, a), ∀s, a, s′ , h

̂Pn
h(s′ |s, a) =

Nn
h(s, a, s′ )
Nn

h(s, a)
19



Reward Bonus Design and Value Iteration
Recall: 𝒟n

h = {si
h, ai

h, si
h+1}

n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

20



Reward Bonus Design and Value Iteration
Recall: 𝒟n

h = {si
h, ai

h, si
h+1}

n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

Define: bn
h(s, a) = cH

log ( |S | |A |HN/δ)
Nn

h(s, a)

20



Reward Bonus Design and Value Iteration
Recall: 𝒟n

h = {si
h, ai

h, si
h+1}

n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

Define: bn
h(s, a) = cH

log ( |S | |A |HN/δ)
Nn

h(s, a)
Encourage to explore 

new state-actions 

20



Reward Bonus Design and Value Iteration
Recall: 𝒟n

h = {si
h, ai

h, si
h+1}

n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

Define: bn
h(s, a) = cH

log ( |S | |A |HN/δ)
Nn

h(s, a)
Encourage to explore 

new state-actions 

Value Iteration (aka DP) at episode  using  and n { ̂Pn
h}h {rh + bn

h}h

20



Reward Bonus Design and Value Iteration
Recall: 𝒟n

h = {si
h, ai

h, si
h+1}

n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

Define: bn
h(s, a) = cH

log ( |S | |A |HN/δ)
Nn

h(s, a)
Encourage to explore 

new state-actions 

Value Iteration (aka DP) at episode  using  and n { ̂Pn
h}h {rh + bn

h}h

̂Vn
H(s) = 0, ∀s

20



Reward Bonus Design and Value Iteration
Recall: 𝒟n

h = {si
h, ai

h, si
h+1}

n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

Define: bn
h(s, a) = cH

log ( |S | |A |HN/δ)
Nn

h(s, a)
Encourage to explore 

new state-actions 

Value Iteration (aka DP) at episode  using  and n { ̂Pn
h}h {rh + bn

h}h

̂Vn
H(s) = 0, ∀s Q̂n

h(s, a) = min {rh(s, a) + bn
h(s, a) + 𝔼s′ ∼ ̂Pn

h(⋅|s,a) [ ̂Vn
h+1(s′ )], H}, ∀s, a

20



Reward Bonus Design and Value Iteration
Recall: 𝒟n

h = {si
h, ai

h, si
h+1}

n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

Define: bn
h(s, a) = cH

log ( |S | |A |HN/δ)
Nn

h(s, a)
Encourage to explore 

new state-actions 

Value Iteration (aka DP) at episode  using  and n { ̂Pn
h}h {rh + bn

h}h

̂Vn
H(s) = 0, ∀s

̂Vn
h(s) = max

a
Q̂n

h(s, a), πn
h(s) = arg max

a
Q̂n

h(s, a), ∀s

Q̂n
h(s, a) = min {rh(s, a) + bn

h(s, a) + 𝔼s′ ∼ ̂Pn
h(⋅|s,a) [ ̂Vn

h+1(s′ )], H}, ∀s, a

20



Reward Bonus Design and Value Iteration
Recall: 𝒟n

h = {si
h, ai

h, si
h+1}

n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

Define: bn
h(s, a) = cH

log ( |S | |A |HN/δ)
Nn

h(s, a)
Encourage to explore 

new state-actions 

Value Iteration (aka DP) at episode  using  and n { ̂Pn
h}h {rh + bn

h}h

̂Vn
H(s) = 0, ∀s

̂Vn
h(s) = max

a
Q̂n

h(s, a), πn
h(s) = arg max

a
Q̂n

h(s, a), ∀s ̂Vn
h ∞

≤ H, ∀h, n

Q̂n
h(s, a) = min {rh(s, a) + bn

h(s, a) + 𝔼s′ ∼ ̂Pn
h(⋅|s,a) [ ̂Vn

h+1(s′ )], H}, ∀s, a

20



Reward Bonus Design and Value Iteration
Recall: 𝒟n

h = {si
h, ai

h, si
h+1}

n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

Define: bn
h(s, a) = cH

log ( |S | |A |HN/δ)
Nn

h(s, a)
Encourage to explore 

new state-actions 

Value Iteration (aka DP) at episode  using  and n { ̂Pn
h}h {rh + bn

h}h

̂Vn
H(s) = 0, ∀s

̂Vn
h(s) = max

a
Q̂n

h(s, a), πn
h(s) = arg max

a
Q̂n

h(s, a), ∀s ̂Vn
h ∞

≤ H, ∀h, n

Q̂n
h(s, a) = min {rh(s, a) + bn

h(s, a) + 𝔼s′ ∼ ̂Pn
h(⋅|s,a) [ ̂Vn

h+1(s′ )], H}, ∀s, a

20

 specifically chosen so that  with high probabilitybn
h(s, a) V⋆

h (s) ≤ ̂Vn
h(s)



UCBVI: Put All Together
For n = 1 → N :

3. Estimate  ̂Pn : ̂Pn
h(s′ |s, a) =

Nn
h(s, a, s′ )
Nn

h(s, a)
, ∀s, a, s′ , h

1. Set Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h

2. Set Nn
h(s, a, s′ ) =

n−1

∑
i=1

1{(si
h, ai

h, si
h+1) = (s, a, s′ )}, ∀s, a, a′ , h

4. Plan: πn = VI ({ ̂Pn
h, rh + bn

h}h), with bn
h(s, a) = cH

log( |S | |A |HN/δ)
Nn

h(s, a)

5. Execute  πn : {sn
0 , an

0 , rn
0 , …, sn

H−1, an
H−1, rn

H−1, sn
H}

21
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High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret:  by construction of V⋆
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∑
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Today
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• Feedback from last lecture


• Recap


• Warm-up: ExploreThenExploit for deterministic MDPs


• Why we don’t want to treat MDPs as big bandits


• UCB-VI for tabular MDPs


• UCB-VI for linear MDPs



Linear MDP Definition

Finite horizon time-dependent episodic MDP ℳ = {S, A, H, {r}h, {P}h, s0}

 could be large or even continuous, hence poly  is not acceptableS & A ( |S | , |A | )
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Linear MDP Definition

Feature map  is known to the learner! 
(We assume reward is known, i.e.,  is known)

ϕ
θ⋆

Finite horizon time-dependent episodic MDP ℳ = {S, A, H, {r}h, {P}h, s0}

 could be large or even continuous, hence poly  is not acceptableS & A ( |S | , |A | )

Ph(s′ |s, a) = μ⋆
h (s′ ) ⋅ ϕ(s, a), μ⋆

h : S ↦ ℝd, ϕ : S × A ↦ ℝd

r(s, a) = θ⋆
h ⋅ ϕ(s, a), θ⋆

h ∈ ℝd

24



Planning in Linear MDP: Value Iteration
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= ϕ(s, a)⊤wh

V⋆
h (s) = max

a
ϕ(s, a)⊤wh, π⋆

h (s) = arg max
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Indeed we can show that  

Is linear with respect to  as well, for any 

Qπ
h ( ⋅ , ⋅ )

ϕ π, h
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UCBVI in Linear MDPs

At the beginning of iteration n:
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UCBVI in Linear MDPs

1. Learn transition model  from all previous data { ̂Pn
h}

H−1
h=0 {si

h, ai
h, si

h+1}
n−1
i=0

2. Design reward bonus bn
h(s, a), ∀s, a

3. Plan: πn+1 = VI ({ ̂Pn}h, {rh + bn
h})

At the beginning of iteration n:
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H−1
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hϕ(s, a)

27



How to choose ?bn
h(s, a)

Chebyshev-like approach, similar to in linUCB (will cover next lecture):

bn
h(s, a) = β ϕ(s, a)⊤(An

h)−1ϕ(s, a), β = Õ (dH)
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linUCB-VI: Put All Together
For n = 1 → N :

3. Estimate  ̂Pn : ̂Pn
h( ⋅ |s, a) = ̂μn

hϕ(s, a)
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h =

n−1

∑
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h)ϕ(si
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⊤ + λI
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h = (An

h)−1
n−1

∑
i=1

δ(si
h+1)ϕ(si

h, ai
h)

⊤

4. Plan: πn = VI ({ ̂Pn
h, rh + bn

h}h), with bn
h(s, a) = cdH ϕ(s, a)⊤(An

h)−1ϕ(s, a)

5. Execute  πn : {sn
0 , an

0 , rn
0 , …, sn

H−1, an
H−1, rn

H−1, sn
H}
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𝔼 [RegretN] := 𝔼 [
N

∑
n=1

(V⋆ − Vπn)] ≤ Õ (H2d1.5 N)
No  dependence!S, A
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• Feedback from last lecture


• Recap


• Warm-up: ExploreThenExploit for deterministic MDPs


• Why we don’t want to treat MDPs as big bandits


• UCB-VI for tabular MDPs


• UCB-VI for linear MDPs



Summary:

Feedback: 

bit.ly/3RHtlxy
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Attendance: 
bit.ly/3RcTC9T

UCBVI algorithm applies UCB idea to MDPs to achieve exploration/exploitation trade-off

http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

