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Imitation Learning
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Supervised Learning Approach: Behavior Cloning
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[Widrow64,Pomerleau89]

Learned 
Policy π

Mapping from state (image) to 
control (steering direction)



Distribution Shift Example (  )|Vπ⋆ − V ̂π | ≤ H2ϵ

Initial 
state

r(s1) = 1 Assume SL returns the policy :
̂π

̂π (s0) = {a1 w/ prob 1 − Hϵ
a2 w/ prob Hϵ

, ̂π (s1) = a2, ̂π (s2) = a2

This policy has good supervised learning error:





note: while , state  is never visited under 

𝔼τ∼ρπ⋆ [ 1
H

H−1

∑
h=0

1 [ ̂π (sh) ≠ π⋆(sh)]] = ϵ

̂π (s2) ≠ π⋆(s2) s2 π⋆

Intuition: once we make a mistake at , we 
end up in  which is not in the training data!

s0
s2

Opt policy: 


Under , trajectory is 

 


π⋆(s0) = π⋆(s2) = a1,
π⋆(s1) = a2

ρπ⋆ s0, s1, s1, …
ρπ⋆(sh = s2) = 0
Vπ⋆

0 (s0) = H − 1

We have quadratic degradation (in ):
H
V ̂π

0(s0) = (1 − Hϵ) ⋅ Vπ⋆

0 (s0) + Hϵ ⋅ 0 = Vπ⋆

0 (s0) − ϵH(H − 1)

7



The DAgger algorithm

Initialize , and dataset π0 𝒟 = ∅
For :t = 0 → T − 1

1. W/ , generate dataset of trajectories 

where for all trajectories 

πt 𝒟t = {τ1, τ2, …}
sh ∼ ρπt, ah = π⋆(sh)

2. Data aggregation: 𝒟 = 𝒟 ∪ 𝒟t

3. Update policy via Supervised-Learning: πt+1 = SL (𝒟)

8

In practice, the DAgger algorithm requires less human labeled data than BC. 
 
[Informal Theorem] Under more assumptions + assuming  SL error is achievable, 

the DAgger algorithm has error: 

ϵ
|Vπ⋆ − V ̂π | ≤ Hϵ
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Fascination with AI and Games…
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We will focus on games that are:

• Game states , initial state 


• Set of actions available in state : 

• Dynamics 

• Maximum game length 

• Score at terminal state  (sign determines winner) 

S s0 ∈ S
s A(s)

P(s, a) ∈ S
H
r(s)

Notation:

E.g.,

• Tic-tac-toe

• Chess

• Go

Still an MDP, but two

competing players 

make it a bit different

than earlier RL setup



Simple example of min-max search
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H = 2
Outcome r(s) D E F

A 4 -2 5
B -3 3 1
C 0 3 -1
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Game tree:

Simple example of min-max search

12

, player 1 takes action A, B, or C

 then player 2 takes action D, E, F

H = 2
Outcome r(s) D E F

A 4 -2 5
B -3 3 1
C 0 3 -1

4 -2 5 -3 3 1 0 3 -1

-1-3-2

-1

Basically dynamic programming! Numbers in boxes are value function V(s)
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Pruning can speed up search without losing exactness

•  is lower-bound for 

•  is upper-bound for 

• Bounds sometimes allow pruning

α(s) V⋆(s)
β(s) V⋆(s)

4 -2 5 -3 0 3 -1

α = − ∞
β = − 2

α = − 2
β = ∞PRUNE α = − 2

β = − 1
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The order that actions are considered can matter a lot
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• Alpha-beta search evaluates non-leaf nodes via a min-max approach
• Even with pruning, requires searching a LOT of paths down tree

• Idea of MCTS is evaluate non-leaf nodes via sampling (Monte Carlo)
• High-level: at each iteration, MCTS does the following
• Defines a game-playing strategy (policy for both players) that is a  

simple function of a set of statistics computed from existing samples
• Plays the game to completion via this strategy and records outcome
• Updates statistics used to define game-playing strategy

• Strategy gradually improves with more iterations/samples, so can fit in 
any computational budget

• Samples are concentrated around more promising strategies

Monte Carlo Tree Search (MCTS)
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b. “Take” action:  
̂a = arg max

a
UCBscore(s, a)

2. Update stats: For all visited states  in this trajectory,s′ 

c. update visit counts:    
[#visits to s′ ] = [#visits to s′ ] + 1

d. for winner  and if  was visited by :    X s X
[#wins for X at s′ ] = [#wins for X at s′ ] + 1

            (data structure: only need to keep track of stats at visited states)
Output: return the action ̂a = arg max

a
UCBscoreN(R, a)
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• For large games, most states never visited…  

so UCB basically just samples trajectories randomly after a certain point!
• Solution: 
• Fix a strategy  and a look-ahead horizon π T
• Only use UCB strategy for choosing actions for  steps, use  afterT π
• Note since MCTS re-runs at every game step, ’s use gets later and laterπ

• Need a good strategy … or, a good value function approximation : 
    After  steps, instead of using , stop and record  as game outcome

π ̂V(s)
T π ̂V(s)

•  could be learned from offline/expert data and improved onlinêV(s)
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AlphaGo

19

• Lots of moving parts:

• Imitation Learning: first, the algo estimates the values from historical games.

• It then uses an MCTS-stye lookahead with learned value functions.


• AlphaZero (2017) is a simpler more successful approach that uses self-play
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AlphaZero

• AlphaZero: MCTS + DeepLearning + self-play
• MCTS subroutine has a value network and policy network

• a value network estimating the value for the state of the board ̂Vθ(s)
• A policy network  that is a probability vector over all possible actionsπθ(a |s)

• Use these for MCTS, then play agent against self and use self-play data to learn 
better ; iterateθ
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• Iterate the following:
• Self-play: Play against self  times using current MCTS strategyM
• Supervised Learning: Use  self-play game trajectories to update:M
•   with squared error loss wrt game outcomes (similar to in fitted VI or baseline estimation)̂Vθ
•   with negative log likelihood loss wrt actions taken in game (similar to in BC)πθ
• In practice, combine loss functions into single SL problem with shared θ

• AlphaZero uses no historical data, only self-play
• Performance improvement was pretty astronomical!
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Summary:

Feedback: 

bit.ly/3RHtlxy

25

Attendance: 
bit.ly/3RcTC9T

1. Search is powerful: MCTS

2. Search + learning is better: AlphaZero

http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

