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Imitation Learning




[Widrow64,Pomerleau89]

Supervised Learning Approach: Behavior Cloning

Expert Trajectories Dataset

Learned
Policy m

Mapping from state (image) to |

control (steering direction) Supervised Learning 6



Distribution Shift Example (| VT — V’?\ < H%c)

Assume SL returns the policy 7:

r(s)) =
! R a; w/probl—He R
’ ]Z-(SO) — . ﬂ(Sl) = Uy, ﬂ(Sz) = dy

a, w/ prob He

This policy has good supervised learning error:

| Al
. e | g Z L|7(sy) # 7%(s)] | =€
h=0

Initial *

note: while 7 (s,) # 7% (s,), state s, is never visited under 7
state

ao We have quadratic degradation (in H):

7*(sy) = 7%(s,) = aj, Vi(so) = (1 — He) - V7 (s) + He - 0 = VZ (s9) — eH(H — 1)
Opt policy: N
I (Sl) — Clz

Under p_., trajectory is s, S1, 515 - ..

IO]Z'**(Sh — SZ) =0
V(j)z (S()) — H— 1 .

Intuition: once we make a mistake at s, we
end up in $, which is not in the training data!



The DAgger algorithm

Initialize 7°, and dataset I = &

Fort=0—-> T —1:
1. W/ ', generate dataset of trajectories 9’ = {7, 7,, ...}
where for all trajectories s, ~ p ., @, = 77(s)

2. Data aggregation: @ = 9 U @'

3. Update policy via Supervised-Learning: 771 = SL (@)

In practice, the DAgger algorithm requires less human labeled data than BC.

Informal Theorem] Under more assumptions + assuming € SL error is achievable,
the DAgger algorithm has error: | V* — V" | < He
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NATURAL ‘PROZAC” DOES IT REALLY WORK?

-
 DeepBlue v. Kasparov (1997) veek

* winning in chess wasn’t a good indicator of e Man v
“progress in Al” . Machine:
" The Rematch

Fascination with Al and Games...

History of Game Al
Kaissa By: Andrey Kurenkov

1974: first world TD- Monte MCTS Go

computer chess

Dartmouth champion Gammon | Carlo Go il

researchers advance

Conference : e~ 1992: RL and neural 1993: first research Go Al with MCTS
1956: the birth of Al net based back- on Go with stochastic

gammon Al shown search C ra zy

NeuroGo Stone
1996: ConvNet with 2008: MCTS Go Al

RL for Go, 13 kyu beats 4 dan player
(amateur)

Mac Hack Zen19

1967: chess Al beats ' 2012: MCTS based Go ' >_ ,
person in tournament Al reaches 5-dan rank T

Chess champion Garry Kasparov

What
Computers

Will Do Next

of winning, V,

pdoidy DeepMind
Checkefs Al A CNN CHINOOK | Deep Blue | 2014 Google buys
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Two-player, deterministic games

We will focus on games that are:
o deterministic

* two-player (alternating turns)

» zero sum (one player wins and the other loses)

» fully observable (by both players)

» stationary (only game state and whose turn it is matters)
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Two-player, deterministic games

We will focus on games that are:
o deterministic

. E.Q.,
two-player (alternating ’Furns) . Tic-tac—toe
» zero sum (one player wins and the other loses) . Chess
» fully observable (by both players) e GO
» stationary (only game state and whose turn it is matters)
Notation:
« Game states S, Initial state SO eS Still an MDP, but two
 Set of actions available in state s: A(s) competing players
. Dynamics P(s,a) € S make it a bit different

than earlier RL setup
¢ Maximum game length H

 Score at terminal state r(s) (sign determines winner)



Simple example of min-max search

Outcome r(s)

D

H = 2, player 1 takes action A, B, or C A 4
then player 2 takes action D, E, F B -3

0

W|wW|py | Mm

C
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H = 2, player 1 takes action A, B, or C A

K«

Simple example of min-max search

then player 2 takes action D, E, F
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Simple example of min-max search

D
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Simple example of min-max search

Outcome r(s) D E
H = 2, player 1 takes action A, B, or C A 4 -2
then player 2 takes action D, E, F B -3 3
C 0 3
Game tree: _1

N
o 55




Simple example of min-max search

H = 2, player 1 takes action A, B, or C

then player 2 takes action D, E, F

2
0 ENF
\ 4

Game tree:

/A

~

5

K«

-3

Outcome r(s) D E
A 4 -2 5
B -3 3 1
C 0 3 -1

3
0 ENF
\ 4

~

1

-1

/'\
B C
Y

\1
0 EF

K«

0

Basically dynamic programming! Numbers in boxes are value function V(s)
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Alpha-beta search

Pruning can speed up search without losing exactness
o a(s) is lower-bound for V*(s)
» [i(s) is upper-bound for V*(s)
 Bounds sometimes allow pruning
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Alpha-beta search

Pruning can speed up search without losing exactness
o a(5s) is lower-bound for V*(s)
» [(s) is upper-bound for V*(s)
 Bounds sometimes allow pruning

a=—1

A A
R S

PN PN
N el AL o 9 F

The order that actions are considered can matter a lot
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Monte Carlo Tree Search (MCTS)

For now, assume game outcome just win or lose: r(s) € {—1,1}

Alpha-beta search evaluates non-leaf nodes via a min-max approach
* Even with pruning, requires searching a LOT of paths down tree
ldea of MCTS is evaluate non-leaf nodes via sampling (Monte Carlo)
High-level: at each iteration, MCTS does the following

* Defines a game-playing strategy (policy for both players) that is a
simple function of a set of statistics computed from existing samples

* Plays the game to completion via this strategy and records outcome
» Updates statistics used to define game-playing strategy

Strategy gradually improves with more iterations/samples, so can fit in
any computational budget

Samples are concentrated around more promising strategies
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For iterationr = 1,.... N
1. Obtain the 7-th sample trajectory: Starting at R, while current state s & {win, lose}
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wins for player X from s’ . C\/log( visits to s)

UCBscore,(s, a) =
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b. “Take” action:

a = arg max UCBscore(s, a)
a

2. Update stats: For all visited states s’ in this trajectory,
C. Uupdate visit counts:

[#visits to 5] = [#visitsto s'] + 1
d. for winner X and if s was visited by X:
[#wins for X at s'] = [#wins for X at s'] + 1
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a = arg max UCBscore(s, a)
a

2. Update stats: For all visited states s’ in this trajectory,
C. Uupdate visit counts:

[#visits to s'] = [#visitsto s'] + 1
d. for winner X and if s was visited by X:

[#wins for X at s'] = [#wins for X at s'] + 1
(data structure: only need to keep track of stats at visited states)

Output: return the action ¢ = arg max UCBscorey(R, a)
a
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Improving MCTS

MCTS re-runs at every game step (root node gets updated to current state)
“Pure” MCTS can work well for small games, but what can go wrong??

For large games, most states never visited...
so UCB basically just samples trajectories randomly after a certain point!

Solution:
» Fix a strategy 7 and a look-ahead horizon /

« Only use UCB strategy for choosing actions for / steps, use 7 after
* Note since MCTS re-runs at every game step, 7’s use gets later and later

Need a good strategy 7... or, a good value function approximation V(S):
After 7 steps, instead of using 7, stop and record V(s) as game outcome

‘A/(S) could be learned from offline/expert data and improved online

17



Today

Feedback from last lecture

Recap

Game Playing: AlphaBeta Search/Rule Based Systems
MCTS

AlphaZero and Self-Play

18



AlphaGo

AlphaGo versus Lee Sedol

4-1

Seoul, South Korea, 9-15 March 2016

Game one
Game two
Game three
Game four

Game five

AlphaGo W+R
AlphaGo B+R
AlphaGo W+R
Lee Sedol W+R
AlphaGo W+R

e e
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AlphaGo

Google DeepMind

19

o 00:00:27



AlphaGo

AlphaGo versus Lee Sedol

4-1
Seoul, South Korea, 9-15 March 2016
Game one AlphaGo W+R
Game two AlphaGo B+R
Game three AlphaGo W+R
Game four Lee Sedol W+R
Game five AlphaGo W+R

* Lots of moving parts:

ALPHAGO

00:08:32 08 00 : "~ LEE SEDOL

o 00:00:27

e e

oy O
@ ‘\ ’ ®
L) ® ‘O

AlphaGo

Google DeepMind

* Imitation Learning: first, the algo estimates the values from historical games.
* |t then uses an MCTS-stye lookahead with learned value functions.
* AlphaZero (2017) is a simpler more successful approach that uses self-play
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AlphalZero

* AlphaZero: MCTS + Deeplearning + self-play
« MCTS subroutine has a value network and policy network

« avalue network estimating the value for the state of the board

A policy network that is a probability vector over all possible actions

 Use these for MCTS, then play agent against self and use self-play data to learn
better O iterate
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Input: game state (“root node” R), #iterations N, exploration constant C, look-ahead horizon 7, value
network V/,(s), policy network 7,(c | s)
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AlphaZero MCTS subroutine (without self-play)

Input: game state (“root node” R), #iterations N, exploration constant C, look-ahead horizon 7, value
network ‘A/@(S), policy network 7,(a | s)
For iteration7 = 1 : N

1. Obtain the 7-th sample trajectory: For 1  steps starting from R,
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AlphaZero MCTS subroutine (without self-play)

Input: game state (“root node” R), #iterations N, exploration constant C, look-ahead horizon 7, value
network ‘A/@(s), policy network 7,(a | 5)
For iteration7 = | : V
1. Obtain the 7-th sample trajectory: For 1  steps starting from R,
a. Forplayer X € {0,]}, at current state s, define 5" = P(s, a) and define:

= \ log(#visits to s)
UCBscore/(s,a) = V(s') - (=1)" + C - my(als) -

visits to s’
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AlphaZero MCTS subroutine (without self-play)

Input: game state (“root node” R), #iterations N, exploration constant C, look-ahead horizon 7, value
network V,(s), policy network 7,(a | s)

For iteration?7 = | : V
1. Obtain the 7-th sample trajectory: For 1  steps starting from R,
a. Forplayer X € {0,]}, at current state s, define 5" = P(s, a) and define:

= \ log(#visits to s)
UCBscore/(s,a) = V(s') - (=1)" + C - my(als) -

visits to s’

b. “Take” action:

a = arg max UCBscore,(s, a)
a

2. Update stats: For all visited states s’ in this “roll-out”, letting s+ be the last sampled state
c. Update counts: |[#visits to s'| = [#visits to 5’| + |
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AlphaZero MCTS subroutine (without self-play)

Input: game state (“root node” R), #iterations N, exploration constant C, look-ahead horizon 7, value
network V,(s), policy network 7,(a | s)

For iteration?7 = | : V
1. Obtain the 7-th sample trajectory: For 1  steps starting from R,
a. Forplayer X € {0,]}, at current state s, define 5" = P(s, a) and define:

= \ log(#visits to s)
UCBscore/(s,a) = V(s') - (=1)" + C - my(als) -

visits to s’

b. “Take” action:

a = arg max UCBscore,(s, a)
a

2. Update stats: For all visited states s’ in this “roll-out”, letting s+ be the last sampled state

c. Update counts: |[#visits to s'| = [#visits to 5’| + |
| #visits to s’}

N 1 R
V(s’) + V(s
[#visits to s'] + 1 (5) (#visits to '] + 1 o(ST)

d. Update average value estimate: V(s') <
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AlphaZero MCTS subroutine (without self-play)

Input: game state (“root node” R), #iterations N, exploration constant C, look-ahead horizon 7, value
network V,(s), policy network 7,(a | s)

Foriteration7 =1 : V
1. Obtain the 1-th sample trajectory: For 1 steps starting from R,
a. Forplayer X € {0,]}, at current state s, define 5" = P(s, a) and define:

= \ log(#visits to s)
UCBscore/(s,a) = V(s') - (=1)" + C - my(als) -

visits to s’

b. “Take” action:

a = arg max UCBscore,(s, a)
a

2. Update stats: For all visited states " in this “roll-out”, letting s, be the last sampled state

c. Update counts: |[#visits to s'| = [#visits to 5’| + |
| #visits to s’}

N 1 R
V(s’) + V(s
[#visits to s'] + 1 (5) (#visits to '] + 1 o(ST)

Output: return the action ¢ = arg max UCBscorey(R, a)
a

d. Update average value estimate: V(s') <
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Self-play

* |terate the following:
« Self-play: Play against self M times using current MCTS strategy
e Supervised Learning: Use M self-play game trajectories to update:
. ‘A/@ with squared error loss wrt game outcomes (similar to in fitted VI or baseline estimation)
» 1y with negative log likelihood loss wrt actions taken in game (similar to in BC)

 In practice, combine loss functions into single SL problem with shared @

* AlphaZero uses no historical data, only self-play
 Performance improvement was pretty astronomical!
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Chess [edit]

In AlphaZero's chess match against Stockfish 8 (2016 TCEC world champion), each program was given one minute per move. Stockfish was
allocated 64 threads and a hash size of 1 GB,!!! a setting that Stockfish's Tord Romstad later criticized as suboptimal.[”ll"ot 1 AlphaZero was
trained on chess for a total of nine hours before the match. During the match, AlphaZero ran on a single machine with four application-specific
TPUs. In 100 games from the normal starting position, AlphaZero won 25 games as White, won 3 as Black, and drew the remaining 72181 In a
series of twelve, 100-game matches (of unspecified time or resource constraints) against Stockfish starting from the 12 most popular human
openings, AlphaZero won 290, drew 886 and lost 24.!]

Shogi [ edit]

AlphaZero was trained on shogi for a total of two hours before the tournament. In 100 shogi games against elmo (World Computer Shogi
Championship 27 summer 2017 tournament version with YaneuraOu 4.73 search), AlphaZero won 90 times, lost 8 times and drew twice.[8] As
in the chess games, each program got one minute per move, and elmo was given 64 threads and a hash size of 1 GB.[]

Go [edit]

After 34 hours of self-learning of Go and against AlphaGo Zero, AlphaZero won 60 games and lost 40.1118]
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Chess [edit]

In AlphaZero's chess match against Stockfish 8 (2016 TCEC world champion), each program was given one minute per move. Stockfish was
allocated 64 threads and a hash size of 1 GB,!!! a setting that Stockfish's Tord Romstad later criticized as suboptimal.[”ll"ot 1 AlphaZero was
trained on chess for a total of nine hours before the match. During the match, AlphaZero ran on a single machine with four application-specific
TPUs. In 100 games from the normal starting position, AlphaZero won 25 games as White, won 3 as Black, and drew the remaining 72181 In a
series of twelve, 100-game matches (of unspecified time or resource constraints) against Stockfish starting from the 12 most popular human
openings, AlphaZero won 290, drew 886 and lost 24.!]

Shogi [ edit]

AlphaZero was trained on shogi for a total of two hours before the tournament. In 100 shogi games against elmo (World Computer Shogi
Championship 27 summer 2017 tournament version with YaneuraOu 4.73 search), AlphaZero won 90 times, lost 8 times and drew twice.[8] As
in the chess games, each program got one minute per move, and elmo was given 64 threads and a hash size of 1 GB.[]

Cup
Go [edit] Event Year Time Controls
After 34 hours of self-learning of Go and against AlphaGo Zero, AlphaZero won 60 games and lost 40.[1€] Cup1 | 2018 | 30+10

Cup2 | 2019 30+5
Cup3 | 2019 30+5
Cup4 | 2019 30+5
Cup5 | 2020 30+5
Cup6 | 2020 30+5
Cup7 |2020 |30+5
Cup8 | 2021 30+5
Cup9 | 2021 30+5
Cup 10 | 2022 | 30+3
Cup 11 | 2023 | 30+3
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Result
1st
an[note 1]
2nd
1st
1st
3rd
1st
1st
1st
1st
2nd

Ref
[63]

[64]
[65]
[66]
[67]
[68]
[69]
[70]
[71]
[72]

[73]
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Summary:

1. Search is powerful: MCTS
2. Search + learning is better: AlphaZero

Attendance: Feedback:
bit.ly/3RcTCOT bit.ly/3RHtIxy
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http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

