
Two-Player Games
 

Lucas Janson 
CS/Stat 184(0): Introduction to Reinforcement Learning 

Fall 2024

• Feedback from last lecture

• Recap

• Game Playing: AlphaBeta Search/Rule Based Systems

• MCTS

• AlphaZero and Self-Play

Today

2

Feedback from feedback forms

3

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

3

• Feedback from last lecture

• Recap

• Game Playing: AlphaBeta Search/Rule Based Systems

• MCTS

• AlphaZero and Self-Play

Today

4

Imitation Learning

5

Supervised Learning Approach: Behavior Cloning

6

[Widrow64,Pomerleau89]

Learned
Policy π

Mapping from state (image) to
control (steering direction)

Distribution Shift Example ()|Vπ⋆ − V ̂π | ≤ H2ϵ

Initial
state

r(s1) = 1 Assume SL returns the policy :
̂π

̂π (s0) = {a1 w/ prob 1 − Hϵ
a2 w/ prob Hϵ

, ̂π (s1) = a2, ̂π (s2) = a2

This policy has good supervised learning error:

note: while , state is never visited under

𝔼τ∼ρπ⋆ [1
H

H−1

∑
h=0

1 [̂π (sh) ≠ π⋆(sh)]] = ϵ

̂π (s2) ≠ π⋆(s2) s2 π⋆

Intuition: once we make a mistake at , we
end up in which is not in the training data!

s0
s2

Opt policy:

Under , trajectory is

π⋆(s0) = π⋆(s2) = a1,
π⋆(s1) = a2

ρπ⋆ s0, s1, s1, …
ρπ⋆(sh = s2) = 0
Vπ⋆

0 (s0) = H − 1

We have quadratic degradation (in):
H
V ̂π

0(s0) = (1 − Hϵ) ⋅ Vπ⋆

0 (s0) + Hϵ ⋅ 0 = Vπ⋆

0 (s0) − ϵH(H − 1)

7

The DAgger algorithm

Initialize , and dataset π0 𝒟 = ∅
For :t = 0 → T − 1

1. W/ , generate dataset of trajectories

where for all trajectories

πt 𝒟t = {τ1, τ2, …}
sh ∼ ρπt, ah = π⋆(sh)

2. Data aggregation: 𝒟 = 𝒟 ∪ 𝒟t

3. Update policy via Supervised-Learning: πt+1 = SL (𝒟)

8

In practice, the DAgger algorithm requires less human labeled data than BC. 
 
[Informal Theorem] Under more assumptions + assuming SL error is achievable,

the DAgger algorithm has error:

ϵ
|Vπ⋆ − V ̂π | ≤ Hϵ

• Feedback from last lecture

• Recap

• Game Playing: AlphaBeta Search/Rule Based Systems

• MCTS

• AlphaZero and Self-Play

Today

9

Fascination with AI and Games…

10

• DeepBlue v. Kasparov (1997)
• winning in chess wasn’t a good indicator of

“progress in AI”

Fascination with AI and Games…

10

• DeepBlue v. Kasparov (1997)
• winning in chess wasn’t a good indicator of

“progress in AI”

Fascination with AI and Games…

10

Two-player, deterministic games

11

We will focus on games that are:

• deterministic

• two-player (alternating turns)

• zero sum (one player wins and the other loses)

• fully observable (by both players)

• stationary (only game state and whose turn it is matters)

Two-player, deterministic games

11

We will focus on games that are:

• deterministic

• two-player (alternating turns)

• zero sum (one player wins and the other loses)

• fully observable (by both players)

• stationary (only game state and whose turn it is matters)

Two-player, deterministic games

11

We will focus on games that are:

E.g.,

• Tic-tac-toe

• Chess

• Go

• deterministic

• two-player (alternating turns)

• zero sum (one player wins and the other loses)

• fully observable (by both players)

• stationary (only game state and whose turn it is matters)

Two-player, deterministic games

11

We will focus on games that are:

• Game states , initial state

• Set of actions available in state :

• Dynamics

• Maximum game length

• Score at terminal state (sign determines winner)

S s0 ∈ S
s A(s)

P(s, a) ∈ S
H
r(s)

Notation:

E.g.,

• Tic-tac-toe

• Chess

• Go

• deterministic

• two-player (alternating turns)

• zero sum (one player wins and the other loses)

• fully observable (by both players)

• stationary (only game state and whose turn it is matters)

Two-player, deterministic games

11

We will focus on games that are:

• Game states , initial state

• Set of actions available in state :

• Dynamics

• Maximum game length

• Score at terminal state (sign determines winner)

S s0 ∈ S
s A(s)

P(s, a) ∈ S
H
r(s)

Notation:

E.g.,

• Tic-tac-toe

• Chess

• Go

Still an MDP, but two

competing players

make it a bit different

than earlier RL setup

Simple example of min-max search

12

, player 1 takes action A, B, or C

 then player 2 takes action D, E, F

H = 2
Outcome r(s) D E F

A 4 -2 5
B -3 3 1
C 0 3 -1

Game tree:

Simple example of min-max search

12

, player 1 takes action A, B, or C

 then player 2 takes action D, E, F

H = 2
Outcome r(s) D E F

A 4 -2 5
B -3 3 1
C 0 3 -1

Game tree:

Simple example of min-max search

12

, player 1 takes action A, B, or C

 then player 2 takes action D, E, F

H = 2
Outcome r(s) D E F

A 4 -2 5
B -3 3 1
C 0 3 -1

4

Game tree:

Simple example of min-max search

12

, player 1 takes action A, B, or C

 then player 2 takes action D, E, F

H = 2
Outcome r(s) D E F

A 4 -2 5
B -3 3 1
C 0 3 -1

4 -2

Game tree:

Simple example of min-max search

12

, player 1 takes action A, B, or C

 then player 2 takes action D, E, F

H = 2
Outcome r(s) D E F

A 4 -2 5
B -3 3 1
C 0 3 -1

4 -2 5

Game tree:

Simple example of min-max search

12

, player 1 takes action A, B, or C

 then player 2 takes action D, E, F

H = 2
Outcome r(s) D E F

A 4 -2 5
B -3 3 1
C 0 3 -1

4 -2 5

-2

Game tree:

Simple example of min-max search

12

, player 1 takes action A, B, or C

 then player 2 takes action D, E, F

H = 2
Outcome r(s) D E F

A 4 -2 5
B -3 3 1
C 0 3 -1

4 -2 5 -3

-2

Game tree:

Simple example of min-max search

12

, player 1 takes action A, B, or C

 then player 2 takes action D, E, F

H = 2
Outcome r(s) D E F

A 4 -2 5
B -3 3 1
C 0 3 -1

4 -2 5 -3 3

-2

Game tree:

Simple example of min-max search

12

, player 1 takes action A, B, or C

 then player 2 takes action D, E, F

H = 2
Outcome r(s) D E F

A 4 -2 5
B -3 3 1
C 0 3 -1

4 -2 5 -3 3 1

-2

Game tree:

Simple example of min-max search

12

, player 1 takes action A, B, or C

 then player 2 takes action D, E, F

H = 2
Outcome r(s) D E F

A 4 -2 5
B -3 3 1
C 0 3 -1

4 -2 5 -3 3 1

-3-2

Game tree:

Simple example of min-max search

12

, player 1 takes action A, B, or C

 then player 2 takes action D, E, F

H = 2
Outcome r(s) D E F

A 4 -2 5
B -3 3 1
C 0 3 -1

4 -2 5 -3 3 1 0

-3-2

Game tree:

Simple example of min-max search

12

, player 1 takes action A, B, or C

 then player 2 takes action D, E, F

H = 2
Outcome r(s) D E F

A 4 -2 5
B -3 3 1
C 0 3 -1

4 -2 5 -3 3 1 0 3

-3-2

Game tree:

Simple example of min-max search

12

, player 1 takes action A, B, or C

 then player 2 takes action D, E, F

H = 2
Outcome r(s) D E F

A 4 -2 5
B -3 3 1
C 0 3 -1

4 -2 5 -3 3 1 0 3 -1

-3-2

Game tree:

Simple example of min-max search

12

, player 1 takes action A, B, or C

 then player 2 takes action D, E, F

H = 2
Outcome r(s) D E F

A 4 -2 5
B -3 3 1
C 0 3 -1

4 -2 5 -3 3 1 0 3 -1

-1-3-2

Game tree:

Simple example of min-max search

12

, player 1 takes action A, B, or C

 then player 2 takes action D, E, F

H = 2
Outcome r(s) D E F

A 4 -2 5
B -3 3 1
C 0 3 -1

4 -2 5 -3 3 1 0 3 -1

-1-3-2

-1

Game tree:

Simple example of min-max search

12

, player 1 takes action A, B, or C

 then player 2 takes action D, E, F

H = 2
Outcome r(s) D E F

A 4 -2 5
B -3 3 1
C 0 3 -1

4 -2 5 -3 3 1 0 3 -1

-1-3-2

-1

Basically dynamic programming! Numbers in boxes are value function V(s)

Alpha-beta search

13

Pruning can speed up search without losing exactness

• is lower-bound for

• is upper-bound for

• Bounds sometimes allow pruning

α(s) V⋆(s)
β(s) V⋆(s)

Alpha-beta search

13

Pruning can speed up search without losing exactness

• is lower-bound for

• is upper-bound for

• Bounds sometimes allow pruning

α(s) V⋆(s)
β(s) V⋆(s)

Alpha-beta search

13

Pruning can speed up search without losing exactness

• is lower-bound for

• is upper-bound for

• Bounds sometimes allow pruning

α(s) V⋆(s)
β(s) V⋆(s)

α = − ∞
β = ∞

Alpha-beta search

13

Pruning can speed up search without losing exactness

• is lower-bound for

• is upper-bound for

• Bounds sometimes allow pruning

α(s) V⋆(s)
β(s) V⋆(s)

α = − ∞
β = ∞

α = − ∞
β = ∞

Alpha-beta search

13

Pruning can speed up search without losing exactness

• is lower-bound for

• is upper-bound for

• Bounds sometimes allow pruning

α(s) V⋆(s)
β(s) V⋆(s)

4

α = − ∞
β = ∞

α = − ∞
β = ∞

Alpha-beta search

13

Pruning can speed up search without losing exactness

• is lower-bound for

• is upper-bound for

• Bounds sometimes allow pruning

α(s) V⋆(s)
β(s) V⋆(s)

4

α = − ∞
β = ∞

α = − ∞
β = 4

Alpha-beta search

13

Pruning can speed up search without losing exactness

• is lower-bound for

• is upper-bound for

• Bounds sometimes allow pruning

α(s) V⋆(s)
β(s) V⋆(s)

4 -2

α = − ∞
β = ∞

α = − ∞
β = 4

Alpha-beta search

13

Pruning can speed up search without losing exactness

• is lower-bound for

• is upper-bound for

• Bounds sometimes allow pruning

α(s) V⋆(s)
β(s) V⋆(s)

4 -2

α = − ∞
β = ∞

α = − ∞
β = − 2

Alpha-beta search

13

Pruning can speed up search without losing exactness

• is lower-bound for

• is upper-bound for

• Bounds sometimes allow pruning

α(s) V⋆(s)
β(s) V⋆(s)

4 -2 5

α = − ∞
β = ∞

α = − ∞
β = − 2

Alpha-beta search

13

Pruning can speed up search without losing exactness

• is lower-bound for

• is upper-bound for

• Bounds sometimes allow pruning

α(s) V⋆(s)
β(s) V⋆(s)

4 -2 5

α = − ∞
β = − 2

α = − 2
β = ∞

Alpha-beta search

13

Pruning can speed up search without losing exactness

• is lower-bound for

• is upper-bound for

• Bounds sometimes allow pruning

α(s) V⋆(s)
β(s) V⋆(s)

4 -2 5

α = − ∞
β = − 2

α = − 2
β = ∞

α = − 2
β = ∞

Alpha-beta search

13

Pruning can speed up search without losing exactness

• is lower-bound for

• is upper-bound for

• Bounds sometimes allow pruning

α(s) V⋆(s)
β(s) V⋆(s)

4 -2 5 -3

α = − ∞
β = − 2

α = − 2
β = ∞

α = − 2
β = ∞

Alpha-beta search

13

Pruning can speed up search without losing exactness

• is lower-bound for

• is upper-bound for

• Bounds sometimes allow pruning

α(s) V⋆(s)
β(s) V⋆(s)

4 -2 5 -3

α = − ∞
β = − 2

α = − 2
β = ∞

α = − 2
β = ∞PRUNE

Alpha-beta search

13

Pruning can speed up search without losing exactness

• is lower-bound for

• is upper-bound for

• Bounds sometimes allow pruning

α(s) V⋆(s)
β(s) V⋆(s)

4 -2 5 -3

α = − ∞
β = − 2

α = − 2
β = ∞

α = − 2
β = ∞PRUNE α = − 2

β = ∞

Alpha-beta search

13

Pruning can speed up search without losing exactness

• is lower-bound for

• is upper-bound for

• Bounds sometimes allow pruning

α(s) V⋆(s)
β(s) V⋆(s)

4 -2 5 -3 0

α = − ∞
β = − 2

α = − 2
β = ∞

α = − 2
β = ∞PRUNE α = − 2

β = ∞

Alpha-beta search

13

Pruning can speed up search without losing exactness

• is lower-bound for

• is upper-bound for

• Bounds sometimes allow pruning

α(s) V⋆(s)
β(s) V⋆(s)

4 -2 5 -3 0

α = − ∞
β = − 2

α = − 2
β = ∞

α = − 2
β = ∞PRUNE α = − 2

β = 0

Alpha-beta search

13

Pruning can speed up search without losing exactness

• is lower-bound for

• is upper-bound for

• Bounds sometimes allow pruning

α(s) V⋆(s)
β(s) V⋆(s)

4 -2 5 -3 0 3

α = − ∞
β = − 2

α = − 2
β = ∞

α = − 2
β = ∞PRUNE α = − 2

β = 0

Alpha-beta search

13

Pruning can speed up search without losing exactness

• is lower-bound for

• is upper-bound for

• Bounds sometimes allow pruning

α(s) V⋆(s)
β(s) V⋆(s)

4 -2 5 -3 0 3 -1

α = − ∞
β = − 2

α = − 2
β = ∞

α = − 2
β = ∞PRUNE α = − 2

β = 0

Alpha-beta search

13

Pruning can speed up search without losing exactness

• is lower-bound for

• is upper-bound for

• Bounds sometimes allow pruning

α(s) V⋆(s)
β(s) V⋆(s)

4 -2 5 -3 0 3 -1

α = − ∞
β = − 2

α = − 2
β = ∞

α = − 2
β = ∞PRUNE α = − 2

β = − 1

Alpha-beta search

13

Pruning can speed up search without losing exactness

• is lower-bound for

• is upper-bound for

• Bounds sometimes allow pruning

α(s) V⋆(s)
β(s) V⋆(s)

4 -2 5 -3 0 3 -1

α = − ∞
β = − 2

α = − 2
β = ∞PRUNE α = − 2

β = − 1

α = − 1
β = ∞

Alpha-beta search

13

Pruning can speed up search without losing exactness

• is lower-bound for

• is upper-bound for

• Bounds sometimes allow pruning

α(s) V⋆(s)
β(s) V⋆(s)

4 -2 5 -3 0 3 -1

α = − ∞
β = − 2

α = − 2
β = ∞PRUNE α = − 2

β = − 1

α = − 1
β = ∞

Alpha-beta search

13

Pruning can speed up search without losing exactness

• is lower-bound for

• is upper-bound for

• Bounds sometimes allow pruning

α(s) V⋆(s)
β(s) V⋆(s)

4 -2 5 -3 0 3 -1

α = − ∞
β = − 2

α = − 2
β = ∞PRUNE α = − 2

β = − 1

α = − 1
β = ∞

The order that actions are considered can matter a lot

• Feedback from last lecture

• Recap

• Game Playing: AlphaBeta Search/Rule Based Systems

• MCTS

• AlphaZero and Self-Play

Today

14

Monte Carlo Tree Search (MCTS)

15

Monte Carlo Tree Search (MCTS)

15

For now, assume game outcome just win or lose: r(s) ∈ {−1,1}

• Alpha-beta search evaluates non-leaf nodes via a min-max approach

Monte Carlo Tree Search (MCTS)

15

For now, assume game outcome just win or lose: r(s) ∈ {−1,1}

• Alpha-beta search evaluates non-leaf nodes via a min-max approach
• Even with pruning, requires searching a LOT of paths down tree

Monte Carlo Tree Search (MCTS)

15

For now, assume game outcome just win or lose: r(s) ∈ {−1,1}

• Alpha-beta search evaluates non-leaf nodes via a min-max approach
• Even with pruning, requires searching a LOT of paths down tree

• Idea of MCTS is evaluate non-leaf nodes via sampling (Monte Carlo)

Monte Carlo Tree Search (MCTS)

15

For now, assume game outcome just win or lose: r(s) ∈ {−1,1}

• Alpha-beta search evaluates non-leaf nodes via a min-max approach
• Even with pruning, requires searching a LOT of paths down tree

• Idea of MCTS is evaluate non-leaf nodes via sampling (Monte Carlo)
• High-level: at each iteration, MCTS does the following

Monte Carlo Tree Search (MCTS)

15

For now, assume game outcome just win or lose: r(s) ∈ {−1,1}

• Alpha-beta search evaluates non-leaf nodes via a min-max approach
• Even with pruning, requires searching a LOT of paths down tree

• Idea of MCTS is evaluate non-leaf nodes via sampling (Monte Carlo)
• High-level: at each iteration, MCTS does the following
• Defines a game-playing strategy (policy for both players) that is a  

simple function of a set of statistics computed from existing samples

Monte Carlo Tree Search (MCTS)

15

For now, assume game outcome just win or lose: r(s) ∈ {−1,1}

• Alpha-beta search evaluates non-leaf nodes via a min-max approach
• Even with pruning, requires searching a LOT of paths down tree

• Idea of MCTS is evaluate non-leaf nodes via sampling (Monte Carlo)
• High-level: at each iteration, MCTS does the following
• Defines a game-playing strategy (policy for both players) that is a  

simple function of a set of statistics computed from existing samples
• Plays the game to completion via this strategy and records outcome

Monte Carlo Tree Search (MCTS)

15

For now, assume game outcome just win or lose: r(s) ∈ {−1,1}

• Alpha-beta search evaluates non-leaf nodes via a min-max approach
• Even with pruning, requires searching a LOT of paths down tree

• Idea of MCTS is evaluate non-leaf nodes via sampling (Monte Carlo)
• High-level: at each iteration, MCTS does the following
• Defines a game-playing strategy (policy for both players) that is a  

simple function of a set of statistics computed from existing samples
• Plays the game to completion via this strategy and records outcome
• Updates statistics used to define game-playing strategy

Monte Carlo Tree Search (MCTS)

15

For now, assume game outcome just win or lose: r(s) ∈ {−1,1}

• Alpha-beta search evaluates non-leaf nodes via a min-max approach
• Even with pruning, requires searching a LOT of paths down tree

• Idea of MCTS is evaluate non-leaf nodes via sampling (Monte Carlo)
• High-level: at each iteration, MCTS does the following
• Defines a game-playing strategy (policy for both players) that is a  

simple function of a set of statistics computed from existing samples
• Plays the game to completion via this strategy and records outcome
• Updates statistics used to define game-playing strategy

• Strategy gradually improves with more iterations/samples, so can fit in 
any computational budget

Monte Carlo Tree Search (MCTS)

15

For now, assume game outcome just win or lose: r(s) ∈ {−1,1}

• Alpha-beta search evaluates non-leaf nodes via a min-max approach
• Even with pruning, requires searching a LOT of paths down tree

• Idea of MCTS is evaluate non-leaf nodes via sampling (Monte Carlo)
• High-level: at each iteration, MCTS does the following
• Defines a game-playing strategy (policy for both players) that is a  

simple function of a set of statistics computed from existing samples
• Plays the game to completion via this strategy and records outcome
• Updates statistics used to define game-playing strategy

• Strategy gradually improves with more iterations/samples, so can fit in 
any computational budget

• Samples are concentrated around more promising strategies

Monte Carlo Tree Search (MCTS)

15

For now, assume game outcome just win or lose: r(s) ∈ {−1,1}

“Pure” MCTS Algorithm

16

“Pure” MCTS Algorithm

16

Input: game state (“root node”), #iterations , exploration constant R N C

“Pure” MCTS Algorithm

16

Input: game state (“root node”), #iterations , exploration constant R N C
For iteration t = 1,…, N

“Pure” MCTS Algorithm

16

Input: game state (“root node”), #iterations , exploration constant R N C
For iteration t = 1,…, N

1. Obtain the -th sample trajectory: Starting at , while current state {win, lose}t R s ∉

“Pure” MCTS Algorithm

16

Input: game state (“root node”), #iterations , exploration constant R N C
For iteration t = 1,…, N

1. Obtain the -th sample trajectory: Starting at , while current state {win, lose}t R s ∉
a. For player , at current state , let and define: X ∈ {0,1} s s′ = P(s, a)

UCBscoret(s, a) =
#wins for player X from s′

#visits to s′

+ C
log(#visits to s)

#visits to s′

“Pure” MCTS Algorithm

16

Input: game state (“root node”), #iterations , exploration constant R N C
For iteration t = 1,…, N

1. Obtain the -th sample trajectory: Starting at , while current state {win, lose}t R s ∉
a. For player , at current state , let and define: X ∈ {0,1} s s′ = P(s, a)

UCBscoret(s, a) =
#wins for player X from s′

#visits to s′

+ C
log(#visits to s)

#visits to s′

b. “Take” action:  
̂a = arg max

a
UCBscore(s, a)

“Pure” MCTS Algorithm

16

Input: game state (“root node”), #iterations , exploration constant R N C
For iteration t = 1,…, N

1. Obtain the -th sample trajectory: Starting at , while current state {win, lose}t R s ∉
a. For player , at current state , let and define: X ∈ {0,1} s s′ = P(s, a)

UCBscoret(s, a) =
#wins for player X from s′

#visits to s′

+ C
log(#visits to s)

#visits to s′

b. “Take” action:  
̂a = arg max

a
UCBscore(s, a)

2. Update stats: For all visited states in this trajectory,s′

“Pure” MCTS Algorithm

16

Input: game state (“root node”), #iterations , exploration constant R N C
For iteration t = 1,…, N

1. Obtain the -th sample trajectory: Starting at , while current state {win, lose}t R s ∉
a. For player , at current state , let and define: X ∈ {0,1} s s′ = P(s, a)

UCBscoret(s, a) =
#wins for player X from s′

#visits to s′

+ C
log(#visits to s)

#visits to s′

b. “Take” action:  
̂a = arg max

a
UCBscore(s, a)

2. Update stats: For all visited states in this trajectory,s′

c. update visit counts:  
[#visits to s′] = [#visits to s′] + 1

“Pure” MCTS Algorithm

16

Input: game state (“root node”), #iterations , exploration constant R N C
For iteration t = 1,…, N

1. Obtain the -th sample trajectory: Starting at , while current state {win, lose}t R s ∉
a. For player , at current state , let and define: X ∈ {0,1} s s′ = P(s, a)

UCBscoret(s, a) =
#wins for player X from s′

#visits to s′

+ C
log(#visits to s)

#visits to s′

b. “Take” action:  
̂a = arg max

a
UCBscore(s, a)

2. Update stats: For all visited states in this trajectory,s′

c. update visit counts:  
[#visits to s′] = [#visits to s′] + 1

d. for winner and if was visited by :  X s X
[#wins for X at s′] = [#wins for X at s′] + 1

“Pure” MCTS Algorithm

16

Input: game state (“root node”), #iterations , exploration constant R N C
For iteration t = 1,…, N

1. Obtain the -th sample trajectory: Starting at , while current state {win, lose}t R s ∉
a. For player , at current state , let and define: X ∈ {0,1} s s′ = P(s, a)

UCBscoret(s, a) =
#wins for player X from s′

#visits to s′

+ C
log(#visits to s)

#visits to s′

b. “Take” action:  
̂a = arg max

a
UCBscore(s, a)

2. Update stats: For all visited states in this trajectory,s′

c. update visit counts:  
[#visits to s′] = [#visits to s′] + 1

d. for winner and if was visited by :  X s X
[#wins for X at s′] = [#wins for X at s′] + 1

 (data structure: only need to keep track of stats at visited states)

“Pure” MCTS Algorithm

16

Input: game state (“root node”), #iterations , exploration constant R N C
For iteration t = 1,…, N

1. Obtain the -th sample trajectory: Starting at , while current state {win, lose}t R s ∉
a. For player , at current state , let and define: X ∈ {0,1} s s′ = P(s, a)

UCBscoret(s, a) =
#wins for player X from s′

#visits to s′

+ C
log(#visits to s)

#visits to s′

b. “Take” action:  
̂a = arg max

a
UCBscore(s, a)

2. Update stats: For all visited states in this trajectory,s′

c. update visit counts:  
[#visits to s′] = [#visits to s′] + 1

d. for winner and if was visited by :  X s X
[#wins for X at s′] = [#wins for X at s′] + 1

 (data structure: only need to keep track of stats at visited states)
Output: return the action ̂a = arg max

a
UCBscoreN(R, a)

Improving MCTS

17

• MCTS re-runs at every game step (root node gets updated to current state)

Improving MCTS

17

• MCTS re-runs at every game step (root node gets updated to current state)
• “Pure” MCTS can work well for small games, but what can go wrong?

Improving MCTS

17

• MCTS re-runs at every game step (root node gets updated to current state)
• “Pure” MCTS can work well for small games, but what can go wrong?
• For large games, most states never visited…  

so UCB basically just samples trajectories randomly after a certain point!

Improving MCTS

17

• MCTS re-runs at every game step (root node gets updated to current state)
• “Pure” MCTS can work well for small games, but what can go wrong?
• For large games, most states never visited…  

so UCB basically just samples trajectories randomly after a certain point!
• Solution:

Improving MCTS

17

• MCTS re-runs at every game step (root node gets updated to current state)
• “Pure” MCTS can work well for small games, but what can go wrong?
• For large games, most states never visited…  

so UCB basically just samples trajectories randomly after a certain point!
• Solution:
• Fix a strategy and a look-ahead horizon π T

Improving MCTS

17

• MCTS re-runs at every game step (root node gets updated to current state)
• “Pure” MCTS can work well for small games, but what can go wrong?
• For large games, most states never visited…  

so UCB basically just samples trajectories randomly after a certain point!
• Solution:
• Fix a strategy and a look-ahead horizon π T
• Only use UCB strategy for choosing actions for steps, use afterT π

Improving MCTS

17

• MCTS re-runs at every game step (root node gets updated to current state)
• “Pure” MCTS can work well for small games, but what can go wrong?
• For large games, most states never visited…  

so UCB basically just samples trajectories randomly after a certain point!
• Solution:
• Fix a strategy and a look-ahead horizon π T
• Only use UCB strategy for choosing actions for steps, use afterT π
• Note since MCTS re-runs at every game step, ’s use gets later and laterπ

Improving MCTS

17

• MCTS re-runs at every game step (root node gets updated to current state)
• “Pure” MCTS can work well for small games, but what can go wrong?
• For large games, most states never visited…  

so UCB basically just samples trajectories randomly after a certain point!
• Solution:
• Fix a strategy and a look-ahead horizon π T
• Only use UCB strategy for choosing actions for steps, use afterT π
• Note since MCTS re-runs at every game step, ’s use gets later and laterπ

• Need a good strategy … or, a good value function approximation : 
 After steps, instead of using , stop and record as game outcome

π ̂V(s)
T π ̂V(s)

Improving MCTS

17

• MCTS re-runs at every game step (root node gets updated to current state)
• “Pure” MCTS can work well for small games, but what can go wrong?
• For large games, most states never visited…  

so UCB basically just samples trajectories randomly after a certain point!
• Solution:
• Fix a strategy and a look-ahead horizon π T
• Only use UCB strategy for choosing actions for steps, use afterT π
• Note since MCTS re-runs at every game step, ’s use gets later and laterπ

• Need a good strategy … or, a good value function approximation : 
 After steps, instead of using , stop and record as game outcome

π ̂V(s)
T π ̂V(s)

• could be learned from offline/expert data and improved onlinêV(s)

Improving MCTS

17

• Feedback from last lecture

• Recap

• Game Playing: AlphaBeta Search/Rule Based Systems

• MCTS

• AlphaZero and Self-Play

Today

18

AlphaGo

19

AlphaGo

19

• Lots of moving parts:

• Imitation Learning: first, the algo estimates the values from historical games.

• It then uses an MCTS-stye lookahead with learned value functions.

• AlphaZero (2017) is a simpler more successful approach that uses self-play

AlphaZero

20

AlphaZero

• AlphaZero: MCTS + DeepLearning + self-play

20

AlphaZero

• AlphaZero: MCTS + DeepLearning + self-play
• MCTS subroutine has a value network and policy network

20

AlphaZero

• AlphaZero: MCTS + DeepLearning + self-play
• MCTS subroutine has a value network and policy network

• a value network estimating the value for the state of the board ̂Vθ(s)

20

AlphaZero

• AlphaZero: MCTS + DeepLearning + self-play
• MCTS subroutine has a value network and policy network

• a value network estimating the value for the state of the board ̂Vθ(s)
• A policy network that is a probability vector over all possible actionsπθ(a |s)

20

AlphaZero

• AlphaZero: MCTS + DeepLearning + self-play
• MCTS subroutine has a value network and policy network

• a value network estimating the value for the state of the board ̂Vθ(s)
• A policy network that is a probability vector over all possible actionsπθ(a |s)

• Use these for MCTS, then play agent against self and use self-play data to learn
better ; iterateθ

20

AlphaZero MCTS subroutine (without self-play)

21

AlphaZero MCTS subroutine (without self-play)

21

Input: game state (“root node”), #iterations , exploration constant , look-ahead horizon , value
network , policy network

R N C T
̂Vθ(s) πθ(a |s)

AlphaZero MCTS subroutine (without self-play)

21

Input: game state (“root node”), #iterations , exploration constant , look-ahead horizon , value
network , policy network

R N C T
̂Vθ(s) πθ(a |s)

For iteration t = 1 : N

AlphaZero MCTS subroutine (without self-play)

21

Input: game state (“root node”), #iterations , exploration constant , look-ahead horizon , value
network , policy network

R N C T
̂Vθ(s) πθ(a |s)

For iteration t = 1 : N
1. Obtain the -th sample trajectory: For steps starting from ,t T R

AlphaZero MCTS subroutine (without self-play)

21

Input: game state (“root node”), #iterations , exploration constant , look-ahead horizon , value
network , policy network

R N C T
̂Vθ(s) πθ(a |s)

For iteration t = 1 : N
1. Obtain the -th sample trajectory: For steps starting from ,t T R

a. For player , at current state , define and define: X ∈ {0,1} s s′ = P(s, a)

UCBscoret(s, a) = ̂V(s′) ⋅ (−1)X + C ⋅ πθ(a |s) ⋅
log(#visits to s)

#visits to s′

AlphaZero MCTS subroutine (without self-play)

21

Input: game state (“root node”), #iterations , exploration constant , look-ahead horizon , value
network , policy network

R N C T
̂Vθ(s) πθ(a |s)

For iteration t = 1 : N
1. Obtain the -th sample trajectory: For steps starting from ,t T R

a. For player , at current state , define and define: X ∈ {0,1} s s′ = P(s, a)

UCBscoret(s, a) = ̂V(s′) ⋅ (−1)X + C ⋅ πθ(a |s) ⋅
log(#visits to s)

#visits to s′

b. “Take” action:  
̂a = arg max

a
UCBscoret(s, a)

AlphaZero MCTS subroutine (without self-play)

21

Input: game state (“root node”), #iterations , exploration constant , look-ahead horizon , value
network , policy network

R N C T
̂Vθ(s) πθ(a |s)

For iteration t = 1 : N
1. Obtain the -th sample trajectory: For steps starting from ,t T R

a. For player , at current state , define and define: X ∈ {0,1} s s′ = P(s, a)

UCBscoret(s, a) = ̂V(s′) ⋅ (−1)X + C ⋅ πθ(a |s) ⋅
log(#visits to s)

#visits to s′

b. “Take” action:  
̂a = arg max

a
UCBscoret(s, a)

2. Update stats: For all visited states in this “roll-out”, letting be the last sampled states′ sT

AlphaZero MCTS subroutine (without self-play)

21

Input: game state (“root node”), #iterations , exploration constant , look-ahead horizon , value
network , policy network

R N C T
̂Vθ(s) πθ(a |s)

For iteration t = 1 : N
1. Obtain the -th sample trajectory: For steps starting from ,t T R

a. For player , at current state , define and define: X ∈ {0,1} s s′ = P(s, a)

UCBscoret(s, a) = ̂V(s′) ⋅ (−1)X + C ⋅ πθ(a |s) ⋅
log(#visits to s)

#visits to s′

b. “Take” action:  
̂a = arg max

a
UCBscoret(s, a)

2. Update stats: For all visited states in this “roll-out”, letting be the last sampled states′ sT
c. Update counts: [#visits to s′] = [#visits to s′] + 1

AlphaZero MCTS subroutine (without self-play)

21

Input: game state (“root node”), #iterations , exploration constant , look-ahead horizon , value
network , policy network

R N C T
̂Vθ(s) πθ(a |s)

For iteration t = 1 : N
1. Obtain the -th sample trajectory: For steps starting from ,t T R

a. For player , at current state , define and define: X ∈ {0,1} s s′ = P(s, a)

UCBscoret(s, a) = ̂V(s′) ⋅ (−1)X + C ⋅ πθ(a |s) ⋅
log(#visits to s)

#visits to s′

b. “Take” action:  
̂a = arg max

a
UCBscoret(s, a)

2. Update stats: For all visited states in this “roll-out”, letting be the last sampled states′ sT
c. Update counts: [#visits to s′] = [#visits to s′] + 1
d. Update average value estimate: ̂V(s′) ←

[#visits to s′]
[#visits to s′] + 1

̂V(s′) +
1

[#visits to s′] + 1
̂Vθ(sT)

AlphaZero MCTS subroutine (without self-play)

21

Input: game state (“root node”), #iterations , exploration constant , look-ahead horizon , value
network , policy network

R N C T
̂Vθ(s) πθ(a |s)

For iteration t = 1 : N
1. Obtain the -th sample trajectory: For steps starting from ,t T R

a. For player , at current state , define and define: X ∈ {0,1} s s′ = P(s, a)

UCBscoret(s, a) = ̂V(s′) ⋅ (−1)X + C ⋅ πθ(a |s) ⋅
log(#visits to s)

#visits to s′

b. “Take” action:  
̂a = arg max

a
UCBscoret(s, a)

2. Update stats: For all visited states in this “roll-out”, letting be the last sampled states′ sT
c. Update counts: [#visits to s′] = [#visits to s′] + 1
d. Update average value estimate: ̂V(s′) ←

[#visits to s′]
[#visits to s′] + 1

̂V(s′) +
1

[#visits to s′] + 1
̂Vθ(sT)

Output: return the action ̂a = arg max
a

UCBscoreN(R, a)

Self-play

22

Self-play

22

• Iterate the following:

Self-play

22

• Iterate the following:
• Self-play: Play against self times using current MCTS strategyM

Self-play

22

• Iterate the following:
• Self-play: Play against self times using current MCTS strategyM
• Supervised Learning: Use self-play game trajectories to update:M

Self-play

22

• Iterate the following:
• Self-play: Play against self times using current MCTS strategyM
• Supervised Learning: Use self-play game trajectories to update:M
• with squared error loss wrt game outcomes (similar to in fitted VI or baseline estimation)̂Vθ

Self-play

22

• Iterate the following:
• Self-play: Play against self times using current MCTS strategyM
• Supervised Learning: Use self-play game trajectories to update:M
• with squared error loss wrt game outcomes (similar to in fitted VI or baseline estimation)̂Vθ
• with negative log likelihood loss wrt actions taken in game (similar to in BC)πθ

Self-play

22

• Iterate the following:
• Self-play: Play against self times using current MCTS strategyM
• Supervised Learning: Use self-play game trajectories to update:M
• with squared error loss wrt game outcomes (similar to in fitted VI or baseline estimation)̂Vθ
• with negative log likelihood loss wrt actions taken in game (similar to in BC)πθ
• In practice, combine loss functions into single SL problem with shared θ

Self-play

22

• Iterate the following:
• Self-play: Play against self times using current MCTS strategyM
• Supervised Learning: Use self-play game trajectories to update:M
• with squared error loss wrt game outcomes (similar to in fitted VI or baseline estimation)̂Vθ
• with negative log likelihood loss wrt actions taken in game (similar to in BC)πθ
• In practice, combine loss functions into single SL problem with shared θ

• AlphaZero uses no historical data, only self-play

Self-play

22

• Iterate the following:
• Self-play: Play against self times using current MCTS strategyM
• Supervised Learning: Use self-play game trajectories to update:M
• with squared error loss wrt game outcomes (similar to in fitted VI or baseline estimation)̂Vθ
• with negative log likelihood loss wrt actions taken in game (similar to in BC)πθ
• In practice, combine loss functions into single SL problem with shared θ

• AlphaZero uses no historical data, only self-play
• Performance improvement was pretty astronomical!

23

23

• Feedback from last lecture

• Recap

• Game Playing: AlphaBeta Search/Rule Based Systems

• MCTS

• AlphaZero and Self-Play

Today

24

Summary:

Feedback:

bit.ly/3RHtlxy

25

Attendance: 
bit.ly/3RcTC9T

1. Search is powerful: MCTS

2. Search + learning is better: AlphaZero

http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

