
Markov Decision Processes & 
Dynamic Programming 

 
Lucas Janson 

CS/Stat 184(0): Introduction to Reinforcement Learning 
Fall 2024

1



Today

• Recap


• Problem Statement


• Bellman Consistency & Policy Evaluation


• Optimality


• The Bellman Equations & Dynamic Programming

2



Finite Horizon Markov Decision Processes (MDPs):

• An MDP: 

•  is a distribution over initial states 

(sometimes we assume we start a given state )

•  a set of states

•  a set of actions

•  specifies the dynamics model, 

i.e.  is the probability of transitioning to  from state  via action 

• 

• For now, let’s assume this is a deterministic function

• (sometimes we use a cost )


• A time horizon 

ℳ = {μ, S, A, P, r, H}
μ

s0
S
A
P : S × A ↦ Δ(S)

P(s′ |s, a) s′ s a
r : S × A → [0,1]

c : S × A → [0,1]
H ∈ ℕ

3



Example:  
robot hand needs to pick the ball and hold it in a goal (x,y,z) position 

State : robot configuration (e.g., joint angles) 
and the ball’s position

Action : Torque on joints in arm & fingers

Transition : physics + some noise

Policy : a function mapping from robot state 
to action (i.e., torque)

Reward/Cost:  
  : immediate reward at state , or 
  : torque magnitude + dist to goal

Horizon: timescale 

s

a
s′ ∼ P( ⋅ |s, a)

π(s)

r(s, a) (s, a)
c(s, a)

H

π⋆ = arg min
π

𝔼 [c(s0, a0) + c(s1, a1) + c(s2, a2) + …c(sH−1, aH−1) s0, π]
4



Today

• Recap


• Problem Statement 


• Bellman Consistency & Policy Evaluation


• Optimality


• The Bellman Equations & Dynamic Programming

5



The Episodic Setting and Trajectories

• Policy 


• deterministic policies: ; stochastic policies: 

• we also consider time-dependent policies (but not a function of the history)


• Sampling a trajectory  on an episode: for a given policy  

• Sample an initial state :

• For 

• Take action 

• Observe reward 

• Transition to (and observe)  where 


• The sampled trajectory is 

π := {π0, π1, …, πH−1}
πt : S ↦ A πt : S ↦ Δ(A)

τ π
s0 ∼ μ

t = 0,1,2,…H − 1
at ∼ πt( ⋅ |st)

rt = r(st, at)
st+1 st+1 ∼ P( ⋅ |st, at)

τ = {s0, a0, r0, s1, a1, r1, …, sH−1, aH−1, rH−1}

6



The Probability of a Trajectory & The Objective

• Probability of trajectory: let  denote the probability of observing trajectory 
 when acting under  with .


• Shorthand: we sometimes write  or  when  and/or  are clear from context.

• The rewards in this trajectory must be  (else ).

• For  stochastic: 



• For  deterministic:

 
 

• Objective: find policy  that maximizes our expected cumulative episodic reward: 
	  

ρπ,μ(τ)
τ = {s0, a0, r0, s1, a1, r1, …, sH−1, aH−1, rH−1} π s0 ∼ μ

ρ ρπ π μ
rt = r(st, at) ρπ(τ) = 0

π
ρπ(τ) = μ(s0)π(a0 |s0)P(s1 |s0, a0)…π(aH−2 |sH−2)P(sH−1 |sH−2, aH−2)π(aH−1 |sH−1)

π
ρπ(τ) = μ(s0)1(a0 = π(s0))P(s1 |s0, a0)…P(sH−1 |sH−2, aH−2)1(aH−1 = π(sH−1))

π
max

π
𝔼τ∼ρπ [r(s0, a0) + r(s1, a1) + … + r(sH−1, aH−1)]

7



Today

• Recap


• Problem Statement 


• Bellman Consistency & Policy Evaluation


• Optimality


• The Bellman Equations & Dynamic Programming

8



Policy Evaluation = Computing Value function and/or Q function

We evaluate policies via quantities that allow us to reason about the policy’s long-term effect:


• Value function  

• Q function  

• At the last stage, what are:  
 

	 	 	  

Vπ
h (s) = 𝔼 [

H−1

∑
t=h

r(st, at) sh = s]
Qπ

h (s, a) = 𝔼 [
H−1

∑
t=h

r(st, at) (sh, ah) = (s, a)]

Qπ
H−1(s, a) = Vπ

H−1(s) =

9



We evaluate policies via quantities that allow us to reason about the policy’s long-term effect:


• Value function  

• Q function  

• At the last stage, for a stochastic policy:  
 

	 	

Vπ
h (s) = 𝔼 [

H−1

∑
t=h

r(st, at) sh = s]
Qπ

h (s, a) = 𝔼 [
H−1

∑
t=h

r(st, at) (sh, ah) = (s, a)]

Qπ
H−1(s, a) = r(s, a) Vπ

H−1(s) = ∑
a

πH−1(a |s)r(s, a)

10

Policy Evaluation = Computing Value function and/or Q function



Example of Policy Evaluation (i.e. computing  and )Vπ Qπ

Consider the following deterministic MDP w/ 3 states & 2 actions, with H = 3

a

b

c

A

B

A B

A

B

Reward: , &  everywhere elser(b, A) = 1 0

• Consider the deterministic policy  
 

• What is ?

  

   
    

   

π0(s) = A, π1(s) = A, π2(s) = B, ∀s

Vπ

Vπ
2(a) = 0, Vπ

2(b) = 0, Vπ
2(c) = 0

Vπ
1(a) = 0, Vπ

1(b) = 1, Vπ
1(c) = 0

Vπ
0(a) = 1, Vπ

0(b) = 2, Vπ
0(c) = 1

11

r=1



Notation

•  means sampling from 

•  means sampling from the distribution ,  

i.e. choosing action  with probability 

• For a distribution  over a finite set , 
	 


• We use the notation: 
	

x ∼ D D
a ∼ π( ⋅ |s) π( ⋅ |s)

a π(a |s)
D 𝒳

Ex∼D[ f(x)] = ∑
x∈𝒳

D(x)f(x)

Es′ ∼P(⋅|s,a)[ f(s′ )] = ∑
s′ ∈S

P(s′ |s, a)f(s′ )

12



Bellman Consistency
• For a deterministic policy, ,


• By definition, 


• At , ,  

• Bellman consistency conditions: for a given policy ,

•  
 

•  

π := {π0, π1, …, πH−1}, πh : S ↦ A, ∀h
Vπ

h (s) = Qπ
h (s, πh(s))

H − 1 Qπ
H−1(s, a) = r(s, a) Vπ

H−1(s) = r(s, πH−1(s))
π

Vπ
h (s) = r(s, πh(s)) + 𝔼s′ ∼P(⋅|s,πh(s)) [Vπ

h+1(s′ )]

Qπ
h (s, a) = r(s, a) + 𝔼s′ ∼P(⋅|s,a) [Vπ

h+1(s′ )]

13



Proof: Bellman Consistency for V-function:
Let  (note it’s random via )

By definition and by the law of total expectation: 




          

By the Markov property: 







 

rh = r(sh, π(sh)) sh

Vπ
h (s) = 𝔼 [rh + rh+1 + … + rH−1 sh = s]

= 𝔼 [rh + 𝔼 [rh+1 + … + rH−1 sh = s, sh+1] sh = s]

= 𝔼 [rh + 𝔼 [rh+1 + … + rH−1 sh+1] sh = s]
= 𝔼 [rh + Vπ

h+1(sh+1) sh = s]
= r(s, πh(s)) + 𝔼s′ ∼P(⋅|s,πh(s)) [Vπ

h+1(s′ )]

14



Computation of  via Backward InductionVπ

• For a deterministic policy, , 
Bellman consistency  we can compute , assuming we know the MDP.

π := {π0, π1, …, πH−1}, πh : S ↦ A, ∀h
⟹ Vπ

h

• What is the per iteration computational complexity of DP? 
(assume scalar  are  operations)


• What is the total computational complexity of DP?
+, − , × , ÷ O(1)

• Initialize: ,  


• For , set: 

Vπ
H(s) = 0 ∀s ∈ S

h = H − 1,…0
Vπ

h (s) = r(s, πh(s)) + 𝔼s′ ∼P(⋅|s,πh(s)) [Vπ
h+1(s′ )], ∀s ∈ S

15



Today

• Recap


• Problem Statement 


• Bellman Consistency & Policy Evaluation


• Optimality


• The Bellman Equations & Dynamic Programming

16



Consider the following deterministic MDP w/ 3 states & 2 actions, with H = 3

a

b

c

A

B

A B

A

B

Reward: , &  everywhere elser(b, A) = 1 0

• What’s the optimal policy? 
 

• What is optimal value function, ? 
 

 
 

 

π⋆
h (s) = A, ∀s, h

Vπ⋆ = V⋆

V⋆
2 (a) = 0, V⋆

2 (b) = 1, V⋆
2 (c) = 0

V⋆
1 (a) = 1, V⋆

1 (b) = 2, V⋆
1 (c) = 1

V⋆
0 (a) = 2, V⋆

0 (b) = 3, V⋆
0 (c) = 2

Example of Optimal Policy π⋆

17

r=1



How do we compute  and ?π⋆ V⋆

• Naively, we could compute the value of all policies and take the best one.

• Suppose  states,  actions, and horizon .  

How many different polices there are? 
 
 

• Can we do better?

|S | |A | H

18



19

Properties of an Optimal Policy π⋆

• Let  be the set of all time dependent, history dependent, stochastic policies. 

• Theorem: Every finite horizon MDP has a deterministic, history-independent 
optimal policy, that dominates all other policies, everywhere.


• i.e. there exists a deterministic policy   
such that 
	 	    ,  
 

•  we can write:  and  .


•   doesn’t depend on the initial state distribution .

Π

π⋆ := {π⋆
0 , π⋆

1 , …, π⋆
H−1}, π⋆

h : S ↦ A

Vπ⋆

h (s) ≥ Vπ
h (s) ∀s, h ∀π ∈ Π

⟹ V⋆
h = Vπ⋆

h Q⋆
h = Qπ⋆

h

⟹ π⋆ μ



What's the Proof Intuition?
• Theorem: Every finite horizon MDP has a deterministic, history-independent 

optimal policy, that dominates all other policies, everywhere. 

• What's the Proof Intuition?

• “Only the state matters”: how got here doesn’t matter to where we go next, conditioned on 

the action.

• This explains both determinism and history-independence


• Caveat: some legitimate reward functions are not additive/linear (so, naively, not an MDP). 
(But, RL is general: think about redefining the state so you can do these.) 

20



Today

• Recap


• Problem Statement 


• Bellman Consistency & Policy Evaluation


• Optimality


• The Bellman Equations & Dynamic Programming

21



The Bellman Equations
• A function ,   satisfies the Bellman equations if 

	  ,  

(assume ). 

• Theorem:  


• V satisfies the Bellman equations if and only if . 

• The optimal policy is:  .

V = {V0, …VH−1} Vh : S → R
Vh(s) = max

a {r(s, a) + 𝔼s′ ∼P(⋅|s,a)[Vh+1(s′ )]} ∀s

VH = 0

V = V⋆

π⋆
h (s) = arg max

a {r(s, a) + 𝔼s′ ∼P(⋅|s,a)[V⋆
h+1(s′ )]}

22



Computation of  with Dynamic ProgrammingV⋆

• Theorem: the following Dynamic Programming algorithm computes  and  
Prf: the Bellman equations directly lead to this backwards induction.

π⋆ V⋆

• Initialize:   
For t= , set:


• , 


• , 

Vπ
H(s) = 0 ∀s ∈ S

H − 1,…0
V⋆

h (s) = max
a [r(s, a) + 𝔼s′ ∼P(⋅|s,a) [V⋆

h+1(s′ )]] ∀s ∈ S

π⋆
h (s) = arg max

a [r(s, a) + 𝔼s′ ∼P(⋅|s,a) [V⋆
h+1(s′ )]] ∀s ∈ S

• What is the per iteration computational complexity of DP? 
(assume scalar  are  operations)


• What is the total computational complexity of DP?
+, − , × , ÷ O(1)

23



Summary:
• Dynamic Programming lets us efficiently compute optimal policies. 
• We remember the results on “sub-problems”

• Optimal policies are history independent.

Feedback: 

bit.ly/3RHtlxy

24

Attendance: 
bit.ly/3RcTC9T

http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

