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» An MDP:
* U Is a distribution over initial states
(sometimes we assume we start a given state s

« S a set of states
» A a set of actions
e P: S XA A(S) specifies the dynamics model,
.e. is the probability of transitioning to s’ from state s via action a

e For now, let’'s assume this is a deterministic function
e (sometimesweuseacostc:SXA — [0,1])

e A time horizon H € N



Example:
robot hand needs to pick the ball and hold it in a goal (x,y,z) position

State s: robot configuration (e.g., joint angles)
and the ball’s position

Action a: Torgue on joints in arm & fingers
Transition s ~ P( - | s, a): physics + some noise
Policy 7(s): a function mapping from robot state

to action (i.e., torque)
Reward/Cost:

“ r(s, a): immediate reward at state (s, a), or
i c(s, a): torque magnitude + dist to goal
Horizon: timescale H

7% = argmin [E lc(so, ag) + c(sy,ay) + c(Sy, ay) + ...c(Sy_1,Ay_1) | Sg» 7
/A
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The Episodic Setting and Trajectories

e Policy i := {JZ'O, TCps ey JrH_l}
» deterministic policies: z, : § — A; stochastic policies: 7, : § = A(A)
* we also consider time-dependent policies (but not a function of the history)
o Sampling a trajectory 7 on an episode: for a given policy @
« Sample an initial state s, ~ p:
e Fortr=0,1,2,.. H—1
» Take actiona, ~ z( - |s,)
» Observe reward r, = r(s,, a,)
» Transition to (and observe) s,, ; where s,. | ~ P( - |s,, a,)

« The sampled trajectory is



The Probability of a Trajectory & The Objective

« Probability of trajectory: let pw(f) denote the probability of observing trajectory
T = {80 oy Fys S0y Fra ooy Sy 15 Ay T | When acting under 7 with s, ~ /1.
» Shorthand: we sometimes write p or p _when 7 and/or u are clear from context.

» The rewards in this trajectory must be r, = r(s,, a,) (else p_(7) = 0).
 For & stochastic:

Pn(T) — ﬂ(So)ﬂ(ao | S())P (S1 | S0 Clo)- : -ﬂ(aH_z | SH—2)P (SH_1 | Sg_»s aH_z)ﬂ(aH_1 | SH_1)
e For m deterministic:

PAT) = ,u(SO)l(aO — ﬂ(so))P(Sl | sg, ag)- - - P(Syy_1 | Sy aH_z)l(aH_l — 7Z'(SH_1))

o Objective: find policy 7 that maximizes our expected cumulative episodic reward:

max E__, [r(so, ag) + r(sy,ay) + ... + r(sy_q, aH_l)]
U
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Policy Evaluation = Computing Value function and/or Q function

We evaluate policies via quantities that allow us to reason about the policy’s long-term effect:
H-1

_ Value function V/'(s) = E Z r(s,a,)|s, =s
=h
H-1
~ Qifunction Q/(s,a) =k Z r(s, a,) | (s,, a,) = (s,a)
t=h

* At the last stage, what are:

Opn_1(s,a) = Vig_1(s) =



Policy Evaluation = Computing Value function and/or Q function

We evaluate policies via quantities that allow us to reason about the policy’s long-term effect:

H—-1
) Vi(s) = Z r(s,a)|s, =s
t=h
H-1
. Of(s.a) =E | ) r(sna)| (s, a) = (s,)
t=h

* At the last stage, for a stochastic policy:

Qr_(s,a) = r(s,a) VE_ ()= ) my_i(al $)r(s,a)
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Example of Policy Evaluation (i.e. computing V* and Q%)

Consider the following deterministic MDP w/ 3 states & 2 actions, with

e Consider the deterministic policy
ﬂ()(S) — A, ﬂl(S) — A, 71'2(5) — B, Vs

e What is V*?
Via) =0, Vg(b) =0, V3(c)=0

Via) =0, Vi(b) =1, Vi(c) =0

Via) =1, VAb) =2, Vi(c) =1
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Notation

means sampling from D

means sampling from the distribution zz( - | 5),
.e. choosing action a with probability 7z(a | 5)
For a distribution D over a finite set X,

We use the notation:
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Bellman Consistency

For a deterministic policy, 7 := {71'0, Tis s JZ'H_l}, S = A VA,
By definition, V/'(s) = O,(s, 7,(5))

AtH— 1,0, (s,a) =r(s,a), V;_,(s)=r(s, ny_i(s))

Sellman consistency conditions: for a given policy

e Vii(s) = 1(5, m(s)) + Egpifsmyon | Vit )]

+ 05(s.a) = r(s, @) + Ey_pya) Vi ()

13



Proof: Bellman Consistency for V-function:

Let r, = r(s;, 7(s;,)) (note it’s random via s,)
By definition and by the law of total expectation:

Vi (s) =E

rh+rh+1+ +7‘H_1 Sh:S]

Va1t oo T Tg_1 |5, = S,Sh+1] \y2 =S]

Fh-l- [

By the Markov property:

rh+ — l”h+1+...+rH_1 Sh-l—l] Sh:S]

rt Ve (Snpt) | S) = S]

= r(s, m,(s)) + =5/~ P(+|5,75,(5)) [VIZTH(S /)]
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Computation of V* via Backward Induction

« For a deterministic policy, 7 .= {JZ'O, TCpy vens 7Z'H_1}, T, S A,Vh,

Bellman consistency = we can compute V7, assuming we know the MDP.

» Initialize: V,(s) =0, Vs € 5

e Forh=H—-1,...0, set:
Vis) = r(s, m(9) + Egopifsmsn [Vi1 80, Vs € S

 What is the per iteration computational complexity of DP?

(assume scalar +, — , X , = are O(1) operations)
 What is the total computational complexity of DP?
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Example of Optimal Policy 7*

Consider the following deterministic MDP w/ 3 states & 2 actions, with

 What’s the optimal policy?
7 (s) = A, Vs, h

« What is optimal value function, VT = V*?
Vz*(a) = 0, V;(b) = 1, Vz*(c) =0

V¥a) =1, V¥b)=2, Vi) =1

Vi(a) =2, V() =3, VJ(c)=2
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How do we compute 7~ and V*?

* Naively, we could compute the value of all policies and take the best one.
» Suppose | S| states, |A | actions, and horizon H.

e Can we do better?
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Properties of an Optimal Policy 7 *

Let 11 be the set of all time dependent, history dependent, stochastic policies.

Theorem: Every finite horizon MDP has a
optimal policy, that

o I.e. there exists a deterministic policy T* = {72'8(, 7z1*, e th_l}, 71'; S A
such that
*
VZ'(s) > Vi(s) Vs,h, Vrell

—> we can write: V,f = V,’l’* and QZ( = Q}’l’*.

— 7~ doesn’t depend on the initial state distribution .
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What's the Proof Intuition?

* Theorem: Every finite horizon MDP has a
optimal policy, that

e What's the Proof Intuition?

* “Only the state matters”: how got here doesn’t matter to where we go next, conditioned on
the action.

* This explains both determinism and history-independence
 Caveat: some legitimate reward functions are not additive/linear (so, naively, not an MDP).
(But, RL is general: think about redefining the state so you can do these.)
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The Bellman Equations

» AfunctionV=1{V,,...Vy_;}, V, : § = R satisfies the Bellman equations if
Vh(S) — IMax {F(S, Cl) + _S’NP(°‘S,CI) [Vh-l-l(s/)] } ; VS

(@assume V; = 0).

e Theorem:

« V satisfies the Bellman equations if and only if V = V7.

. The optimal policy is: 7, *(s) = arg max {r(s, a) + =N an a)[ +1(S )] }

d
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Computation of V* with Dynamic Programming

 [heorem: the following Dynamic Programming algorithm computes 7* and V*
Prf: the Bellman equations directly lead to this backwards induction.

e Initialize: V/,(s) =0 Vs & 5
Fort=H — 1,...0, set:

h+

. VX(s) = max [r(s, a) + Eypiisa) | Vi 1(S’)]], Vs €S

d

. m(s) = arg max [r(s, a) + Ey p.is.0 [V,zjrl(s’)]], Vs e S

d

 What is the per iteration computational complexity of DP?

(assume scalar +, — , X , = are O(1) operations)
 What is the total computational complexity of DP?
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Summary:

* \We remember the results on “sub-problems”
* Optimal policies are history independent.

Attendance: Feedback:
bit.ly/3RcTCOT bit.ly/3RHtIxy
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http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

