Markov Decision Processes & Dynamic Programming

Lucas Janson CS/Stat 184(0): Introduction to Reinforcement Learning Fall 2024

- Recap
- Problem Statement
- Bellman Consistency & Policy Evaluation
- Optimality
- The Bellman Equations & Dynamic Programming

i.e. $P(s'|s,a)$ is the probability of transitioning to s' from state s via action a

- An MDP: $M = \{\mu, S, A, P, r, H\}$
	- *μ* is a distribution over initial states (sometimes we assume we start a given state s_0)
	- S a set of states
	- A a set of actions
	- $P: S \times A \mapsto \Delta(S)$ specifies the dynamics model,
	- $r: S \times A \rightarrow [0,1]$
		- For now, let's assume this is a deterministic function
		- (sometimes we use a cost $c : S \times A \rightarrow [0,1]$)
	- A time horizon *H* ∈ ℕ

Example: robot hand needs to pick the ball and hold it in a goal (x,y,z) position

 π^{\star} = arg min

- State s: robot configuration (e.g., joint angles) and the ball's position
- Action a: Torque on joints in arm & fingers
- **Transition** $s' \sim P(\;\cdot\;|\; s, a)$: physics + some noise
- **Policy** $\pi(s)$: a function mapping from robot state to action (i.e., torque)
- **Reward/Cost:**
- $r(s, a)$: immediate reward at state (s, a) , or $c(s, a)$: torque magnitude + dist to goal **Horizon:** timescale *H*

$$
\inf_{\pi} \mathbb{E}\left[c(s_0, a_0) + c(s_1, a_1) + c(s_2, a_2) + \dots + c(s_{H-1}, a_{H-1})\Big|s_0, \pi\right]
$$

- Problem Statement
- Bellman Consistency & Policy Evaluation
- Optimality
- The Bellman Equations & Dynamic Programming

The Episodic Setting and Trajectories

• Policy
$$
\pi := \{\pi_0, \pi_1, ..., \pi_{H-1}\}
$$

- we also consider time-dependent policies (but not a function of the history)
-
- deterministic policies: $\pi_{t}:S\mapsto A;$ stochastic policies: $\pi_{t}:S\mapsto\Delta(A)$ • Sampling a trajectory $τ$ on an episode: for a given policy $π$
	- Sample an initial state $s_0 \sim \mu$:
	- For $t = 0, 1, 2, \ldots H 1$
		- Take action $a_t \sim \pi_t(\cdot | s_t)$
		- Observe reward $r_t = r(s_t, a_t)$
		- Transition to (and observe) s_{t+1} where $s_{t+1} \sim P(\cdot | s_t, a_t)$
	- The sampled trajectory is $\tau = \{s_0, a_0, r_0, s_1, a_1, r_1, ..., s_{H-1}, a_{H-1}, r_{H-1}\}\$

The Probability of a Trajectory & The Objective

- -
	-
	- The rewards in this trajectory must be $r_t = r(s_t, a_t)$ (else $\rho_\pi(\tau) = 0$).
	- For *π* stochastic: $\rho_{\pi}(\tau) = \mu(s_0)\pi(a_0 \mid s_0)P(s_1 \mid s_0, a_0) \ldots \pi(s_n)$
	- For *π* deterministic: $\rho_{\pi}(\tau) = \mu(s_0) \mathbf{1}(a_0 = \pi(s_0)) P(s_1 | s_0, a_0)$
- max *π* $r \sim \rho_{\pi} \left[r(s_0, a_0) + r(s_1, a_1) + \ldots + r(s_{H-1}, a_{H-1}) \right]$

• Probability of trajectory: let $\rho_{\pi,\mu}(\tau)$ denote the probability of observing trajectory $\tau = \{s_0, a_0, r_0, s_1, a_1, r_1, \ldots, s_{H-1}, a_{H-1}, r_{H-1}\}$ when acting under π with $s_0 \sim \mu$. • Shorthand: we sometimes write ρ or ρ_{π} when π and/or μ are clear from context.

$$
(a_{H-2} | s_{H-2}) P(s_{H-1} | s_{H-2}, a_{H-2}) \pi(a_{H-1} | s_{H-1})
$$

$$
(a_{H-1} | s_{H-2}, a_{H-2}) \mathbf{1}(a_{H-1} = \pi(s_{H-1}))
$$

• Objective: find policy π that maximizes our expected cumulative episodic reward:

• Recap

- Problem Statement
- Bellman Consistency & Policy Evaluation
- Optimality
- The Bellman Equations & Dynamic Programming

Policy Evaluation = Computing Value function and/or Q function

•
• Value function *Vπ* $\binom{n}{h}(s) = \mathbb{E}$ *H*−1 ∑ *t*=*h* $r(s_t, a_t) | s_h = s$

We evaluate policies via quantities that allow us to reason about the policy's long-term effect:] $\big(s_h, a_h \big) = (s, a)$]

 $\int_{-1}^{2}(s)$ =

Q function
$$
Q_h^{\pi}(s, a) = \mathbb{E} \left[\sum_{t=h}^{H-1} r(s_t, a_t) \middle| (s_h \right]
$$

• At the last stage, what are:

$$
Q_{H-1}^{\pi}(s,a) = V_H^{\pi}
$$

• Value function *Vπ* $\binom{n}{h}(s) = \mathbb{E}$ *H*−1 ∑ *t*=*h* $r(s_t, a_t) | s_h = s$

We evaluate policies via quantities that allow us to reason about the policy's long-term effect:] $\big(s_h, a_h \big) = (s, a)$]

• At the last stage, for a stochastic policy:

 $H-1(S) = \sum$ *a πH*−1(*a*|*s*)*r*(*s*, *a*)

Q function
$$
Q_h^{\pi}(s, a) = \mathbb{E} \left[\sum_{t=h}^{H-1} r(s_t, a_t) \middle| (s_h \right]
$$

$$
Q_{H-1}^{\pi}(s, a) = r(s, a)
$$

Policy Evaluation = Computing Value function and/or Q function

Example of Policy Evaluation (i.e. computing V^{π} and Q^{π})

Consider the following **deterministic** MDP w/ 3 states & 2 actions, with *H* = 3

- Consider the deterministic policy $\pi_0(s) = A$, $\pi_1(s) = A$, $\pi_2(s) = B$, $\forall s$
- What is V^{π} ? $V_2^{\pi}(a) = 0$, $V_2^{\pi}(b) = 0$, $V_2^{\pi}(c) = 0$ $V_1^{\pi}(a) = 0$, $V_1^{\pi}(b) = 1$, $V_1^{\pi}(c) = 0$ $V_0^{\pi}(a) = 1$, $V_0^{\pi}(b) = 2$, $V_0^{\pi}(c) = 1$

Reward: $r(b, A) = 1$, & 0 everywhere else

Notation

- means sampling from *x* ∼ *D D*
- $a \sim \pi(\cdot | s)$ means sampling from the distribution $\pi(\cdot | s)$, i.e. choosing action a with probability $\pi(a \, | \, s)$
- For a distribution D over a finite set $\mathscr{X},$ $E_{x \sim D}[f(x)] = \sum_{x \sim D} D(x)f(x)$ *x*∈
- We use the notation:

 $E_{S' \sim P(\cdot | S, a)}$

$[f(s')] = \sum P(s'|s, a)f(s')$

s′∈*S*

Bellman Consistency

- For a **deterministic** policy, $\pi := \{\pi_0, \pi_1, ..., \pi_{H-1}\}, \pi_h: S \mapsto A, \forall h$,
- By definition, $V_h^{\pi}(s) = Q_h^{\pi}(s, \pi_h(s))$
- At $H 1$, $Q_{H-1}^{\pi}(s, a) = r(s, a)$, $V_{H-1}^{\pi}(s) = r(s, \pi_{H-1}(s))$
- Bellman consistency conditions: for a given policy π ,
	- V_h^{π} $r_n^{\pi}(s) = r(s, \pi_h(s)) + \mathbb{E}_{s' \sim P(\cdot | s, \pi_h(s))} [V_{h+1}^{\pi}(s')]$
	- \cdot \mathcal{Q}_h^{π} $n_h^{\pi}(s, a) = r(s, a) + \mathbb{E}_{s' \sim P(\cdot | s, a)} [V_{h+1}^{\pi}(s')]$

Proof: Bellman Consistency for V-function:

Let $r_h = r(s_h, \pi(s_h))$ (note it's random via s_h) By definition and by the law of total expectation: V_h^{π} $r_h^{\pi}(s) = \mathbb{E} \left[r_h + r_{h+1} + \ldots + r_{H-1} \right] s_h = s$] $=$ $\mathbb{E}[r_h + \mathbb{E}[r_{h+1} + ... + r_{H-1} | s_h = s, s_{h+1} | s_h = s]$

By the Markov property:
\n
$$
= \mathbb{E}\left[r_h + \mathbb{E}\left[r_{h+1} + \dots + r_{H-1} \middle| s_{h+1}\right] \middle| s_h = s\right]
$$
\n
$$
= \mathbb{E}\left[r_h + V_{h+1}^{\pi}(s_{h+1}) \middle| s_h = s\right]
$$
\n
$$
= r(s, \pi_h(s)) + \mathbb{E}_{s' \sim P(\cdot|s, \pi_h(s))} \left[V_{h+1}^{\pi}(s')\right]
$$

$$
s, s_{h+1} \bigg| s_h = s
$$

Bellman consistency \Longrightarrow we can compute V_{μ}^{π} , assuming we know the MDP. *h*

- What is the per iteration computational complexity of DP? (assume scalar $+$, $-$, \times , $\div\;$ are $O(1)$ operations)
- What is the total computational complexity of DP?

Computation of V^{π} via Backward Induction

- For a deterministic policy, $\pi := \{\pi_0, \pi_1, ..., \pi_{H-1}\}, \pi_h : S \mapsto A, \forall h$, \implies we can compute V_h^{π}
	- *Vπ*

\n- Initialize:
$$
V_H^{\pi}(s) = 0
$$
, $\forall s \in S$
\n- For $h = H - 1, \ldots, 0$, set: $V_h^{\pi}(s) = r(s, \pi_h(s)) + \mathbb{E}_{s' \sim P(\cdot | s, \pi_h(s))} \left[V_{h+1}^{\pi}(s') \right]$, $\forall s \in S$
\n

• Recap

- Problem Statement
- Bellman Consistency & Policy Evaluation
- Optimality
- The Bellman Equations & Dynamic Programming

Example of Optimal Policy π^{\star}

Reward: $r(b, A) = 1$, & 0 everywhere else

- Consider the following **deterministic** MDP w/ 3 states & 2 actions, with *H* = 3
	- What's the optimal policy? π_h^\star $h^{\star}(s) = A, \ \forall s, h$
	- What is optimal value function, $V^{\pi^*} = V^*$? $V_2^{\star}(a) = 0, V_2^{\star}(b) = 1, V_2^{\star}(c) = 0$
		- $V_1^{\star}(a) = 1, V_1^{\star}(b) = 2, V_1^{\star}(c) = 1$
		- $V_0^{\star}(a) = 2, V_0^{\star}(b) = 3, V_0^{\star}(c) = 2$

How do we compute π^* and V^* ?

- Naively, we could compute the value of all policies and take the best one.
- Suppose $|S|$ states, $|A|$ actions, and horizon H . How many different polices there are?

• Can we do better?

Properties of an Optimal Policy π^{\star}

-
- **Theorem:** Every finite horizon MDP has a deterministic, history-independent optimal policy, that dominates all other policies, everywhere.
	- i.e. there exists a deterministic polic such that

$$
V_h^{\pi^{\star}}(s) \geq V_h^{\pi}(s) \quad \forall s, h,
$$

• \implies we can write: $V_h^{\star} = V_h^{\pi^{\star}}$ and $Q_h^{\star} = Q_h^{\pi^{\star}}$. \cdot $\implies \pi^\star$ doesn't depend on the initial state distribution μ .

• Let Π be the set of all time dependent, history dependent, stochastic policies.

$$
\mathbf{y} \pi^{\star} := \{\pi_0^{\star}, \pi_1^{\star}, \ldots, \pi_{H-1}^{\star}\}, \pi_n^{\star} : S \mapsto A
$$

 $k, h, \forall \pi \in \Pi$

$$
\zeta = Q_h^{\pi^*}.
$$

What's the Proof Intuition?

- **Theorem:** Every finite horizon MDP has a deterministic, history-independent optimal policy, that dominates all other policies, everywhere.
- What's the Proof Intuition?
	- the action.
		- This explains both determinism and history-independence
- (But, RL is general: think about redefining the state so you can do these.)

• "Only the state matters": how got here doesn't matter to where we go next, conditioned on

• Caveat: some legitimate reward functions are not additive/linear (so, naively, not an MDP).

• Recap

- Problem Statement
- Bellman Consistency & Policy Evaluation
	- Optimality
	- The Bellman Equations & Dynamic Programming

The Bellman Equations

- (assume $V_H = 0$). $V = \{V_0, \ldots V_{H-1}\}, V_h : S \to R$ $V_h(s) = \max_a \{ r(s, a) + \mathbb{E}_{s' \sim P(\cdot | s, a)} [V_{h+1}(s')] \}, \forall s$
- **Theorem:**
	- V satisfies the Bellman equations if and only if $V = V^*$.

 π_h^\star $\dot{h}^{\star}(s) = \arg \max_{\alpha}$

• A function $V = \{V_0, ... V_{H-1}\},\,\, V_h: S \rightarrow R$ satisfies the Bellman equations if ,

• The optimal policy is:
$$
\pi_h^{\star}(s) = \arg \max_a \left\{ r(s, a) + \mathbb{E}_{s' \sim P(\cdot | s, a)} [V_{h+1}^{\star}(s')] \right\}.
$$

Computation of V^{\star} with Dynamic Programming

• Theorem: the following Dynamic Programming algorithm computes π^{\star} and V^{\star} Prf: the Bellman equations directly lead to this backwards induction.

- What is the per iteration computational complexity of DP? (assume scalar $+$, $-$, \times , $\div\;$ are $O(1)$ operations)
- What is the total computational complexity of DP?

\n- Initialize:
$$
V_H^{\pi}(s) = 0 \ \forall s \in S
$$
\n- For $t = H - 1, \ldots 0$, set:
\n- $V_h^{\star}(s) = \max_{a} \left[r(s, a) + \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[V_{h+1}^{\star}(s') \right] \right], \ \forall s \in S$
\n- $\pi_h^{\star}(s) = \arg \max_{a} \left[r(s, a) + \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[V_{h+1}^{\star}(s') \right] \right], \ \forall s \in S$
\n

Summary:

Feedback: bit.ly/3RHtlxy

• Dynamic Programming lets us efficiently compute optimal policies. • We remember the results on "sub-problems" • Optimal policies are history independent.

-
-

Attendance: bit.ly/3RcTC9T

