Markov Decision Processes & Dynamic Programming

Lucas Janson CS/Stat 184(0): Introduction to Reinforcement Learning Fall 2024

- Recap
- Problem Statement
- Bellman Consistency & Policy Evaluation
- Optimality
- The Bellman Equations & Dynamic Programming

- An MDP: $M = \{\mu, S, A, P, r, H\}$
 - μ is a distribution over initial states (sometimes we assume we start a given state s_0)
 - S a set of states
 - A a set of actions
 - $P: S \times A \mapsto \Delta(S)$ specifies the dynamics model,
 - $r: S \times A \rightarrow [0,1]$
 - For now, let's assume this is a deterministic function
 - (sometimes we use a cost $c : S \times A \rightarrow [0,1]$)
 - A time horizon $H \in \mathbb{N}$

i.e. $P(s' \mid s, a)$ is the probability of transitioning to s' from state s via action a

Example: robot hand needs to pick the ball and hold it in a goal (x,y,z) position

ar A Tr P to R

 $\pi^{\star} = \arg\min_{\pi} \mathbb{E} \left[c(s_0, a_0) + c(s_1, a_1) \right]$

- **State** *s*: robot configuration (e.g., joint angles) and the ball's position
- Action *a*: Torque on joints in arm & fingers
- **Transition** $s' \sim P(\cdot | s, a)$: physics + some noise
- **Policy** $\pi(s)$: a function mapping from robot state to action (i.e., torque)
- **Reward/Cost:**
- r(s, a): immediate reward at state (s, a), or c(s, a): torque magnitude + dist to goal **Horizon:** timescale *H*

$$+ c(s_2, a_2) + \dots c(s_{H-1}, a_{H-1}) | s_0, \pi$$

- Problem Statement
- Bellman Consistency & Policy Evaluation
- Optimality
- The Bellman Equations & Dynamic Programming

The Episodic Setting and Trajectories

• Policy
$$\pi := \{\pi_0, \pi_1, ..., \pi_{H-1}\}$$

- we also consider time-dependent policies (but not a function of the history)
- deterministic policies: $\pi_t : S \mapsto A$; stochastic policies: $\pi_t : S \mapsto \Delta(A)$ • Sampling a trajectory τ on an episode: for a given policy π
 - Sample an initial state $s_0 \sim \mu$:
 - For t = 0, 1, 2, ..., H 1
 - Take action $a_t \sim \pi_t(\cdot | s_t)$
 - Observe reward $r_t = r(s_t, a_t)$
 - Transition to (and observe) s_{t+1} where $s_{t+1} \sim P(\cdot \mid s_t, a_t)$
 - The sampled trajectory is $\tau = \{s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{H-1}, a_{H-1}, r_{H-1}\}$

The Probability of a Trajectory & The Objective

- - The rewards in this trajectory must be $r_t = r(s_t, a_t)$ (else $\rho_{\pi}(\tau) = 0$).
 - For π stochastic: $\rho_{\pi}(\tau) = \mu(s_0)\pi(a_0 | s_0)P(s_1 | s_0, a_0)\dots\pi(s_0)P(s_1 | s_0, a_0)\dots\pi(s_0)P(s_0 | s_0)P(s_0 | s_0)P(s_0 | s_0)\dots\pi(s_0)P(s_0 | s_0)P(s_0 | s_0)\dots\pi(s_0)P(s_0 | s_0)P(s_0 | s_0)\dots\pi(s_0)P(s_0 | s_0)\dots\pi(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P$
 - For π deterministic: $\rho_{\pi}(\tau) = \mu(s_0) \mathbf{1}(a_0 = \pi(s_0)) P(s_1 | s_0, a_0)$
- $\max \mathbb{E}_{\tau \sim \rho_{\pi}} \left[r(s_0, a_0) + r(s_1, a_1) + \ldots + r(s_{H-1}, a_{H-1}) \right]$

• Probability of trajectory: let $\rho_{\pi,\mu}(\tau)$ denote the probability of observing trajectory $\tau = \{s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{H-1}, a_{H-1}, r_{H-1}\}$ when acting under π with $s_0 \sim \mu$. Shorthand: we sometimes write ρ or ρ_{π} when π and/or μ are clear from context.

$$(a_{H-2} | s_{H-2})P(s_{H-1} | s_{H-2}, a_{H-2})\pi(a_{H-1} | s_{H-1})$$

b)...P(s_{H-1} | s_{H-2}, a_{H-2})**1**(a_{H-1} = \pi(s_{H-1}))

Objective: find policy π that maximizes our expected cumulative episodic reward:

- Recap
 Problem Statement
 - Bellman Consistency & Policy Evaluation
 - Optimality
 - The Bellman Equations & Dynamic Programming

Policy Evaluation = Computing Value function and/or Q function

• Value function $V_h^{\pi}(s) = \mathbb{E}\left[\sum_{t=h}^{H-1} r(s_t, a_t) \middle| s_h = s\right]$

• **Q function**
$$Q_h^{\pi}(s, a) = \mathbb{E} \left[\sum_{t=h}^{H-1} r(s_t, a_t) \right| (s_h)$$

At the last stage, what are: \bullet

$$Q_{H-1}^{\pi}(s,a) = V_{H-1}^{\pi}(s,a)$$

We evaluate policies via quantities that allow us to reason about the policy's long-term effect: $a_h, a_h) = (s, a)$

 $r_{r_{-1}}(s) =$

Policy Evaluation = Computing Value function and/or Q function

We evaluate policies via quantities that allow us to reason about the policy's long-term effect: • Value function $V_h^{\pi}(s) = \mathbb{E}\left[\sum_{t=h}^{H-1} r(s_t, a_t) \middle| s_h = s\right]$ $(h, a_h) = (s, a)$

• **Q function**
$$Q_h^{\pi}(s, a) = \mathbb{E} \left[\sum_{t=h}^{H-1} r(s_t, a_t) \right| (s_h)$$

At the last stage, for a stochastic policy: \bullet

$$Q_{H-1}^{\pi}(s,a) = r(s,a)$$
 V_{H}^{π}

 $\prod_{H=1}^{\pi} (s) = \sum_{a} \pi_{H-1}(a \mid s) r(s, a)$

Example of Policy Evaluation (i.e. computing V^{π} and Q^{π})

Consider the following **deterministic** MDP w/3 states & 2 actions, with H = 3

Reward: r(b, A) = 1, & 0 everywhere else

- Consider the deterministic policy $\pi_0(s) = A, \ \pi_1(s) = A, \ \pi_2(s) = B, \ \forall s$
- What is V^{π} ? $V_2^{\pi}(a) = 0, V_2^{\pi}(b) = 0, V_2^{\pi}(c) = 0$ $V_1^{\pi}(a) = 0, V_1^{\pi}(b) = 1, V_1^{\pi}(c) = 0$ $V_0^{\pi}(a) = 1, V_0^{\pi}(b) = 2, V_0^{\pi}(c) = 1$

Notation

- $x \sim D$ means sampling from D
- $a \sim \pi(\cdot | s)$ means sampling from the distribution $\pi(\cdot | s)$, i.e. choosing action a with probability $\pi(a \mid s)$
- For a distribution D over a finite set \mathscr{X} , $E_{x \sim D}[f(x)] = \sum D(x)f(x)$ $x \in \mathcal{X}$
- We use the notation:

 $E_{s' \sim P(\cdot|s,a)}[f(s')] = \sum P(s'|s,a)f(s')$

 $s' \in S$

Bellman Consistency

- For a deterministic policy, $\pi := \{\pi_0, \pi_1, \dots, \pi_{H-1}\}, \pi_h : S \mapsto A, \forall h$,
- By definition, $V_h^{\pi}(s) = Q_h^{\pi}(s, \pi_h(s))$
- At H 1, $Q_{H-1}^{\pi}(s, a) = r(s, a)$, $V_{H-1}^{\pi}(s) = r(s, \pi_{H-1}(s))$
- Bellman consistency conditions: for a given policy π ,
 - $V_h^{\pi}(s) = r(s, \pi_h(s)) + \mathbb{E}_{s' \sim P(\cdot | s, \pi_h(s))} \left| V_{h+1}^{\pi}(s') \right|$

• $Q_h^{\pi}(s, a) = r(s, a) + \mathbb{E}_{s' \sim P(\cdot | s, a)} \left| V_{h+1}^{\pi}(s') \right|$

Proof: Bellman Consistency for V-function:

Let $r_h = r(s_h, \pi(s_h))$ (note it's random via s_h) By definition and by the law of total expectation: $V_h^{\pi}(s) = \mathbb{E}\left[r_h + r_{h+1} + \dots + r_{H-1} \middle| s_h = s\right]$ $= \mathbb{E}\left[r_h + \mathbb{E}\left[r_{h+1} + \dots + r_{H-1}\right] \right| s_h =$

By the Markov property:

$$= \mathbb{E} \left[r_{h} + \mathbb{E} \left[r_{h+1} + \ldots + r_{H-1} \left| s_{h+1} \right| \right] | s_{h} = s \right]$$

$$= \mathbb{E} \left[r_{h} + V_{h+1}^{\pi}(s_{h+1}) \left| s_{h} = s \right]$$

$$= r(s, \pi_{h}(s)) + \mathbb{E}_{s' \sim P(\cdot \mid s, \pi_{h}(s))} \left[V_{h+1}^{\pi}(s') \right]$$

$$[s, s_{h+1}] \mid s_h = s]$$

Computation of V^{π} via Backward Induction

- For a deterministic policy, $\pi := \{\pi_0, \pi_1, \dots, \pi_{H-1}\}, \pi_h : S \mapsto A, \forall h,$

• Initialize:
$$V_{H}^{\pi}(s) = 0, \forall s \in S$$

• For $h = H - 1, ...0$, set:
 $V_{h}^{\pi}(s) = r(s, \pi_{h}(s)) + \mathbb{E}_{s' \sim P(\cdot | s, \pi_{h}(s))} \left[V_{h+1}^{\pi}(s') \right], \forall s \in S$

- What is the per iteration computational complexity of DP? (assume scalar $+, -, \times, \div$ are O(1) operations)
- What is the total computational complexity of DP?

Bellman consistency \implies we can compute V_h^{π} , assuming we know the MDP.

- Recap
 Problem Statement
 - Bellman Consistency & Policy Evaluation
 - Optimality
 - The Bellman Equations & Dynamic Programming

Example of Optimal Policy π^{\star}

Reward: r(b, A) = 1, & 0 everywhere else

- Consider the following deterministic MDP w/3 states & 2 actions, with H = 3
 - What's the optimal policy? $\pi_h^{\star}(s) = A, \ \forall s, h$
 - What is optimal value function, $V^{\pi^*} = V^*$? $V_2^{\star}(a) = 0, \ V_2^{\star}(b) = 1, \ V_2^{\star}(c) = 0$
 - $V_1^{\star}(a) = 1, \ V_1^{\star}(b) = 2, \ V_1^{\star}(c) = 1$
 - $V_0^{\star}(a) = 2, \ V_0^{\star}(b) = 3, \ V_0^{\star}(c) = 2$

How do we compute π^* and V^* ?

- Naively, we could compute the value of all policies and take the best one.
- Suppose |S| states, |A| actions, and horizon H.
 How many different polices there are?

• Can we do better?

of all policies and take the best one. In the dest one of H.

Properties of an Optimal Policy π^{\star}

- **Theorem:** Every finite horizon MDP has a deterministic, history-independent optimal policy, that dominates all other policies, everywhere.
 - i.e. there exists a deterministic polic such that

$$V_h^{\pi^*}(s) \ge V_h^{\pi}(s) \quad \forall s$$

• \implies we can write: $V_h^{\star} = V_h^{\pi^{\star}}$ and Q_h^{\star} • $\implies \pi^*$ doesn't depend on the initial state distribution μ .

• Let II be the set of all time dependent, history dependent, stochastic policies.

cy
$$\pi^{\star} := \{\pi_0^{\star}, \pi_1^{\star}, ..., \pi_{H-1}^{\star}\}, \pi_h^{\star} : S \mapsto A$$

 $h, \forall \pi \in \Pi$

$$\star = Q_h^{\pi^\star}.$$

What's the Proof Intuition?

- **Theorem:** Every finite horizon MDP has a deterministic, history-independent optimal policy, that dominates all other policies, everywhere.
- What's the Proof Intuition?
 - the action.
 - This explains both determinism and history-independence
- (But, RL is general: think about redefining the state so you can do these.)

• "Only the state matters": how got here doesn't matter to where we go next, conditioned on

• Caveat: some legitimate reward functions are not additive/linear (so, naively, not an MDP).

- Recap
 Problem Statement
- Bellman Consistency & Policy Evaluation
 - Optimality
 - The Bellman Equations & Dynamic Programming

The Bellman Equations

- A function $V = \{V_0, \dots, V_{H-1}\}, V_h : S \to R$ satisfies the Bellman equations if $V_h(s) = \max_a \left\{ r(s, a) + \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[V_{h+1}(s') \right] \right\}, \forall s$ (assume $V_H = 0$).
- **Theorem:**
 - V satisfies the Bellman equations if and only if $V = V^{\star}$.

• The optimal policy is: $\pi_h^{\star}(s) = \arg$

$$\max_{a} \left\{ r(s,a) + \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[V_{h+1}^{\star}(s') \right] \right\}.$$

Computation of V^{\star} with Dynamic Programming

• Theorem: the following Dynamic Programming algorithm computes π^* and V^* Prf: the Bellman equations directly lead to this backwards induction.

• Initialize:
$$V_{H}^{\pi}(s) = 0 \ \forall s \in S$$

For t= $H - 1, \dots 0$, set:
• $V_{h}^{\star}(s) = \max_{a} \left[r(s, a) + \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[V_{h+1}^{\star}(s') \right] \right], \forall s \in S$
• $\pi_{h}^{\star}(s) = \arg\max_{a} \left[r(s, a) + \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[V_{h+1}^{\star}(s') \right] \right], \forall s \in S$

- What is the per iteration computational complexity of DP? (assume scalar $+, -, \times, \div$ are O(1) operations)
- What is the total computational complexity of DP?

Summary:

Dynamic Programming lets us efficiently compute optimal policies. • We remember the results on "sub-problems" Optimal policies are history independent.

Attendance: bit.ly/3RcTC9T

Feedback: bit.ly/3RHtlxy

