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• Instructor: Lucas Janson
•TFs: Anvit Garg, Nowell Closser 
•CAs: Jayden Personnat, Sibi Raja, Alex Cai, Ethan Tan, Neil Shah, 
Jason Wang, Russell Li, Sid Bharthulwar, Andrew Gu, Ian Moore
•Homework 0 is posted!
•This is “review” homework for material you should be familiar with 
to take the course.
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Course Overview

• We want you to obtain fundamental and practical knowledge of RL.
• Grades: Participation; HW0 +HW1-HW4; Midterm; Project
• Participation (5%): not meant to be onerous (see website)
• Just attending regularly will suffice
• If you can’t, then increase your participation in Ed/section.
• Let us know if you have some hard conflict, let us know via Ed.

• HWs (45%): will have math and programming components.
• We will have an “embedded ethics lecture” + assignment

• Midterm (20%): this will be in class.
• Project (30%): 2-3 people per project. Will be empirical.

All policies are stated on the course website:  
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Other Points

•Our policies aim for consistency among all the students.
•Participation: we will have a web-based attendance form
•Communication: please only use Ed to contact us
•Late policy (basically): you have  96 cumulative hours of late time.

•  Please use this to plan for unforeseen circumstances.
•Regrading: ask us in writing on Ed within a week 
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Many RL Successes

[AlphaZero, Silver et.al, 17] [OpenAI Five, 18]

[OpenAI,19]
TD GAMMON [Tesauro 95]

Supply Chains [Madeka et al ’23]
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•  a set of statesS
•  a set of actionsA
•  specifies the dynamics model,  

i.e.  is the probability of transitioning to  from state  via action 
P : S × A ↦ Δ(S)

P(s′ |s, a) s′ s a
• r : S × A → [0,1]
• For now, let’s assume this is a deterministic function
• (sometimes we use a cost )c : S × A → [0,1]

• A time horizon H ∈ ℕ
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State : robot configuration (e.g., joint angles) 
and the ball’s position

s

Action : Torque on joints in arm & fingersa
Transition : physics + some noises′ ∼ P( ⋅ |s, a)
Policy : a function mapping from robot state 
to action (i.e., torque)

π(s)

Reward/Cost:  
  : immediate reward at state , or 
  : torque magnitude + dist to goal
r(s, a) (s, a)
c(s, a)

Horizon: timescale H

π⋆ = arg min
π

, [c(s0, a0) + c(s1, a1) + c(s2, a2) + …c(sH−1, aH−1) s0, π]
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• Take action at ∼ πt( ⋅ |st)
• Observe reward rt = r(st, at)
• Transition to (and observe)  where st+1 st+1 ∼ P( ⋅ |st, at)
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We evaluate policies via quantities that allow us to reason about the policy’s long-term effect:


• Value function  

• Q function  

• At the last stage, for a stochastic policy,:  
 

	 	

Vπ
h (s) = , [

H−1

∑
t=h

r(st, at) sh = s]
Qπ

h (s, a) = , [
H−1

∑
t=h

r(st, at) (sh, ah) = (s, a)]

Qπ
H−1(s, a) = r(s, a) Vπ

H−1(s) = ∑
a

πH−1(a |s)r(s, a)

20
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a

b

c

A

B

A B

A

B

Reward: , &  everywhere elser(b, A) = 1 0

• Consider the deterministic policy  
 π0(s) = A, π1(s) = A, π2(s) = B, ∀s

• What is ?Vπ

  Vπ
2(a) = 0,Vπ

2(b) = 0,Vπ
2(c) = 0

   
    Vπ

1(a) = 0,Vπ
1(b) = 1,Vπ

1(c) = 0

   Vπ
0(a) = 1,Vπ

0(b) = 2,Vπ
0(c) = 1
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Today

• Logistics (Welcome!)

• Overview of RL

• Markov Decision Processes


• Problem statement

• Policy Evaluation
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Summary:

Feedback: 

bit.ly/3RHtlxy
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Attendance: 
bit.ly/3RcTC9T

• Finite horizon MDPs (a framework for RL): 
• Key concepts: sampling a trajectory  , V and Q functionsρπ(τ)

Attendance Password: 


