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1. Thank you to everyone who filled out the forms!
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All Policy Gradient Algorithms in One Slide

Parameterize policy and optimize directly while sampling from MDP

Fitted Policy lteration

\ 4

| Trust Region Policy g Natural Policy
* Janance Optimization (TRPQ) /PProXMaioN - Gradient (NPG)

too high in closed form

Big steps
unstable

Policy Gradient (PG)

Variance reduction techniques

like mini-batches and baselines 2nd-order updates

expensive

Proximal Policy Optimization (PPO)

PPO gets 2nd-order optimization benefits over PG and 1st-order computation benefits over TRPO/NPG
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“Lack of Exploration” leads to Optimization and Statistical Challenges

N\~ 9
TEAVER"
So T R=1
- S states - Thrun 92

Suppose [ ~ poly(|S|) & p(sy) = 1 (i.e. we start at ).
A randomly initialized policy z° has prob. O(1/3!°!) of hitting the goal state in a trajectory.
Thus a sample-based approach, with 1i(s,) = |, require O(3P) trajectories.

 Holds for (sample based) Fitted DP
 Holds for (sample based) PG/TRPO/NPG/PPO

Basically, for these approaches, there is no hope of learning the optimal policy if 1.(s,) = 1.



“Lack of Exploration” leads to Optimization and Statistical Challenges

TR ()

So T R=1

S —

- _—

Suppose [ ~ poly(|S|) & p(sy) = 1 (i.e. we start at ).
A randomly initialized policy z¥ has prob. O(1/3!°) of hitting the goal state in a trajectory.
Thus a sample-based approach, with 1i(s,) = |, require O(3P) trajectories.

 Holds for (sample based) Fitted DP
 Holds for (sample based) PG/TRPO/NPG/PPO

Basically, for these approaches, there is no hope of learning the optimal policy if 1.(s,) = 1.

Why not do one trajectory that always moves right?
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Let’'s examine the role of i

» Suppose that somehow the distribution 1 had better coverage. > states fhrun 52

e e.qg, If 4 was uniform overall states in our toy problem, then all approaches we
covered would work (with mild assumptions )

* Theory:
(assuming some “coverage”)

* |f we have a simulator, sometimes we can design 1 to have better coverage.
* this is helpful for robustness as well.
e |mitation learning (next time).

* An expert gives us samples from a “good” /.

« UCB-VI: we’ll merge two good ideas!
* Encourage exploration in PG methods.
* Try with reward shaping



Aside: Brittle policies if we train starting from only from one configuration!

e [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single
starting configuration s, are not robust!
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Aside: Brittle policies if we train starting from only from one configuration!

e [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single
starting configuration s, are not robust!

« How to fix this?
o Training from different starting configurations sampled from s, ~ 1 fixes this:

0
m@ax =gl V7 (S0)]
Even if starting position concentrated at just one point—good for robustness!
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OpenAl: progress on dexterous hand manipulation

A lGsh Giraffe
Perturbation



OpenAl: progress on dexterous hand manipulation

Trained with “domain randomization”

Basically, the measure 5, ~ 1 was
diverse.

Jash Giraffe
Perturbation
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Imitation Learning
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Imitation Learning

Machine
Learning
Algorithm

Expert

Demonstrations

SVM
 (Gaussian Process
 Kernel Estimator
 Deep Networks

« Random Forests
« |LWR
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Machine
Learning
Algorithm

Expert

Demonstrations

Imitation Learning
SVM

Policy 7T b
 (Gaussian Process

. Kernel Estimator  Maps S_tates
« Deep Networks to actions

« Random Forests
« |LWR
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Learning to Drive by Imitation

[Pomerleau89, Saxena05, Ross11a]

Input: Output:

Steering Angle
in[-1, 1]

Camera Image
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[Widrow64,Pomerleau89]

Supervised Learning Approach: Behavior Cloning

Expert Trajectories
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[Widrow64,Pomerleau89]

Supervised Learning Approach: Behavior Cloning

Expert Trajectories

Dataset
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Supervised Learning Approach: Behavior Cloning

Expert Trajectories

Dataset

M

Supervised Learning 15



[Widrow64,Pomerleau89]

Supervised Learning Approach: Behavior Cloning

Expert Trajectories Dataset

Learned
Policy m

Mapping from state (image) to |

control (steering direction) Supervised Learning 15



Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Expert Trajectories

Finite horizon MDP
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Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Expert Trajectories

Finite horizon MDP

Ground truth reward (s, a) € [0,1] is unknown;
Assume the expert has a good policy 7™ (not necessarily opt)

We have a dataset of M trajectories: & = {1}, ...7y},

_ (i iH-1
where 7, = (5,4, ), _y ~ P
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Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Expert Trajectories

Finite horizon MDP

Ground truth reward (s, a) € [0,1] is unknown;
Assume the expert has a good policy 7™ (not necessarily opt)

We have a dataset of M trajectories: & = {1}, ...7y},
where 7; = (s/, a. )i ~ p.

Goal: learn a policy from @ that is as good as the expert 7*
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Let’s formalize the Behavior Cloning (BC) algorithm

BC Algorithm input: a restricted policy class Il = {7 : S — A(A)}
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Let’s formalize the Behavior Cloning (BC) algorithm

BC Algorithm input: a restricted policy class Il = {7 : S — A(A)}

£ (m,s,a)is a loss function with many choices:
1. Classification (0/1) loss: 1[#(s) # al

2. Negative log-likelihood (NLL): Z(x, s,a) = — In zn(a | s)

3. square loss (i.e., regression for continuous action): £(x, s, a) = ||z(s) — aH%

17



Theorem: IL is (almost) as easy as SL

Note a training and testing “mismatch”
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= arg min 2 Z z/” TT, sh, ah

3
e =1 h=0

Note a training and testing “mismatch”

Theorem [BC Performance]:
suppose we assume supervised learning succeeds, with € classification error:

1 H-1
e | = Y 1 [RGs) # 7%(sp)] | <e
ﬂ H h=0
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Theorem: IL is (almost) as easy as SL M H-1

= arg min 2 Z z/” T, sh, ah

3
<21 =0

Note a training and testing “mismatch”

Theorem [BC Performance]:
suppose we assume supervised learning succeeds, with € classification error:

1 H-1
e | = Y 1 [RGs) # 7%(sp)] | <e
ﬂ H h=0

(where ¥ is the expert policy, which need not be optimal)
then we have:

VT — VT <?
H?e

The quadratic amplification is annoying

18



Proof:
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Proof:

By the PDL
H-1
| Vyz*(s) — V7 ()| = S [ Z A]ff (Sh, Clh)]
h=0
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By the PDL
| VZ(5) = VE(s)| =

Proof:

-1
—T~p % [ Z A;zz (Sh’ ah)]
h=0

H-1
_Sl,...Sthﬂ* [ Z A;ZZ' (Sha ﬂ*(sh))]
h=0
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Proof:
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Distribution Shift Example (H~ factor is tight)

Initial
state
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Initial
state

Opt policy:
Under p_., trajectory is s, 1, 57, ...

IO]Z'*(Sh — SZ) =0
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Initial
state

Opt policy:

Under p_., trajectory is s, 1, 57, ...
,0,,**(Sh =5, =0

Vo (so) =H—1
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Distribution Shift Example (H~ factor is tight)

Assume SL returns the policy 7:

r(sy) =
R a; w/probl—He R
’ 7[(50) — o ﬂ(Sl) — Clz, 7[(52) —_ az

a, w/ prob He

Initial
state

Opt policy:

Under p_., trajectory is s, 1, 57, ...
,0,,**(Sh =5, =0

Vo (so) =H—1
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Distribution Shift Example (H~ factor is tight)

Assume SL returns the policy 7:

r(sy) =
R a; w/probl—He R
’ ]Z-(SO) — . ﬂ(Sl) = Uy, ﬂ(Sz) = dy

a, w/ prob He

This policy has good supervised learning error:

| Al
. e | g Z L|7(sy) # 7%(s)] | =€
h=0

Initial *

note: while 7 (s,) # 7% (s,), state s, is never visited under 7
state

Opt policy:

Under p_., trajectory is s, 1, 57, ...
,0,,**(Sh =5, =0
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Distribution Shift Example (H~ factor is tight)

Assume SL returns the policy 7:

r(s)) =
! R a; w/probl—He R
’ ]T(SO) — . ﬂ(Sl) = Uy, ﬂ(Sz) = dy

a, w/ prob He

This policy has good supervised learning error:

| Al
. e | g Z L|7(sy) # 7%(s)] | =€
h=0

Initial *

note: while 7 (s,) # 7% (s,), state s, is never visited under 7
state

ao We have quadratic degradation (in H):

Ot policy: Vi(so) = (1 — He) - V7 (s) + He - 0 = VZ (s9) — eH(H — 1)
Under p_., trajectory is s, 51, ¢, - ..
p,,:(sh =5,) =0

Vo (sg) =H—1
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Distribution Shift Example (H~ factor is tight)

Assume SL returns the policy 7:

r(s)) =
! R a; w/probl—He R
’ ]Z-(SO) — . ﬂ(Sl) = Uy, ﬂ(Sz) = dy

a, w/ prob He

This policy has good supervised learning error:

| Al
. e | g Z L|7(sy) # 7%(s)] | =€
h=0

Initial *

note: while 7 (s,) # 7% (s,), state s, is never visited under 7
state

Ao We have quadratic degradation (in H):
| Vi(so) = (1 — He) - V7 (s) + He - 0 = VZ (s9) — eH(H — 1)
Opt policy:

Under p_, trajectory is sy, S, S1, - .. Intuition: once we make a mistake at s, we

Pn**(Sh =5) =0 end up in $, which is not in the training data!
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What could go wrong?

* Predictions affect future inputs/
observations

Learned Policy

Expert’s trajectory

21



Expert Demos
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Intuitive solution: Interaction

Use interaction to collect
data where learned policy
goes
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General Idea: lterative Interactive
Approach

New Data

s Ny

Collect Data

through
Interaction

Update Policy

N

Updated Policy
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DAgger: Dataset Aggregation

Oth iteration

Expert Demonstrates Task Dataset

" 4
// > » 1st policy

Supervised Learning

[Ross11a]
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DAgger: Dataset Aggregation
1st iteration

Execute 71 and Query Expert

Steering
from 4-@- \

expert Y £ —
Q’j ( '
——

<

[Ross11a]
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DAgger: Dataset Aggregation
1st iteration

Execute 71 and Query Expert

New Data

Steering
from 4-@- \

expe rt Y Vg —
ﬁ ( /
\

<

[Ross11a]
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DAgger: Dataset Aggregation
1st iteration

Execute 71 and Query Expert
New Data
Steering

from 4-@- \

expe rt Y Vg —
ﬁ ( /
\

<

States from
the learned policy

[Ross11a]
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DAgger: Dataset Aggregation
1st 1iteration

Execute 71 and Query Expert

Steering

from ;é- \

expert f/‘k -

—

Q-

\
(:

4

——

[Ross11a]

New Data

All previous data

"EJ‘«‘S@
?%(8
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DAgger: Dataset Aggregation
1st 1iteration

Execute 71 and Query Expert

t New Data
eering
from k‘é-é- \
expertyy/‘ - |
o > Aggregate
Dataset

New policy
702

Supervised Learning

[Ross11a]
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DAgger: Dataset Aggregation
2nd iteration

Execute 1, and Query Expert
< O\
N
( ' »
Ty A 4%

New Data

Steering
from

expertY L
o

p—
&
’
Ny -*.&
~—

New policy
73

Aggregate
Dataset

Supervised Learning

[Ross11a]
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Steering

DAgger: Dataset Aggregation
nth iteration

Execute 7,.1 and Query Expert
New Data

Aggregate
Dataset

Supervised Learning

[Ross11a]
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The DAgger algorithm

Initialize 7°, and dataset I = &

Fortr=0—->T—1:
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The DAgger algorithm

Initialize 7°, and dataset I = &

Fort=0—-> T —1:
1. W/ ', generate dataset of trajectories 9’ = {7, 7,, ...}
where for all trajectories s, ~ p ., @, = 77(s)

2. Data aggregation: @ = 9 U @'

3. Update policy via Supervised-Learning: 771 = SL (@)

In practice, the DAgger algorithm requires less human labeled data than BC.

Informal Theorem] Under more assumptions + assuming € SL error is achievable,
the DAgger algorithm has error: | V* — V" | < He
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[Ross AISTATS 2011]

Success!
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Success!
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Summary:

1. IL can help a lot to explore the space
2. BC pretty good but brittle -> quadratic-in-horizon error
3. Online expert feedback can help with robustness -> linear-in-horizon error

Attendance: Feedback:
bit.ly/3RcTCOT bit.ly/3RHtIxy
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http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

