
Imitation Learning & 
Behavioral Cloning  

 
Lucas Janson 

CS/Stat 184(0): Introduction to Reinforcement Learning 
Fall 2024

1

Today

2

• Feedback from last lecture

• Recap

• Imitation Learning problem statement

• Behavioral Cloning

• DAgger

Feedback from feedback forms

3

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

3

Today

4

• Feedback from last lecture

• Recap

• Imitation Learning problem statement

• Behavioral Cloning

• DAgger

All Policy Gradient Algorithms in One Slide

5

Policy Gradient (PG)
Trust Region Policy
Optimization (TRPO)

Parameterize policy and optimize directly while sampling from MDP

Variance reduction techniques

like mini-batches and baselines

Variance

too high

Fitted Policy Iteration

Big steps

unstable

Natural Policy
Gradient (NPG)Approximation

in closed form

Proximal Policy Optimization (PPO)

2nd-order updates

expensive

PPO gets 2nd-order optimization benefits over PG and 1st-order computation benefits over TRPO/NPG

“Lack of Exploration” leads to Optimization and Statistical Challenges

• Suppose & (i.e. we start at).

• A randomly initialized policy has prob. of hitting the goal state in a trajectory.

• Thus a sample-based approach, with , require trajectories.

• Holds for (sample based) Fitted DP

• Holds for (sample based) PG/TRPO/NPG/PPO

• Basically, for these approaches, there is no hope of learning the optimal policy if .

H ≈ poly(|S |) μ(s0) = 1 s0

π0 O(1/3|S|)
μ(s0) = 1 O(3|S|)

μ(s0) = 1

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

6

“Lack of Exploration” leads to Optimization and Statistical Challenges

• Suppose & (i.e. we start at).

• A randomly initialized policy has prob. of hitting the goal state in a trajectory.

• Thus a sample-based approach, with , require trajectories.

• Holds for (sample based) Fitted DP

• Holds for (sample based) PG/TRPO/NPG/PPO

• Basically, for these approaches, there is no hope of learning the optimal policy if .

H ≈ poly(|S |) μ(s0) = 1 s0

π0 O(1/3|S|)
μ(s0) = 1 O(3|S|)

μ(s0) = 1

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

6

Why not do one trajectory that always moves right?

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1
Let’s examine the role of μ

• Suppose that somehow the distribution had better coverage.

• e.g, if was uniform overall states in our toy problem, then all approaches we

covered would work (with mild assumptions)

• Theory: TRPO/NPG/PPO have better guarantees than fitted DP methods  

(assuming some “coverage”)

• Strategies without coverage:

• If we have a simulator, sometimes we can design to have better coverage.

• this is helpful for robustness as well.

• Imitation learning (next time).

• An expert gives us samples from a “good” .

• Explicit exploration:

• UCB-VI: we’ll merge two good ideas!

• Encourage exploration in PG methods.

• Try with reward shaping

μ
μ

μ

μ

7

Aside: Brittle policies if we train starting from only from one configuration!

• [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single
starting configuration are not robust!𝑠0

8

Aside: Brittle policies if we train starting from only from one configuration!

• [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single
starting configuration are not robust!𝑠0

8

Aside: Brittle policies if we train starting from only from one configuration!

• [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single
starting configuration are not robust!𝑠0

8

Aside: Brittle policies if we train starting from only from one configuration!

• [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single
starting configuration are not robust!𝑠0

• How to fix this?

• Training from different starting configurations sampled from fixes this:

Even if starting position concentrated at just one point—good for robustness!

s0 ∼ μ
max

θ
𝔼s0∼μ[Vθ(s0)]

8

OpenAI: progress on dexterous hand manipulation

9

OpenAI: progress on dexterous hand manipulation

9

OpenAI: progress on dexterous hand manipulation

Trained with “domain randomization”

Basically, the measure was
diverse.

s0 ∼ μ

9

Today

10

• Feedback from last lecture

• Recap

• Imitation Learning problem statement

• Behavioral Cloning

• DAgger

Imitation Learning

11

Imitation Learning

12

Imitation Learning

12

Imitation Learning

Expert
Demonstrations

12

Imitation Learning
Machine
Learning
Algorithm

• SVM

• Gaussian Process

• Kernel Estimator

• Deep Networks

• Random Forests

• LWR

• …

Expert
Demonstrations

12

Imitation Learning
Machine
Learning
Algorithm

• SVM

• Gaussian Process

• Kernel Estimator

• Deep Networks

• Random Forests

• LWR

• …

 Policy

Maps states
to actions

Expert
Demonstrations

12

Learning to Drive by Imitation

Policy

Steering Angle
in [-1, 1]

Input: Output:

Camera Image

13

[Pomerleau89, Saxena05, Ross11a]

Today

14

• Feedback from last lecture

• Recap

• Imitation Learning problem statement

• Behavioral Cloning

• DAgger

Supervised Learning Approach: Behavior Cloning

15

[Widrow64,Pomerleau89]

Supervised Learning Approach: Behavior Cloning

15

[Widrow64,Pomerleau89]

Supervised Learning Approach: Behavior Cloning

15

[Widrow64,Pomerleau89]

Supervised Learning Approach: Behavior Cloning

15

[Widrow64,Pomerleau89]

Supervised Learning Approach: Behavior Cloning

15

[Widrow64,Pomerleau89]

Learned
Policy π

Mapping from state (image) to
control (steering direction)

Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Finite horizon MDP ℳ

16

Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Finite horizon MDP ℳ

Ground truth reward is unknown;

Assume the expert has a good policy (not necessarily opt)

r(s, a) ∈ [0,1]
π⋆

16

Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Finite horizon MDP ℳ

Ground truth reward is unknown;

Assume the expert has a good policy (not necessarily opt)

r(s, a) ∈ [0,1]
π⋆

We have a dataset of trajectories: ,

where

M 𝒟 = {τ1, …τM}
τi = (si

h, ai
h)

H−1
h=0 ∼ ρπ⋆

16

Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Finite horizon MDP ℳ

Ground truth reward is unknown;

Assume the expert has a good policy (not necessarily opt)

r(s, a) ∈ [0,1]
π⋆

We have a dataset of trajectories: ,

where

M 𝒟 = {τ1, …τM}
τi = (si

h, ai
h)

H−1
h=0 ∼ ρπ⋆

Goal: learn a policy from that is as good as the expert 𝒟 π⋆

16

Let’s formalize the Behavior Cloning (BC) algorithm

BC Algorithm input: a restricted policy class Π = {π : S ↦ Δ(A)}

17

Let’s formalize the Behavior Cloning (BC) algorithm

BC Algorithm input: a restricted policy class Π = {π : S ↦ Δ(A)}

BC is a Reduction to Supervised Learning:

17

Let’s formalize the Behavior Cloning (BC) algorithm

BC Algorithm input: a restricted policy class Π = {π : S ↦ Δ(A)}

BC is a Reduction to Supervised Learning:

̂π = arg min
π∈Π

M

∑
i=1

H−1

∑
h=0

ℓ (π, si
h, ai

h)

17

Let’s formalize the Behavior Cloning (BC) algorithm

BC Algorithm input: a restricted policy class Π = {π : S ↦ Δ(A)}

BC is a Reduction to Supervised Learning:

̂π = arg min
π∈Π

M

∑
i=1

H−1

∑
h=0

ℓ (π, si
h, ai

h)

 is a loss function with many choices:ℓ(π, s, a)

17

Let’s formalize the Behavior Cloning (BC) algorithm

BC Algorithm input: a restricted policy class Π = {π : S ↦ Δ(A)}

BC is a Reduction to Supervised Learning:

̂π = arg min
π∈Π

M

∑
i=1

H−1

∑
h=0

ℓ (π, si
h, ai

h)

 is a loss function with many choices:ℓ(π, s, a)

17

1. Classification (0/1) loss: 1[π(s) ≠ a]

Let’s formalize the Behavior Cloning (BC) algorithm

BC Algorithm input: a restricted policy class Π = {π : S ↦ Δ(A)}

BC is a Reduction to Supervised Learning:

̂π = arg min
π∈Π

M

∑
i=1

H−1

∑
h=0

ℓ (π, si
h, ai

h)

 is a loss function with many choices:ℓ(π, s, a)

2. Negative log-likelihood (NLL): ℓ(π, s, a) = − ln π(a |s)

17

1. Classification (0/1) loss: 1[π(s) ≠ a]

Let’s formalize the Behavior Cloning (BC) algorithm

BC Algorithm input: a restricted policy class Π = {π : S ↦ Δ(A)}

BC is a Reduction to Supervised Learning:

̂π = arg min
π∈Π

M

∑
i=1

H−1

∑
h=0

ℓ (π, si
h, ai

h)

 is a loss function with many choices:ℓ(π, s, a)

2. Negative log-likelihood (NLL): ℓ(π, s, a) = − ln π(a |s)
3. square loss (i.e., regression for continuous action): ℓ(π, s, a) = ∥π(s) − a∥2

2

17

1. Classification (0/1) loss: 1[π(s) ≠ a]

Theorem: IL is (almost) as easy as SL

18

Note a training and testing “mismatch”

̂π = arg min
π∈Π

M

∑
i=1

H−1

∑
h=0

ℓ (π, si
h, ai

h)

Theorem: IL is (almost) as easy as SL

18

Theorem [BC Performance]:
suppose we assume supervised learning succeeds, with classification error:  

	 ,

ϵ

𝔼τ∼ρπ⋆ [1
H

H−1

∑
h=0

1 [̂π (sh) ≠ π⋆(sh)]] ≤ ϵ

Note a training and testing “mismatch”

̂π = arg min
π∈Π

M

∑
i=1

H−1

∑
h=0

ℓ (π, si
h, ai

h)

Theorem: IL is (almost) as easy as SL

18

Theorem [BC Performance]:
suppose we assume supervised learning succeeds, with classification error:  

	 ,

ϵ

𝔼τ∼ρπ⋆ [1
H

H−1

∑
h=0

1 [̂π (sh) ≠ π⋆(sh)]] ≤ ϵ

(where is the expert policy, which need not be optimal)π⋆

Note a training and testing “mismatch”

̂π = arg min
π∈Π

M

∑
i=1

H−1

∑
h=0

ℓ (π, si
h, ai

h)

Theorem: IL is (almost) as easy as SL

18

Theorem [BC Performance]:
suppose we assume supervised learning succeeds, with classification error:  

	 ,

ϵ

𝔼τ∼ρπ⋆ [1
H

H−1

∑
h=0

1 [̂π (sh) ≠ π⋆(sh)]] ≤ ϵ

(where is the expert policy, which need not be optimal)π⋆

then we have: 
	 |Vπ⋆ − V ̂π | ≤ ?

Note a training and testing “mismatch”

̂π = arg min
π∈Π

M

∑
i=1

H−1

∑
h=0

ℓ (π, si
h, ai

h)

Theorem: IL is (almost) as easy as SL

18

Theorem [BC Performance]:
suppose we assume supervised learning succeeds, with classification error:  

	 ,

ϵ

𝔼τ∼ρπ⋆ [1
H

H−1

∑
h=0

1 [̂π (sh) ≠ π⋆(sh)]] ≤ ϵ

(where is the expert policy, which need not be optimal)π⋆

then we have: 
	 |Vπ⋆ − V ̂π | ≤ ?

Note a training and testing “mismatch”

̂π = arg min
π∈Π

M

∑
i=1

H−1

∑
h=0

ℓ (π, si
h, ai

h)

H2ϵ

Theorem: IL is (almost) as easy as SL

18

Theorem [BC Performance]:
suppose we assume supervised learning succeeds, with classification error:  

	 ,

ϵ

𝔼τ∼ρπ⋆ [1
H

H−1

∑
h=0

1 [̂π (sh) ≠ π⋆(sh)]] ≤ ϵ

(where is the expert policy, which need not be optimal)π⋆

then we have: 
	 |Vπ⋆ − V ̂π | ≤ ?

Note a training and testing “mismatch”

The quadratic amplification is annoying

̂π = arg min
π∈Π

M

∑
i=1

H−1

∑
h=0

ℓ (π, si
h, ai

h)

H2ϵ

Proof:

19

Proof:

19

By the PDL 

  |Vπ⋆(s) − V ̂π (s) | = 𝔼τ∼ρπ⋆[
H−1

∑
h=0

A ̂π
h (sh, ah)]

Proof:

19

By the PDL 

  |Vπ⋆(s) − V ̂π (s) | = 𝔼τ∼ρπ⋆[
H−1

∑
h=0

A ̂π
h (sh, ah)]

	 	 = 𝔼s1,…sh∼ρπ⋆[
H−1

∑
h=0

A ̂π
h (sh, π⋆(sh))]

Proof:

19

By the PDL 

  |Vπ⋆(s) − V ̂π (s) | = 𝔼τ∼ρπ⋆[
H−1

∑
h=0

A ̂π
h (sh, ah)]

	 	 = 𝔼s1,…sh∼ρπ⋆[
H−1

∑
h=0

A ̂π
h (sh, π⋆(sh))]

 

	 	 ≤ H 𝔼τ∼ρπ⋆[
H−1

∑
h=0

1[̂π (sh) ≠ π⋆(sh)]]

Proof:

19

By the PDL 

  |Vπ⋆(s) − V ̂π (s) | = 𝔼τ∼ρπ⋆[
H−1

∑
h=0

A ̂π
h (sh, ah)]

	 	 = 𝔼s1,…sh∼ρπ⋆[
H−1

∑
h=0

A ̂π
h (sh, π⋆(sh))]

 

	 	 ≤ H 𝔼τ∼ρπ⋆[
H−1

∑
h=0

1[̂π (sh) ≠ π⋆(sh)]]
 
	 	 ≤ H2ϵ

Distribution Shift Example (factor is tight)H2

Initial
state

r(s1) = 1

20

Distribution Shift Example (factor is tight)H2

Initial
state

r(s1) = 1

Opt policy:

20

Distribution Shift Example (factor is tight)H2

Initial
state

r(s1) = 1

Opt policy:
Under , trajectory is ρπ⋆ s0, s1, s1, …

20

Distribution Shift Example (factor is tight)H2

Initial
state

r(s1) = 1

Opt policy:
Under , trajectory is ρπ⋆ s0, s1, s1, …

 ρπ⋆(sh = s2) = 0

20

Distribution Shift Example (factor is tight)H2

Initial
state

r(s1) = 1

Opt policy:
Under , trajectory is ρπ⋆ s0, s1, s1, …

 ρπ⋆(sh = s2) = 0
Vπ⋆

0 (s0) = H − 1
20

Distribution Shift Example (factor is tight)H2

Initial
state

r(s1) = 1 Assume SL returns the policy :
̂π

̂π (s0) = {a1 w/ prob 1 − Hϵ
a2 w/ prob Hϵ

, ̂π (s1) = a2, ̂π (s2) = a2

Opt policy:
Under , trajectory is ρπ⋆ s0, s1, s1, …

 ρπ⋆(sh = s2) = 0
Vπ⋆

0 (s0) = H − 1
20

Distribution Shift Example (factor is tight)H2

Initial
state

r(s1) = 1 Assume SL returns the policy :
̂π

̂π (s0) = {a1 w/ prob 1 − Hϵ
a2 w/ prob Hϵ

, ̂π (s1) = a2, ̂π (s2) = a2

This policy has good supervised learning error:

note: while , state is never visited under

𝔼τ∼ρπ⋆ [1
H

H−1

∑
h=0

1 [̂π (sh) ≠ π⋆(sh)]] = ϵ

̂π (s2) ≠ π⋆(s2) s2 π⋆

Opt policy:
Under , trajectory is ρπ⋆ s0, s1, s1, …

 ρπ⋆(sh = s2) = 0
Vπ⋆

0 (s0) = H − 1
20

Distribution Shift Example (factor is tight)H2

Initial
state

r(s1) = 1 Assume SL returns the policy :
̂π

̂π (s0) = {a1 w/ prob 1 − Hϵ
a2 w/ prob Hϵ

, ̂π (s1) = a2, ̂π (s2) = a2

This policy has good supervised learning error:

note: while , state is never visited under

𝔼τ∼ρπ⋆ [1
H

H−1

∑
h=0

1 [̂π (sh) ≠ π⋆(sh)]] = ϵ

̂π (s2) ≠ π⋆(s2) s2 π⋆

Opt policy:
Under , trajectory is ρπ⋆ s0, s1, s1, …

 ρπ⋆(sh = s2) = 0
Vπ⋆

0 (s0) = H − 1

We have quadratic degradation (in):
H
V ̂π

0(s0) = (1 − Hϵ) ⋅ Vπ⋆

0 (s0) + Hϵ ⋅ 0 = Vπ⋆

0 (s0) − ϵH(H − 1)

20

Distribution Shift Example (factor is tight)H2

Initial
state

r(s1) = 1 Assume SL returns the policy :
̂π

̂π (s0) = {a1 w/ prob 1 − Hϵ
a2 w/ prob Hϵ

, ̂π (s1) = a2, ̂π (s2) = a2

This policy has good supervised learning error:

note: while , state is never visited under

𝔼τ∼ρπ⋆ [1
H

H−1

∑
h=0

1 [̂π (sh) ≠ π⋆(sh)]] = ϵ

̂π (s2) ≠ π⋆(s2) s2 π⋆

Intuition: once we make a mistake at , we
end up in which is not in the training data!

s0
s2

Opt policy:
Under , trajectory is ρπ⋆ s0, s1, s1, …

 ρπ⋆(sh = s2) = 0
Vπ⋆

0 (s0) = H − 1

We have quadratic degradation (in):
H
V ̂π

0(s0) = (1 − Hϵ) ⋅ Vπ⋆

0 (s0) + Hϵ ⋅ 0 = Vπ⋆

0 (s0) − ϵH(H − 1)

20

What could go wrong?
• Predictions affect future inputs/

observations

21

Expert’s trajectoryLearned Policy

Expert Demos

22

But Poor Performance...

23

But Poor Performance...

23

But Poor Performance...

24

But Poor Performance...

24

Today

25

• Feedback from last lecture

• Recap

• Imitation Learning problem statement

• Behavioral Cloning

• DAgger

Intuitive solution: Interaction

26

Use interaction to collect
data where learned policy
goes

General Idea: Iterative Interactive
Approach

Update Policy
Collect Data

through
Interaction

New Data

Updated Policy

27

DAgger: Dataset Aggregation
0th iteration

28

Expert Demonstrates Task Dataset

Supervised Learning

1st policy π1

[Ross11a]

DAgger: Dataset Aggregation
 1st iteration

29

Execute π1 and Query Expert

Steering
from
expert

[Ross11a]

DAgger: Dataset Aggregation
 1st iteration

30

Execute π1 and Query Expert
New Data

[Ross11a]

Steering
from
expert

DAgger: Dataset Aggregation
 1st iteration

30

Execute π1 and Query Expert
New Data

[Ross11a]

Steering
from
expert

States from
the learned policy

DAgger: Dataset Aggregation
 1st iteration

31

Execute π1 and Query Expert
New Data

All previous data

[Ross11a]

Steering
from
expert

DAgger: Dataset Aggregation
 1st iteration

32

Execute π1 and Query Expert
New Data

Supervised Learning

New policy
π2

All previous data

Aggregate
Dataset

[Ross11a]

Steering
from
expert

DAgger: Dataset Aggregation
 2nd iteration

33

Execute π2 and Query Expert
New Data

Supervised Learning

New policy
π3

All previous data

Aggregate
Dataset

Steering
from
expert

[Ross11a]

DAgger: Dataset Aggregation
 nth iteration

34

[Ross11a]

Execute πn-1 and Query Expert
New Data

Supervised Learning

New policy
πn

All previous data

Steering
from
expert

Aggregate
Dataset

The DAgger algorithm

Initialize , and dataset π0 𝒟 = ∅
For :t = 0 → T − 1

35

The DAgger algorithm

Initialize , and dataset π0 𝒟 = ∅
For :t = 0 → T − 1

1. W/ , generate dataset of trajectories

where for all trajectories

πt 𝒟t = {τ1, τ2, …}
sh ∼ ρπt, ah = π⋆(sh)

35

The DAgger algorithm

Initialize , and dataset π0 𝒟 = ∅
For :t = 0 → T − 1

1. W/ , generate dataset of trajectories

where for all trajectories

πt 𝒟t = {τ1, τ2, …}
sh ∼ ρπt, ah = π⋆(sh)

2. Data aggregation: 𝒟 = 𝒟 ∪ 𝒟t

35

The DAgger algorithm

Initialize , and dataset π0 𝒟 = ∅
For :t = 0 → T − 1

1. W/ , generate dataset of trajectories

where for all trajectories

πt 𝒟t = {τ1, τ2, …}
sh ∼ ρπt, ah = π⋆(sh)

2. Data aggregation: 𝒟 = 𝒟 ∪ 𝒟t

3. Update policy via Supervised-Learning: πt+1 = SL (𝒟)

35

The DAgger algorithm

Initialize , and dataset π0 𝒟 = ∅
For :t = 0 → T − 1

1. W/ , generate dataset of trajectories

where for all trajectories

πt 𝒟t = {τ1, τ2, …}
sh ∼ ρπt, ah = π⋆(sh)

2. Data aggregation: 𝒟 = 𝒟 ∪ 𝒟t

3. Update policy via Supervised-Learning: πt+1 = SL (𝒟)

35

In practice, the DAgger algorithm requires less human labeled data than BC. 
 
[Informal Theorem] Under more assumptions + assuming SL error is achievable,

the DAgger algorithm has error:

ϵ
|Vπ⋆ − V ̂π | ≤ Hϵ

Success!

36

[Ross AISTATS 2011]

Success!

36

[Ross AISTATS 2011]

Today

37

• Feedback from last lecture

• Recap

• Imitation Learning problem statement

• Behavioral Cloning

• DAgger

Summary:

Feedback:

bit.ly/3RHtlxy

38

Attendance: 
bit.ly/3RcTC9T

1. IL can help a lot to explore the space

2. BC pretty good but brittle -> quadratic-in-horizon error

3. Online expert feedback can help with robustness -> linear-in-horizon error

http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

