Imitation Learning & **Behavioral Cloning**

Lucas Janson **CS/Stat 184(0): Introduction to Reinforcement Learning** Fall 2024

- Feedback from last lecture
- Recap
- Imitation Learning problem statement
- Behavioral Cloning
- DAgger

Feedback from feedback forms

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

- Recap
- Imitation Learning problem statement
- Behavioral Cloning
- DAgger

Policy Gradient (PG)

Variance reduction techniques like mini-batches and baselines

PPO gets 2nd-order optimization benefits over PG and 1st-order computation benefits over TRPO/NPG

"Lack of Exploration" leads to Optimization and Statistical Challenges

- Suppose $H \approx \text{poly}(|S|) \& \mu(s_0) = 1$ (i.e. we start at s_0).
- A randomly initialized policy π^0 has prob. $O(1/3^{|S|})$ of hitting the goal state in a trajectory. Thus a sample-based approach, with $\mu(s_0) = 1$, require $O(3^{|S|})$ trajectories.
- - Holds for (sample based) Fitted DP
 - Holds for (sample based) PG/TRPO/NPG/PPO
- Basically, for these approaches, there is no hope of learning the optimal policy if $\mu(s_0) = 1$.

Thrun '92

"Lack of Exploration" leads to Optimization and Statistical Challenges

- Suppose $H \approx \text{poly}(|S|) \& \mu(s_0) = 1$ (i.e. we start at s_0).
- A randomly initialized policy π^0 has prob. $O(1/3^{|S|})$ of hitting the goal state in a trajectory. Thus a sample-based approach, with $\mu(s_0) = 1$, require $O(3^{|S|})$ trajectories.
- - Holds for (sample based) Fitted DP
 - Holds for (sample based) PG/TRPO/NPG/PPO
- Basically, for these approaches, there is no hope of learning the optimal policy if $\mu(s_0) = 1$.

Why not do one trajectory that always moves right?

Thrun '92

Let's examine the role of μ

- Suppose that somehow the distribution μ had better coverage.
 - e.g, if μ was uniform overall states in our toy problem, then all approaches we covered would work (with mild assumptions)
 - Theory: TRPO/NPG/PPO have better guarantees than fitted DP methods (assuming some "coverage")
- Strategies without coverage:
 - If we have a simulator, sometimes we can design μ to have better coverage.
 - this is helpful for robustness as well.
 - Imitation learning (next time).
 - An expert gives us samples from a "good" μ .
 - Explicit exploration:
 - UCB-VI: we'll merge two good ideas!
 - Encourage exploration in PG methods.
 - Try with reward shaping

S states

s! ds Thrun '92

starting configuration *s*₀ are not robust!

• [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single

starting configuration *s*₀ are not robust!

• [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single

starting configuration *s*₀ are not robust!

• [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single

- starting configuration s_0 are not robust!
- How to fix this?

 $\max_{\Theta} \mathbb{E}_{s_0 \sim \mu} [V^{\theta}(s_0)]$ Even if starting position concentrated at just one point—good for robustness!

• [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single

• Training from different starting configurations sampled from $s_0 \sim \mu$ fixes this:

OpenAl: progress on dexterous hand manipulation

OpenAl: progress on dexterous hand manipulation

OpenAl: progress on dexterous hand manipulation

Trained with "domain randomization"

Basically, the measure $s_0 \sim \mu$ was diverse.

- Imitation Learning problem statement
- Behavioral Cloning
- DAgger

Expert Demonstrations

Expert Demonstrations

- SVM
- Gaussian Process Kernel Estimator • Deep Networks **Random Forests** LWR

. . .

Machine Learning Algorithm

Expert Demonstrations

- SVM

. . .

- LWR

 Gaussian Process Kernel Estimator • Deep Networks **Random Forests**

Maps states to <u>actions</u>

Learning to Drive by Imitation

Input:

Camera Image

[Pomerleau89, Saxena05, Ross11a] Output:

Steering Angle in [-1, 1]

- Imitation Learning problem statement
 - Behavioral Cloning
 - DAgger

Expert Trajectories

[Widrow64, Pomerleau89]

Expert Trajectories

[Widrow64,Pomerleau89]

Dataset

Expert Trajectories

[Widrow64,Pomerleau89]

Dataset

Expert Trajectories

[Widrow64,Pomerleau89]

Dataset

Supervised Learning

Expert Trajectories

control (steering direction)

[Widrow64, Pomerleau89]

Dataset

Expert Trajectories

Finite horizon MDP *M*

:

Expert Trajectories

Finite horizon MDP *M*

Ground truth reward $r(s, a) \in [0,1]$ is unknown; Assume the expert has a good policy π^{\star} (not necessarily opt)

Expert Trajectories

- Finite horizon MDP *M*
- Ground truth reward $r(s, a) \in [0, 1]$ is unknown; Assume the expert has a good policy π^{\star} (not necessarily opt)
- We have a dataset of M trajectories: $\mathcal{D} = \{\tau_1, \dots, \tau_M\},\$ where $\tau_i = (s_h^i, a_h^i)_{h=0}^{H-1} \sim \rho_{\pi^{\star}}$

Expert Trajectories

- Finite horizon MDP *M*
- Ground truth reward $r(s, a) \in [0,1]$ is unknown; Assume the expert has a good policy π^{\star} (not necessarily opt)
- We have a dataset of M trajectories: $\mathcal{D} = \{\tau_1, \dots, \tau_M\},\$ where $\tau_i = (s_h^i, a_h^i)_{h=0}^{H-1} \sim \rho_{\pi^{\star}}$
- Goal: learn a policy from \mathscr{D} that is as good as the expert π^{\star}

Let's formalize the Behavior Cloning (BC) algorithm

BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$

Let's formalize the Behavior Cloning (BC) algorithm

BC is a Reduction to Supervised Learning:

- BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$
BC is a Reduction to Supervised Learning:

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{\substack{n \in \Pi \\ i=1}}^{M} \sum_{\substack{h=0}}^{H-1} \mathcal{E}(\pi, s)$$

- BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$

 - s_h^i, a_h^i

BC is a Reduction to Supervised Learning:

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \sum_{h=0}^{H-1} \ell(\pi, s)$$

- BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$

 - s_h^i, a_h^i

 $\ell(\pi, s, a)$ is a loss function with many choices:

BC is a Reduction to Supervised Learning:

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \sum_{h=0}^{H-1} \ell(\pi, s)$$

1. Classification (0/1) loss: $\mathbf{1}[\pi(s) \neq a]$

- BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$

 - S_h^i, a_h^i

- $\ell(\pi, s, a)$ is a loss function with many choices:

BC is a Reduction to Supervised Learning:

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \sum_{h=0}^{H-1} \ell(\pi, s)$$

1. Classification (0/1) loss: $\mathbf{1}[\pi(s) \neq a]$ 2. Negative log-likelihood (NLL): $\ell(\pi, s, a) = -\ln \pi(a \mid s)$

BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$

 s_h^i, a_h^i

 $\ell(\pi, s, a)$ is a loss function with many choices:

BC is a Reduction to Supervised Learning:

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \sum_{h=0}^{H-1} \ell(\pi, s)$$

- 1. Classification (0/1) loss: $\mathbf{1}[\pi(s) \neq a]$
- 2. Negative log-likelihood (NLL): $\ell(\pi, s, a) = -\ln \pi(a \mid s)$

BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$

 S_h^i, a_h^i

 $\ell(\pi, s, a)$ is a loss function with many choices:

3. square loss (i.e., regression for continuous action): $\ell(\pi, s, a) = \|\pi(s) - a\|_2^2$

Note a training and testing "mismatch"

Theorem [BC Performance]:

suppose we assume supervised learning succeeds, with ϵ classification error:

$$\mathbb{E}_{\tau \sim \rho_{\pi}^{\star}} \left[\frac{1}{H} \sum_{h=0}^{H-1} \mathbf{1} \left[\widehat{\pi}(s_h) \neq \pi^{\star} \right] \right]$$

Note a training and testing "mismatch"

$(s_h)] \leq \epsilon,$

Theorem [BC Performance]:

suppose we assume supervised learning succeeds, with ϵ classification error:

$$\mathbb{E}_{\tau \sim \rho_{\pi} \star} \left[\frac{1}{H} \sum_{h=0}^{H-1} \mathbf{1} \left[\widehat{\pi}(s_h) \neq \pi^{\star} \right] \right]$$

(where π^{\star} is the expert policy, which need not be optimal)

Note a training and testing "mismatch"

$\left[(s_h) \right] \leq \epsilon,$

18

Theorem [BC Performance]:

suppose we assume supervised learning succeeds, with ϵ classification error:

$$\mathbb{E}_{\tau \sim \rho_{\pi}^{\star}} \left[\frac{1}{H} \sum_{h=0}^{H-1} \mathbf{1} \left[\widehat{\pi}(s_h) \neq \pi^{\star} \right] \right]$$

(where π^{\star} is the expert policy, which need not be optimal) then we have:

$$|V^{\pi^{\star}} - V^{\widehat{\pi}}| \le ?$$

Note a training and testing "mismatch"

$\left[(s_h) \right] \leq \epsilon,$

18

Theorem [BC Performance]:

suppose we assume supervised learning succeeds, with ϵ classification error:

$$\mathbb{E}_{\tau \sim \rho_{\pi}^{\star}} \left[\frac{1}{H} \sum_{h=0}^{H-1} \mathbf{1} \left[\widehat{\pi}(s_h) \neq \pi^{\star} \right] \right]$$

(where π^{\star} is the expert policy, which need not be optimal) then we have:

$$|V^{\pi^{\star}} - V^{\hat{\pi}}| \le ?$$
$$H^{2}\epsilon$$

Note a training and testing "mismatch"

$\left[(s_h) \right] \leq \epsilon,$

18

Theorem [BC Performance]:

suppose we assume supervised learning succeeds, with ϵ classification error:

$$\mathbb{E}_{\tau \sim \rho_{\pi}^{\star}} \left[\frac{1}{H} \sum_{h=0}^{H-1} \mathbf{1} \left[\widehat{\pi}(s_h) \neq \pi^{\star} \right] \right]$$

(where π^{\star} is the expert policy, which need not be optimal) then we have:

$$|V^{\pi^{\star}} - V^{\widehat{\pi}}| \le ?$$
$$H^2 \epsilon$$

The quadratic amplification is annoying

Note a training and testing "mismatch"

$\left[(s_h) \right] \leq \epsilon,$

Proof:

By the PDL $\left| V^{\pi^{\star}}(s) - V^{\widehat{\pi}}(s) \right| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_h^{\widehat{\pi}}(s_h, a_h) \right] \right|$

Proof:

By the PDL

$$|V^{\pi^{\star}}(s) - V^{\widehat{\pi}}(s)| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_{h}^{\widehat{\pi}}(s_{h}, a_{h}) - \mathbb{E}_{s_{1}, \dots, s_{h} \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_{h}^{\widehat{\pi}}(s_{h}, a_{h}) - \mathbb{E}_{s_{1}, \dots, s_{h} \sim \rho_{\pi^{\star}}} \right] \right|$$

Proof:

 $\left. \hat{a}_{h} \right) \right]$ $\hat{\pi}_{h}(s_{h}, \pi^{\star}(s_{h})) \right]$

By the PDL

$$|V^{\pi^{\star}}(s) - V^{\hat{\pi}}(s)| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_{h}^{\hat{\pi}}(s_{h}, a_{h}) \right] \right| = \left| \mathbb{E}_{s_{1}, \dots, s_{h} \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_{h}^{\hat{\pi}}(s_{h}, a_{h}) \right] \right| = \left| \mathbb{E}_{s_{1}, \dots, s_{h} \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_{h}^{\hat{\pi}}(s_{h}, a_{h}) \right] \right| = \left| \mathbb{E}_{s_{1}, \dots, s_{h} \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_{h}^{\hat{\pi}}(s_{h}, a_{h}) \right] \right| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_{h}^{\hat{\pi}}(s_{h}, a_{h}) \right] \right| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_{h}^{\hat{\pi}}(s_{h}, a_{h}) \right] \right| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_{h}^{\hat{\pi}}(s_{h}, a_{h}) \right] \right| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_{h}^{\hat{\pi}}(s_{h}, a_{h}) \right] \right| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_{h}^{\hat{\pi}}(s_{h}, a_{h}) \right] \right| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_{h}^{\hat{\pi}}(s_{h}, a_{h}) \right] \right| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_{h}^{\hat{\pi}}(s_{h}, a_{h}) \right] \right| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_{h}^{\hat{\pi}}(s_{h}) \right] \right| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_{h}^{\hat{\pi}}(s_{h}) \right] \right| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_{h}^{\hat{\pi}}(s_{h}) \right] \right| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_{h}^{\hat{\pi}}(s_{h}) \right] \right| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_{h}^{\hat{\pi}}(s_{h}) \right] \right| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_{h}^{\hat{\pi}}(s_{h}) \right] \right| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_{h}^{\hat{\pi}}(s_{h}) \right] \right| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_{h}^{\hat{\pi}}(s_{h}) \right] \right| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_{h}^{\hat{\pi}}(s_{h}) \right] \right| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_{h}^{\hat{\pi}}(s_{h}) \right] \right| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_{h}^{\hat{\pi}}(s_{h}) \right] \right| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_{h}^{\hat{\pi}}(s_{h}) \right] \right| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_{h}^{\hat{\pi}}(s_{h}) \right] \right| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_{h}^{\hat{\pi}}(s_{h}) \right] \right| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_{h}^{\hat{\pi}}(s_{h}) \right] \right| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_{h}^{\hat{\pi}}(s_{h}) \right] \right| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{$$

Proof:

 $\left. \begin{array}{l} a_{h} \\ \hat{\pi}(s_{h}, \pi^{\star}(s_{h})) \\ \hat{\epsilon}(s_{h}) \neq \pi^{\star}(s_{h}) \end{array} \right|$

By the PDL $\left| V^{\pi^{\star}}(s) - V^{\widehat{\pi}}(s) \right| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_h^{\widehat{\pi}}(s_h, a_h) \right] \right|$ $= \left| \mathbb{E}_{s_1, \dots, s_h \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_h^{\hat{\pi}}(s_h, \pi^{\star}(s_h)) \right] \right|$ $\leq H \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} \mathbf{1} \left[\widehat{\pi}(s_h) \neq \pi^{\star}(s_h) \right] \right] \right|$ $\leq H^2 \epsilon$

Proof:

Opt policy:

Opt policy: Under $\rho_{\pi^{\star}}$, trajectory is s_0, s_1, s_1, \ldots

Opt policy: Under ρ_{π^*} , trajectory is s_0, s_1, s_1, \dots $\rho_{\pi^*}(s_h = s_2) = 0$

Opt policy: Under ρ_{π^*} , trajectory is s_0, s_1, s_1, \dots $\rho_{\pi^*}(s_h = s_2) = 0$ $V_0^{\pi^*}(s_0) = H - 1$

$$\widehat{\pi}(s_0) =$$

Opt policy: Under ρ_{π^*} , trajectory is s_0, s_1, s_1, \ldots $\rho_{\pi^{\star}}(s_h = s_2) = 0$ $V_0^{\pi^{\star}}(s_0) = H - 1$

Assume SL returns the policy $\widehat{\pi}$:

 $\widehat{\pi}(s_0) = \begin{cases} a_1 & \text{w/prob } 1 - H\epsilon \\ a_2 & \text{w/prob } H\epsilon \end{cases},$

$$\hat{\pi}(s_1) = a_2, \, \hat{\pi}(s_2) = a_2$$

Assume SL returns the policy $\hat{\pi}$:

Opt policy: Under $\rho_{\pi^{\star}}$, trajectory is s_0, s_1, s_1, \ldots $\rho_{\pi^{\star}}(s_h = s_2) = 0$ $V_0^{\pi^*}(s_0) = H - 1$

 $\widehat{\pi}(s_0) = \begin{cases} a_1 & \text{w/prob } 1 - H\epsilon \\ a_2 & \text{w/prob } H\epsilon \end{cases}, \quad \widehat{\pi}(s_1) = a_2, \, \widehat{\pi}(s_2) = a_2 \end{cases}$

This policy has good supervised learning error:

- $\mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\frac{1}{H} \sum_{h=0}^{H-1} \mathbf{1} \left[\widehat{\pi}(s_h) \neq \pi^{\star}(s_h) \right] \right] = \epsilon$
- note: while $\hat{\pi}(s_2) \neq \pi^*(s_2)$, state s_2 is never visited under π^*

Assume SL returns the policy $\hat{\pi}$:

We have quadratic degradation (in H):

Opt policy:

Under $\rho_{\pi^{\star}}$, trajectory is s_0, s_1, s_1, \ldots

 $\rho_{\pi^{\star}}(s_h = s_2) = 0$ $V_0^{\pi^*}(s_0) = H - 1$ $\widehat{\pi}(s_0) = \begin{cases} a_1 & \text{w/prob } 1 - H\epsilon \\ a_2 & \text{w/prob } H\epsilon \end{cases}, \quad \widehat{\pi}(s_1) = a_2, \, \widehat{\pi}(s_2) = a_2 \end{cases}$

This policy has good supervised learning error:

- $\mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\frac{1}{H} \sum_{h=0}^{H-1} \mathbf{1} \left[\widehat{\pi}(s_h) \neq \pi^{\star}(s_h) \right] \right] = \epsilon$
- note: while $\hat{\pi}(s_2) \neq \pi^*(s_2)$, state s_2 is never visited under π^*

 $V_0^{\hat{\pi}}(s_0) = (1 - H\epsilon) \cdot V_0^{\pi^*}(s_0) + H\epsilon \cdot 0 = V_0^{\pi^*}(s_0) - \epsilon H(H - 1)$

Assume SL returns the policy $\hat{\pi}$:

 $V_0^{\hat{\pi}}(s_0) = (1 - H\epsilon) \cdot V_0^{\pi^*}(s_0) + H\epsilon \cdot 0 = V_0^{\pi^*}(s_0) - \epsilon H(H - 1)$

Intuition: once we make a mistake at s_0 , we end up in s_2 which is not in the training data!

Opt policy:

Under $\rho_{\pi^{\star}}$, trajectory is s_0, s_1, s_1, \ldots

$$\rho_{\pi^{\star}}(s_h = s_2) = 0$$
$$V_0^{\pi^{\star}}(s_0) = H - 1$$

 $\widehat{\pi}(s_0) = \begin{cases} a_1 & \text{w/prob } 1 - H\epsilon \\ a_2 & \text{w/prob } H\epsilon \end{cases}, \quad \widehat{\pi}(s_1) = a_2, \ \widehat{\pi}(s_2) = a_2 \end{cases}$

This policy has good supervised learning error:

 $\mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\frac{1}{H} \sum_{h=0}^{H-1} \mathbf{1} \left[\hat{\pi}(s_h) \neq \pi^{\star}(s_h) \right] \right] = \epsilon$

note: while $\hat{\pi}(s_2) \neq \pi^*(s_2)$, state s_2 is never visited under π^*

We have quadratic degradation (in H):

What could go wrong?Predictions affect future inputs/

Predictions affect fuel observations

Learned Policy

Expert Demos

• DAgger

Intuitive solution: Interaction

Use interaction to collect data where learned policy goes

General Idea: Iterative Interactive Approach

Updated Policy

[Ross11a] DAgger: Dataset Aggregation **Oth iteration**

Supervised Learning

DAgger: Dataset Aggregation [Ross11a] 1st iteration

Execute π_1 and Query Expert

[Ross11a] DAgger: Dataset Aggregation 1st iteration

Execute π_1 and **Query Expert**

New Data

[Ross11a] DAgger: Dataset Aggregation 1st iteration

Execute π_1 and Query Expert

New Data

States from the learned policy

[Ross11a] DAgger: Dataset Aggregation 1st iteration

Execute π_1 and Query Expert

DAgger: Dataset Aggregation [Ross11a] 1st iteration

Execute π_1 and Query Expert

32

DAgger: Dataset Aggregation [Ross11a] 2nd iteration

Execute π_2 and Query Expert

[Ross11a] DAgger: Dataset Aggregation nth iteration

Execute π_{n-1} and Query Expert

Initialize π^0 , and dataset $\mathcal{D} = \mathcal{O}$ For $t = 0 \rightarrow T - 1$:

Initialize π^0 , and dataset $\mathcal{D} = \mathcal{O}$ For $t = 0 \rightarrow T - 1$: 1. W/ π^t , generate dataset of trajectories $\mathcal{D}^t = \{\tau_1, \tau_2, ...\}$ where for all trajectories $s_h \sim \rho_{\pi^t}$, $a_h = \pi^*(s_h)$

Initialize π^0 , and dataset $\mathcal{D} = \mathcal{O}$ For $t = 0 \rightarrow T - 1$:

For $t = 0 \rightarrow 1$ 1. 1. W/ π^t , generate dataset of trajectories $\mathcal{D}^t = \{\tau_1, \tau_2, ...\}$ where for all trajectories $s_h \sim \rho_{\pi^t}$, $a_h = \pi^*(s_h)$ 2. Data aggregation: $\mathcal{D} = \mathcal{D} \cup \mathcal{D}^t$

Initialize π^0 , and dataset $\mathcal{D} = \mathcal{O}$ For $t = 0 \rightarrow T - 1$:

- 1. W/ π^t , generate dataset of trajectories $\mathscr{D}^t = \{\tau_1, \tau_2, ...\}$ where for all trajectories $s_h \sim \rho_{\pi^t}$, $a_h = \pi^*(s_h)$ 2. Data aggregation: $\mathscr{D} = \mathscr{D} \cup \mathscr{D}^t$ 3. Update policy via Supervised-Learning: $\pi^{t+1} = SL(\mathscr{D})$

Initialize π^0 , and dataset $\mathfrak{D} = \emptyset$ For $t = 0 \to T - 1$: 1. W/ π^t , generate dataset of trajectories $\mathfrak{D}^t = \{\tau_1, \tau_2, ...\}$ where for all trajectories $s_h \sim \rho_{\pi^t}$, $a_h = \pi^*(s_h)$ 2. Data aggregation: $\mathfrak{D} = \mathfrak{D} \cup \mathfrak{D}^t$ 3. Update policy via Supervised-Learning: $\pi^{t+1} = SL(\mathfrak{D})$

In practice, the DAgger algorithm requires less human labeled data than BC.

[Informal Theorem] Under more assumptions + assuming ϵ SL error is achievable, the DAgger algorithm has error: $|V^{\pi^*} - V^{\hat{\pi}}| \leq H\epsilon$

Success!

[Ross AISTATS 2011]

Success!

[Ross AISTATS 2011]

Summary:

- 1. IL can help a lot to explore the space
- 2. BC pretty good but brittle -> quadratic-in-horizon error
- 3. Online expert feedback can help with robustness -> linear-in-horizon error

Attendance: bit.ly/3RcTC9T

ce atic-in-horizon error th robustness -> linear-in-horizon error

Feedback: bit.ly/3RHtlxy

