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1. Thank you to everyone who filled out the forms!
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All Policy Gradient Algorithms in One Slide

5

Policy Gradient (PG)
Trust Region Policy  
Optimization (TRPO)

Parameterize policy and optimize directly while sampling from MDP

Variance reduction techniques 

like mini-batches and baselines

Variance 

too high

Fitted Policy Iteration

Big steps

unstable

Natural Policy  
Gradient (NPG)Approximation


in closed form

Proximal Policy Optimization (PPO)

2nd-order updates

expensive

PPO gets 2nd-order optimization benefits over PG and 1st-order computation benefits over TRPO/NPG



“Lack of Exploration” leads to Optimization and Statistical Challenges

• Suppose  &  (i.e. we start at ).


• A randomly initialized policy  has prob.   of hitting the goal state in a trajectory. 


• Thus a sample-based approach, with , require  trajectories.

• Holds for (sample based) Fitted DP

• Holds for (sample based) PG/TRPO/NPG/PPO


• Basically, for these approaches, there is no hope of learning the optimal policy if .

H ≈ poly( |S | ) μ(s0) = 1 s0

π0 O(1/3|S|)
μ(s0) = 1 O(3|S|)

μ(s0) = 1

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1
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Why not do one trajectory that always moves right?



Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1
Let’s examine the role of μ

• Suppose that somehow the distribution  had better coverage.

• e.g, if  was uniform overall states in our toy problem, then all approaches we 

covered would work (with mild assumptions )

• Theory: TRPO/NPG/PPO have better guarantees than fitted DP methods  

(assuming some “coverage”)

• Strategies without coverage:

• If we have a simulator, sometimes we can design  to have better coverage.

• this is helpful for robustness as well.


• Imitation learning (next time). 

• An expert gives us samples from a “good” .


• Explicit exploration:

• UCB-VI: we’ll merge two good ideas!

• Encourage exploration in PG methods.


• Try with reward shaping

μ
μ

μ

μ
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Aside: Brittle policies if we train starting from only from one configuration!

• [Rajeswaran, Lowrey, Todorov,  K. 2017]: showed policies optimized for a single 
starting configuration  are not robust!𝑠0
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Aside: Brittle policies if we train starting from only from one configuration!

• [Rajeswaran, Lowrey, Todorov,  K. 2017]: showed policies optimized for a single 
starting configuration  are not robust!𝑠0

• How to fix this? 

• Training from different starting configurations sampled from  fixes this: 
     

Even if starting position concentrated at just one point—good for robustness!

s0 ∼ μ
max

θ
𝔼s0∼μ[Vθ(s0)]

8



OpenAI: progress on dexterous hand manipulation
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OpenAI: progress on dexterous hand manipulation

Trained with “domain randomization” 

Basically, the measure  was 
diverse. 

s0 ∼ μ
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Imitation Learning
Machine 
Learning 
Algorithm

• SVM

• Gaussian Process

• Kernel Estimator

• Deep Networks

• Random Forests

• LWR

• …

    Policy

Maps states 
to actions

Expert 
Demonstrations
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Learning to Drive by Imitation

Policy

Steering Angle 
in [-1, 1]

Input: Output:

Camera Image
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[Pomerleau89, Saxena05, Ross11a]
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Supervised Learning Approach: Behavior Cloning

15

[Widrow64,Pomerleau89]

Learned 
Policy π

Mapping from state (image) to 
control (steering direction)



Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Finite horizon MDP ℳ
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Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Finite horizon MDP ℳ

Ground truth reward  is unknown; 

Assume the expert has a good policy  (not necessarily opt)

r(s, a) ∈ [0,1]
π⋆

We have a dataset of  trajectories:  ,  

where 

M 𝒟 = {τ1, …τM}
τi = (si

h, ai
h)

H−1
h=0 ∼ ρπ⋆

Goal: learn a policy from   that is as good as the expert 𝒟 π⋆
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Let’s formalize the Behavior Cloning (BC) algorithm

BC Algorithm input: a restricted policy class Π = {π : S ↦ Δ(A)}
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1.  Classification (0/1) loss:  1[π(s) ≠ a]
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Let’s formalize the Behavior Cloning (BC) algorithm

BC Algorithm input: a restricted policy class Π = {π : S ↦ Δ(A)}

BC is a Reduction to Supervised Learning:

̂π = arg min
π∈Π

M

∑
i=1

H−1

∑
h=0

ℓ (π, si
h, ai

h)

 is a loss function with many choices:ℓ(π, s, a)

2. Negative log-likelihood (NLL):  ℓ(π, s, a) = − ln π(a |s)
3. square loss (i.e., regression for continuous action):  ℓ(π, s, a) = ∥π(s) − a∥2

2
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1.  Classification (0/1) loss:  1[π(s) ≠ a]



Theorem: IL is (almost) as easy as SL
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Note a training and testing “mismatch”

̂π = arg min
π∈Π

M

∑
i=1

H−1

∑
h=0

ℓ (π, si
h, ai

h)
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Theorem [BC Performance]: 
suppose we assume supervised learning succeeds, with  classification error:  

	 ,

ϵ

𝔼τ∼ρπ⋆ [ 1
H

H−1

∑
h=0

1 [ ̂π (sh) ≠ π⋆(sh)]] ≤ ϵ

(where  is the expert policy, which need not be optimal)π⋆

then we have: 
	 |Vπ⋆ − V ̂π | ≤ ?

Note a training and testing “mismatch”

The quadratic amplification is annoying

̂π = arg min
π∈Π

M

∑
i=1

H−1

∑
h=0

ℓ (π, si
h, ai

h)

H2ϵ
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H

H−1

∑
h=0

1 [ ̂π (sh) ≠ π⋆(sh)]] = ϵ

̂π (s2) ≠ π⋆(s2) s2 π⋆

Intuition: once we make a mistake at , we 
end up in  which is not in the training data!
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What could go wrong?
• Predictions affect future inputs/

observations

21

Expert’s trajectoryLearned Policy



Expert Demos
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Intuitive solution: Interaction
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Use interaction to collect 
data where learned policy 
goes



General Idea: Iterative Interactive 
Approach

Update Policy
Collect Data 

through 
Interaction

New Data

Updated Policy
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DAgger: Dataset Aggregation 
0th iteration

28

Expert Demonstrates Task Dataset

Supervised Learning

1st policy π1

[Ross11a]
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the learned policy



DAgger: Dataset Aggregation 
 1st iteration

31

Execute π1 and Query Expert
New Data

All previous data

[Ross11a]

Steering 
from 
expert



DAgger: Dataset Aggregation 
 1st iteration

32

Execute π1 and Query Expert
New Data

Supervised Learning

New policy 
π2

All previous data

Aggregate 
Dataset

[Ross11a]

Steering 
from 
expert



DAgger: Dataset Aggregation 
 2nd iteration
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Execute π2 and Query Expert
New Data

Supervised Learning

New policy 
π3

All previous data

Aggregate 
Dataset

Steering 
from 
expert

[Ross11a]



DAgger: Dataset Aggregation 
 nth iteration

34

[Ross11a]

Execute πn-1 and Query Expert
New Data

Supervised Learning

New policy 
πn

All previous data

Steering 
from 
expert

Aggregate 
Dataset
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In practice, the DAgger algorithm requires less human labeled data than BC. 
 
[Informal Theorem] Under more assumptions + assuming  SL error is achievable, 

the DAgger algorithm has error: 

ϵ
|Vπ⋆ − V ̂π | ≤ Hϵ
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Summary:

Feedback: 

bit.ly/3RHtlxy

38

Attendance: 
bit.ly/3RcTC9T

1. IL can help a lot to explore the space

2. BC pretty good but brittle -> quadratic-in-horizon error

3. Online expert feedback can help with robustness -> linear-in-horizon error

http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

