Imitation Learning & Behavioral Cloning

Lucas Janson

CS/Stat 184(0): Introduction to Reinforcement Learning Fall 2024

Today

- Feedback from last lecture
- Recap
- Imitation Learning problem statement
- Behavioral Cloning
- DAgger

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

Today

- Feedback from last lecture
 - Recap
 - Imitation Learning problem statement
 - Behavioral Cloning
 - DAgger

All Policy Gradient Algorithms in One Slide

Parameterize policy and optimize directly while sampling from MDP

Fitted Policy Iteration

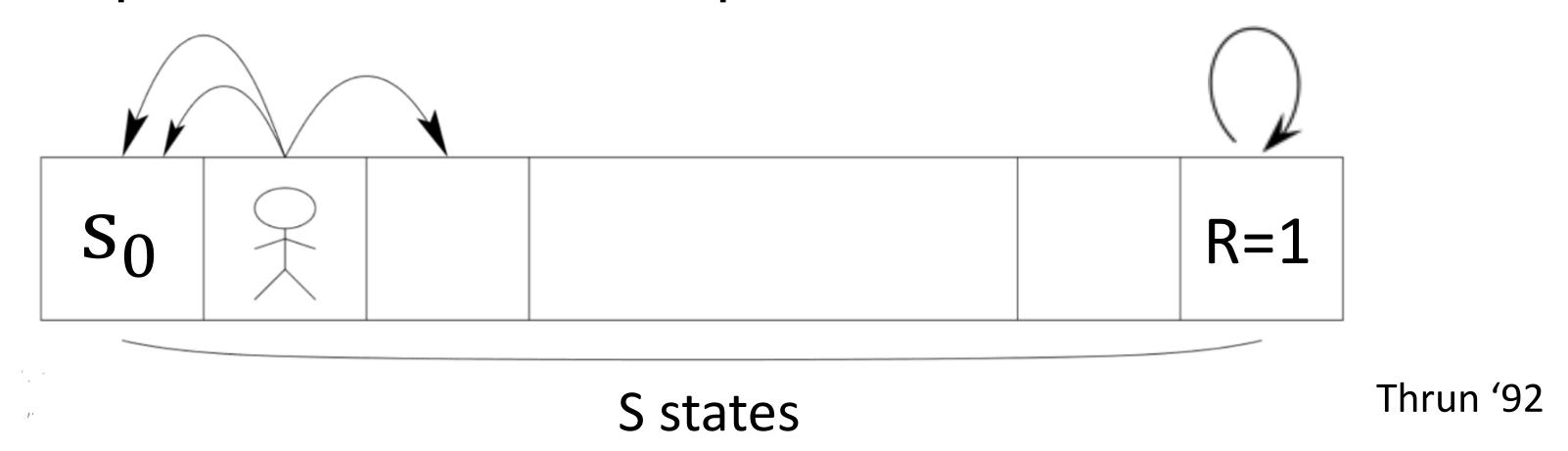
Policy Gradient (PG)

Variance reduction techniques like mini-batches and baselines

Proximal Policy Optimization (PPO)

PPO gets 2nd-order optimization benefits over PG and 1st-order computation benefits over TRPO/NPG

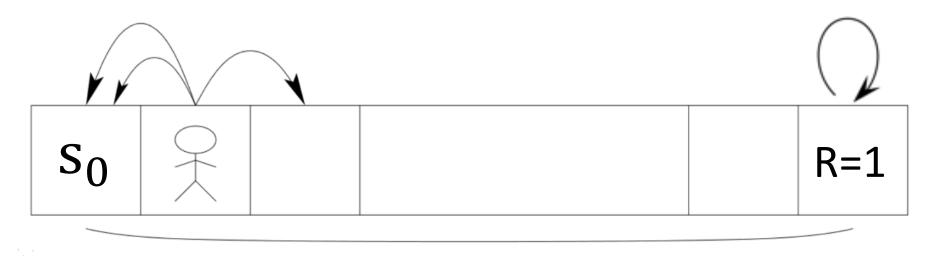
"Lack of Exploration" leads to Optimization and Statistical Challenges



- Suppose $H \approx \text{poly}(|S|) \& \mu(s_0) = 1$ (i.e. we start at s_0).
- A randomly initialized policy π^0 has prob. $O(1/3^{|S|})$ of hitting the goal state in a trajectory.
- Thus a sample-based approach, with $\mu(s_0) = 1$, require $O(3^{|S|})$ trajectories.
 - Holds for (sample based) Fitted DP
 - Holds for (sample based) PG/TRPO/NPG/PPO
- Basically, for these approaches, there is no hope of learning the optimal policy if $\mu(s_0) = 1$.

Why not do one trajectory that always moves right?

Let's examine the role of μ

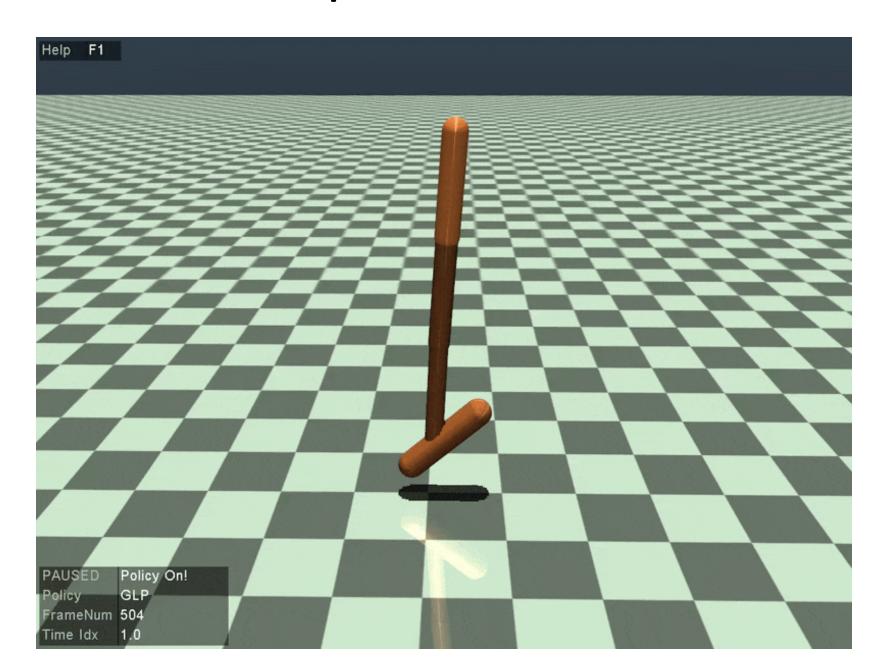


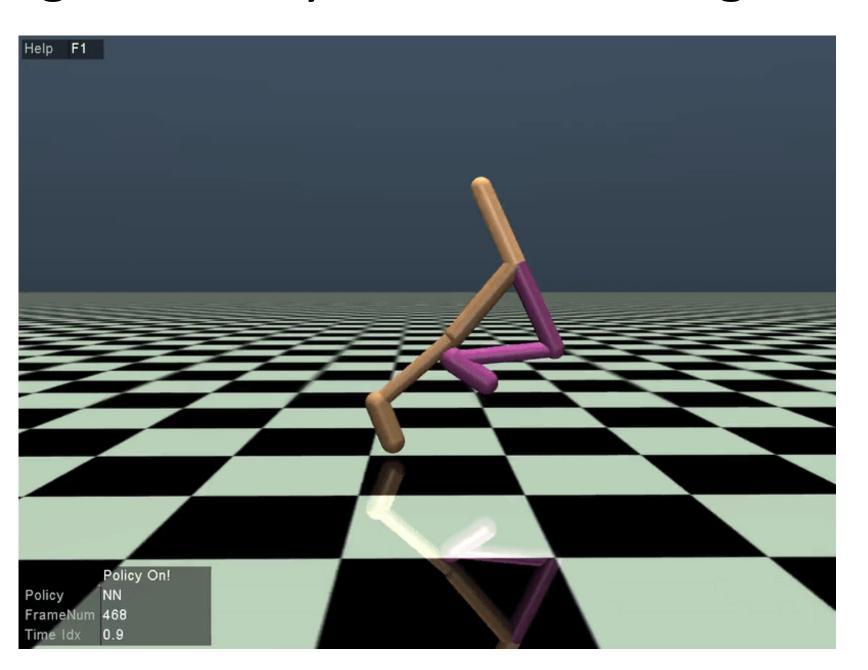
S states

- Suppose that somehow the distribution μ had better coverage.
 - e.g, if μ was uniform overall states in our toy problem, then all approaches we covered would work (with mild assumptions)
 - Theory: TRPO/NPG/PPO have better guarantees than fitted DP methods (assuming some "coverage")
- Strategies without coverage:
 - If we have a simulator, sometimes we can design μ to have better coverage.
 - this is helpful for robustness as well.
 - Imitation learning (next time).
 - An expert gives us samples from a "good" μ .
 - Explicit exploration:
 - UCB-VI: we'll merge two good ideas!
 - Encourage exploration in PG methods.
 - Try with reward shaping

Thrun '92

Aside: Brittle policies if we train starting from only from one configuration!



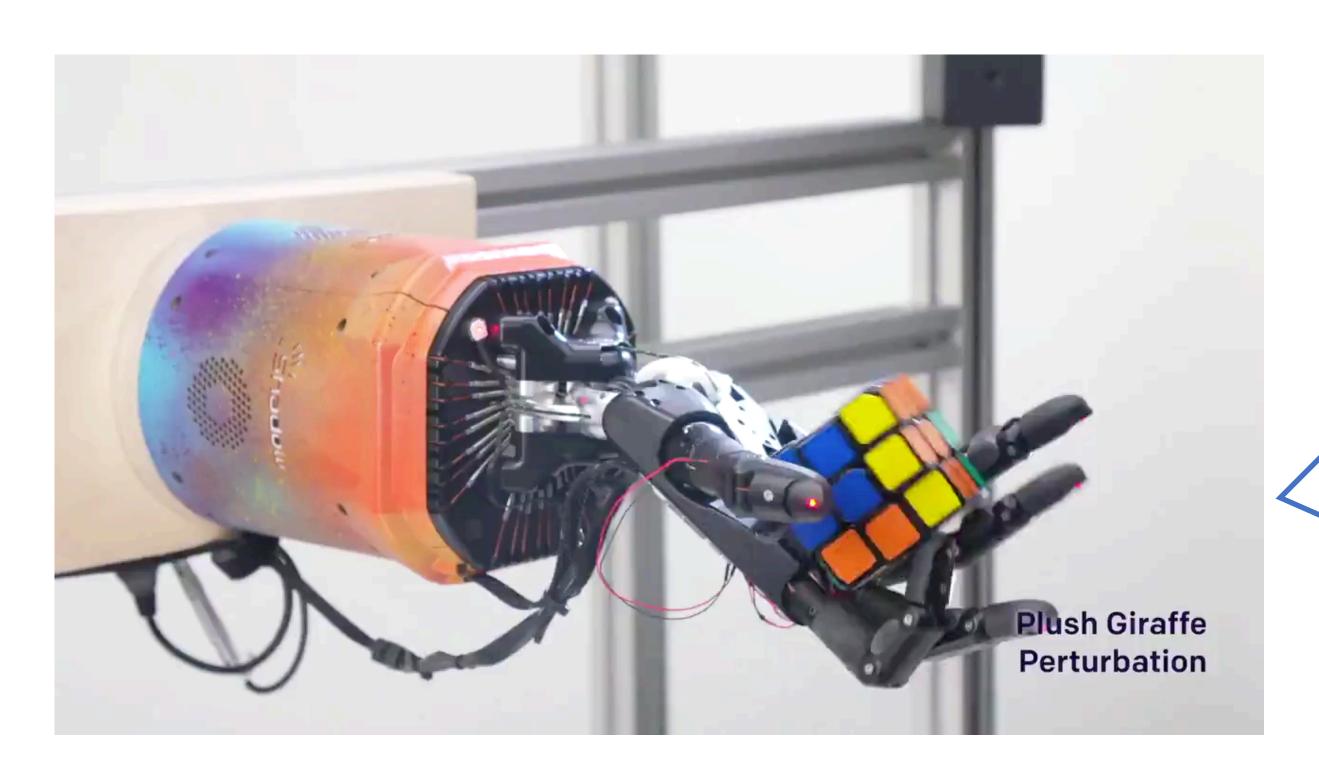


- [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single starting configuration s_0 are not robust!
- How to fix this?
 - Training from different starting configurations sampled from $s_0 \sim \mu$ fixes this:

$$\max_{\theta} \mathbb{E}_{s_0 \sim \mu} [V^{\theta}(s_0)]$$

Even if starting position concentrated at just one point—good for robustness!

OpenAl: progress on dexterous hand manipulation



Trained with "domain randomization"

Basically, the measure $s_0 \sim \mu$ was diverse.

Today

• Feedback from last lecture

- Imitation Learning problem statement
- Behavioral Cloning
- DAgger

Imitation Learning

Imitation Learning

Expert

Demonstrations

Machine Learning Algorithm

Policy T

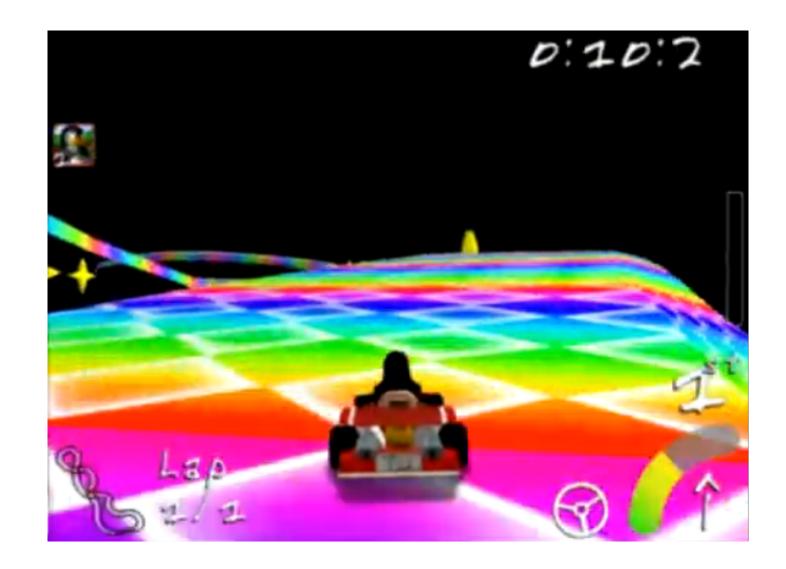
- SVM
- Gaussian Process
- Kernel Estimator
- Deep Networks
- Random Forests
- **LWR**

Maps states to actions

Learning to Drive by Imitation

[Pomerleau89, Saxena05, Ross11a]

Input:



Camera Image

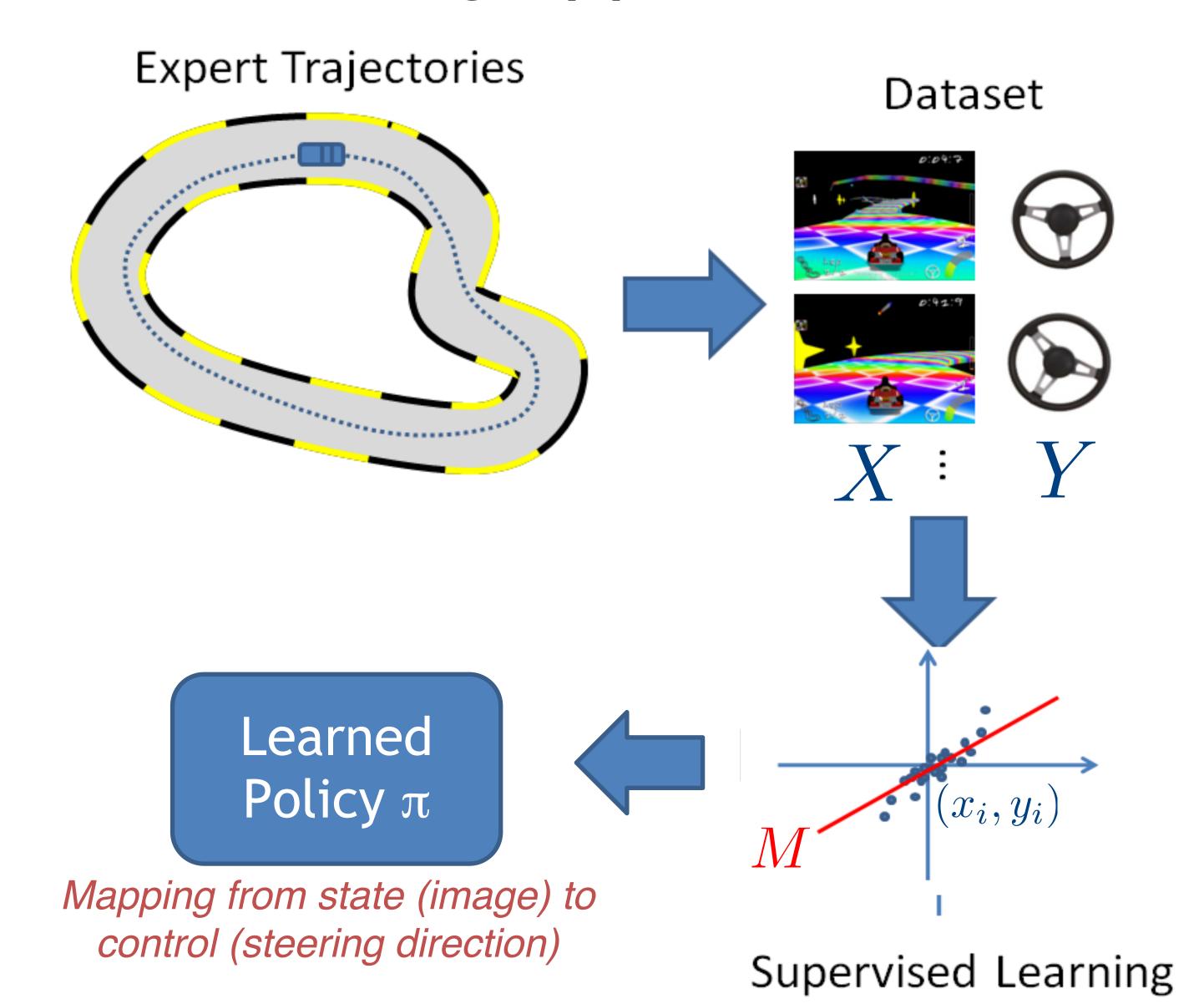
Output:

Steering Angle in [-1, 1]

Today

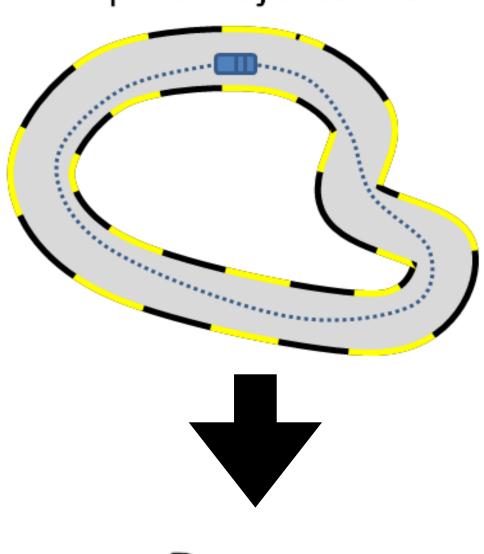
- Feedback from last lecture
- Recap
- Imitation Learning problem statement
 - Behavioral Cloning
 - DAgger

Supervised Learning Approach: Behavior Cloning

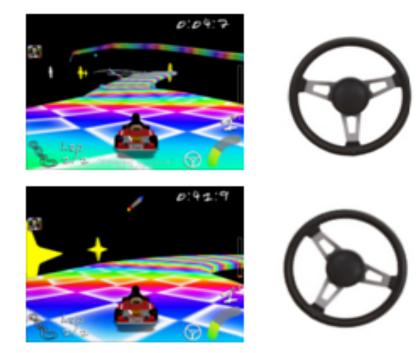


Let's formalize the offline IL Setting and the Behavior Cloning algorithm

Expert Trajectories



Dataset



Finite horizon MDP *M*

Ground truth reward $r(s, a) \in [0,1]$ is unknown; Assume the expert has a good policy π^* (not necessarily opt)

We have a dataset of M trajectories: $\mathcal{D} = \{\tau_1, \ldots \tau_M\}$, where $\tau_i = (s_h^i, a_h^i)_{h=0}^{H-1} \sim \rho_{\pi^\star}$

Goal: learn a policy from \mathscr{D} that is as good as the expert π^*

Let's formalize the Behavior Cloning (BC) algorithm

BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$

BC is a Reduction to Supervised Learning:

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \sum_{h=0}^{H-1} \mathscr{C}(\pi, s_h^i, a_h^i)$$

 $\ell(\pi, s, a)$ is a loss function with many choices:

- 1. Classification (0/1) loss: $\mathbf{1}[\pi(s) \neq a]$
- 2. Negative log-likelihood (NLL): $\ell(\pi, s, a) = -\ln \pi(a \mid s)$
- 3. square loss (i.e., regression for continuous action): $\ell(\pi, s, a) = \|\pi(s) a\|_2^2$

Theorem: IL is (almost) as easy as SL

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \sum_{h=0}^{H-1} \mathscr{L}\left(\pi, s_h^i, a_h^i\right)$$

Note a training and testing "mismatch"

Theorem [BC Performance]:

suppose we assume supervised learning succeeds, with ϵ classification error:

$$\mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\frac{1}{H} \sum_{h=0}^{H-1} \mathbf{1} \left[\widehat{\pi}(s_h) \neq \pi^{\star}(s_h) \right] \right] \leq \epsilon,$$

(where π^* is the expert policy, which need not be optimal) then we have:

$$|V^{\pi^*} - V^{\widehat{\pi}}| \le ?$$

$$H^{2\epsilon}$$

The quadratic amplification is annoying

Proof:

By the PDL

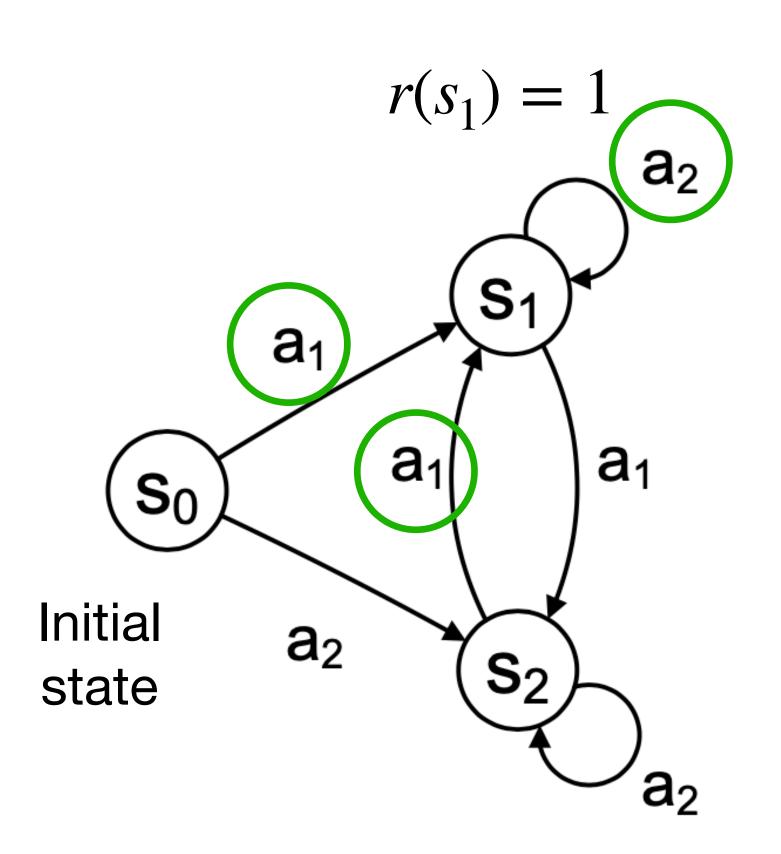
$$|V^{\pi^{\star}}(s) - V^{\widehat{\pi}}(s)| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_h^{\widehat{\pi}}(s_h, a_h) \right] \right|$$

$$= \left| \mathbb{E}_{s_1, \dots s_h \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_h^{\widehat{\pi}}(s_h, \pi^{\star}(s_h)) \right] \right|$$

$$\leq H \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} \mathbf{1} \left[\widehat{\pi}(s_h) \neq \pi^{\star}(s_h) \right] \right] \right|$$

$$\leq H^2 \epsilon$$

Distribution Shift Example (H^2 factor is tight)



Opt policy:

Under ρ_{π^*} , trajectory is s_0, s_1, s_1, \ldots

$$\rho_{\pi^*}(s_h = s_2) = 0$$

$$V_0^{\pi^*}(s_0) = H - 1$$

Assume SL returns the policy $\hat{\pi}$:

$$\widehat{\pi}(s_0) = \begin{cases} a_1 & \text{w/prob } 1 - H\epsilon \\ a_2 & \text{w/prob } H\epsilon \end{cases}, \quad \widehat{\pi}(s_1) = a_2, \, \widehat{\pi}(s_2) = a_2$$

This policy has good supervised learning error:

$$\mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\frac{1}{H} \sum_{h=0}^{H-1} \mathbf{1} \left[\hat{\pi}(s_h) \neq \pi^{\star}(s_h) \right] \right] = \epsilon$$

note: while $\hat{\pi}(s_2) \neq \pi^*(s_2)$, state s_2 is never visited under π^*

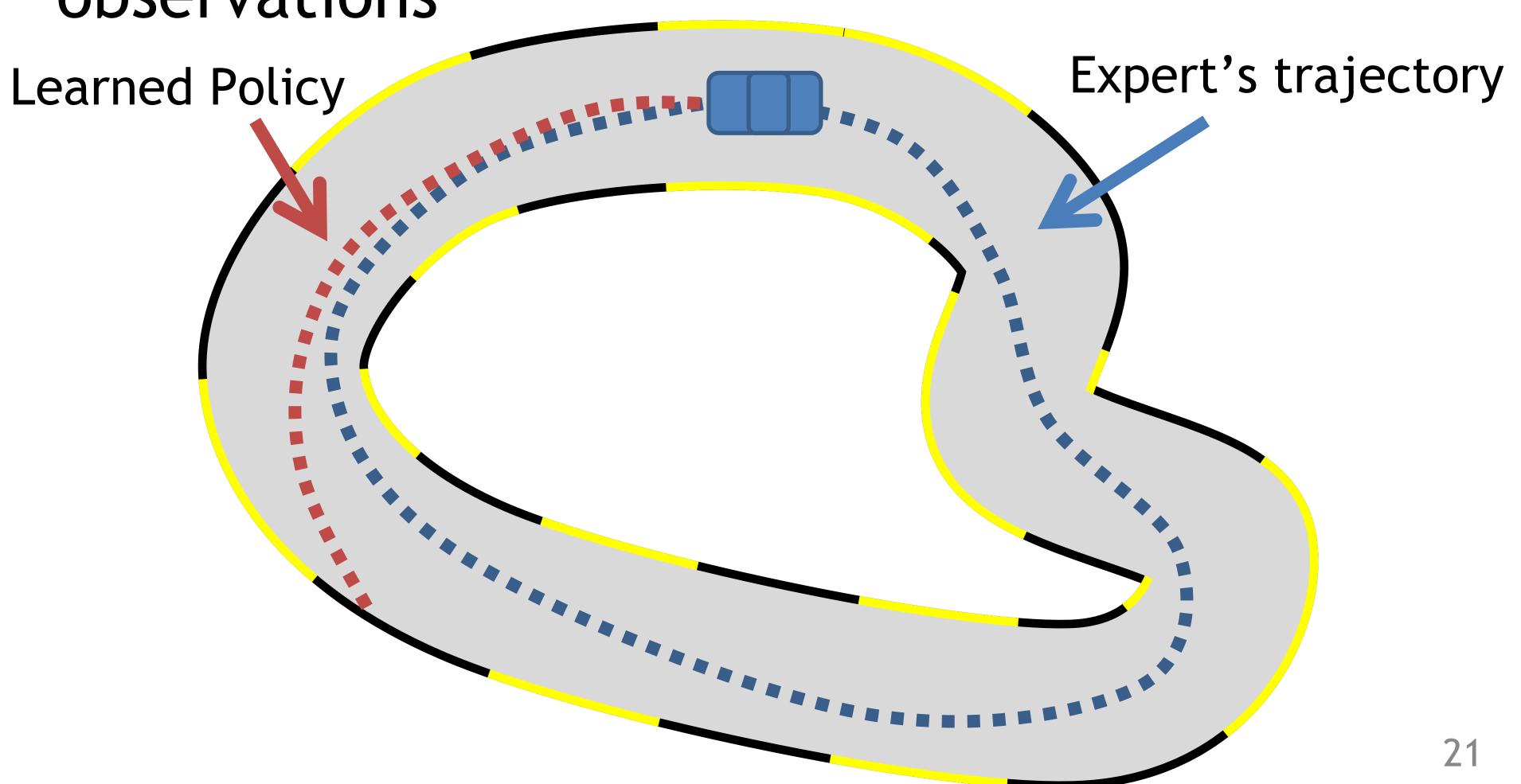
We have quadratic degradation (in H):

$$V_0^{\hat{\pi}}(s_0) = (1 - H\epsilon) \cdot V_0^{\pi^*}(s_0) + H\epsilon \cdot 0 = V_0^{\pi^*}(s_0) - \epsilon H(H - 1)$$

Intuition: once we make a mistake at s_0 , we end up in s_2 which is not in the training data!

What could go wrong?

 Predictions affect future inputs/ observations

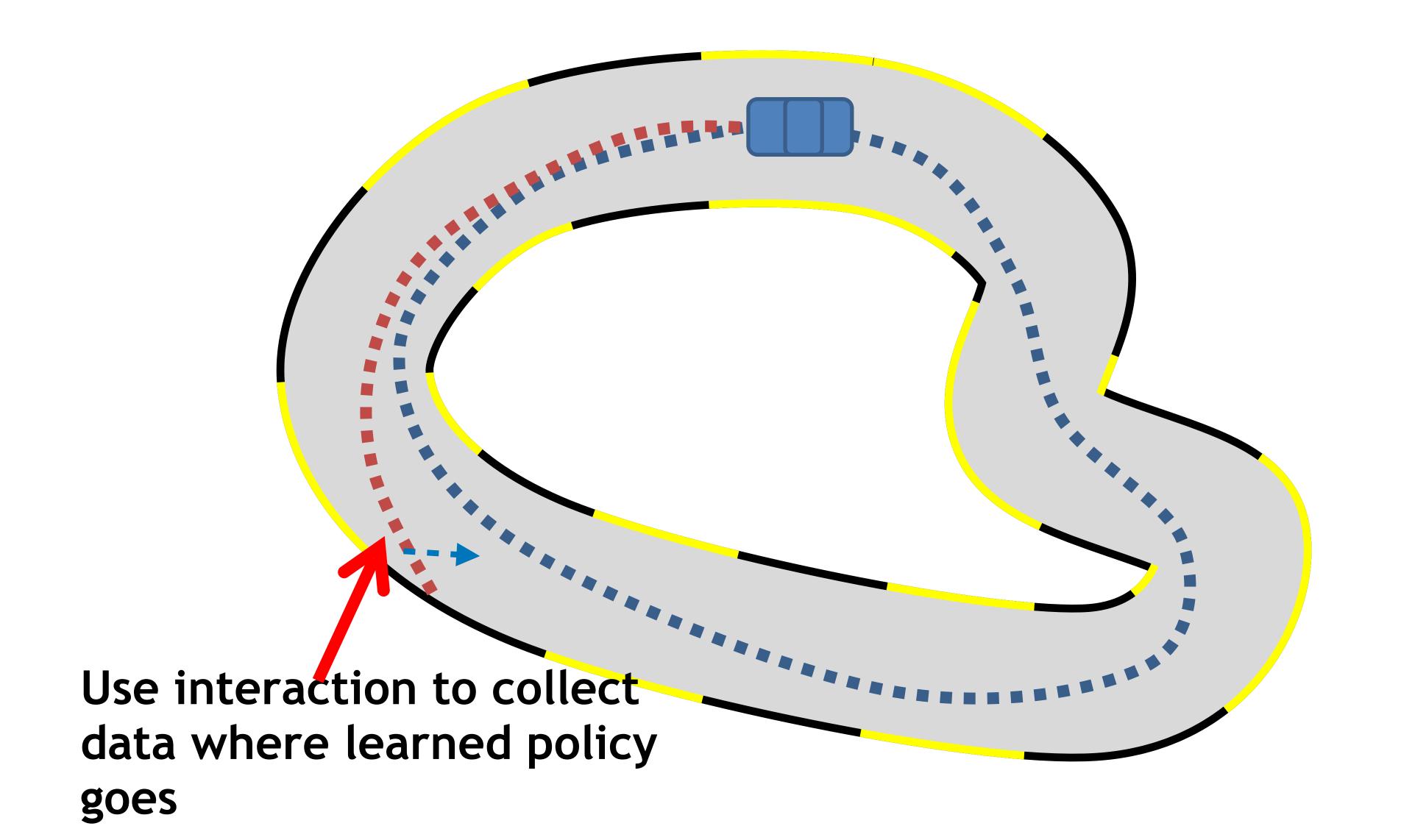


Expert Demos

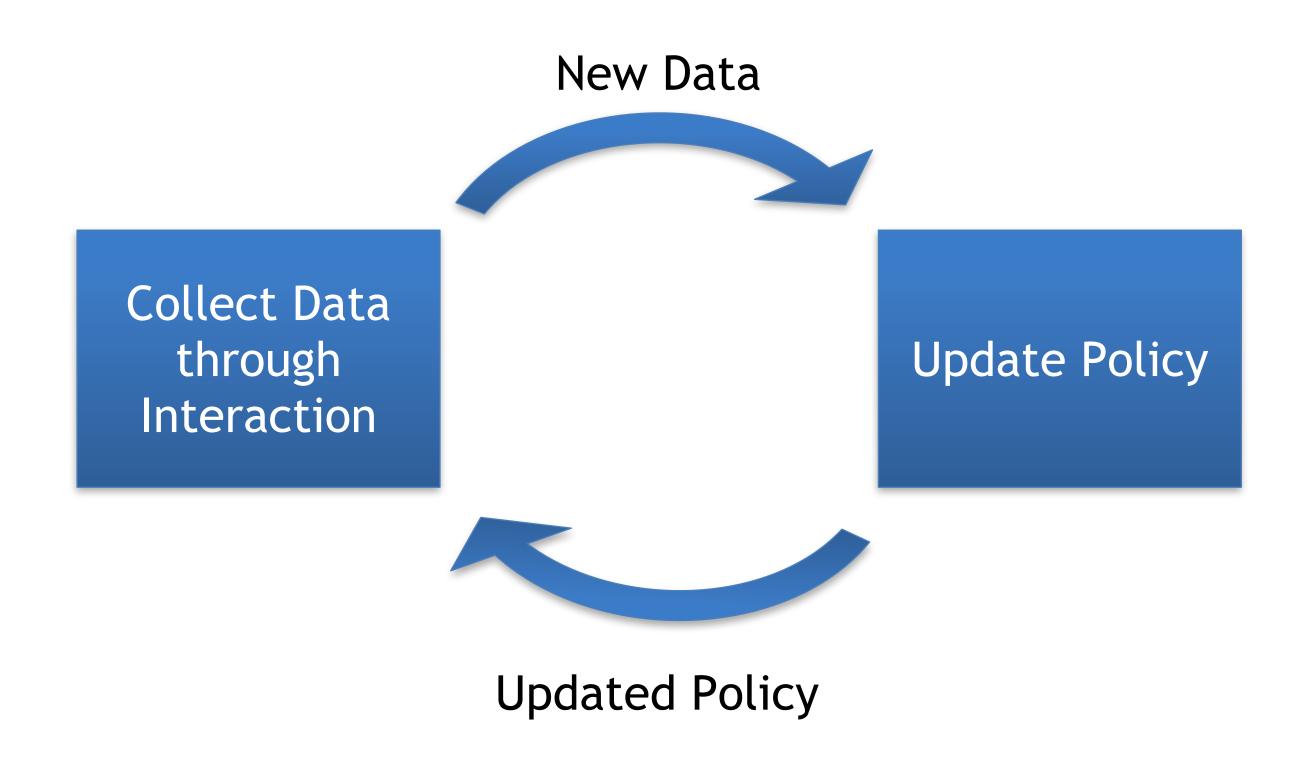
Today

- Feedback from last lecture
- Recap
- Imitation Learning problem statement
- Behavioral Cloning
 - DAgger

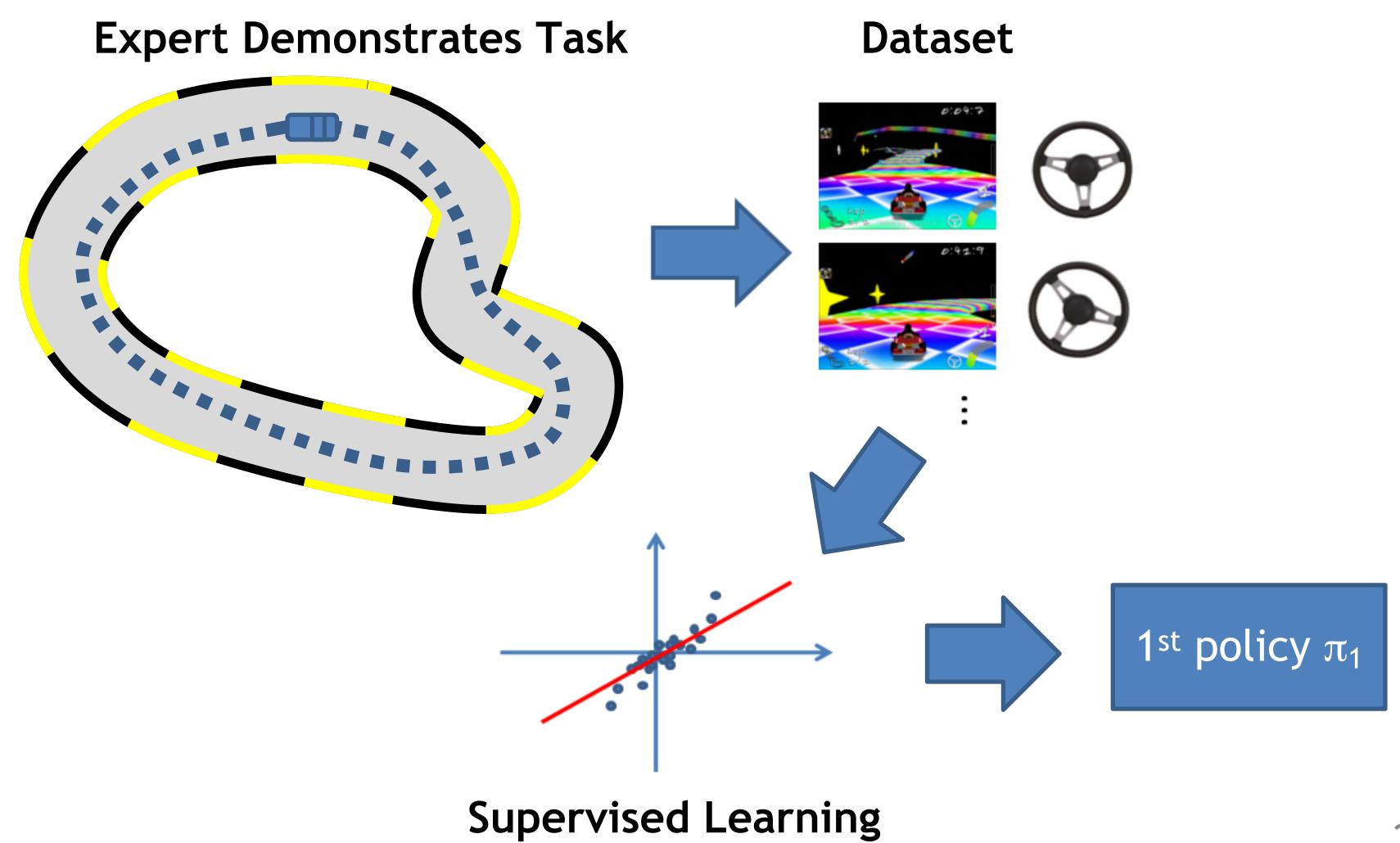
Intuitive solution: Interaction



General Idea: Iterative Interactive Approach



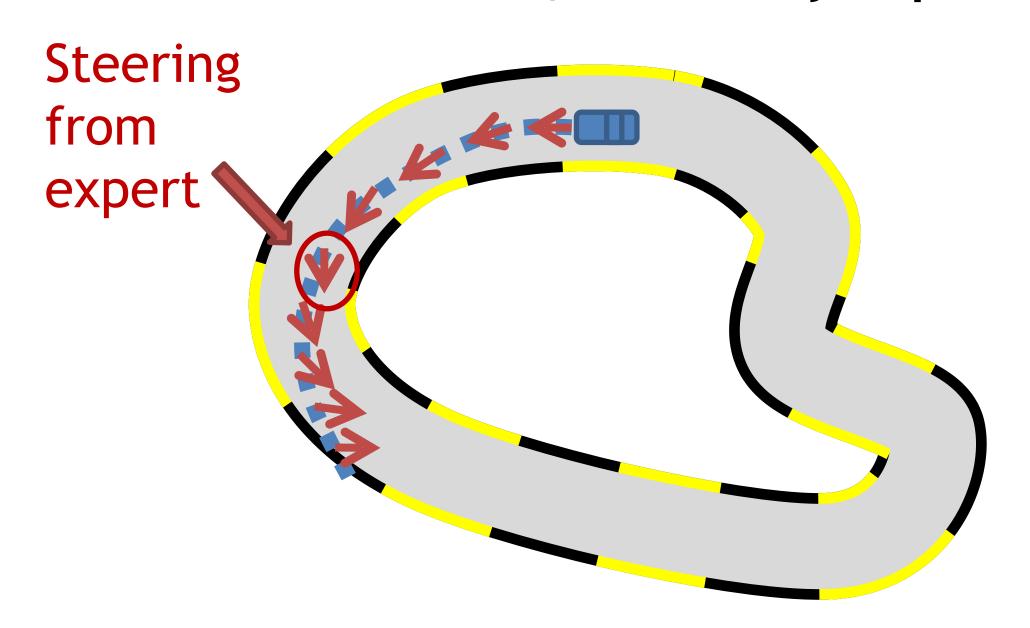
DAgger: Dataset Aggregation Oth iteration



DAgger: Dataset Aggregation

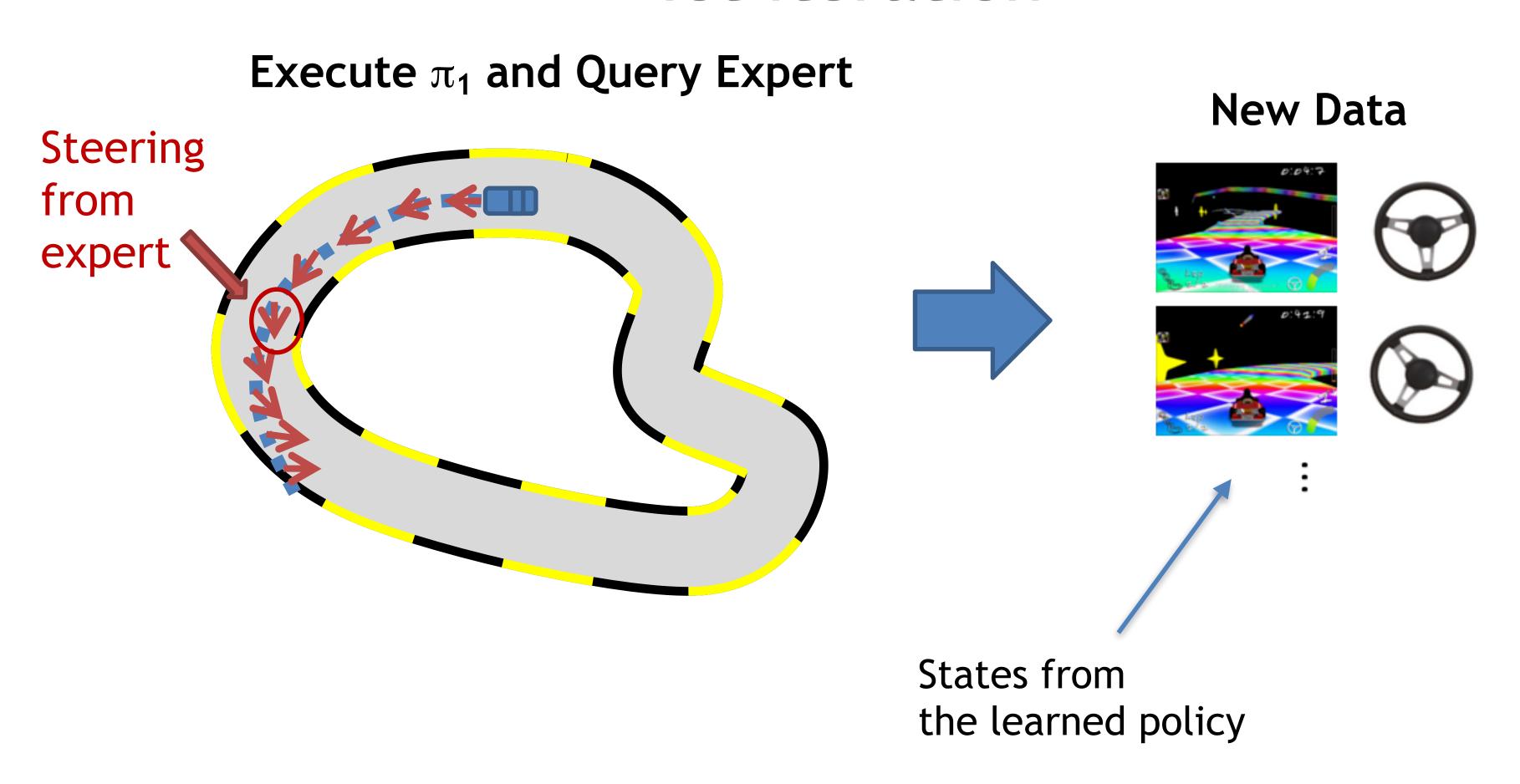
1st iteration

Execute π_1 and Query Expert



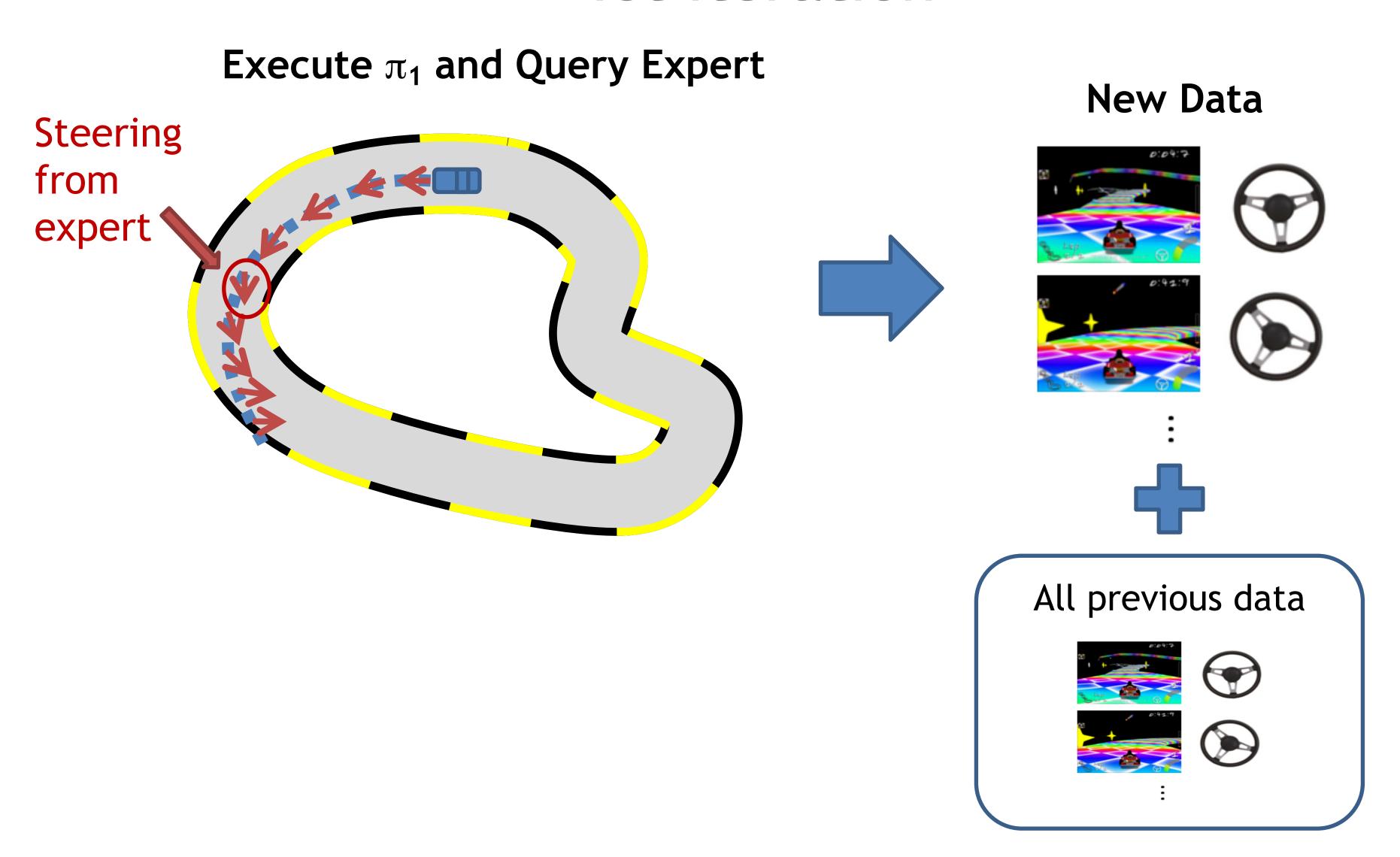
DAgger: Dataset Aggregation

1st iteration



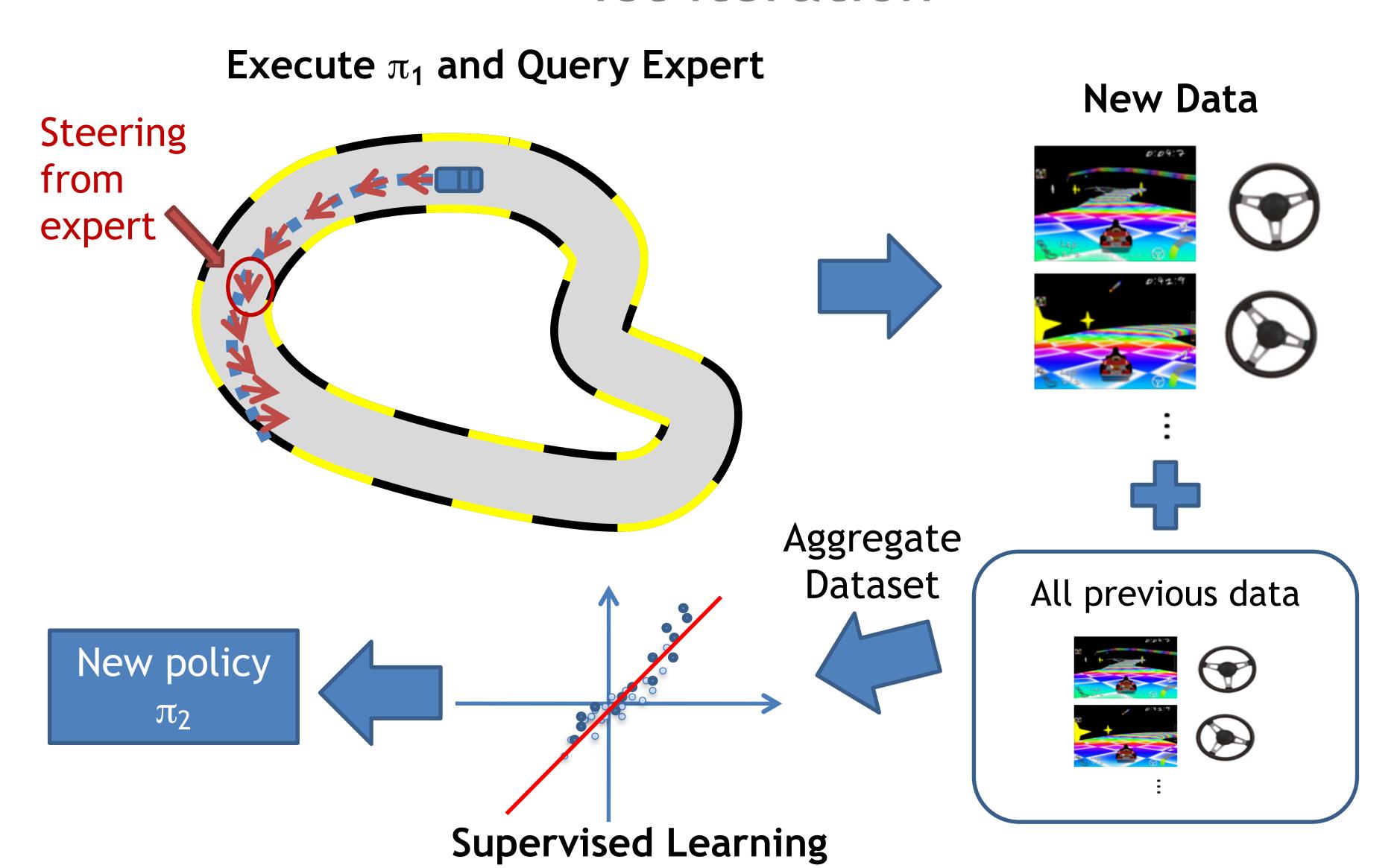
DAgger: Dataset Aggregation

1st iteration



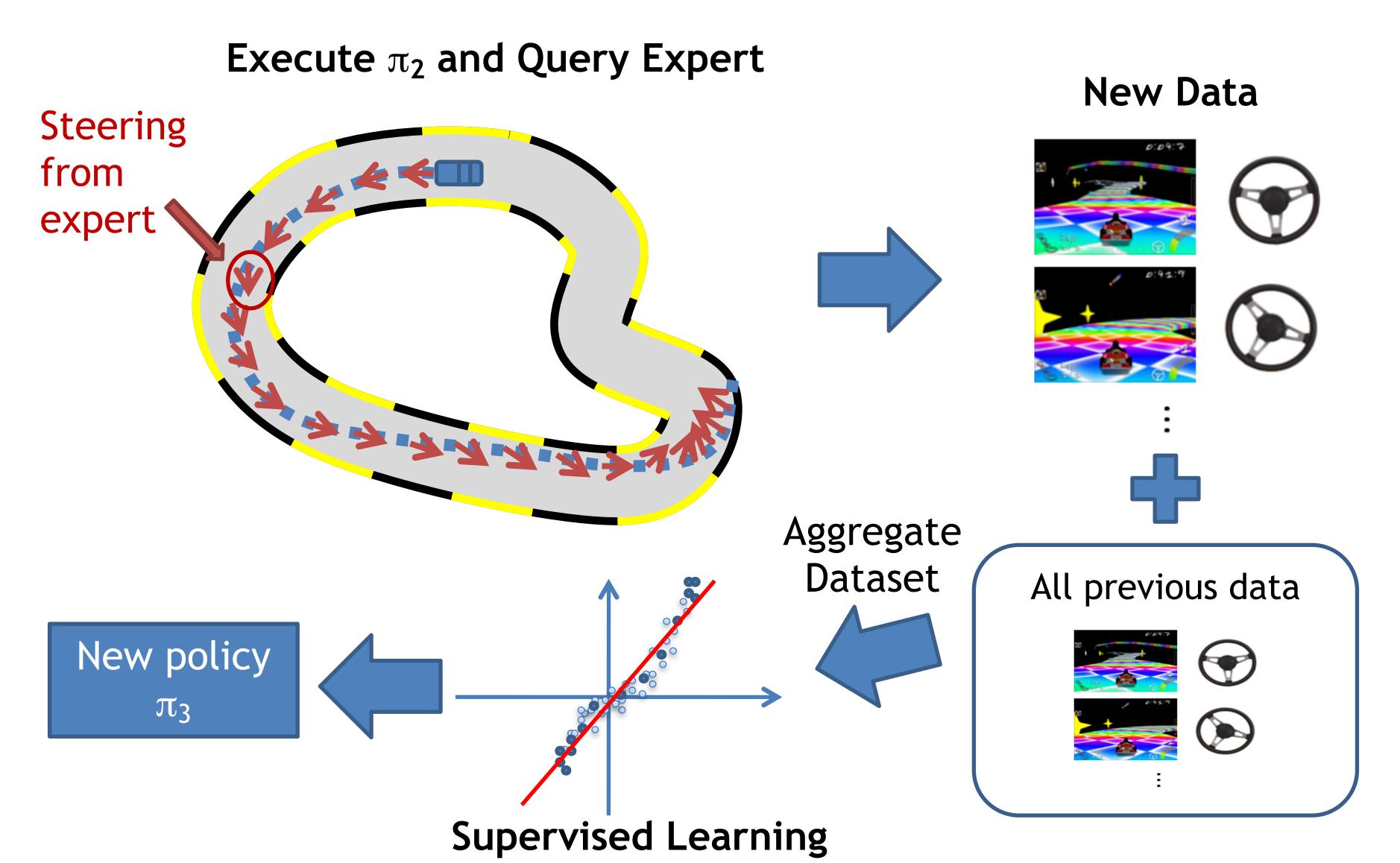
DAgger: Dataset Aggregation

1st iteration



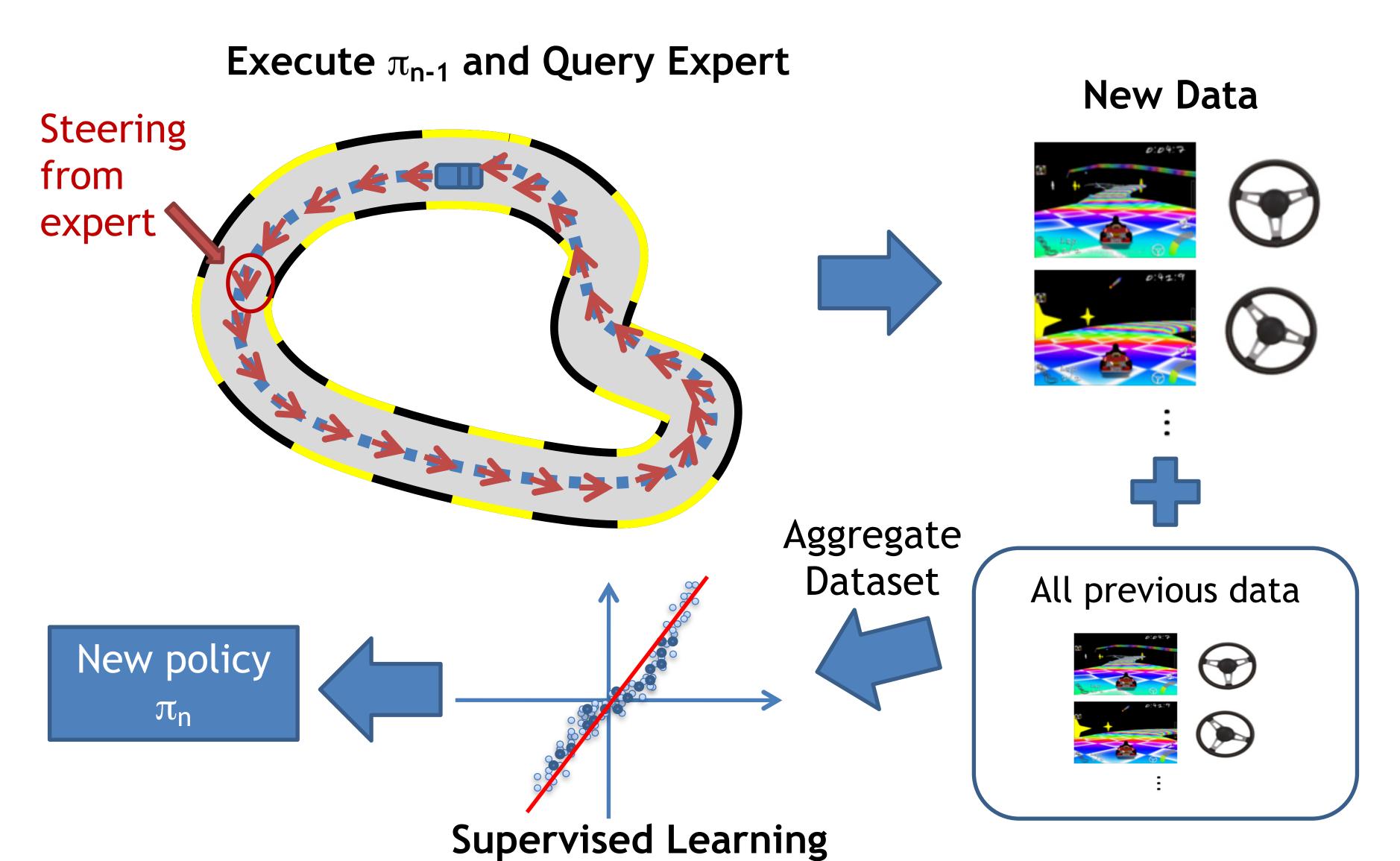
DAgger: Dataset Aggregation 1880

2nd iteration



DAgger: Dataset Aggregation

nth iteration



The DAgger algorithm

For
$$t = 0 \rightarrow T - 1$$
:

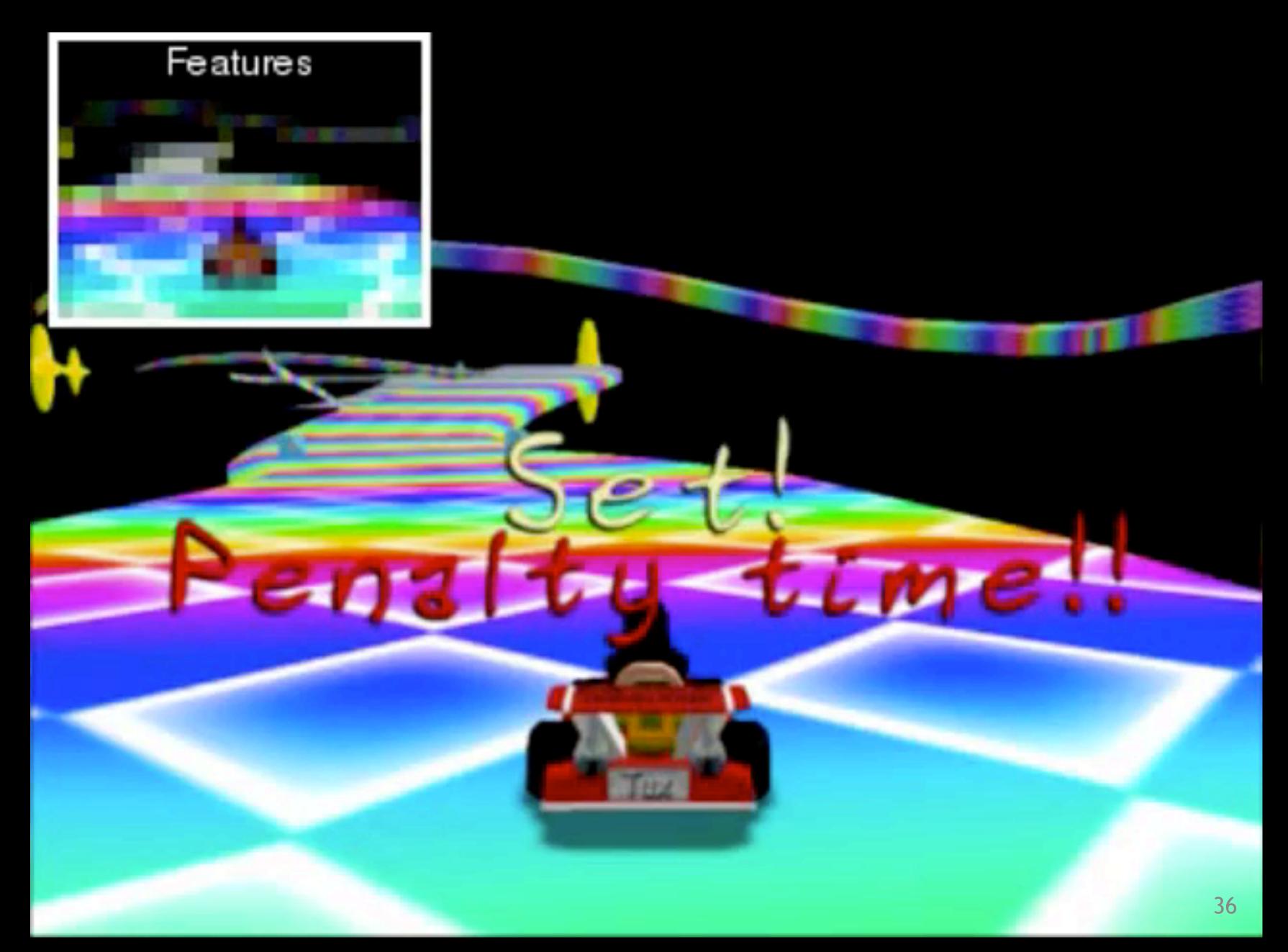
- Initialize π^0 , and dataset $\mathscr{D}=\mathscr{O}$ For $t=0 \to T-1$:

 1. W/ π^t , generate dataset of trajectories $\mathscr{D}^t=\{\tau_1,\tau_2,\ldots\}$ where for all trajectories $s_h \sim \rho_{\pi^t},\ a_h=\pi^\star(s_h)$ 2. Data aggregation: $\mathscr{D}=\mathscr{D}\cup\mathscr{D}^t$ 3. Update policy via Supervised-Learning: $\pi^{t+1}=\operatorname{SL}\left(\mathscr{D}\right)$

In practice, the DAgger algorithm requires less human labeled data than BC.

[Informal Theorem] Under more assumptions + assuming ϵ SL error is achievable, the DAgger algorithm has error: $|V^{\pi^*} - V^{\hat{\pi}}| \leq H\epsilon$

Success!



Today

• Feedback from last lecture

Recap

• Imitation Learning problem statement

Behavioral Cloning

Summary:

- 1. IL can help a lot to explore the space
- 2. BC pretty good but brittle -> quadratic-in-horizon error
- 3. Online expert feedback can help with robustness -> linear-in-horizon error

Attendance:

bit.ly/3RcTC9T

Feedback:

bit.ly/3RHtlxy

