PPO & Importance Sampling

Lucas Janson CS/Stat 184(0): Introduction to Reinforcement Learning Fall 2024

- Feedback from last lecture
- Recap
- Importance Sampling (for PPO)
- PG review
- Exploration?

Feedback from feedback forms

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

- Recap
- Importance Sampling (for PPO)
- PG review
- Exploration?

PG with a Learned Baseline:

 \widetilde{b} *b*

- 1. Initialize θ^0 , parameters: $\eta^1, \eta^2, ...$
- 2. For $k = 0, \ldots$:
	- 1. Supervised Learning: Using N trajectories sampled under π_{θ^k} , estimate a baseline $\widetilde{b}(s,h) \approx V_h^{\theta^k}$ $\frac{\partial^n}{\partial h}(S)$
	- 2. Obtain a trajectory *τ* ∼ $ρ_{θ^k}$ Compute *g*′(*θ^k* , *τ*, \widetilde{b} *b*())
	- 3. Update: $\theta^{k+1} = \theta^k + \eta^k g'(\theta^k, \tau)$ \widetilde{b} *b*())

Note that regardless of our choice of \widetilde{b} *b*, we still get unbiased gradient estimates.

Let
$$
g'(\theta, \tau, b()) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) (R_h(\tau) - b(s_h, h))
$$

The Performance Difference Lemma (PDL)

- (we are making the starting distribution explicit now).
- For any two policies π and $\widetilde{\pi}$ and any state s ,

Comments:

•Helps us think about error analysis, instabilities of fitted PI, and sub-optimality. •This also motivates the use of "local" methods (e.g. policy gradient descent)

-
- •Helps to understand algorithm design (TRPO, NPG, PPO)
-

• Let $\rho_{\widetilde{\pi},s}$ be the distribution of trajectories from starting state s acting under $\widetilde{\pi}.$

$$
V^{\widetilde{\pi}}(s) - V^{\pi}(s) = \mathbb{E}_{\tau \sim \rho_{\widetilde{\pi},s}}
$$

H−1 ∑ *h*=0 *Aπ* (*sh*, *ah*, *h*)]

1. Initialize
$$
\theta^0
$$

\n2. For $k = 0,..., K$:
\ntry to approximately solve:
\n
$$
\theta^{k+1} = \arg \max_{\theta} \mathbb{E}_{s_0,...,s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \right]
$$
\n
$$
\text{s.t. } KL\left(\rho_{\pi_{\theta^k}} | \rho_{\pi_{\theta}}\right) \le \delta
$$
\n3. Return π_{θ^K}

Trust Region Policy Optimization (TRPO)

NPG has a closed form update!

Linear objective and quadratic convex constraint: we can solve it optimally! Indeed this gives us:

$$
\theta^{k+1} = \theta^k + \eta F_{\theta^k}^{-1} \nabla_{\theta} J(\theta^k)
$$

re
$$
\eta = \sqrt{\frac{\delta}{\nabla_{\theta} J(\theta^k)^\top F_{\theta^k}^{-1} \nabla_{\theta} J(\theta^k)}}
$$

$$
\theta^{k+1} = \theta^k + \eta F_{\theta^k}^{-1} \nabla_{\theta} J(\theta^k)
$$

Where
$$
\eta = \sqrt{\frac{\delta}{\nabla_{\theta} J(\theta^k)^\top F_{\theta^k}^{-1} \nabla_{\theta} J(\theta^k)}}
$$

1. Initialize
$$
\theta^0
$$

\n2. For $k = 0,..., K$:
\n
$$
\theta^{k+1} = \arg \max_{\theta} \nabla_{\theta} J(\theta^k)^\top (\theta - \theta^k)
$$
\n
$$
\text{s.t. } (\theta - \theta^k)^\top F_{\theta^k} (\theta - \theta^k) \le \delta
$$
\n3. Return π_{θ^K}

Proximal Policy Optimization (PPO)

1. Initialize
$$
\theta^0
$$

\n2. For $k = 0,..., K$:
\nuse SGD to approximately solve:
\n
$$
\theta^{k+1} = \arg \max_{\theta} \ell^k(\theta)
$$
\nwhere:
\n
$$
\ell^k(\theta) := \mathbb{E}_{s_0,...,s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \right] - \lambda \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \ln \frac{1}{\pi_{\theta}(a_h)}, \ldots, \ln \frac{1}{\pi_{\theta}(a_h)} \right]
$$
\n3. Return π_{θ^K}

How do we estimate this objective?

- Importance Sampling (for PPO)
- PG review
- Exploration?

SGD and Importance Sampling

- Recall that SGD requires an unbiased estimate of the objective function's gradient
- This was easy when the objective function was an expectation, and the only θ -dependence appears inside the expectation
	- This was true for supervised learning / ERM
	-
- Not true for RL, and was part of why we needed likelihood ratio method in REINFORCE • When not true (as in PPO), we want to make it so, if possible
- Enter: importance sampling
	- rewrites expectations by changing the distribution the expectation is over
	- we will use this to move that distribution's θ -dependence inside the expectation
- Key point: once all θ -dependence inside objective's expectation,
	- Can estimate objective unbiasedly via sample average
	- 11 • Can estimate objective's gradient unbiasedly via gradient of sample average

• Suppose we seek to estimate $\mathbb{E}_{x \sim \widetilde{p}}[f(x)]$.

- Suppose we seek to estimate $\mathbb{E}_{x \sim \widetilde{p}}[f(x)]$.
- - f and \widetilde{p} are known.
	- *f* and \widetilde{p} are known.
• we are not able to collect values of $f(x)$ for $x \sim \widetilde{p}$. (e.g. we have already collected our data from some costly experiment).

- Suppose we seek to estimate $\mathbb{E}_{x \sim \widetilde{p}}[f(x)]$.
- - f and \widetilde{p} are known.
	- *f* and \widetilde{p} are known.
• we are not able to collect values of $f(x)$ for $x \sim \widetilde{p}$. (e.g. we have already collected our data from some costly experiment).
- Note: $\mathbb{E}_{x \sim \widetilde{p}} [f(x)] =$

- Suppose we seek to estimate $\mathbb{E}_{x \sim \widetilde{p}}[f(x)]$.
- - f and \widetilde{p} are known.
	- *f* and \widetilde{p} are known.
• we are not able to collect values of $f(x)$ for $x \sim \widetilde{p}$. (e.g. we have already collected our data from some costly experiment).

• Note:
$$
\mathbb{E}_{x \sim \widetilde{p}} [f(x)] = \mathbb{E}_{x \sim p} \left[\frac{\widetilde{p}(x)}{p(x)} f(x) \right]
$$

- Suppose we seek to estimate $\mathbb{E}_{x \sim \widetilde{p}}[f(x)]$.
- - f and \widetilde{p} are known.

•
•

- *f* and \widetilde{p} are known.
• we are not able to collect values of $f(x)$ for $x \sim \widetilde{p}$. (e.g. we have already collected our data from some costly experiment).
- Note: $\mathbb{E}_{x \sim \widetilde{p}} [f(x)] = \mathbb{E}_{x \sim p}$ $\widetilde{p}(x)$ *p*(*x*) *f*(*x*) l

So an unbiased estimate of $\mathbb{E}_{x \sim \widetilde{p}}[f(x)]$ is given by

is given by
$$
\frac{1}{N} \sum_{i=1}^{N} \frac{\widetilde{p}(x_i)}{p(x_i)} f(x_i)
$$

- Suppose we seek to estimate $\mathbb{E}_{x \sim \widetilde{p}}[f(x)]$.
- - f and \widetilde{p} are known.
	- *f* and \widetilde{p} are known.
• we are not able to collect values of $f(x)$ for $x \sim \widetilde{p}$. (e.g. we have already collected our data from some costly experiment).
- Note: $\mathbb{E}_{x \sim \widetilde{p}} [f(x)] = \mathbb{E}_{x \sim p}$ $\widetilde{p}(x)$ *p*(*x*) *f*(*x*) l

So an unbiased estimate of $\mathbb{E}_{x \sim \widetilde{p}}[f(x)]$ is given by

is given by
$$
\frac{1}{N} \sum_{i=1}^{N} \frac{\widetilde{p}(x_i)}{p(x_i)} f(x_i)
$$

• Terminology:

•
•

- $\widetilde{p}(x)$ is the target distribution
- $p(x)$ is the proposal distribution
- $\widetilde{p}(x)/p(x)$ is the likelihood ratio or importance weight

- $\widetilde{p}(x)$ is the target distribution
- $p(x)$ is the proposal distribution
- $\widetilde{p}(x)/p(x)$ is the likelihood ratio or importance weight
- What about the variance of this estimator?

• Assume: we have an (i.i.d.) dataset $x_1, \ldots x_N$, where $x_i \sim p$, where p is known, and

- Suppose we seek to estimate $\mathbb{E}_{x \sim \widetilde{p}}[f(x)]$.
- - f and \widetilde{p} are known.
	- *f* and \widetilde{p} are known.
• we are not able to collect values of $f(x)$ for $x \sim \widetilde{p}$. (e.g. we have already collected our data from some costly experiment).
- Note: $\mathbb{E}_{x \sim \widetilde{p}} [f(x)] = \mathbb{E}_{x \sim p}$ $\widetilde{p}(x)$ *p*(*x*) *f*(*x*)

So an unbiased estimate of $\mathbb{E}_{x \sim \widetilde{p}}[f(x)]$ is given by

• Terminology:

•
•

$$
\frac{1}{\text{ is given by } \frac{1}{N} \sum_{i=1}^{N} \frac{\widetilde{p}(x_i)}{p(x_i)} f(x_i)}
$$

Back to Estimating *ℓ^k* (*θ*)

Back to Estimating *ℓ^k* (*θ*)

 $\mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \Big| - \lambda \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}}$ *H*−1 ∑ *h*=0 ln 1 $\pi_{\theta}(a_h | s_h)$

• To estimate

$$
\ell^{k}(\theta) := \mathbb{E}_{s_0, \dots, s_{H-1} \sim \rho_{\pi_{\theta^k}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)}\left[A\right]\right]
$$

Back to Estimating *ℓ^k* (*θ*)

• To estimate

$$
\ell^k(\theta) := \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \right] - \lambda \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \ln \frac{1}{\pi_{\theta}(a_h | s_h)} \right]
$$

• we will use importance sampling:

$$
= \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta^k}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta^k}(\cdot | s_h)} \left[\frac{\pi_{\theta}(a_h | s_h)}{\pi_{\theta^k}(a_h | s_h)} A^{\pi_{\theta^k}(s_h, a_h, h)}\right] - \lambda \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}}\left[\sum_{h=0}^{H-1} \ln \frac{1}{\pi_{\theta}(a_h | s_h)}\right]\right]
$$

Back to Estimating *ℓ^k* (*θ*)

• To estimate

$$
\ell^k(\theta) := \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \right] - \lambda \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \ln \frac{1}{\pi_{\theta}(a_h | s_h)} \right]
$$

• we will use importance sampling:

$$
= \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta^k}(\cdot | s_h)} \left[\frac{\pi_{\theta}(a_h | s_h)}{\pi_{\theta^k}(a_h | s_h)} A^{\pi_{\theta^k}(s_h, a_h, h)} \right] - \lambda \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \ln \frac{1}{\pi_{\theta}(a_h | s_h)} \right]
$$

$$
= \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \left(\frac{\pi_{\theta}(a_h | s_h)}{\pi_{\theta^k}(a_h | s_h)} A^{\pi_{\theta^k}(s_h, a_h, h)} - \lambda \ln \frac{1}{\pi_{\theta}(a_h | s_h)} \right) \right]
$$

Estimating $\ell^k(\theta)$ and its gradient

1. Using N trajectories sampled under $\rho_{\pi_{\theta^k}}$ to learn a $\widetilde{b}(s,h) \approx V_h^{\pi_{\theta^k}}$ $\frac{\partial \pi}{\partial h} \delta(x)$

Estimating $\ell^k(\theta)$ and its gradient

 \widetilde{b} $b_h^{}$

1. Using N trajectories sampled under $\rho_{\pi_{\theta^k}}$ to learn a $\widetilde{b}(s,h) \approx V_h^{\pi_{\theta^k}}$ $\frac{\partial \pi}{\partial h} \delta(x)$ 2. Obtain M NEW trajectories $\tau_1, ... \tau_M \thicksim \rho_{\pi_{\theta^k}}$ Set $\widehat{\ell}^k(\theta) =$ for SGD, use gradient: 1 *M M* ∑ *m*=1 *H*−1 ∑ *^h*=0 ($g(\theta) := \nabla_{\theta} \widehat{e}^k$

Estimating $\ell^k(\theta)$ and its gradient

 \sim

$$
\text{der } \rho_{\pi_{\theta^k}} \text{ to learn a } b_h
$$

$$
\frac{\pi_{\theta}(a_h^m \mid s_h^m)}{\pi_{\theta}(a_h^m \mid s_h^m)} \left(R_h(\tau_m) - \widetilde{b}(s_h^m, h)\right) - \lambda \ln \frac{1}{\pi_{\theta}(a_h^m \mid s_h^m)}
$$

$$
\int_{\theta} \widehat{\ell}^{-k}(\theta)
$$

1. Using N trajectories sampled under $\rho_{\pi_{\theta^k}}$ to learn a $\widetilde{b}(s,h) \approx V_h^{\pi_{\theta^k}}$ $\frac{\partial \pi}{\partial h} \delta(x)$ 2. Obtain M NEW trajectories $\tau_1, ... \tau_M \thicksim \rho_{\pi_{\theta^k}}$ Set $\widehat{\ell}^k(\theta) =$ for SGD, use gradient: 1 *M M* ∑ *m*=1 *H*−1 ∑ *^h*=0 ($g(\theta) := \nabla_{\theta} \widehat{e}^k$

 $g(\theta^k)$ is unbiased for $\nabla_{\theta} \ell^k$

Estimating $\ell^k(\theta)$ and its gradient

 \sim

$$
\text{der } \rho_{\pi_{\theta^k}} \text{ to learn a } b_h
$$

$$
\frac{\pi_{\theta}(a_h^m | s_h^m)}{\pi_{\theta}(a_h^m | s_h^m)} \left(R_h(\tau_m) - \widetilde{b}(s_h^m, h)\right) - \lambda \ln \frac{1}{\pi_{\theta}(a_h^m | s_h^m)}\right)
$$

$$
\int_{\theta} \widehat{\ell}^{-k}(\theta)
$$

$$
\left.\text{and for }\nabla_{\theta} \ell^k(\theta)\right|_{\theta=\theta^k}
$$

updating?

• If we can do importance sampling, why do we need our objective function to keep

• I.e., why not just optimize $\mathbb{E}_{\tau \sim \rho_{\pi_{\theta^0}}} \left[\sum_{k=0}^{\infty} \frac{\partial^{k} h + h^k}{\pi_{\theta^0}(a_k | s_k)} A^{\pi_{\theta^0}(s_k, a_k, h)} \right]$? *πθ*(*ah* |*sh*) *πθ*0(*ah* |*sh*) $A^{\pi_{\theta^0}}(s_h, a_h, h)$]

updating?

• If we can do importance sampling, why do we need our objective function to keep

• If we can do importance sampling, why do we need our objective function to keep updating?

• I.e., why not just optimize $\mathbb{E}_{\tau \sim \rho_{\pi_{\theta^0}}} \left[\sum_{k=0}^{\infty} \frac{\partial^{k} h + h^k}{\pi_{\theta^0}(a_k | s_k)} A^{\pi_{\theta^0}(s_k, a_k, h)} \right]$? *H*−1 ∑ *h*=0

• Or in PG, why do we sample online, when the likelihood ratio method still gives unbiasedness for trajectories sampled from $\pi_{\rho 0}$?

$$
\frac{\pi_{\theta}(a_h|s_h)}{\pi_{\theta^0}(a_h|s_h)}A^{\pi_{\theta^0}}(s_h,a_h,h)
$$
?

• If we can do importance sampling, why do we need our objective function to keep updating?

• I.e., why not just optimize $\mathbb{E}_{\tau \sim \rho_{\pi_{\theta^0}}} \left[\sum_{k=0}^{\infty} \frac{\partial^{k} h + h^k}{\pi_{\theta^0}(a_k | s_k)} A^{\pi_{\theta^0}(s_k, a_k, h)} \right]$? *H*−1 ∑ *h*=0

$$
\frac{\pi_{\theta}(a_h|s_h)}{\pi_{\theta^0}(a_h|s_h)}A^{\pi_{\theta^0}}(s_h,a_h,h)
$$
?

- Or in PG, why do we sample online, when the likelihood ratio method still gives unbiasedness for trajectories sampled from $\pi_{\rho 0}$?
- **Variance**: Importance sampling incurs big variance when the target and proposal distributions are far apart

• If we can do importance sampling, why do we need our objective function to keep updating? of wear
big

• I.e., why not just optimize $\mathbb{E}_{\tau \sim \rho_{\pi_{\theta^0}}}\left[\sum_{l=0}^{\infty}\frac{\theta^{(l)}h^l\,h^l}{\pi_{\theta^0}(a_h|s_h)}A^{\pi_{\theta^0}(s_h,a_h,h)}\right]'$? *H*−1 ∑ *h*=0

• Or in PG, why do we sample online, when the likelihood ratio method still gives unbiasedness for trajectories sampled from $\pi_{\rho 0}$? • **Variance**: Importance sampling incurs big variance when the target and proposal

allottile the surface of the state of the sta distributions are far apart $E_{\pi \sim \beta}(\lambda)^{1-\alpha}$ $E_{x-p}(x)$ • Or in PG, why do we sample online, when the likelihood ratio method still gives
unbiasedness for trajectories sampled from π_{θ^0} ?

• Variance: Importance sampling incurs big variance when the target and proposal

d **IMPOrtance Sampling & Variance**
 Factor Factor Factor

$$
\frac{\pi_{\theta}(a_h|s_h)}{\pi_{\theta^0}(a_h|s_h)}A^{\pi_{\theta^0}}(s_h,a_h,h)
$$

Y

- Feedback from last lecture
	- Recap
- Importance Sampling (for PPO)
	- PG review
	- Exploration?

Meta-Approach: TRPO/NPG/PPO are all pretty similar
$$
f_{\theta}) := \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta^k}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)}\left[A^{\pi_{\theta^k}}(s_h, a_h, h)\right]\right]
$$

Meta-Approach: TRPO/NPG/PPO are all pretty similar

- 1. Initialize θ^0
- 2. For $k = 0, ..., K$:

 $\theta^{k+1} \approx \arg \max \Delta_k(\pi_{\theta}),$ where *θ* $\Delta_k(\pi_{\theta})$, where $\Delta_k(\pi_{\theta}) := \mathbb{E}_{s_0, \dots, s_{H-1} \sim \rho_{\pi}}$

$$
f_{\theta}) := \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta^k}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)}\left[A^{\pi_{\theta^k}}(s_h, a_h, h)\right]\right]
$$

• TRPO: use KL to enforce closeness.

Meta-Approach: TRPO/NPG/PPO are all pretty similar

- 1. Initialize θ^0
- 2. For $k = 0, ..., K$:

 $\theta^{k+1} \approx \arg \max \Delta_k(\pi_{\theta}),$ where *θ* $\Delta_k(\pi_{\theta})$, where $\Delta_k(\pi_{\theta}) := \mathbb{E}_{s_0, \dots, s_{H-1} \sim \rho_{\pi}}$

$$
\varphi) := \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta^k}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot \mid s_h)}\left[A^{\pi_{\theta^k}}(s_h, a_h, h)\right]\right]
$$

Meta-Approach: TRPO/NPG/PPO are all pretty similar

- 1. Initialize θ^0
- 2. For $k = 0, ..., K$:

 $\theta^{k+1} \approx \arg \max \Delta_k(\pi_{\theta}),$ where *θ* $\Delta_k(\pi_{\theta})$, where $\Delta_k(\pi_{\theta}) := \mathbb{E}_{s_0, \dots, s_{H-1} \sim \rho_{\pi}}$

- TRPO: use KL to enforce closeness.
- NPG: is TRPO up to "leading order" (via Taylor's theorem).

$$
\varphi) := \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta^k}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot \mid s_h)}\left[A^{\pi_{\theta^k}}(s_h, a_h, h)\right]\right]
$$

- TRPO: use KL to enforce closeness.
- NPG: is TRPO up to "leading order" (via Taylor's theorem).
- PPO: uses a Lagrangian relaxation (i.e. regularization)

Meta-Approach: TRPO/NPG/PPO are all pretty similar

- 1. Initialize θ^0
- 2. For $k = 0, ..., K$:

 $\theta^{k+1} \approx \arg \max \Delta_k(\pi_{\theta}),$ where *θ* $\Delta_k(\pi_{\theta})$, where $\Delta_k(\pi_{\theta}) := \mathbb{E}_{s_0, \dots, s_{H-1} \sim \rho_{\pi}}$

$$
\varphi) := \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta^k}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot \mid s_h)}\left[A^{\pi_{\theta^k}}(s_h, a_h, h)\right]\right]
$$

- TRPO: use KL to enforce closeness.
- NPG: is TRPO up to "leading order" (via Taylor's theorem).
- PPO: uses a Lagrangian relaxation (i.e. regularization)

3. Return π_{θ^K}

Meta-Approach: TRPO/NPG/PPO are all pretty similar

- 1. Initialize θ^0
- 2. For $k = 0, ..., K$:

 $\theta^{k+1} \approx \arg \max \Delta_k(\pi_{\theta}),$ where *θ* $\Delta_k(\pi_{\theta})$, where $\Delta_k(\pi_{\theta}) := \mathbb{E}_{s_0, \dots, s_{H-1} \sim \rho_{\pi}}$

• PG just said: define our objective function *J*(*θ*), and then run SGD on it

- PG just said: define our objective function *J*(*θ*), and then run SGD on it
	- Had to use likelihood ratio method to get stochastic gradients

- PG just said: define our objective function *J*(*θ*), and then run SGD on it
	- Had to use likelihood ratio method to get stochastic gradients
	- Had to use variance reduction / baseline functions / batching to reduce variance

- PG just said: define our objective function *J*(*θ*), and then run SGD on it
	- Had to use likelihood ratio method to get stochastic gradients
	- Had to use variance reduction / baseline functions / batching to reduce variance
- Each step of the algorithm takes a stochastic gradient step for the same objective

- PG just said: define our objective function *J*(*θ*), and then run SGD on it
	- Had to use likelihood ratio method to get stochastic gradients
	- Had to use variance reduction / baseline functions / batching to reduce variance
- Each step of the algorithm takes a stochastic gradient step for the same objective
- TRPO and PPO said: compute an approximate objective function and try to optimize it, but make sure not to move too far since then the approximation of the objective breaks down

- PG just said: define our objective function *J*(*θ*), and then run SGD on it
	- Had to use likelihood ratio method to get stochastic gradients
	- Had to use variance reduction / baseline functions / batching to reduce variance
- Each step of the algorithm takes a stochastic gradient step for the same objective
- TRPO and PPO said: compute an approximate objective function and try to optimize it, but make sure not to move too far since then the approximation of the objective breaks down • So they constructed a new objective at each step, and then within those steps, performed
- SGD on that step's objective

- PG just said: define our objective function *J*(*θ*), and then run SGD on it
	- Had to use likelihood ratio method to get stochastic gradients
	- Had to use variance reduction / baseline functions / batching to reduce variance
- Each step of the algorithm takes a stochastic gradient step for the same objective
- TRPO and PPO said: compute an approximate objective function and try to optimize it, but make sure not to move too far since then the approximation of the objective breaks down • So they constructed a new objective at each step, and then within those steps, performed
- SGD on that step's objective
- Really not so different, and NPG provides a unifying perspective: TRPO/PPO essentially doing PG with a 2nd-order correction to the gradient

Parameterize policy and optimize directly while sampling from MDP

Policy Gradient (PG)

Parameterize policy and optimize directly while sampling from MDP

Policy Gradient (PG)

Parameterize policy and optimize directly while sampling from MDP

Variance reduction techniques like mini-batches and baselines

Policy Gradient (PG)

Parameterize policy and optimize directly while sampling from MDP

Variance reduction techniques like mini-batches and baselines

Fitted Policy Iteration

Policy Gradient (PG)

Trust Region Policy Optimization (TRPO)

Parameterize policy and optimize directly while sampling from MDP

Variance reduction techniques like mini-batches and baselines

Fitted Policy Iteration

Policy Gradient (PG)

Trust Region Policy Optimization (TRPO)

Parameterize policy and optimize directly while sampling from MDP

Variance reduction techniques like mini-batches and baselines

Fitted Policy Iteration

in closed form

Policy Gradient (PG)

Variance reduction techniques like mini-batches and baselines

Policy Gradient (PG)

Variance reduction techniques like mini-batches and baselines

PPO gets 2nd-order optimization benefits over PG and 1st-order computation benefits over TRPO/NPG

Thrun '92

• Suppose $H \approx \text{poly}(|S|) 8 \mu(s_0) = 1$ *(i.e. we start at s₀).*

- Suppose $H \approx \text{poly}(|S|) 8 \mu(s_0) = 1$ *(i.e. we start at s₀).*
- A randomly initialized policy π^0 has prob. $O(1/3^{|S|})$ of hitting the goal state in a trajectory. (theory) Balancing the explore/exploit tradeoff:

- Suppose $H \approx \text{poly}(|S|) 8 \mu(s_0) = 1$ *(i.e. we start at s₀).*
	- A randomly initialized policy π^0 has prob. $O(1/3^{|S|})$ of hitting the goal state in a trajectory. $\mu(s_0) = 1$, require $O(3^{|S|})$
- Thus a sample-based approach, with $\mu(s_0) = 1$, require $O(3^{|S|})$ trajectories. $\frac{1}{\sqrt{1}}$
	- Holds for (sample based) Fitted DP • Holds for (sample based) Fitted DP
	- Holds for (sample based) PG/TRPO/NPG/PPO

- Suppose $H \approx \text{poly}(|S|) 8 \mu(s_0) = 1$ *(i.e. we start at s₀).*
	- A randomly initialized policy π^0 has prob. $O(1/3^{|S|})$ of hitting the goal state in a trajectory.
- Thus a sample-based approach, with $\mu(s_0) = 1$, require $O(3^{|S|})$ trajectories. $\mu(s_0) = 1$, require $O(3^{|S|})$ $\frac{1}{\sqrt{1}}$
	- Holds for (sample based) Fitted DP • Holds for (sample based) Fitted DP
	- Holds for (sample based) PG/TRPO/NPG/PPO
	- Basically, for these approaches, there is no hope of learning the optimal policy if $\mu(s_0) = 1$.

Thrun '92

Let's examine the role of *μ*

Thrun '92

- Suppose that somehow the distribution μ had better coverage.
	- e.g, if μ was uniform overall states in our toy problem, then all approaches we $\frac{1}{10}$ covered would work (with mild assumptions)
	- ance of the singh, integer of the single of the single state o • Theory: TRPO/NPG/PPO have better guarantees than fitted DP methods (assuming some "coverage")

S states

Let's examine the role of *μ*

Thrun '92

S states

Let's examine the role of *μ*

- Suppose that somehow the distribution μ had better coverage.
	- e.g, if μ was uniform overall states in our toy problem, then all approaches we covered would work (with mild assumptions)
	- $\frac{1}{10}$ ance of the singh, integer of the single of the single state o • Theory: TRPO/NPG/PPO have better guarantees than fitted DP methods (assuming some "coverage")
- Strategies without coverage:
	- λ α • If we have a simulator, sometimes we can design μ to have better coverage.
		- this is helpful for robustness as well.
	- Imitation learning (next time).
		- \mathcal{L} • An expert gives us samples from a "good" μ .
	- Explicit exploration:
		- UCB-VI: we'll merge two good ideas!
		- Encourage exploration in PG methods.
	- Try with reward shaping

starting configuration s_0 are not robust!

• [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single

starting configuration s_0 are not robust!

• [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single

starting configuration s_0 are not robust!

• [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single

- starting configuration s_0 are not robust!
- How to fix this?
	-

• [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single

• Training from different starting configurations sampled from $s_0 ∼ μ$ fixes this:

Even if starting position concentrated at just one point—good for robustness! max *θ* $E_{s_0 \sim \mu} [V^{\theta}(s_0)]$

OpenAI: progress on dexterous hand manipulation
OpenAI: progress on dexterous hand manipulation

OpenAI: progress on dexterous hand manipulation

Basically, the measure $s_0 \sim \mu$ was diverse.

Trained with "domain randomization"

Expert Demonstrations

Expert Demonstrations

Machine Learning Algorithm

- SVM
- Gaussian Process • Kernel Estimator • Deep Networks • Random Forests • LWR
-
-
-
-
- •

…

Expert Demonstrations

- SVM
-
-
-
-
- LWR

• Gaussian Process • Kernel Estimator • Deep Networks • Random Forests

•

…

Maps *states* to actions

Learning to Drive by Imitation

Steering Angle in [-1, 1]

Camera Image

Input: Output: [Pomerleau89, Saxena05, Ross11a]

Expert Trajectories

[Widrow64,Pomerleau89]

Expert Trajectories

[Widrow64,Pomerleau89]

Dataset

Expert Trajectories

[Widrow64,Pomerleau89]

Dataset

Expert Trajectories

[Widrow64,Pomerleau89]

Dataset

Supervised Learning

Expert Trajectories

[Widrow64,Pomerleau89]

Dataset

control (steering direction)

Expert Trajectories

Finite horizon MDP \mathscr{M}

 \mathbb{R}^2

Expert Trajectories

Finite horizon MDP \mathscr{M}

Ground truth reward $r(s, a) \in [0, 1]$ is unknown; Assume the expert has a good policy π^\star (not necessarily opt)

Expert Trajectories

where

- Finite horizon MDP \mathscr{M}
- Ground truth reward $r(s, a) \in [0, 1]$ is unknown; Assume the expert has a good policy π^\star (not necessarily opt)
- We have a dataset of M trajectories: $\mathscr{D} = {\tau_1, ..., \tau_M}$, $\tau_i = (s_h^i, a_h^i)$ $H=1$ $\sim \rho_{\pi^{\star}}$

Expert Trajectories

where

- Finite horizon MDP \mathscr{M}
- Ground truth reward $r(s, a) \in [0, 1]$ is unknown; Assume the expert has a good policy π^\star (not necessarily opt)
- We have a dataset of M trajectories: $\mathscr{D} = {\tau_1, ..., \tau_M}$, $\tau_i = (s_h^i, a_h^i)$ $H=1$ $\sim \rho_{\pi^{\star}}$
- Goal: learn a policy from $\mathscr D$ that is as good as the expert π^{\star}

BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$

BC is a Reduction to Supervised Learning:

- BC Algorithm input: a restricted policy class $\Pi = {\pi : S \mapsto \Delta(A)}$
	-

BC is a Reduction to Supervised Learning:

$$
\hat{\pi} = \arg \min_{\pi \in \Pi} \sum_{i=1}^{M} \sum_{h=0}^{H-1} \ell(\pi, s_h^i, a_h^i)
$$

- BC Algorithm input: a restricted policy class $\Pi = {\pi : S \mapsto \Delta(A)}$
	-
	-

BC is a Reduction to Supervised Learning:

$$
\hat{\pi} = \arg \min_{\pi \in \Pi} \sum_{i=1}^{M} \sum_{h=0}^{H-1} \ell(\pi, s_h^i, a_h^i)
$$

- BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}\$
	-
	-

Many choices of loss functions:

BC is a Reduction to Supervised Learning:

$$
\hat{\pi} = \arg \min_{\pi \in \Pi} \sum_{i=1}^{M} \sum_{h=0}^{H-1} \ell(\pi, s_h^i, a_h^i)
$$

1. Classification (0/1) loss: $\mathbf{1}[\pi(s) \neq a]$

- BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}\$
	-
	-

- Many choices of loss functions:
	-

BC is a Reduction to Supervised Learning:

$$
\hat{\pi} = \arg \min_{\pi \in \Pi} \sum_{i=1}^{M} \sum_{h=0}^{H-1} \ell(\pi, s_h^i, a_h^i)
$$

-
- 2. Negative log-likelihood (NLL): $\ell(\pi, s, a) = -\ln \pi(a|s)$ 1. Classification (0/1) loss: $\mathbf{1}[\pi(s) \neq a]$
- BC Algorithm input: a restricted policy class $\Pi = {\pi : S \mapsto \Delta(A)}$
	-
	-

Many choices of loss functions:

BC is a Reduction to Supervised Learning:

$$
\hat{\pi} = \arg \min_{\pi \in \Pi} \sum_{i=1}^{M} \sum_{h=0}^{H-1} \ell(\pi, s_h^i, a_h^i)
$$

- 1. Classification (0/1) loss: $\mathbf{1}[\pi(s) \neq a]$
- 2. Negative log-likelihood (NLL): $\ell(\pi, s, a) = -\ln \pi(a|s)$
- 3. square loss (i.e., regression for continuous action): $\ell'(\pi,s,a) = \|\pi(s) a\|_2^2$ 2
- BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}\$
	-
	-

- Many choices of loss functions:
	-

Summary:

Feedback: bit.ly/3RHtlxy

Attendance: bit.ly/3RcTC9T

- 1. Importance sampling enables sample-based optimization in RL
- lack of exploration

2. Policy gradient methods are great and work well in practice, but can suffer from