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PG with a Learned Baseline:

1. Initialize , parameters: 

2. For : 


1. Supervised Learning: Using  trajectories sampled under , estimate a baseline  



2. Obtain a trajectory  
Compute  

3. Update: 

θ0 η1, η2, …
k = 0,…

N πθk b̃
b̃(s, h) ≈ Vθk

h (s)
τ ∼ ρθk

g′ (θk, τ, b̃())

θk+1 = θk + ηkg′ (θk, τ, b̃())
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Note that regardless of our choice of , we still get unbiased gradient estimates.b̃

Let g′ (θ, τ, b()) :=
H−1

∑
h=0

∇θln πθ(ah |sh)(Rh(τ) − b(sh, h))



The Performance Difference Lemma (PDL)
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•Let  be the distribution of trajectories from starting state  acting under .  
(we are making the starting distribution explicit now).

•For any two policies  and  and any state , 

	  

 

Comments:

•Helps us think about error analysis, instabilities of fitted PI, and sub-optimality.

•Helps to understand algorithm design (TRPO, NPG, PPO)

•This also motivates the use of “local” methods (e.g. policy gradient descent)

ρπ̃,s s π̃

π π̃ s

Vπ̃(s) − Vπ(s) = &τ∼ρπ̃,s [
H−1

∑
h=0

Aπ(sh, ah, h)]



1. Initialize 

2. For  :   

try to approximately solve: 

	  

	 	 s.t. 


3. Return 

θ0

k = 0,…, K

θk+1 = arg max
θ

&s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]
KL (ρπθk |ρπθ) ≤ δ

πθK
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Trust Region Policy Optimization (TRPO)



NPG has a closed form update!

Linear objective and quadratic convex constraint: we can solve it optimally!
Indeed this gives us:

θk+1 = θk + ηF−1
θk ∇θJ(θk)

Where η = δ
∇θJ(θk)⊤F−1

θk ∇θJ(θk)
8

1. Initialize 

2. For  :  

	  

	  s.t. 

3. Return 

θ0

k = 0,…, K
θk+1 = arg max

θ
∇θJ(θk)⊤(θ − θk)

(θ − θk)⊤Fθk(θ − θk) ≤ δ
πθK



Proximal Policy Optimization (PPO)
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1. Initialize 

2. For  :  

use SGD to approximately solve:  
 

where: 




3. Return 

θ0

k = 0,…, K

θk+1 = arg max
θ

ℓk(θ)

ℓk(θ) := &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]] − λ&τ∼ρπθk [
H−1

∑
h=0

ln 1
πθ(ah |sh) ]

πθK

How do we estimate this objective?



Today

10

• Feedback from last lecture

• Recap

• Importance Sampling (for PPO)

• PG review

• Exploration?



SGD and Importance Sampling
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• Recall that SGD requires an unbiased estimate of the objective function’s gradient


• This was easy when the objective function was an expectation, and the only -dependence 
appears inside the expectation

• This was true for supervised learning / ERM

• Not true for RL, and was part of why we needed likelihood ratio method in REINFORCE


• When not true (as in PPO), we want to make it so, if possible

• Enter: importance sampling

• rewrites expectations by changing the distribution the expectation is over


• we will use this to move that distribution’s -dependence inside the expectation


• Key point: once all -dependence inside objective’s expectation,

• Can estimate objective unbiasedly via sample average

• Can estimate objective’s gradient unbiasedly via gradient of sample average

θ

θ
θ
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• Suppose we seek to estimate .&x∼p̃[ f(x)]
• Assume: we have an (i.i.d.) dataset , where , where  is known, and

•  and  are known.

• we are not able to collect values of  for . 

(e.g. we have already collected our data from some costly experiment).  

x1, …xN xi ∼ p p
f p̃

f(x) x ∼ p̃

• Note:  &x∼p̃ [f(x)] =

• So an unbiased estimate of  is given by &x∼p̃[ f(x)] 1
N

N

∑
i=1

p̃(xi)
p(xi)

f(xi)

• Terminology: 

•  is the target distribution

•  is the proposal distribution

•  is the likelihood ratio or importance weight

p̃(x)
p(x)
p̃(x)/p(x)

• What about the variance of this estimator?

&x∼p [ p̃(x)
p(x) f(x)]
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• To estimate  

 ℓk(θ) := &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]] − λ&τ∼ρπθk [
H−1

∑
h=0

ln 1
πθ(ah |sh) ]

• we will use importance sampling: 
 

= &s0,…,sH−1∼ρπθk

H−1

∑
h=0

&ah∼πθk(⋅|sh) [ πθ(ah |sh)
πθk(ah |sh)

Aπθk(sh, ah, h)] − λ&τ∼ρπθk [
H−1

∑
h=0

ln 1
πθ(ah |sh) ]

= &τ∼ρπθk

H−1

∑
h=0 ( πθ(ah |sh)

πθk(ah |sh)
Aπθk(sh, ah, h) − λ ln 1

πθ(ah |sh) )
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1. Using  trajectories sampled under  to learn a  N ρπθk b̃h

b̃(s, h) ≈ Vπθk
h (s)
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1. Using  trajectories sampled under  to learn a  N ρπθk b̃h

b̃(s, h) ≈ Vπθk
h (s)

2. Obtain  NEW trajectories  

Set  

 
for SGD, use gradient: 

M τ1, …τM ∼ ρπθk

̂ℓ k(θ) = 1
M

M

∑
m=1

H−1

∑
h=0 ( πθ(am

h |sm
h )

πθk(am
h |sm

h ) (Rh(τm) − b̃(sm
h , h)) − λ ln 1

πθ(am
h |sm

h ) )
g(θ) := ∇θ ̂ℓ k(θ)



Estimating  and its gradientℓk(θ)
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1. Using  trajectories sampled under  to learn a  N ρπθk b̃h

b̃(s, h) ≈ Vπθk
h (s)

2. Obtain  NEW trajectories  

Set  

 
for SGD, use gradient: 

M τ1, …τM ∼ ρπθk

̂ℓ k(θ) = 1
M

M

∑
m=1

H−1

∑
h=0 ( πθ(am

h |sm
h )

πθk(am
h |sm

h ) (Rh(τm) − b̃(sm
h , h)) − λ ln 1

πθ(am
h |sm

h ) )
g(θ) := ∇θ ̂ℓ k(θ)

 is unbiased for g(θk) ∇θℓk(θ)
θ=θk
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Importance Sampling & Variance

15

• If we can do importance sampling, why do we need our objective function to keep 
updating?

• I.e., why not just optimize ?&τ∼ρπθ0 [
H−1

∑
h=0

πθ(ah |sh)
πθ0(ah |sh)

Aπθ0(sh, ah, h)]
• Or in PG, why do we sample online, when the likelihood ratio method still gives 

unbiasedness for trajectories sampled from ?πθ0

• Variance: Importance sampling incurs big variance when the target and proposal 
distributions are far apart

• Picture:

#meanbig
Y

f
#x-p(x)

# xp(x)
meanFar
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1. Initialize θ0

2. For  :  

   , 	  where  

   such that  is “close” to  

k = 0,…, K

θk+1 ≈ arg max
θ

Δk(πθ) Δk(πθ) := &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]
ρπθ

ρπθk

• TRPO: use KL to enforce closeness.
• NPG: is TRPO up to “leading order” (via Taylor’s theorem).
• PPO: uses a Lagrangian relaxation (i.e. regularization)

3. Return πθK

Meta-Approach: TRPO/NPG/PPO are all pretty similar
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One algorithmic difference between TRPO/PPO and PG

18

• PG just said: define our objective function , and then run SGD on itJ(θ)
• Had to use likelihood ratio method to get stochastic gradients
• Had to use variance reduction / baseline functions / batching to reduce variance

• Each step of the algorithm takes a stochastic gradient step for the same objective  

• TRPO and PPO said: compute an approximate objective function and try to optimize it, but 
make sure not to move too far since then the approximation of the objective breaks down

• So they constructed a new objective at each step, and then within those steps, performed 
SGD on that step’s objective 

• Really not so different, and NPG provides a unifying perspective: TRPO/PPO essentially 
doing PG with a 2nd-order correction to the gradient
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Policy Gradient (PG)
Trust Region Policy  
Optimization (TRPO)

Parameterize policy and optimize directly while sampling from MDP

Variance reduction techniques 

like mini-batches and baselines

Variance 

too high

Fitted Policy Iteration
Big steps

unstable

Natural Policy  
Gradient (NPG)Approximation


in closed form

Proximal Policy Optimization (PPO)

2nd-order updates

expensive

PPO gets 2nd-order optimization benefits over PG and 1st-order computation benefits over TRPO/NPG
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• Thus a sample-based approach, with , require  trajectories.

• Holds for (sample based) Fitted DP

• Holds for (sample based) PG/TRPO/NPG/PPO

μ(s0) = 1 O(3|S|)

• Basically, for these approaches, there is no hope of learning the optimal policy if .μ(s0) = 1

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]
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• Suppose that somehow the distribution  had better coverage.

• e.g, if  was uniform overall states in our toy problem, then all approaches we 

covered would work (with mild assumptions )

• Theory: TRPO/NPG/PPO have better guarantees than fitted DP methods  

(assuming some “coverage”)

μ
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• Suppose that somehow the distribution  had better coverage.

• e.g, if  was uniform overall states in our toy problem, then all approaches we 

covered would work (with mild assumptions )

• Theory: TRPO/NPG/PPO have better guarantees than fitted DP methods  

(assuming some “coverage”)

μ
μ

• Strategies without coverage:

• If we have a simulator, sometimes we can design  to have better coverage.

• this is helpful for robustness as well.


• Imitation learning (next time). 

• An expert gives us samples from a “good” .


• Explicit exploration:

• UCB-VI: we’ll merge two good ideas!

• Encourage exploration in PG methods.


• Try with reward shaping

μ

μ

22



Aside: Brittle policies if we train starting from only from one configuration!

• [Rajeswaran, Lowrey, Todorov,  K. 2017]: showed policies optimized for a single 
starting configuration  are not robust!*0
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Aside: Brittle policies if we train starting from only from one configuration!

• [Rajeswaran, Lowrey, Todorov,  K. 2017]: showed policies optimized for a single 
starting configuration  are not robust!*0

• How to fix this? 
• Training from different starting configurations sampled from  fixes this: 

     

Even if starting position concentrated at just one point—good for robustness!

s0 ∼ μ
max

θ
&s0∼μ[Vθ(s0)]
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OpenAI: progress on dexterous hand manipulation
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OpenAI: progress on dexterous hand manipulation
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OpenAI: progress on dexterous hand manipulation

Trained with “domain randomization” 

Basically, the measure  was 
diverse. 

s0 ∼ μ

24



Today

25

• Feedback from last lecture

• Recap

• Importance Sampling (for PPO)

• PG review

• Exploration?



Imitation Learning
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Demonstrations
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Machine 
Learning 
Algorithm

• SVM

• Gaussian Process
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• Deep Networks
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Imitation Learning
Machine 
Learning 
Algorithm

• SVM

• Gaussian Process

• Kernel Estimator

• Deep Networks

• Random Forests

• LWR

• …

    Policy

Maps states 
to actions

Expert 
Demonstrations
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Learning to Drive by Imitation

Policy

Steering Angle 
in [-1, 1]

Input: Output:

Camera Image

28

[Pomerleau89, Saxena05, Ross11a]



Supervised Learning Approach: Behavior Cloning
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Supervised Learning Approach: Behavior Cloning

29

[Widrow64,Pomerleau89]

Learned 
Policy π

Mapping from state (image) to 
control (steering direction)



Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Finite horizon MDP ℳ
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Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Finite horizon MDP ℳ

Ground truth reward  is unknown; 

Assume the expert has a good policy  (not necessarily opt)

r(s, a) ∈ [0,1]
π⋆

We have a dataset of  trajectories:  ,  

where 

M . = {τ1, …τM}
τi = (si

h, ai
h)H−1

h=0 ∼ ρπ⋆

Goal: learn a policy from   that is as good as the expert . π⋆

30



Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Π = {π : S ↦ Δ(A)}
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1.  Classification (0/1) loss:  1[π(s) ≠ a]
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Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Π = {π : S ↦ Δ(A)}

BC is a Reduction to Supervised Learning:

̂π = arg min
π∈Π

M

∑
i=1

H−1

∑
h=0

ℓ (π, si
h, ai

h)

Many choices of loss functions: 

2. Negative log-likelihood (NLL):  ℓ(π, s, a) = − ln π(a |s)
3. square loss (i.e., regression for continuous action):  ℓ(π, s, a) = ∥π(s) − a∥2

2

31

1.  Classification (0/1) loss:  1[π(s) ≠ a]



Summary:

Feedback: 

bit.ly/3RHtlxy

32

Attendance: 
bit.ly/3RcTC9T

1. Importance sampling enables sample-based optimization in RL

2. Policy gradient methods are great and work well in practice, but can suffer from 

lack of exploration


