PPO & Importance Sampling

Lucas Janson CS/Stat 184(0): Introduction to Reinforcement Learning Fall 2024

- Feedback from last lecture
- Recap
- Importance Sampling (for PPO)
- PG review
- Exploration?

Feedback from feedback forms

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

- Recap
- Importance Sampling (for PPO)
- PG review
- Exploration?

PG with a Learned Baseline:

Let
$$g'(\theta, \tau, b()) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) (R_h(\tau) - b(s_h, h))$$

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Supervised Learning: Using N trajector $\widetilde{b}(s,h) \approx V_h^{\theta^k}(s)$
 - 2. Obtain a trajectory $\tau \sim \rho_{\theta^k}$ Compute $g'(\theta^k, \tau, \tilde{b}())$
 - 3. Update: $\theta^{k+1} = \theta^k + \eta^k g'(\theta^k, \tau, \widetilde{b}())$

Note that regardless of our choice of \tilde{b} , we still get unbiased gradient estimates.

1. Supervised Learning: Using N trajectories sampled under π_{θ^k} , estimate a baseline b

The Performance Difference Lemma (PDL)

- (we are making the starting distribution explicit now).
- For any two policies π and $\widetilde{\pi}$ and any state s,

Comments:

- •Helps to understand algorithm design (TRPO, NPG, PPO)

• Let $\rho_{\tilde{\pi},s}$ be the distribution of trajectories from starting state s acting under $\tilde{\pi}$.

 $V^{\widetilde{\pi}}(s) - V^{\pi}(s) = \mathbb{E}_{\tau \sim \rho_{\widetilde{\pi},s}} \left[\sum_{h=0}^{H-1} A^{\pi}(s_h, a_h, h) \right]$

• Helps us think about error analysis, instabilities of fitted PI, and sub-optimality. • This also motivates the use of "local" methods (e.g. policy gradient descent)

Trust Region Policy Optimization (TRPO)

1. Initialize
$$\theta^{0}$$

2. For $k = 0, ..., K$:
try to approximately solve:
 $\theta^{k+1} = \arg \max_{\theta} \mathbb{E}_{s_0, ..., s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot|s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \right]$
s.t. $KL \left(\rho_{\pi_{\theta^k}} | \rho_{\pi_{\theta}} \right) \leq \delta$
3. Return π_{θ^K}

NPG has a closed form update!

1. Initialize
$$\theta^0$$

2. For $k = 0, ..., K$:
 $\theta^{k+1} = \arg \max_{\theta} \nabla_{\theta} J(\theta^k)^{\top} (\theta - \theta^k)$
s.t. $(\theta - \theta^k)^{\top} F_{\theta^k} (\theta - \theta^k) \leq \delta$
3. Return π_{θ^K}

Linear objective and quadratic convex constraint: we can solve it optimally! Indeed this gives us:

$$\theta^{k+1} = \theta^k + \eta F_{\theta^k}^{-1} \nabla_{\theta} J(\theta^k)$$

re $\eta = \sqrt{\frac{\delta}{\nabla_{\theta} J(\theta^k)^{\mathsf{T}} F_{\theta^k}^{-1} \nabla_{\theta} J(\theta^k)}}$

$$\theta^{k+1} = \theta^{k} + \eta F_{\theta^{k}}^{-1} \nabla_{\theta} J(\theta^{k})$$

Where $\eta = \sqrt{\frac{\delta}{\nabla_{\theta} J(\theta^{k})^{\mathsf{T}} F_{\theta^{k}}^{-1} \nabla_{\theta} J(\theta^{k})}}$

Proximal Policy Optimization (PPO)

1. Initialize
$$\theta^{0}$$

2. For $k = 0, ..., K$:
use SGD to approximately solve:
 $\theta^{k+1} = \underset{\theta}{\operatorname{arg max}} \ell^{k}(\theta)$
where:
 $\ell^{k}(\theta) := \mathbb{E}_{s_{0},...,s_{H-1}\sim\rho_{\pi_{0}k}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_{h}\sim\pi_{\theta}(\cdot|s_{h})} \left[A^{\pi_{\theta}k}(s_{h}, a_{h}, h) \right] \right] - \lambda \mathbb{E}_{\tau\sim\rho_{\pi_{0}k}} \left[\sum_{h=0}^{H-1} \ln \frac{1}{\pi_{\theta}(a_{h}|s_{h})} \right]$
3. Return $\pi_{\theta^{K}}$

How do we estimate this objective?

- Importance Sampling (for PPO)
- PG review
- Exploration?

SGD and Importance Sampling

- Recall that SGD requires an unbiased estimate of the objective function's gradient
- This was easy when the objective function was an expectation, and the only θ -dependence appears inside the expectation
 - This was true for supervised learning / ERM
- Not true for RL, and was part of why we needed likelihood ratio method in REINFORCE • When not true (as in PPO), we want to make it so, if possible
- Enter: importance sampling
 - rewrites expectations by changing the distribution the expectation is over
 - we will use this to move that distribution's θ -dependence inside the expectation
- **Key point**: once all θ -dependence inside objective's expectation,
 - Can estimate objective unbiasedly via sample average
 - Can estimate objective's gradient unbiasedly via gradient of sample average

Importance Sampling mate $\mathbb{E}_{x} = f(x)$.

• Suppose we seek to estimate $\mathbb{E}_{x \sim \tilde{p}}[f(x)]$.

- Suppose we seek to estimate $\mathbb{E}_{x \sim \tilde{p}}[f(x)]$.
- - f and \widetilde{p} are known.
 - we are not able to collect values of f(x) for $x \sim \widetilde{p}$. (e.g. we have already collected our data from some costly experiment).

- Suppose we seek to estimate $\mathbb{E}_{x \sim \tilde{p}}[f(x)]$.
- - f and \widetilde{p} are known.
 - we are not able to collect values of f(x) for $x \sim \widetilde{p}$. (e.g. we have already collected our data from some costly experiment).
- Note: $\mathbb{E}_{x \sim \widetilde{p}} \left[f(x) \right] =$

- Suppose we seek to estimate $\mathbb{E}_{x \sim \tilde{p}}[f(x)]$.
- - f and \widetilde{p} are known.
 - we are not able to collect values of f(x) for $x \sim \widetilde{p}$. (e.g. we have already collected our data from some costly experiment).

• Note:
$$\mathbb{E}_{x \sim \widetilde{p}} [f(x)] = \mathbb{E}_{x \sim p} \left[\frac{\widetilde{p}(x)}{p(x)} f(x) \right]$$

- Suppose we seek to estimate $\mathbb{E}_{x \sim \tilde{p}}[f(x)]$.
- - f and \widetilde{p} are known.
 - we are not able to collect values of f(x) for $x \sim \widetilde{p}$. (e.g. we have already collected our data from some costly experiment).
- Note: $\mathbb{E}_{x \sim \widetilde{p}} [f(x)] = \mathbb{E}_{x \sim p} \left[\frac{\widetilde{p}(x)}{p(x)} f(x) \right]$

So an unbiased estimate of $\mathbb{E}_{x \sim \tilde{p}}[f(x)]$

is given by
$$\frac{1}{N} \sum_{i=1}^{N} \frac{\widetilde{p}(x_i)}{p(x_i)} f(x_i)$$

- Suppose we seek to estimate $\mathbb{E}_{x \sim \tilde{p}}[f(x)]$.
- - f and \widetilde{p} are known.
 - we are not able to collect values of f(x) for $x \sim \widetilde{p}$. (e.g. we have already collected our data from some costly experiment).
- Note: $\mathbb{E}_{x \sim \widetilde{p}} [f(x)] = \mathbb{E}_{x \sim p} \left[\frac{p(x)}{p(x)} f(x) \right]$

So an unbiased estimate of $\mathbb{E}_{x \sim \tilde{p}}[f(x)]$

- Terminology:
 - $\widetilde{p}(x)$ is the target distribution
 - p(x) is the proposal distribution
 - $\widetilde{p}(x)/p(x)$ is the likelihood ratio or importance weight

is given by
$$\frac{1}{N} \sum_{i=1}^{N} \frac{\widetilde{p}(x_i)}{p(x_i)} f(x_i)$$

- Suppose we seek to estimate $\mathbb{E}_{x \sim \tilde{p}}[f(x)]$.
- - f and \widetilde{p} are known.
 - we are not able to collect values of f(x) for $x \sim \widetilde{p}$. (e.g. we have already collected our data from some costly experiment).
- Note: $\mathbb{E}_{x \sim \widetilde{p}} [f(x)] = \mathbb{E}_{x \sim p} \left[\frac{p(x)}{p(x)} f(x) \right]$

So an unbiased estimate of $\mathbb{E}_{x \sim \tilde{p}}[f(x)]$

- Terminology:
 - $\widetilde{p}(x)$ is the target distribution
 - p(x) is the proposal distribution
 - $\widetilde{p}(x)/p(x)$ is the likelihood ratio or importance weight
- What about the variance of this estimator?

is given by
$$\frac{1}{N} \sum_{i=1}^{N} \frac{\widetilde{p}(x_i)}{p(x_i)} f(x_i)$$

Back to Estimating $\ell^k(\theta)$

• To estimate

$$\mathscr{C}^{k}(\boldsymbol{\theta}) := \mathbb{E}_{s_{0},\ldots,s_{H-1}\sim\rho_{\pi_{\boldsymbol{\theta}^{k}}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_{h}\sim\pi_{\boldsymbol{\theta}}(\cdot|s_{h})} \left[A \right] \right]$$

Back to Estimating $\ell^{k}(\theta)$

 $4^{\pi_{\theta^{k}}}(s_{h}, a_{h}, h) \Big] - \lambda \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^{k}}}} \left[\sum_{h=0}^{H-1} \ln \frac{1}{\pi_{\theta}(a_{h} \mid s_{h})} \right]$

• To estimate

$$\mathscr{C}^{k}(\boldsymbol{\theta}) := \mathbb{E}_{s_{0},\ldots,s_{H-1}\sim\rho_{\pi_{\boldsymbol{\theta}^{k}}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_{h}\sim\pi_{\boldsymbol{\theta}}(\cdot|s_{h})} \left[A^{\pi_{\boldsymbol{\theta}^{k}}}(s_{h},a_{h},h) \right] \right] - \lambda \mathbb{E}_{\tau\sim\rho_{\pi_{\boldsymbol{\theta}^{k}}}} \left[\sum_{h=0}^{H-1} \ln \frac{1}{\pi_{\boldsymbol{\theta}}(a_{h}|s_{h})} \right]$$

• we will use importance sampling:

$$=\mathbb{E}_{s_0,\ldots,s_{H-1}\sim\rho_{\pi_{\theta^k}}}\left[\sum_{h=0}^{H-1}\mathbb{E}_{a_h\sim\pi_{\theta^k}(\cdot|s_h)}\left[\frac{\pi_{\theta}(a_h|s_h)}{\pi_{\theta^k}(a_h|s_h)}A^{\pi_{\theta^k}}(s_h,a_h,h)\right]\right]-\lambda\mathbb{E}_{\tau\sim\rho_{\pi_{\theta^k}}}\left[\sum_{h=0}^{H-1}\ln\frac{1}{\pi_{\theta}(a_h|s_h)}A^{\pi_{\theta^k}}(s_h,a_h,h)\right]\right]$$

Back to Estimating $\ell^k(\theta)$

• To estimate

$$\mathscr{C}^{k}(\boldsymbol{\theta}) := \mathbb{E}_{s_{0},\ldots,s_{H-1}\sim\rho_{\pi_{\boldsymbol{\theta}^{k}}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_{h}\sim\pi_{\boldsymbol{\theta}}(\cdot|s_{h})} \left[A^{\pi_{\boldsymbol{\theta}^{k}}}(s_{h},a_{h},h) \right] \right] - \lambda \mathbb{E}_{\tau\sim\rho_{\pi_{\boldsymbol{\theta}^{k}}}} \left[\sum_{h=0}^{H-1} \ln \frac{1}{\pi_{\boldsymbol{\theta}}(a_{h}|s_{h})} \right]$$

• we will use importance sampling:

$$= \mathbb{E}_{s_0, \dots, s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta^k}(\cdot | s_h)} \left[\frac{\pi_{\theta}(a_h | s_h)}{\pi_{\theta^k}(a_h | s_h)} A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \right] - \lambda \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \ln \frac{1}{\pi_{\theta}(a_h | s_h)} A^{\pi_{\theta^k}}(s_h, a_h, h) - \lambda \ln \frac{1}{\pi_{\theta}(a_h | s_h)} \right] \right]$$

Back to Estimating $\ell^k(\theta)$

Estimating $\ell^k(\theta)$ and its gradient

1. Using *N* trajectories sampled under $\rho_{\pi_{\theta^k}}$ to learn a \widetilde{b}_h $\widetilde{b}(s,h) \approx V_h^{\pi_{\theta^k}}(s)$

Estimating $\ell^k(\theta)$ and its gradient

1. Using *N* trajectories sampled und $\widetilde{b}(s,h) \approx V_h^{\pi_{\theta^k}}(s)$ 2. Obtain M NEW trajectories τ_1, \ldots Set $\widehat{\ell}^{k}(\theta) = \frac{1}{M} \sum_{m=1}^{M} \sum_{h=0}^{H-1} \left(\frac{\pi_{\theta}(a_{h}^{m})}{\pi_{\theta^{k}}(a_{h}^{m})} \right)$ for SGD, use gradient: $g(\theta) := \nabla$

Estimating $\ell^k(\theta)$ and its gradient

 \sim

der
$$ho_{\pi_{ heta^k}}$$
 to learn a b_h

$$\frac{\tau_M \sim \rho_{\pi_{\theta^k}}}{\sum_{h=1}^{m} |s_h^m|} \left(R_h(\tau_m) - \widetilde{b}(s_h^m, h) \right) - \lambda \ln \frac{1}{\pi_{\theta}(a_h^m | s_h^m)} \right)$$

$$\mathcal{C}_{\theta} \widehat{\ell}^{k}(\theta)$$

1. Using *N* trajectories sampled und $\widetilde{b}(s,h) \approx V_h^{\pi_{\theta^k}}(s)$ 2. Obtain M NEW trajectories τ_1, \ldots Set $\widehat{\ell}^{k}(\theta) = \frac{1}{M} \sum_{m=1}^{M} \sum_{h=0}^{H-1} \left(\frac{\pi_{\theta}(a_{h}^{m})}{\pi_{\theta}(a_{h}^{m})} \right)$ for SGD, use gradient: $g(\theta) := \nabla$

 $g(\theta^k)$ is unbiase

Estimating $\ell^k(\theta)$ and its gradient

 \sim

der
$$ho_{\pi_{ heta^k}}$$
 to learn a b_h

$$\frac{\tau_M \sim \rho_{\pi_{\theta^k}}}{\frac{\tau_h^m |s_h^m|}{\tau_h^m |s_h^m|}} \left(R_h(\tau_m) - \widetilde{b}(s_h^m, h) \right) - \lambda \ln \frac{1}{\pi_{\theta}(a_h^m |s_h^m)} \right)$$

$$\theta \, \widehat{\ell}^{k}(\theta)$$

ed for
$$\nabla_{\theta} \mathscr{C}^k(\theta) \Big|_{\theta = \theta^k}$$

If we can do importance sampling, why updating?

• If we can do importance sampling, why do we need our objective function to keep

updating?

• If we can do importance sampling, why do we need our objective function to keep

• I.e., why not just optimize $\mathbb{E}_{\tau \sim \rho_{\pi_{\theta^0}}} \left[\sum_{h=0}^{H-1} \frac{\pi_{\theta}(a_h | s_h)}{\pi_{\theta^0}(a_h | s_h)} A^{\pi_{\theta^0}}(s_h, a_h, h) \right]$?

 If we can do importance sampling, why do we need our objective function to keep updating?

I.e., why not just optimize $\mathbb{E}_{\tau \sim \rho_{\pi_{\theta^0}}} \begin{bmatrix} H-1 \\ \sum_{h=0}^{H-1} - \frac{1}{2} \end{bmatrix}$

• Or in PG, why do we sample online, when the likelihood ratio method still gives unbiasedness for trajectories sampled from π_{θ^0} ?

$$\frac{\pi_{\theta}(a_h \mid s_h)}{\pi_{\theta}(a_h \mid s_h)} A^{\pi_{\theta}(s_h, a_h, h)} ?$$

• If we can do importance sampling, why do we need our objective function to keep updating?

I.e., why not just optimize $\mathbb{E}_{\tau \sim \rho_{\pi_{\theta^0}}} \begin{bmatrix} H-1 \\ \sum_{h=0}^{H-1} - \frac{1}{2} \end{bmatrix}$

- Or in PG, why do we sample online, when the likelihood ratio method still gives unbiasedness for trajectories sampled from π_{θ^0} ?
- Variance: Importance sampling incurs big variance when the target and proposal distributions are far apart

$$\frac{\pi_{\theta}(a_h \mid s_h)}{\pi_{\theta^0}(a_h \mid s_h)} A^{\pi_{\theta^0}}(s_h, a_h, h)$$
?

• If we can do importance sampling, why do we need our objective function to keep updating?

H–1

I.e., why not just optimize $\mathbb{E}_{\tau\sim\rho_{\pi_{\theta^0}}}$

• Or in PG, why do we sample online, when the likelihood ratio method still gives unbiasedness for trajectories sampled from π_{θ^0} ? • Variance: Importance sampling incurs big variance when the target and proposal 1 p(x) distributions are far apart tean = f(x) $E_{x} - p(x)$

$$\frac{\pi_{\theta}(a_h \mid s_h)}{\pi_{\theta^0}(a_h \mid s_h)} A^{\pi_{\theta^0}}(s_h, a_h, h)$$

- Importance Sampling (for PPO)
 - PG review
 - Exploration?

Meta-Approach: TRPO/NPG/PPO are all pretty similar

- 1. Initialize θ^0
- 2. For k = 0, ..., K:

 $\theta^{k+1} \approx \underset{\theta}{\arg \max} \Delta_k(\pi_{\theta}), \quad \text{where } \Delta_k(\pi_{\theta})$

such that $\rho_{\pi_{\theta}}$ is "close" to $\rho_{\pi_{\theta^k}}$

$$\mathbf{f}_{\boldsymbol{\theta}}) := \mathbb{E}_{s_0, \dots, s_{H-1} \sim \rho_{\pi_{\boldsymbol{\theta}^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\boldsymbol{\theta}}(\cdot|s_h)} \left[A^{\pi_{\boldsymbol{\theta}^k}}(s_h, a_h, h) \right] \right]$$

- 1. Initialize θ^0
- 2. For k = 0, ..., K:

 $\theta^{k+1} \approx \underset{\theta}{\arg \max} \Delta_k(\pi_{\theta}), \quad \text{where } \Delta_k(\pi_{\theta})$

such that $\rho_{\pi_{\theta}}$ is "close" to $\rho_{\pi_{\theta^k}}$

• TRPO: use KL to enforce closeness.

$$\mathbf{f}_{\boldsymbol{\theta}}) := \mathbb{E}_{s_0, \dots, s_{H-1} \sim \rho_{\pi_{\boldsymbol{\theta}^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\boldsymbol{\theta}}(\cdot|s_h)} \left[A^{\pi_{\boldsymbol{\theta}^k}}(s_h, a_h, h) \right] \right]$$

- 1. Initialize θ^0
- 2. For k = 0, ..., K:

 $\theta^{k+1} \approx \underset{\theta}{\arg \max} \Delta_k(\pi_{\theta}), \quad \text{where } \Delta_k(\pi_{\theta})$

such that $\rho_{\pi_{\theta}}$ is "close" to $\rho_{\pi_{\theta k}}$

- TRPO: use KL to enforce closeness.
- NPG: is TRPO up to "leading order" (via Taylor's theorem).

$$\mathbf{f}_{\boldsymbol{\theta}}) := \mathbb{E}_{s_0, \dots, s_{H-1} \sim \rho_{\pi_{\boldsymbol{\theta}^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\boldsymbol{\theta}}(\cdot | s_h)} \left[A^{\pi_{\boldsymbol{\theta}^k}}(s_h, a_h, h) \right] \right]$$

- 1. Initialize θ^0
- 2. For k = 0, ..., K:

 $\theta^{k+1} \approx \underset{\theta}{\arg \max} \Delta_k(\pi_{\theta}), \quad \text{where } \Delta_k(\pi_{\theta})$

such that $\rho_{\pi_{\theta}}$ is "close" to $\rho_{\pi_{\theta^k}}$

- TRPO: use KL to enforce closeness.
- NPG: is TRPO up to "leading order" (via Taylor's theorem).
- PPO: uses a Lagrangian relaxation (i.e. regularization)

$$(\mathbf{p}) := \mathbb{E}_{s_0, \dots, s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \right]$$

Taylor's theorem). regularization)

- 1. Initialize θ^0
- 2. For k = 0, ..., K:

 $\theta^{k+1} \approx \underset{\theta}{\arg \max} \Delta_k(\pi_{\theta}), \quad \text{where } \Delta_k(\pi_{\theta})$

such that $\rho_{\pi_{\theta}}$ is "close" to $\rho_{\pi_{\theta^k}}$

- TRPO: use KL to enforce closeness.
- NPG: is TRPO up to "leading order" (via Taylor's theorem).
- PPO: uses a Lagrangian relaxation (i.e. regularization)

3. Return π_{θ^K}

$$(\mathbf{p}) := \mathbb{E}_{s_0, \dots, s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \right]$$

Taylor's theorem). regularization)

• PG just said: define our objective function $J(\theta)$, and then run SGD on it

- PG just said: define our objective function $J(\theta)$, and then run SGD on it
 - Had to use likelihood ratio method to get stochastic gradients

- PG just said: define our objective function $J(\theta)$, and then run SGD on it
 - Had to use likelihood ratio method to get stochastic gradients
 - Had to use variance reduction / baseline functions / batching to reduce variance

- PG just said: define our objective function $J(\theta)$, and then run SGD on it
 - Had to use likelihood ratio method to get stochastic gradients
 - Had to use variance reduction / baseline functions / batching to reduce variance
- Each step of the algorithm takes a stochastic gradient step for the same objective

- PG just said: define our objective function $J(\theta)$, and then run SGD on it
 - Had to use likelihood ratio method to get stochastic gradients
 - Had to use variance reduction / baseline functions / batching to reduce variance •
- Each step of the algorithm takes a stochastic gradient step for the same objective
- TRPO and PPO said: compute an approximate objective function and try to optimize it, but make sure not to move too far since then the approximation of the objective breaks down

- PG just said: define our objective function $J(\theta)$, and then run SGD on it
 - Had to use likelihood ratio method to get stochastic gradients
 - Had to use variance reduction / baseline functions / batching to reduce variance
- Each step of the algorithm takes a stochastic gradient step for the same objective
- TRPO and PPO said: compute an approximate objective function and try to optimize it, but make sure not to move too far since then the approximation of the objective breaks down • So they constructed a new objective at each step, and then within those steps, performed
- SGD on that step's objective

- PG just said: define our objective function $J(\theta)$, and then run SGD on it
 - Had to use likelihood ratio method to get stochastic gradients
 - Had to use variance reduction / baseline functions / batching to reduce variance
- Each step of the algorithm takes a stochastic gradient step for the same objective
- TRPO and PPO said: compute an approximate objective function and try to optimize it, but make sure not to move too far since then the approximation of the objective breaks down • So they constructed a new objective at each step, and then within those steps, performed
- SGD on that step's objective
- Really not so different, and NPG provides a unifying perspective: TRPO/PPO essentially doing PG with a 2nd-order correction to the gradient

Parameterize policy and optimize directly while sampling from MDP

Parameterize policy and optimize directly while sampling from MDP

Policy Gradient (PG)

Parameterize policy and optimize directly while sampling from MDP

Policy Gradient (PG)

Variance reduction techniques like mini-batches and baselines

Parameterize policy and optimize directly while sampling from MDP

Policy Gradient (PG)

Variance reduction techniques like mini-batches and baselines Fitted Policy Iteration

Parameterize policy and optimize directly while sampling from MDP

Policy Gradient (PG)

Variance reduction techniques like mini-batches and baselines Fitted Policy Iteration

Trust Region Policy Optimization (TRPO)

Parameterize policy and optimize directly while sampling from MDP

Policy Gradient (PG)

Variance reduction techniques like mini-batches and baselines Fitted Policy Iteration

Trust Region Policy Optimization (TRPO)

Approximation in closed form

Policy Gradient (PG)

Variance reduction techniques like mini-batches and baselines

Policy Gradient (PG)

Variance reduction techniques like mini-batches and baselines

PPO gets 2nd-order optimization benefits over PG and 1st-order computation benefits over TRPO/NPG

S states

• Suppose $H \approx \text{poly}(|S|) \& \mu(s_0) = 1$ (i.e. we start at s_0).

- Suppose $H \approx \text{poly}(|S|) \& \mu(s_0) = 1$ (i.e. we start at s_0).
- A randomly initialized policy π^0 has prob. $O(1/3^{|S|})$ of hitting the goal state in a trajectory. ullet

- Suppose $H \approx \text{poly}(|S|) \& \mu(s_0) = 1$ (i.e. we start at s_0).
- A randomly initialized policy π^0 has prob. $O(1/3^{|S|})$ of hitting the goal state in a trajectory.
- Thus a sample-based approach, with $\mu(s_0) = 1$, require $O(3^{|S|})$ trajectories.
 - Holds for (sample based) Fitted DP
 - Holds for (sample based) PG/TRPO/NPG/PPO

- Suppose $H \approx \text{poly}(|S|) \& \mu(s_0) = 1$ (i.e. we start at s_0).
- A randomly initialized policy π^0 has prob. $O(1/3^{|S|})$ of hitting the goal state in a trajectory. Thus a sample-based approach, with $\mu(s_0) = 1$, require $O(3^{|S|})$ trajectories.
- - Holds for (sample based) Fitted DP
 - Holds for (sample based) PG/TRPO/NPG/PPO
- Basically, for these approaches, there is no hope of learning the optimal policy if $\mu(s_0) = 1$.

Let's examine the role of μ

Let's examine the role of μ

- Suppose that somehow the distribution μ had better coverage.
 - e.g, if μ was uniform overall states in our toy problem, then all approaches we covered would work (with mild assumptions)
 - Theory: TRPO/NPG/PPO have better guarantees than fitted DP methods (assuming some "coverage")

S states

Let's examine the role of μ

- Suppose that somehow the distribution μ had better coverage.
 - e.g, if μ was uniform overall states in our toy problem, then all approaches we covered would work (with mild assumptions)
 - Theory: TRPO/NPG/PPO have better guarantees than fitted DP methods (assuming some "coverage")
- Strategies without coverage:
 - If we have a simulator, sometimes we can design μ to have better coverage.
 - this is helpful for robustness as well.
 - Imitation learning (next time).
 - An expert gives us samples from a "good" μ .
 - Explicit exploration:
 - UCB-VI: we'll merge two good ideas!
 - Encourage exploration in PG methods.
 - Try with reward shaping

S states

s! ds

starting configuration *s*₀ are not robust!

• [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single

starting configuration *s*₀ are not robust!

• [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single

starting configuration *s*₀ are not robust!

• [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single

- starting configuration s_0 are not robust!
- How to fix this?

 $\max_{\boldsymbol{\rho}} \mathbb{E}_{\boldsymbol{s}_0 \sim \boldsymbol{\mu}} [V^{\boldsymbol{\theta}}(\boldsymbol{s}_0)]$ Even if starting position concentrated at just one point—good for robustness!

• [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single

• Training from different starting configurations sampled from $s_0 \sim \mu$ fixes this:

OpenAl: progress on dexterous hand manipulation

OpenAl: progress on dexterous hand manipulation

OpenAl: progress on dexterous hand manipulation

Trained with "domain randomization"

Basically, the measure $s_0 \sim \mu$ was diverse.

Expert Demonstrations

Expert Demonstrations

- SVM
- Gaussian Process Kernel Estimator • Deep Networks **Random Forests** LWR

. . .

Machine Learning Algorithm

Expert Demonstrations

- SVM

. . .

- LWR

 Gaussian Process Kernel Estimator • Deep Networks **Random Forests**

Maps states to <u>actions</u>

Learning to Drive by Imitation

Input:

Camera Image

[Pomerleau89, Saxena05, Ross11a] Output:

Steering Angle in [-1, 1]

Expert Trajectories

[Widrow64,Pomerleau89]

Expert Trajectories

[Widrow64,Pomerleau89]

Dataset

Expert Trajectories

[Widrow64,Pomerleau89]

Dataset

Expert Trajectories

[Widrow64,Pomerleau89]

Dataset

Supervised Learning

Expert Trajectories

control (steering direction)

[Widrow64, Pomerleau89]

Dataset

Expert Trajectories

Finite horizon MDP *M*

÷

Expert Trajectories

Finite horizon MDP *M*

Ground truth reward $r(s, a) \in [0,1]$ is unknown; Assume the expert has a good policy π^{\star} (not necessarily opt)

Expert Trajectories

- Finite horizon MDP *M*
- Ground truth reward $r(s, a) \in [0, 1]$ is unknown; Assume the expert has a good policy π^{\star} (not necessarily opt)
- We have a dataset of M trajectories: $\mathcal{D} = \{\tau_1, \dots, \tau_M\},\$ where $\tau_i = (s_h^i, a_h^i)_{h=0}^{H-1} \sim \rho_{\pi^{\star}}$

Expert Trajectories

- Finite horizon MDP *M*
- Ground truth reward $r(s, a) \in [0,1]$ is unknown; Assume the expert has a good policy π^{\star} (not necessarily opt)
- We have a dataset of M trajectories: $\mathcal{D} = \{\tau_1, \dots, \tau_M\},\$ where $\tau_i = (s_h^i, a_h^i)_{h=0}^{H-1} \sim \rho_{\pi^{\star}}$
- Goal: learn a policy from \mathscr{D} that is as good as the expert π^{\star}

BC Algorithm input: a restricted policy class $\Pi = \{ \pi : S \mapsto \Delta(A) \}$

BC is a Reduction to Supervised Learning:

- BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$

BC is a Reduction to Supervised Learning:

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{\substack{n \in \Pi \\ i=1}}^{M} \sum_{\substack{h=0}}^{H-1} \mathscr{C}(\pi, s)$$

- BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$

 - s_h^i, a_h^i

BC is a Reduction to Supervised Learning:

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \sum_{h=0}^{H-1} \ell(\pi, s)$$

- BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$

 - s_h^i, a_h^i

Many choices of loss functions:

BC is a Reduction to Supervised Learning:

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \sum_{h=0}^{H-1} \mathscr{C}(\pi, s)$$

1. Classification (0/1) loss: $\mathbf{1}[\pi(s) \neq a]$

- BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$

 - (s_h^i, a_h^i)

- Many choices of loss functions:

BC is a Reduction to Supervised Learning:

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \sum_{h=0}^{H-1} \mathscr{C}(\pi, s)$$

- 1. Classification (0/1) loss: $\mathbf{1}[\pi(s) \neq a]$ 2. Negative log-likelihood (NLL): $\ell(\pi, s, a) = -\ln \pi(a \mid s)$

- BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$

 - S_h^i, a_h^i

Many choices of loss functions:

BC is a Reduction to Supervised Learning:

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \sum_{h=0}^{H-1} \mathscr{C}(\pi, s)$$

- 1. Classification (0/1) loss: $\mathbf{1}[\pi(s) \neq a]$
- 2. Negative log-likelihood (NLL): $\ell(\pi, s, a) = -\ln \pi(a \mid s)$
- 3. square loss (i.e., regression for continuous action): $\ell(\pi, s, a) = \|\pi(s) a\|_2^2$

- BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$

 - (s_h^i, a_h^i)

- Many choices of loss functions:

Summary:

- 1. Importance sampling enables sample-based optimization in RL
- lack of exploration

Attendance: bit.ly/3RcTC9T

2. Policy gradient methods are great and work well in practice, but can suffer from

Feedback: bit.ly/3RHtlxy

