From TRPO/NPG to Proximal Policy Optimization (PPO)

Lucas Janson CS/Stat 184(0): Introduction to Reinforcement Learning Fall 2024

- Feedback from last lecture
- Recap
- TRPO -> NPG derivation
- Proximal Policy Optimization (PPO)
- Importance sampling

Feedback from feedback forms

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

- Recap
- TRPO -> NPG derivation
- Proximal Policy Optimization (PPO)
- Importance sampling

 ∇_{θ} ln $\pi_{\theta}(a_h | s_h)(R_h(\tau) - b(s_h, h))$

Let
$$
g'(\theta, \tau, b()) := \sum_{h=0}^{H-1} \nabla
$$

1. Initialize θ^0 , parameters: $\eta^1, \eta^2, ...$

 ∇_{θ} ln $\pi_{\theta}(a_h | s_h)(R_h(\tau) - b(s_h, h))$

Let
$$
g'(\theta, \tau, b()) := \sum_{h=0}^{H-1} \nabla
$$

- 1. Initialize θ^0 , parameters: $\eta^1, \eta^2, ...$
- 2. For $k = 0,...$:

 ∇_{θ} ln $\pi_{\theta}(a_h | s_h)(R_h(\tau) - b(s_h, h))$

 \widetilde{b} *b*

Let
$$
g'(\theta, \tau, b()) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) (R_h(\tau) - b(s_h, h))
$$

- 1. Initialize θ^0 , parameters: $\eta^1, \eta^2, ...$
- 2. For $k = 0,...$:
	- 1. Supervised Learning: Using N trajectories sampled under π_{θ^k} , estimate a baseline $\widetilde{b}(s,h) \approx V_h^{\theta^k}$ $\frac{\partial^n}{\partial h}(S)$

 \widetilde{b} *b*

- 1. Initialize θ^0 , parameters: $\eta^1, \eta^2, ...$
- 2. For $k = 0,...$:
	- 1. Supervised Learning: Using N trajectories sampled under π_{θ^k} , estimate a baseline $\widetilde{b}(s,h) \approx V_h^{\theta^k}$ $\frac{\partial^n}{\partial h}(S)$
	- 2. Obtain a trajectory *τ* ∼ $ρ_{θ^k}$ Compute *g*′(*θ^k* , *τ*, \widetilde{b} *b*())

Let
$$
g'(\theta, \tau, b()) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) (R_h(\tau) - b(s_h, h))
$$

 \widetilde{b} *b*

- 1. Initialize θ^0 , parameters: $\eta^1, \eta^2, ...$
- 2. For $k = 0,...$
	- 1. Supervised Learning: Using N trajectories sampled under π_{θ^k} , estimate a baseline $\widetilde{b}(s,h) \approx V_h^{\theta^k}$ $\frac{\partial^n}{\partial h}(S)$
	- 2. Obtain a trajectory *τ* ∼ $ρ_{θ^k}$ Compute *g*′(*θ^k* , *τ*, \widetilde{b} *b*())
	- 3. Update: $\theta^{k+1} = \theta^k + \eta^k g'(\theta^k, \tau)$ \widetilde{b} *b*())

Let
$$
g'(\theta, \tau, b()) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) (R_h(\tau) - b(s_h, h))
$$

 \widetilde{b} *b*

- 1. Initialize θ^0 , parameters: $\eta^1, \eta^2, ...$
- 2. For $k = 0,...$:
	- 1. Supervised Learning: Using N trajectories sampled under π_{θ^k} , estimate a baseline $\widetilde{b}(s,h) \approx V_h^{\theta^k}$ $\frac{\partial^n}{\partial h}(S)$
	- 2. Obtain a trajectory *τ* ∼ $ρ_{θ^k}$ Compute *g*′(*θ^k* , *τ*, \widetilde{b} *b*())
	- 3. Update: $\theta^{k+1} = \theta^k + \eta^k g'(\theta^k, \tau)$ \widetilde{b} *b*())

Note that regardless of our choice of \widetilde{b} *b*, we still get unbiased gradient estimates.

Let
$$
g'(\theta, \tau, b()) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) (R_h(\tau) - b(s_h, h))
$$

• Let $\rho_{\widetilde{\pi},s}$ be the distribution of trajectories from starting state s acting under $\widetilde{\pi}.$ (we are making the starting distribution explicit now).

- (we are making the starting distribution explicit now).
- For any two policies π and $\widetilde{\pi}$ and any state s ,

$$
V^{\widetilde{\pi}}(s) - V^{\pi}(s) = \mathbb{E}_{\tau \sim \rho_{\widetilde{\pi},s}}
$$

H−1 ∑ *h*=0 *Aπ* (*sh*, *ah*, *h*)]

- (we are making the starting distribution explicit now).
- For any two policies π and $\widetilde{\pi}$ and any state s ,

$V^{\widetilde{\pi}}(s) - V^{\pi}$ $\mathcal{L}(s) = \mathbb{E}_{\tau \sim \rho_{\widetilde{\pi},s}}$

H−1 ∑ *h*=0 *Aπ* (*sh*, *ah*, *h*)]

Comments:

- (we are making the starting distribution explicit now).
- For any two policies π and $\widetilde{\pi}$ and any state s ,

$$
V^{\widetilde{\pi}}(s) - V^{\pi}(s) = \mathbb{E}_{\tau \sim \rho_{\widetilde{\pi},s}} \left[\sum_{h=0}^{H-1} A^{\pi}(s_h, a_h, h) \right]
$$

Comments:

•Helps us think about error analysis, instabilities of fitted PI, and sub-optimality.

- (we are making the starting distribution explicit now).
- For any two policies π and $\widetilde{\pi}$ and any state s ,

$$
V^{\widetilde{\pi}}(s) - V^{\pi}(s) = \mathbb{E}_{\tau \sim \rho_{\widetilde{\pi},s}}
$$

H−1 ∑ *h*=0 *Aπ* (*sh*, *ah*, *h*)]

Comments:

•Helps us think about error analysis, instabilities of fitted PI, and sub-optimality.

-
- •Helps to understand algorithm design (TRPO, NPG, PPO)

- (we are making the starting distribution explicit now).
- For any two policies π and $\widetilde{\pi}$ and any state s ,

$$
V^{\widetilde{\pi}}(s) - V^{\pi}(s) = \mathbb{E}_{\tau \sim \rho_{\widetilde{\pi},s}}
$$

H−1 ∑ *h*=0 *Aπ* (*sh*, *ah*, *h*)]

Comments:

•Helps us think about error analysis, instabilities of fitted PI, and sub-optimality. •This also motivates the use of "local" methods (e.g. policy gradient descent)

-
- •Helps to understand algorithm design (TRPO, NPG, PPO)
-

•Suppose π^k gets updated to π^{k+1} . How much worse could π^{k+1} be?

- •Suppose π^k gets updated to π^{k+1} . How much worse could π^{k+1} be?
- ̂

 \bullet In Fitted Policy Iteration, ${\hat{A}}^{\pi^k}\approx A^{\pi^k}$ is achieved via supervised learning on $\tau_1,\dots\tau_N\sim\rho_{\pi^k}$

 \bullet In Fitted Policy Iteration, ${\hat A}^{\pi^k}\approx A^{\pi^k}$ is achieved via supervised learning on $\tau_1,\dots\tau_N\sim\rho_{\pi^k}$ $(S_h, a_h, h) \geq \mathbb{E}_{\tau \sim \rho_{\pi^{k,s}}}$ *H*−1 ∑ *h*=0 A^{π^k} (*sh*, *ah*, *h*)]

•Suppose π^k gets updated to π^{k+1} . How much worse could π^{k+1} be?

̂

 \cdot In particular, \hat{A}^{π^k} should be close to A^{π^k} where π^k visits often... ̂

 \bullet In Fitted Policy Iteration, ${\hat A}^{\pi^k}\approx A^{\pi^k}$ is achieved via supervised learning on $\tau_1,\dots\tau_N\sim\rho_{\pi^k}$

• This means we expect 𝔼*τ*∼*ρπ^k* $\overline{\mathcal{S}}$ *H*−1 ∑ *h*=0 \hat{A}^{π^k} ̂

$$
(s_h, a_h, h) \approx \mathbb{E}_{\tau \sim \rho_{\pi^k, s}} \left[\sum_{h=0}^{H-1} A^{\pi^k}(s_h, a_h, h) \right]
$$

- •Suppose π^k gets updated to π^{k+1} . How much worse could π^{k+1} be?
- ̂

 \hat{A}^{π^k} ̂

• This means we expect 𝔼*τ*∼*ρπ^k* $\overline{\mathcal{S}}$ ∑

H−1

$$
(s_h, a_h, h) \Bigg[\approx \mathbb{E}_{\tau \sim \rho_{\pi^k, s}} \left[\sum_{h=0}^{H-1} A^{\pi^k}(s_h, a_h, h) \right]
$$

•But it could be very bad in places π^k visits rarely, and nothing stops π^{k+1} from visiting those

- *h*=0 \cdot In particular, \hat{A}^{π^k} should be close to A^{π^k} where π^k visits often... ̂
- bad places very often!

 \bullet In Fitted Policy Iteration, ${\hat A}^{\pi^k}\approx A^{\pi^k}$ is achieved via supervised learning on $\tau_1,\dots\tau_N\sim\rho_{\pi^k}$

- •Suppose π^k gets updated to π^{k+1} . How much worse could π^{k+1} be?
- ̂

 \hat{A}^{π^k} ̂

• This means we expect 𝔼*τ*∼*ρπ^k* $\overline{\mathcal{S}}$ *H*−1 ∑ *h*=0

- \cdot In particular, \hat{A}^{π^k} should be close to A^{π^k} where π^k visits often... ̂
- bad places very often!
- •So π^{k+1} could end up being (much) worse than π^k

 \bullet In Fitted Policy Iteration, ${\hat A}^{\pi^k}\approx A^{\pi^k}$ is achieved via supervised learning on $\tau_1,\dots\tau_N\sim\rho_{\pi^k}$

$$
(s_h, a_h, h) \sim \mathbb{E}_{\tau \sim \rho_{\pi^k, s}} \left[\sum_{h=0}^{H-1} A^{\pi^k}(s_h, a_h, h) \right]
$$

•But it could be very bad in places π^k visits rarely, and nothing stops π^{k+1} from visiting those

- •Suppose π^k gets updated to π^{k+1} . How much worse could π^{k+1} be?
- \bullet In Fitted Policy Iteration, ${\hat A}^{\pi^k}\approx A^{\pi^k}$ is achieved via supervised learning on $\tau_1,\dots\tau_N\sim\rho_{\pi^k}$ ̂

• This means we expect 𝔼*τ*∼*ρπ^k* $\overline{\mathcal{S}}$ *H*−1 ∑ *h*=0 \hat{A}^{π^k}

̂

$$
(s_h, a_h, h) \Bigg[\approx \mathbb{E}_{\tau \sim \rho_{\pi^{k,s}}} \Bigg[\sum_{h=0}^{H-1} A^{\pi^k}(s_h, a_h, h) \Bigg]
$$

•But it could be very bad in places π^k visits rarely, and nothing stops π^{k+1} from visiting those

- \cdot In particular, \hat{A}^{π^k} should be close to A^{π^k} where π^k visits often... ̂
- bad places very often!
- •So π^{k+1} could end up being (much) worse than π^k
- •Problem is a mismatch between expectations: what we really want is

$$
\mathbb{E}_{\tau \sim \rho_{\pi^{k+1},s}} \left[\sum_{h=0}^{H-1} \hat{A}^{\pi^k}(s_h, a_h, h) \right] \approx \mathbb{E}_{\tau \sim \rho_{\pi^{k+1},s}} \left[\right]
$$

H−1 ∑ *h*=0 A^{π^k} (*sh*, *ah*, *h*)]

- •Suppose π^k gets updated to π^{k+1} . How much worse could π^{k+1} be?
- ̂

• This means we expect 𝔼*τ*∼*ρπ^k* $\overline{\mathcal{S}}$ *H*−1 ∑ *h*=0 \hat{A}^{π^k} ̂

- \cdot In particular, \hat{A}^{π^k} should be close to A^{π^k} where π^k visits often... ̂
- bad places very often!
- •So π^{k+1} could end up being (much) worse than π^k
-

$$
(s_h, a_h, h) \Bigg[\approx \mathbb{E}_{\tau \sim \rho_{\pi^{k,s}}} \Bigg[\sum_{h=0}^{H-1} A^{\pi^k}(s_h, a_h, h) \Bigg]
$$

•But it could be very bad in places π^k visits rarely, and nothing stops π^{k+1} from visiting those

•Problem is a mismatch between expectations: what we really want is $\mathbb{E}_{\tau \sim \rho_{\pi^{k+1}}}$,*^s* [*H*−1 ∑ *h*=0 \hat{A}^{π^k} ̂ $(S_h, a_h, h) \geq \mathbb{E}_{\tau \sim \rho_{\pi^{k+1},s}}$ *H*−1 ∑ *h*=0 A^{π^k} (*sh*, *ah*, *h*)]

•One way to ensure this: keep $\pi^{k+1} \approx \pi^k$

 \bullet In Fitted Policy Iteration, ${\hat A}^{\pi^k}\approx A^{\pi^k}$ is achieved via supervised learning on $\tau_1,\dots\tau_N\sim\rho_{\pi^k}$

1. Initialize
$$
\theta^0
$$

\n2. For $k = 0,..., K$:
\ntry to approximately solve:
\n
$$
\theta^{k+1} = \arg \max_{\theta} \mathbb{E}_{s_0,...,s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \right]
$$
\n
$$
\text{s.t. } KL\left(\rho_{\pi_{\theta^k}} | \rho_{\pi_{\theta}}\right) \le \delta
$$
\n3. Return π_{θ^K}

- We want to maximize local advantage against π_{θ^k} ,
-

but we want the new policy to be close to π_{θ^k} (in the KL sense) • How do we implement this with sampled trajectories?)

Trust Region Policy Optimization (TRPO)

Given two distributions $P \& Q$, where $P \in \Delta(X), Q \in \Delta(X)$, KL Divergence is defined as:

> $KL(P | Q) = E_{x \sim P}$ [ln *P*(*x*) $Q(x)$

 $KL(P|Q) =$

Given two distributions $P \& Q$, where $P \in \Delta(X), Q \in \Delta(X)$, KL Divergence is defined as:

$$
= \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]
$$

Examples:

If $Q = P$, then $KL(P | Q) = KL(Q | P) = 0$

 $KL(P|Q) =$

If $Q = P$, then KL (

If $P = \mathcal{N}(\mu_1, \sigma^2 I), Q = \mathcal{N}(\mu_2, \sigma^2 I)$, then

Given two distributions $P \& Q$, where $P \in \Delta(X), Q \in \Delta(X)$, KL Divergence is defined as:

$$
= \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]
$$

Examples:

$$
(P|Q) = KL(Q|P) = 0
$$

$$
\sigma^2 I
$$
, then
$$
KL(P|Q) = \frac{1}{2\sigma^2} ||\mu_1 - \mu_2||^2
$$

 $KL(P|Q) =$

If $Q = P$, then KL (

If $P = \mathcal{N}(\mu_1, \sigma^2 I), Q = \mathcal{N}(\mu_2, \sigma^2 I)$, then

 $KL(P | Q) \geq 0$, and is 0 if and only if $P = Q$

Given two distributions $P \& Q$, where $P \in \Delta(X), Q \in \Delta(X)$, KL Divergence is defined as:

$$
= \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]
$$

Examples:

$$
(P|Q) = KL(Q|P) = 0
$$

$$
\sigma^2 I
$$
, then
$$
KL(P|Q) = \frac{1}{2\sigma^2} ||\mu_1 - \mu_2||^2
$$

Fact:

TRPO is locally equivalent to a much simpler algorithm

max *θ* $E_{s_0,\ldots,s_{H-1}\sim\rho_\pi}$ θ^k \parallel *H*−1 ∑ *h*=0 $\mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)}\left[A^{\pi_{\theta^k}}(s_h, a_h, h)\right]$ $\textbf{s.t.} \ KL\left(\rho_{\pi_{\theta^k}} | \rho_{\pi_{\theta}}\right) \leq \delta$

]

Intuition: maximize local advantage subject to being incremental (in KL)

TRPO at iteration k:

TRPO is locally equivalent to a much simpler algorithm

max *θ* $E_{s_0,\ldots,s_{H-1}\sim\rho_\pi}$ θ^k \parallel *H*−1 ∑ *h*=0 $\mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)}\left[A^{\pi_{\theta^k}}(s_h, a_h, h)\right]$ $\textbf{s.t.} \ KL\left(\rho_{\pi_{\theta^k}} | \rho_{\pi_{\theta}}\right) \leq \delta$

second-order Taylor expansion at *θ^k*

Intuition: maximize local advantage subject to being incremental (in KL)

TRPO at iteration k:
max *θ* $E_{s_0,\ldots,s_{H-1}\sim\rho_\pi}$ θ^k \parallel *H*−1 ∑ *h*=0 $\mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)}\left[A^{\pi_{\theta^k}}(s_h, a_h, h)\right]$ $\textbf{s.t.} \ KL\left(\rho_{\pi_{\theta^k}} | \rho_{\pi_{\theta}}\right) \leq \delta$

Intuition: maximize local advantage subject to being incremental (in KL)

max *θ* $E_{s_0,\ldots,s_{H-1}\sim\rho_\pi}$ θ^k \parallel *H*−1 ∑ *h*=0 $\mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)}\left[A^{\pi_{\theta^k}}(s_h, a_h, h)\right]$ $\textbf{s.t.} \ KL\left(\rho_{\pi_{\theta^k}} | \rho_{\pi_{\theta}}\right) \leq \delta$

Intuition: maximize local advantage

subject to being incremental (in KL) $\max_{\alpha} \nabla_{\theta} J(\theta^k)^{\top} (\theta - \theta^k)$ subject to being incremental (in KL)

second-order Taylor expansion at *θ^k*

max *θ*

max *θ* $E_{s_0,\ldots,s_{H-1}\sim\rho_\pi}$ θ^k \parallel *H*−1 ∑ *h*=0 $\mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)}\left[A^{\pi_{\theta^k}}(s_h, a_h, h)\right]$ $\textbf{s.t.} \ KL\left(\rho_{\pi_{\theta^k}} | \rho_{\pi_{\theta}}\right) \leq \delta$

$$
\max_{\theta} \nabla_{\theta} J(\theta^k)^{\mathsf{T}}(\theta - \theta^k)
$$

s.t. $(\theta - \theta^k)^{\mathsf{T}} F_{\theta^k}(\theta - \theta^k) \le \delta$

Intuition: maximize local advantage subject to being incremental (in KL)

max *θ* $E_{s_0,\ldots,s_{H-1}\sim\rho_\pi}$ θ^k \parallel *H*−1 ∑ *h*=0 $\mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)}\left[A^{\pi_{\theta^k}}(s_h, a_h, h)\right]$ $\textbf{s.t.} \ KL\left(\rho_{\pi_{\theta^k}} | \rho_{\pi_{\theta}}\right) \leq \delta$

(Where F_{θ^k} is the "Fisher Information Matrix")

Intuition: maximize local advantage subject to being incremental (in KL)

$$
\lim_{\theta} \sum_{\theta} J(\theta^k)^{\top} (\theta - \theta^k)
$$

$$
k \int F_{\theta^k} (\theta - \theta^k) \le \delta
$$

Natural Policy Gradient (NPG): A "leading order" equivalent program to TRPO:

1. Initialize θ^0 2. For $k = 0, ..., K$: s.t. 3. Return π_{θ^K} $\theta^{k+1} = \arg$ $(\boldsymbol{\theta}-\boldsymbol{\theta}^k)$

1. Initialize
$$
\theta^0
$$

\n2. For $k = 0,..., K$
\n
$$
\theta^{k+1} = \arg \max_{\theta} \nabla_{\theta} J(\theta^k)^T (\theta - \theta^k)
$$
\n
$$
\text{s.t. } (\theta - \theta^k)^T F_{\theta^k} (\theta - \theta^k) \le \delta
$$
\n3. Return π_{θ^K}

- Where $\nabla_{\theta} J(\theta^k)$ is the gradient of $J(\theta)$ evaluated at θ^k , and
- F_{θ} is (basically) the Fisher information matrix at $\theta \in \mathbb{R}^{d}$, defined as:

Natural Policy Gradient (NPG): A "leading order" equivalent program to TRPO:

$$
F_{\theta} := \mathbb{E}_{\tau \sim \rho_{\pi_{\theta}}} \left[\nabla_{\theta} \ln \rho_{\theta}(\tau) \left(\nabla_{\theta} \ln \rho_{\theta}(\tau) \right)^{\top} \right] \in \mathbb{R}^{d \times d}
$$

$$
= \mathbb{E}_{\tau \sim \rho_{\pi_{\theta}}} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) (\nabla_{\theta} \ln \pi_{\theta}(a_h | s_h))^\top \right]
$$

1. Initialize θ^0 2. For $k = 0, ..., K$: s.t. 3. Return π_{θ^K} θ^{k+1} = arg max

θ $\nabla_{\theta} J(\theta^k)^{\mathsf{T}} (\theta - \theta^k)$ $(\theta - \theta^k)^T F_{\theta^k}(\theta - \theta^k) \leq \delta$

Linear objective and quadratic convex constraint: we can solve it optimally!

θ $\nabla_{\theta} J(\theta^k)^{\mathsf{T}} (\theta - \theta^k)$ $(\theta - \theta^k)^T F_{\theta^k}(\theta - \theta^k) \leq \delta$

1. Initialize θ^0 2. For $k = 0, ..., K$: s.t. 3. Return π_{θ^K} $\theta^{k+1} = \arg$ $(\boldsymbol{\theta}-\boldsymbol{\theta}^k)$

Linear objective and quadratic convex constraint: we can solve it optimally! Indeed this gives us:

> $\theta^{k-1}\nabla_{\boldsymbol{\theta}}J(\boldsymbol{\theta}^{k})$)

$$
\theta^{k+1} = \theta^k + \eta F_{\theta^k}^{-1} \nabla
$$

$$
\lim_{\theta} \nabla_{\theta} J(\theta^k)^{\top} (\theta - \theta^k)
$$

$$
k \int_{0}^{k} F_{\theta^k} (\theta - \theta^k) \leq \delta
$$

Linear objective and quadratic convex constraint: we can solve it optimally! Indeed this gives us:

$$
\theta^{k+1} = \theta^k + \eta F_{\theta^k}^{-1} \nabla_{\theta} J(\theta^k)
$$

Where
$$
\eta = \sqrt{\frac{\delta}{\nabla_{\theta} J(\theta^k)^\top F_{\theta^k}^{-1} \nabla_{\theta}}
$$

 $\overline{\theta^{J(\theta^{k})}}$

1. Initialize
$$
\theta^0
$$

\n2. For $k = 0,..., K$:
\n
$$
\theta^{k+1} = \arg \max_{\theta} \nabla_{\theta} J(\theta^k)^T (\theta - \theta^k)
$$
\n
$$
\text{s.t. } (\theta - \theta^k)^T F_{\theta^k} (\theta - \theta^k) \le \delta
$$
\n3. Return π_{θ^K}

ient:
$$
\hat{g}
$$
 ≈ $\nabla_{\theta} J(\theta^k)$
notation: \hat{F} ≈ F_{θ^k}
+ $\eta \hat{F}^{-1} \hat{g}$

An Implementation: Sample Based NPG

- 1. Initialize θ^0
- 2. For $k = 0, ..., K$:
	- Obtain approximation of Policy Gradi
	- Obtain approximation of Fisher inform
	- Natural Gradient Ascent: $\theta^{k+1} = \theta^k + \eta \hat{F}^{-1}$
- 3. Return π_{θ^K}

ient:
$$
\hat{g}
$$
 ≈ $\nabla_{\theta} J(\theta^k)$
math: \hat{F} ≈ F_{θ^k}
+ $\eta \hat{F}^{-1} \hat{g}$

An Implementation: Sample Based NPG

- 1. Initialize θ^0
- 2. For $k = 0, ..., K$:
	- Obtain approximation of Policy Gradi
	- Obtain approximation of Fisher inforn
	- Natural Gradient Ascent: $\theta^{k+1} = \theta^k + \eta \hat{F}^{-1}$
- 3. Return π_{θ^K}

(We will implement it in HW4 on Cartpole)

- TRPO -> NPG derivation
- Proximal Policy Optimization (PPO)
- Importance sampling

 $f^k(\theta) := \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi}}$

 $f^k(\theta) := \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi}}$

 $f^k(\theta) := \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi}}$

 $\approx f^k(\theta^k) + (\theta - \theta^k) \cdot \nabla_{\theta} f^k(\theta) \big|_{\theta = \theta^k} = \text{constant} + (\theta - \theta^k) \cdot \nabla_{\theta} f^k(\theta)$

- Let's look at a first order Taylor expansion around $\boldsymbol{\theta} = \theta^k$:
	- $\theta = \theta^k$

$$
f^k(\theta) := \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta}}}
$$

 $\approx f^k(\theta^k) + (\theta - \theta^k) \cdot \nabla_{\theta} f^k(\theta) \big|_{\theta = \theta^k} = \text{constant} + (\theta - \theta^k) \cdot \nabla_{\theta} f^k(\theta)$

 $\mathbf{X} = \nabla_{\theta} \mathbb{E}_{s_0, \dots, s_{H-1} \sim \rho_{\pi}}$ θ^k \vert *H*−1 ∑ *h*=0 $\mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)}\left[A^{\pi_{\theta^k}}(s_h, a_h, h)\right]$

- Let's look at a first order Taylor expansion around $\boldsymbol{\theta} = \theta^k$:
	- $\theta = \theta^k$

$$
f^k(\theta) := \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta}}}
$$

 $\approx f^k(\theta^k) + (\theta - \theta^k) \cdot \nabla_{\theta} f^k(\theta) \big|_{\theta = \theta^k} = \text{constant} + (\theta - \theta^k) \cdot \nabla_{\theta} f^k(\theta)$

- Let's look at a first order Taylor expansion around $\boldsymbol{\theta} = \theta^k$:
	- $\theta = \theta^k$

$$
f^k(\theta) := \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta}}}
$$

 $\approx f^k(\theta^k) + (\theta - \theta^k) \cdot \nabla_{\theta} f^k(\theta) \big|_{\theta = \theta^k} = \text{constant} + (\theta - \theta^k) \cdot \nabla_{\theta} f^k(\theta)$ $\theta = \theta^k$

$$
\begin{split}\n&= \nabla_{\theta} \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta^k}}}\n\left[\n\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)}\left[A^{\pi_{\theta^k}}(s_h, a_h, h)\right]\n\right]\n\\
&= \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta^k}}}\n\left[\n\sum_{h=0}^{H-1} \nabla_{\theta} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)}\left[A^{\pi_{\theta^k}}(s_h, a_h, h)\right]\n\right]\n\\
&= \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta^k}}}\n\left[\n\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta^k}(\cdot | s_h)}\left[\nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) A^{\pi_{\theta^k}}(s_h, a_h, h)\right]\n\right]\n\end{split}
$$

$$
f^k(\theta) := \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta}}}
$$

 $\approx f^k(\theta^k) + (\theta - \theta^k) \cdot \nabla_{\theta} f^k(\theta) \big|_{\theta = \theta^k} = \text{constant} + (\theta - \theta^k) \cdot \nabla_{\theta} f^k(\theta)$ $\theta = \theta^k$

$$
\begin{split}\n&= \nabla_{\theta} \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta^k}}}\n\left[\n\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)}\left[A^{\pi_{\theta^k}}(s_h, a_h, h)\right]\n\right]\n\\
&= \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta^k}}}\n\left[\n\sum_{h=0}^{H-1} \nabla_{\theta} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)}\left[A^{\pi_{\theta^k}}(s_h, a_h, h)\right]\n\right]\n\\
&= \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta^k}}}\n\left[\n\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta^k}(\cdot | s_h)}\left[\nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) A^{\pi_{\theta^k}}(s_h, a_h, h)\right]\n\right]\n\\
&= \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}}\n\left[\n\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) A^{\pi_{\theta^k}}(s_h, a_h, h)\n\right]\n\right]\n_{\theta = \theta^k} \\
&= \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}}\n\left[\n\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) A^{\pi_{\theta^k}}(s_h, a_h, h)\n\right]\n\end{split}
$$

$$
f^k(\theta) := \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta}}}
$$

 $\approx f^k(\theta^k) + (\theta - \theta^k) \cdot \nabla_{\theta} f^k(\theta) \big|_{\theta = \theta^k} = \text{constant} + (\theta - \theta^k) \cdot \nabla_{\theta} f^k(\theta)$ $\theta = \theta^k$

$$
\begin{split}\n&= \nabla_{\theta} \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta^k}}}\n\left[\n\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)}\left[A^{\pi_{\theta^k}}(s_h, a_h, h)\right]\n\right]\n\\
&= \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta^k}}}\n\left[\n\sum_{h=0}^{H-1} \nabla_{\theta} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)}\left[A^{\pi_{\theta^k}}(s_h, a_h, h)\right]\n\right]\n\\
&= \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta^k}}}\n\left[\n\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta^k}(\cdot | s_h)}\left[\nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) A^{\pi_{\theta^k}}(s_h, a_h, h)\right]\n\right]\n\\
&= \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}}\n\left[\n\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) A^{\pi_{\theta^k}}(s_h, a_h, h)\n\right]\n\right]\n\end{split}
$$

$$
f^k(\theta) := \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta}}}
$$

 $\approx f^k(\theta^k) + (\theta - \theta^k) \cdot \nabla_{\theta} f^k(\theta) \big|_{\theta = \theta^k} = \text{constant} + (\theta - \theta^k) \cdot \nabla_{\theta} f^k(\theta)$ $\theta = \theta^k$

$$
\begin{split}\n&= \nabla_{\theta} \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta^k}}}\n\left[\n\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)}\left[A^{\pi_{\theta^k}}(s_h, a_h, h)\right]\n\right]\n\\
&= \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta^k}}}\n\left[\n\sum_{h=0}^{H-1} \nabla_{\theta} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)}\left[A^{\pi_{\theta^k}}(s_h, a_h, h)\right]\n\right]\n\\
&= \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta^k}}}\n\left[\n\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta^k}(\cdot | s_h)}\left[\nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) A^{\pi_{\theta^k}}(s_h, a_h, h)\right]\n\right]\n\\
&= \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}}\n\left[\n\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) A^{\pi_{\theta^k}}(s_h, a_h, h)\n\right]\n\right]\n\end{split}
$$

 $\mathscr{C}(\theta) := KL(\rho_{\widetilde{\theta}} | \rho_{\theta})$

 $\mathscr{C}(\theta) := KL(\rho_{\widetilde{\theta}} | \rho_{\theta})$

ℓ ⁽ θ) \approx ℓ (θ $\widetilde{\theta}$ $) + (\theta - \theta$ $\widetilde{\theta}$) ⊤∇*θℓ*(*θ*)|

$$
\theta = \tilde{\theta} + \frac{1}{2}(\theta - \tilde{\theta})^{\top} \left[\nabla_{\theta}^{2} \ell(\theta) \big|_{\theta = \tilde{\theta}} \right] (\theta - \tilde{\theta})
$$

 $\ell(\theta)$:=

ℓ ⁽ θ) \approx ℓ (θ $\widetilde{\theta}$ $) + (\theta - \theta$ $\widetilde{\theta}$) ⊤∇*θℓ*(*θ*)|

$$
= KL(\rho_{\widetilde{\theta}} | \rho_{\theta})
$$

ℓ(*θ* $\widetilde{\theta}$

$$
\theta = \tilde{\theta} + \frac{1}{2}(\theta - \tilde{\theta})^{\top} \Big[\nabla_{\theta}^{2} \ell(\theta) \big|_{\theta = \tilde{\theta}} \Big] (\theta - \tilde{\theta})
$$

 $= KL(\rho_{\tilde{\theta}} | \rho_{\tilde{\theta}}) = 0$

 $\ell(\theta)$:=

ℓ ⁽ θ) \approx ℓ (θ $\widetilde{\theta}$ $) + (\theta - \theta$ $\widetilde{\theta}$) ⊤∇*θℓ*(*θ*)|

$$
= KL(\rho_{\widetilde{\theta}} | \rho_{\theta})
$$

ℓ(*θ* $\widetilde{\theta}$

$$
\theta = \tilde{\theta} + \frac{1}{2}(\theta - \tilde{\theta})^{\top} \Big[\nabla_{\theta}^{2} \ell(\theta) \big|_{\theta = \tilde{\theta}} \Big] (\theta - \tilde{\theta})
$$

$$
=KL(\rho_{\widetilde{\theta}}|\rho_{\widetilde{\theta}})=0
$$

We will show that $\nabla_{\theta} \ell(\theta) \big|_{\theta = \widetilde{\theta}} = 0$, and $\nabla^2_{\theta} \ell(\theta) \big|_{\theta = \widetilde{\theta}}$ has the claimed form! $\widetilde{\theta} = 0$, and $\nabla^2_{\theta} \ell(\theta) \big|_{\theta = \widetilde{\theta}}$ $\widetilde{\theta}$

 $\ell(\theta) := KL(\rho_{\tilde{\theta}} | \rho_{\theta})$ ($\rho_{\tilde{\theta}} := \rho_{\pi_{\theta^k}}$ and $\rho_{\theta} := \rho_{\pi_{\theta}}$)

ℓ ⁽ θ) \approx ℓ (θ $\widetilde{\theta}$ $) + (\theta - \theta$ $\widetilde{\theta}$) ⊤∇*θℓ*(*θ*)|

ℓ(*θ* $\widetilde{\theta}$

$$
\theta = \tilde{\theta} + \frac{1}{2}(\theta - \tilde{\theta})^{\top} \Big[\nabla_{\theta}^{2} \ell(\theta) \big|_{\theta = \tilde{\theta}} \Big] (\theta - \tilde{\theta})
$$

 $= KL(\rho_{\tilde{\theta}} | \rho_{\tilde{\theta}}) = 0$

We will show that $\nabla_{\theta} \ell(\theta) \big|_{\theta = \widetilde{\theta}} = 0$, and $\nabla^2_{\theta} \ell(\theta) \big|_{\theta = \widetilde{\theta}}$ has the claimed form! $\widetilde{\theta} = 0$, and $\nabla^2_{\theta} \ell(\theta) \big|_{\theta = \widetilde{\theta}}$ $\widetilde{\theta}$

$$
\ell(\theta) := KL\left(\rho_{\widetilde{\theta}} | \rho_{\theta}\right) = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\ln \frac{\rho_{\widetilde{\theta}}(\tau)}{\rho_{\theta}(\tau)} \right] = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\ln \rho_{\widetilde{\theta}}(\tau) - \ln \rho_{\theta}(\tau) \right]
$$

Change from trajectory distribution to state-action distribution:

$$
\ell(\theta) := KL\left(\rho_{\widetilde{\theta}} | \rho_{\theta}\right) = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\ln \frac{\rho_{\widetilde{\theta}}(\tau)}{\rho_{\theta}(\tau)} \right] = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\ln \rho_{\widetilde{\theta}}(\tau) - \ln \rho_{\theta}(\tau) \right]
$$

 $\widetilde{\theta}$

 $\nabla_{\theta} \ell(\theta)$ *θ*=*θ* $\tilde{\theta}^{\text{}} = -\mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\left. \nabla_{\theta} \ln \rho_{\theta}(\tau) \right] \right|_{\theta = \widetilde{\theta}}$

$$
\nabla_{\theta} \mathcal{C}(\theta) \Big|_{\theta = \widetilde{\theta}} = - \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\nabla_{\theta} \ln \rho_{\theta}(\tau) \right] \Big|_{\theta = \widetilde{\theta}}
$$

$$
= - \sum_{\tau} \rho_{\widetilde{\theta}}(\tau) \frac{\nabla_{\theta} \rho_{\theta}(\tau)}{\rho_{\theta}(\tau)} \Big|_{\theta = \widetilde{\theta}}
$$

$$
\ell(\theta) := KL\left(\rho_{\widetilde{\theta}} | \rho_{\theta}\right) = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\ln \frac{\rho_{\widetilde{\theta}}(\tau)}{\rho_{\theta}(\tau)} \right] = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\ln \rho_{\widetilde{\theta}}(\tau) - \ln \rho_{\theta}(\tau) \right]
$$

$$
\nabla_{\theta} \mathcal{E}(\theta) \Big|_{\theta = \widetilde{\theta}} = - \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\nabla_{\theta} \ln \rho_{\theta}(\tau) \right] \Big|_{\theta = \widetilde{\theta}}
$$

$$
= - \sum_{\tau} \rho_{\widetilde{\theta}}(\tau) \frac{\nabla_{\theta} \rho_{\theta}(\tau)}{\rho_{\theta}(\tau)} \Big|_{\theta = \widetilde{\theta}}
$$

$$
= - \sum_{\tau} \nabla_{\theta} \rho_{\theta}(\tau) \Big|_{\theta = \widetilde{\theta}}
$$

$$
\ell(\theta) := KL\left(\rho_{\widetilde{\theta}} | \rho_{\theta}\right) = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\ln \frac{\rho_{\widetilde{\theta}}(\tau)}{\rho_{\theta}(\tau)} \right] = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\ln \rho_{\widetilde{\theta}}(\tau) - \ln \rho_{\theta}(\tau) \right]
$$

$$
\nabla_{\theta} \ell(\theta) \Big|_{\theta = \widetilde{\theta}} = - \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\nabla_{\theta} \ln \rho_{\theta}(\tau) \right] \Big|_{\theta = \widetilde{\theta}}
$$

$$
= - \sum_{\tau} \rho_{\widetilde{\theta}}(\tau) \frac{\nabla_{\theta} \rho_{\theta}(\tau)}{\rho_{\theta}(\tau)} \Big|_{\theta = \widetilde{\theta}}
$$

$$
= - \sum_{\tau} \nabla_{\theta} \rho_{\theta}(\tau) \Big|_{\theta = \widetilde{\theta}} = -
$$

 $= - \nabla_{\theta} \sum$ *τ ρθ*(*τ*) *θ*=*θ* $\widetilde{\theta}$

$$
\ell(\theta) := KL\left(\rho_{\widetilde{\theta}} | \rho_{\theta}\right) = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\ln \frac{\rho_{\widetilde{\theta}}(\tau)}{\rho_{\theta}(\tau)} \right] = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\ln \rho_{\widetilde{\theta}}(\tau) - \ln \rho_{\theta}(\tau) \right]
$$

$$
\nabla_{\theta} \mathcal{E}(\theta) \Big|_{\theta = \widetilde{\theta}} = - \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\nabla_{\theta} \ln \rho_{\theta}(\tau) \right] \Big|_{\theta = \widetilde{\theta}}
$$

$$
= - \sum_{\tau} \rho_{\widetilde{\theta}}(\tau) \frac{\nabla_{\theta} \rho_{\theta}(\tau)}{\rho_{\theta}(\tau)} \Big|_{\theta = \widetilde{\theta}}
$$

$$
= - \sum_{\tau} \nabla_{\theta} \rho_{\theta}(\tau) \Big|_{\theta = \widetilde{\theta}} = -
$$

 $= 0$ $= - \nabla_{\theta} \sum$ *τ ρθ*(*τ*) *θ*=*θ* $\widetilde{\theta}$

$$
\ell(\theta) := KL\left(\rho_{\widetilde{\theta}} | \rho_{\theta}\right) = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\ln \frac{\rho_{\widetilde{\theta}}(\tau)}{\rho_{\theta}(\tau)} \right] = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\ln \rho_{\widetilde{\theta}}(\tau) - \ln \rho_{\theta}(\tau) \right]
$$

Let's compute the Hessian of the KL-divergence at *θ^k*

 $\ell(\theta) := KL(\rho_{\widetilde{\theta}} | \rho_{\theta}) = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}}$ $\widetilde{\theta}$ $\ln \frac{\rho_{\widetilde{\theta}}(\tau)}{4}$ $\left[\frac{\theta}{\rho_{\theta}(\tau)}\right] = \mathbb{E}_{\tau \sim \rho_{\theta}}\left[\ln \rho_{\theta}(\tau) - \ln \rho_{\theta}(\tau)\right]$

Let's compute the Hessian of the KL-divergence at *θ^k*

$$
\nabla_{\theta}^{2} \mathcal{E}(\theta) \Big|_{\theta = \widetilde{\theta}} = -\mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\nabla_{\theta}^{2} \ln \rho_{\theta}(\tau) \right] \Big|_{\theta = \widetilde{\theta}}
$$

 $\ln \frac{\rho_{\widetilde{\theta}}(\tau)}{4}$ $\left[\frac{\theta}{\rho_{\theta}(\tau)}\right] = \mathbb{E}_{\tau \sim \rho_{\theta}}\left[\ln \rho_{\theta}(\tau) - \ln \rho_{\theta}(\tau)\right]$

$$
\ell(\theta) := KL\left(\rho_{\widetilde{\theta}} | \rho_{\theta}\right) = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}}
$$
$$
= -\sum_{\tau} \rho_{\widetilde{\theta}}(\tau) \left(\frac{\nabla_{\theta}^2 \rho_{\theta}(\tau)}{\rho_{\theta}(\tau)} - \frac{\nabla_{\theta} \rho_{\theta}(\tau) \nabla_{\theta} \rho_{\theta}(\tau)}{(\rho_{\theta}(\tau))^2} \right) \Big|_{\theta = \widetilde{\theta}}
$$

 $\ln \frac{\rho_{\widetilde{\theta}}(\tau)}{4}$ $\left[\frac{\theta}{\rho_{\theta}(\tau)}\right] = \mathbb{E}_{\tau \sim \rho_{\theta}}\left[\ln \rho_{\theta}(\tau) - \ln \rho_{\theta}(\tau)\right]$

$$
\nabla_{\theta}^{2} \mathcal{E}(\theta) \Big|_{\theta = \widetilde{\theta}} = - \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\nabla_{\theta}^{2} \ln \rho_{\theta}(\tau) \right] \Big|_{\theta = \widetilde{\theta}}
$$

$$
\ell(\theta) := KL\left(\rho_{\widetilde{\theta}} | \rho_{\theta}\right) = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}}
$$

$$
= -\sum_{\tau} \rho_{\widetilde{\theta}}(\tau) \left(\frac{\nabla_{\theta}^2 \rho_{\theta}(\tau)}{\rho_{\theta}(\tau)} - \frac{\nabla_{\theta} \rho_{\theta}(\tau) \nabla_{\theta} \rho_{\theta}(\tau)}{(\rho_{\theta}(\tau))^2} \right) \Big|_{\theta = \widetilde{\theta}}
$$

$$
\nabla_{\theta}^{2} \mathcal{E}(\theta) \Big|_{\theta = \widetilde{\theta}} = - \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\nabla_{\theta}^{2} \ln \rho_{\theta}(\tau) \right] \Big|_{\theta = \widetilde{\theta}}
$$

$$
\ell(\theta) := KL\left(\rho_{\widetilde{\theta}} | \rho_{\theta}\right) = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}}
$$

$$
= \sum_{\tau} \rho_{\tilde{\theta}}(\tau) \frac{\nabla_{\theta} \rho_{\theta}(\tau) \nabla_{\theta} \rho_{\theta}(\tau)}{(\rho_{\theta}(\tau))^2} \Big|_{\theta = \tilde{\theta}}
$$

 $\ln \frac{\rho_{\widetilde{\theta}}(\tau)}{4}$ $\left[\frac{\theta}{\rho_{\theta}(\tau)}\right] = \mathbb{E}_{\tau \sim \rho_{\theta}}\left[\ln \rho_{\theta}(\tau) - \ln \rho_{\theta}(\tau)\right]$

$$
= -\sum_{\tau} \rho_{\widetilde{\theta}}(\tau) \left(\frac{\nabla_{\theta}^2 \rho_{\theta}(\tau)}{\rho_{\theta}(\tau)} - \frac{\nabla_{\theta} \rho_{\theta}(\tau) \nabla_{\theta} \rho_{\theta}(\tau)}{(\rho_{\theta}(\tau))^2} \right) \Big|_{\theta = \widetilde{\theta}}
$$

 $= \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\nabla_{\theta} \ln \rho_{\theta}(\tau) \left(\nabla_{\theta} \ln \rho_{\theta}(\tau) \right) \right]$ ⊤ $\left| \ \right|_{\theta=\widetilde{\theta}}$ $\widetilde{\theta}$ $\left[\nabla_{\theta} \ln \rho_{\theta}(\tau) \left(\nabla_{\theta} \ln \rho_{\theta}(\tau)\right)^{\top}\right] \Big|_{\alpha \in \mathbb{R}} e^{d \times d}$

$$
\nabla_{\theta}^{2} \mathcal{E}(\theta) \Big|_{\theta = \widetilde{\theta}} = - \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\nabla_{\theta}^{2} \ln \rho_{\theta}(\tau) \right] \Big|_{\theta = \widetilde{\theta}}
$$

$$
\ell(\theta) := KL\left(\rho_{\widetilde{\theta}} | \rho_{\theta}\right) = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}}
$$

$$
\mathbf{Why?} = \sum_{\tau} \rho_{\tilde{\theta}}(\tau) \frac{\nabla_{\theta} \rho_{\theta}(\tau) \nabla_{\theta} \rho_{\theta}(\tau)}{(\rho_{\theta}(\tau))^2} \Big|_{\theta = \tilde{\theta}}
$$

 $\ln \frac{\rho_{\widetilde{\theta}}(\tau)}{4}$ $\left[\frac{\theta}{\rho_{\theta}(\tau)}\right] = \mathbb{E}_{\tau \sim \rho_{\theta}}\left[\ln \rho_{\theta}(\tau) - \ln \rho_{\theta}(\tau)\right]$

$$
= -\sum_{\tau} \rho_{\widetilde{\theta}}(\tau) \left(\frac{\nabla_{\theta}^2 \rho_{\theta}(\tau)}{\rho_{\theta}(\tau)} - \frac{\nabla_{\theta} \rho_{\theta}(\tau) \nabla_{\theta} \rho_{\theta}(\tau)}{(\rho_{\theta}(\tau))^2} \right) \Big|_{\theta = \widetilde{\theta}}
$$

 $= \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\nabla_{\theta} \ln \rho_{\theta}(\tau) \left(\nabla_{\theta} \ln \rho_{\theta}(\tau) \right) \right]$ ⊤ $\left| \ \right|_{\theta=\widetilde{\theta}}$ $\widetilde{\theta}$ $\sigma_{\theta} \left[\nabla_{\theta} \ln \rho_{\theta}(\tau) \left(\nabla_{\theta} \ln \rho_{\theta}(\tau) \right) \right] \Big|_{\theta = \theta} \in \mathbb{R}^{d \times d}$

It's called the Fisher Information Matrix!

$$
\nabla_{\theta}^{2} \mathcal{E}(\theta) \Big|_{\theta = \widetilde{\theta}} = - \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\nabla_{\theta}^{2} \ln \rho_{\theta}(\tau) \right] \Big|_{\theta = \widetilde{\theta}}
$$

$$
\ell(\theta) := KL\left(\rho_{\widetilde{\theta}} | \rho_{\theta}\right) = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}}
$$

$$
\mathbf{Why?} = \sum_{\tau} \rho_{\tilde{\theta}}(\tau) \frac{\nabla_{\theta} \rho_{\theta}(\tau) \nabla_{\theta} \rho_{\theta}(\tau)}{(\rho_{\theta}(\tau))^2} \Big|_{\theta = \tilde{\theta}}
$$

 $\ln \frac{\rho_{\widetilde{\theta}}(\tau)}{4}$ $\left[\frac{\theta}{\rho_{\theta}(\tau)}\right] = \mathbb{E}_{\tau \sim \rho_{\theta}}\left[\ln \rho_{\theta}(\tau) - \ln \rho_{\theta}(\tau)\right]$

$$
(\pi_{\theta}[1], \pi_{\theta}[2]) := \left(\frac{\exp(\theta)}{1 + \exp(\theta)}, \frac{1}{1 + \exp(\theta)}\right)
$$

 $J(\theta) = 100 \cdot \pi_{\theta}[1] + 1 \cdot \pi_{\theta}[2]$

$$
(\pi_{\theta}[1], \pi_{\theta}[2]) := \left(\frac{\exp(\theta)}{1 + \exp(\theta)}, \frac{1}{1 + \exp(\theta)}\right)
$$

$$
J(\theta) = 100 \cdot \pi_{\theta}[1] + 1 \cdot \pi_{\theta}[2]
$$

θ⋆

19

$$
(\pi_{\theta}[1], \pi_{\theta}[2]) := \left(\frac{\exp(\theta)}{1 + \exp(\theta)}, \frac{1}{1 + \exp(\theta)}\right)
$$

 $J(\theta) = 100 \cdot \pi_{\theta}[1] + 1 \cdot \pi_{\theta}[2]$

θ⋆

19

 θ^{\star}

19

Gradient: $\nabla_{\theta} J(\theta) =$ 99 exp(*θ*) $(1 + \exp(\theta))^2$

 $\mathsf{Exact} \ \mathsf{PG} : \theta^{k+1} = \theta^k + \eta$ 99 exp(*θ^k*) $(1 + \exp(\theta^k))^2$ Gradient: $\nabla_{\theta} J(\theta) =$ 99 exp(*θ*) $(1 + \exp(\theta))^2$

Gradient:
$$
\nabla_{\theta} J(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}
$$

Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$

i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $\nabla_{\theta} J(\theta) \rightarrow 0$ as $\theta \rightarrow \infty$

Gradient:
$$
\nabla_{\theta} J(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}
$$

Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$

Fisher information scalar: $F_{\theta} =$ exp(*θ*) $(1 + \exp(\theta))^2$ i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $\nabla_{\theta} J(\theta) \rightarrow 0$ as $\theta \rightarrow \infty$

$$
\mathsf{NPG}\colon \theta^{k+1} = \theta^k + \eta \frac{\nabla_{\theta} J(\theta^k)}{F_{\theta^k}}
$$

Gradient:
$$
\nabla_{\theta} J(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}
$$

Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$

Fisher information scalar: $F_{\theta} =$ exp(*θ*) $(1 + \exp(\theta))^2$ i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $\nabla_{\theta} J(\theta) \rightarrow 0$ as $\theta \rightarrow \infty$

Gradient:
$$
\nabla_{\theta} J(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}
$$

Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$

Fisher information scalar: $F_{\theta} =$ exp(*θ*) $(1 + \exp(\theta))^2$ i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $\nabla_{\theta} J(\theta) \rightarrow 0$ as $\theta \rightarrow \infty$

 $NPG: \theta^{k+1} = \theta^k + \eta$ $\nabla_{\theta} J(\theta^k)$ *Fθ^k* $= \theta$ ^t + *n* · 99

Gradient:
$$
\nabla_{\theta} J(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}
$$

Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$

Fisher information scalar: $F_{\theta} =$ exp(*θ*) $(1 + \exp(\theta))^2$ i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $\nabla_{\theta} J(\theta) \rightarrow 0$ as $\theta \rightarrow \infty$

$$
\mathsf{NPG}\colon \theta^{k+1} = \theta^k + \eta \frac{\nabla_{\theta} J(\theta^k)}{F_{\theta^k}} = \theta_t + \eta \cdot 99
$$

 NPG moves to $\theta = \infty$ much more quickly (for a fixed *η*)

- Feedback from last lecture • Recap • TRPO -> NPG derivation
	- Proximal Policy Optimization (PPO)
	- Importance sampling

1. Initialize
$$
\theta^0
$$

\n2. For $k = 0,..., K$:
\ntry to approximately solve:
\n
$$
\theta^{k+1} = \arg \max_{\theta} \mathbb{E}_{s_0,...,s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \right]
$$
\n
$$
\text{s.t. } KL\left(\rho_{\pi_{\theta^k}} | \rho_{\pi_{\theta}}\right) \le \delta
$$
\n3. Return π_{θ^K}

• The difficulty with TRPO and NPG is that they could be computationally costly.

Need to solve constrained optimization or matrix inversion ("second order") problems.

1. Initialize
$$
\theta^0
$$

\n2. For $k = 0,..., K$:
\ntry to approximately solve:
\n
$$
\theta^{k+1} = \arg \max_{\theta} \mathbb{E}_{s_0,...,s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \right]
$$
\n
$$
\text{s.t. } KL\left(\rho_{\pi_{\theta^k}} | \rho_{\pi_{\theta}}\right) \le \delta
$$
\n3. Return π_{θ^K}

- The difficulty with TRPO and NPG is that they could be computationally costly.
- Can we use a method which only uses gradients?

Need to solve constrained optimization or matrix inversion ("second order") problems.

1. Initialize
$$
\theta^0
$$

\n2. For $k = 0,..., K$:
\ntry to approximately solve:
\n
$$
\theta^{k+1} = \arg \max_{\theta} \mathbb{E}_{s_0,...,s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \right]
$$
\n
$$
\text{s.t. } KL\left(\rho_{\pi_{\theta^k}} | \rho_{\pi_{\theta}}\right) \le \delta
$$
\n3. Return π_{θ^K}

- The difficulty with TRPO and NPG is that they could be computationally costly.
- Can we use a method which only uses gradients?

Need to solve constrained optimization or matrix inversion ("second order") problems.

Let's try to use a "Lagrangian relaxation" of TRPO

1. Initialize
$$
\theta^0
$$

\n2. For $k = 0,..., K$:
\ntry to approximately solve:
\n
$$
\theta^{k+1} = \arg \max_{\theta} \mathbb{E}_{s_0,...,s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \right]
$$
\n
$$
\text{s.t. } KL\left(\rho_{\pi_{\theta^k}} | \rho_{\pi_{\theta}}\right) \le \delta
$$
\n3. Return π_{θ^K}

$$
\mathbb{E}_{a_h \sim \pi_\theta(\cdot | s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] - \lambda KL \left(\rho_{\pi_{\theta^k}} | \rho_{\pi_{\theta}} \right)
$$

regularization

Proximal Policy Optimization (PPO)

 $KL\left(\rho_{\pi_{\theta^k}} | \rho_{\pi_{\theta}}\right) = \mathbb{E}_{\tau \sim \rho_{\pi}}$ θ^k [ln $\rho_{\pi_{\theta^k}}\!(\tau)$ $\rho_{\pi_{\theta}}(\tau)$]

 $KL\left(\rho_{\pi_{\theta^k}} | \rho_{\pi_{\theta}}\right) = \mathbb{E}_{\tau \sim \rho_{\pi}}$ θ^k [ln $\rho_{\pi_{\theta^k}}\!(\tau)$ $\rho_{\pi_\theta}(\tau)$

 $\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 | s_0)P(s_1 | s_0, a_0) \dots P(s_{H-1} | s_{H-2}, a_{H-2})\pi_{\theta}(a_{H-1} | s_{H-1})$

πθk(*ah* |*sh*) $\pi_{\theta}(a_h | s_h)$

$$
KL\left(\rho_{\pi_{\theta^k}}|\rho_{\pi_{\theta}}\right) = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}}\left[\ln \frac{\rho_{\pi_{\theta^k}}(\tau)}{\rho_{\pi_{\theta}}(\tau)}\right]
$$

$$
= \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}}\left[\sum_{h=0}^{H-1} \ln \frac{\pi}{\tau}\right]
$$

 $\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 | s_0)P(s_1 | s_0, a_0) \dots P(s_{H-1} | s_{H-2}, a_{H-2})\pi_{\theta}(a_{H-1} | s_{H-1})$

$$
KL\left(\rho_{\pi_{\theta^k}}|\rho_{\pi_{\theta}}\right) = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}}\left[\ln \frac{\rho_{\pi_{\theta^k}}(\tau)}{\rho_{\pi_{\theta}(\tau)}}\right]
$$

\n
$$
= \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}}\left[\sum_{h=0}^{H-1} \ln \frac{\pi_{\theta^k}(a_h \mid s_h)}{\pi_{\theta}(a_h \mid s_h)}\right]
$$

\n
$$
= \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}}\left[\sum_{h=0}^{H-1} \ln \frac{1}{\pi_{\theta}(a_h \mid s_h)}\right] + \left[\text{term not a function of } \theta\right]
$$

 $\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 | s_0)P(s_1 | s_0, a_0) \dots P(s_{H-1} | s_{H-2}, a_{H-2})\pi_{\theta}(a_{H-1} | s_{H-1})$

Proximal Policy Optimization (PPO)

1. Initialize
$$
\theta^0
$$

\n2. For $k = 0,..., K$:
\nuse SGD to approximately solve:
\n
$$
\theta^{k+1} = \arg \max_{\theta} \ell^k(\theta)
$$
\nwhere:
\n
$$
\ell^k(\theta) := \mathbb{E}_{s_0,...,s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \right] - \lambda \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \ln \frac{1}{\pi_{\theta}(a_h)}, \ldots, \ln \frac{1}{\pi_{\theta}(a_h)} \right]
$$
\n3. Return π_{θ^K}

How do we estimate this objective?

- Feedback from last lecture • Recap
	- TRPO -> NPG derivation
	- Proximal Policy Optimization (PPO)
	- Importance sampling

• Recall that SGD requires an unbiased estimate of the objective function's gradient

- Recall that SGD requires an unbiased estimate of the objective function's gradient
- This was easy when the objective function was an expectation, and the only θ -dependence appears inside the expectation
	- This was true for supervised learning / ERM
	- Not true for RL, and was part of why we needed likelihood ratio method in REINFORCE

- Recall that SGD requires an unbiased estimate of the objective function's gradient
- This was easy when the objective function was an expectation, and the only θ -dependence appears inside the expectation
	- This was true for supervised learning / ERM
	-
- Not true for RL, and was part of why we needed likelihood ratio method in REINFORCE • When not true (as in PPO), we want to make it so, if possible

- Recall that SGD requires an unbiased estimate of the objective function's gradient
- This was easy when the objective function was an expectation, and the only θ -dependence appears inside the expectation
	- This was true for supervised learning / ERM
	-
- Not true for RL, and was part of why we needed likelihood ratio method in REINFORCE • When not true (as in PPO), we want to make it so, if possible
- Enter: importance sampling
	- rewrites expectations by changing the distribution the expectation is over
	- we will use this to move that distribution's *θ*-dependence inside the expectation

- Recall that SGD requires an unbiased estimate of the objective function's gradient
- This was easy when the objective function was an expectation, and the only θ -dependence appears inside the expectation
	- This was true for supervised learning / ERM
	-
- Not true for RL, and was part of why we needed likelihood ratio method in REINFORCE • When not true (as in PPO), we want to make it so, if possible
- Enter: importance sampling
	- rewrites expectations by changing the distribution the expectation is over
	- we will use this to move that distribution's *θ*-dependence inside the expectation
- Key point: once all θ -dependence inside objective's expectation,
	- Can estimate objective unbiasedly via sample average
	- 26 • Can estimate objective's gradient unbiasedly via gradient of sample average

Importance Sampling

Importance Sampling

• Suppose we seek to estimate $\mathbb{E}_{x \sim \widetilde{p}}[f(x)]$.

Importance Sampling

- Suppose we seek to estimate $\mathbb{E}_{x \sim \widetilde{p}}[f(x)]$.
- - f and \widetilde{p} are known.
	- *f* and \widetilde{p} are known.
• we are not able to collect values of $f(x)$ for $x \sim \widetilde{p}$. (e.g. we have already collected our data from some costly experiment).

• Assume: we have an (i.i.d.) dataset $x_1, \ldots x_N$, where $x_i \sim p$, where p is known, and
- Suppose we seek to estimate $\mathbb{E}_{x \sim \widetilde{p}}[f(x)]$.
- - f and \widetilde{p} are known.
	- *f* and \widetilde{p} are known.
• we are not able to collect values of $f(x)$ for $x \sim \widetilde{p}$. (e.g. we have already collected our data from some costly experiment).
- Note: $\mathbb{E}_{x \sim \widetilde{p}} [f(x)] =$

- Suppose we seek to estimate $\mathbb{E}_{x \sim \widetilde{p}}[f(x)]$.
- - f and \widetilde{p} are known.
	- *f* and \widetilde{p} are known.
• we are not able to collect values of $f(x)$ for $x \sim \widetilde{p}$. (e.g. we have already collected our data from some costly experiment).

• Note:
$$
\mathbb{E}_{x \sim \widetilde{p}} [f(x)] = \mathbb{E}_{x \sim p} \left[\frac{\widetilde{p}(x)}{p(x)} f(x) \right]
$$

- Suppose we seek to estimate $\mathbb{E}_{x \sim \widetilde{p}}[f(x)]$.
- - f and \widetilde{p} are known.

•
•

- *f* and \widetilde{p} are known.
• we are not able to collect values of $f(x)$ for $x \sim \widetilde{p}$. (e.g. we have already collected our data from some costly experiment).
- Note: $\mathbb{E}_{x \sim \widetilde{p}} [f(x)] = \mathbb{E}_{x \sim p}$ $\widetilde{p}(x)$ *p*(*x*) *f*(*x*) l

So an unbiased estimate of $\mathbb{E}_{x \sim \widetilde{p}}[f(x)]$ is given by

is given by
$$
\frac{1}{N} \sum_{i=1}^{N} \frac{\widetilde{p}(x_i)}{p(x_i)} f(x_i)
$$

- Suppose we seek to estimate $\mathbb{E}_{x \sim \widetilde{p}}[f(x)]$.
- - f and \widetilde{p} are known.
	- *f* and \widetilde{p} are known.
• we are not able to collect values of $f(x)$ for $x \sim \widetilde{p}$. (e.g. we have already collected our data from some costly experiment).
- Note: $\mathbb{E}_{x \sim \widetilde{p}} [f(x)] = \mathbb{E}_{x \sim p}$ $\widetilde{p}(x)$ *p*(*x*) *f*(*x*) l

So an unbiased estimate of $\mathbb{E}_{x \sim \widetilde{p}}[f(x)]$ is given by

is given by
$$
\frac{1}{N} \sum_{i=1}^{N} \frac{\widetilde{p}(x_i)}{p(x_i)} f(x_i)
$$

• Terminology:

•
•

- $\widetilde{p}(x)$ is the target distribution
- $p(x)$ is the proposal distribution
- $\widetilde{p}(x)/p(x)$ is the likelihood ratio or importance weight

- $\widetilde{p}(x)$ is the target distribution
- $p(x)$ is the proposal distribution
- $\widetilde{p}(x)/p(x)$ is the likelihood ratio or importance weight
- What about the variance of this estimator?

• Assume: we have an (i.i.d.) dataset $x_1, \ldots x_N$, where $x_i \sim p$, where p is known, and

- Suppose we seek to estimate $\mathbb{E}_{x \sim \widetilde{p}}[f(x)]$.
- - f and \widetilde{p} are known.
	- *f* and \widetilde{p} are known.
• we are not able to collect values of $f(x)$ for $x \sim \widetilde{p}$. (e.g. we have already collected our data from some costly experiment).
- Note: $\mathbb{E}_{x \sim \widetilde{p}} [f(x)] = \mathbb{E}_{x \sim p}$ $\widetilde{p}(x)$ *p*(*x*) *f*(*x*)

So an unbiased estimate of $\mathbb{E}_{x \sim \widetilde{p}}[f(x)]$ is given by

• Terminology:

•
•

$$
\frac{1}{\text{ is given by } \frac{1}{N} \sum_{i=1}^{N} \frac{\widetilde{p}(x_i)}{p(x_i)} f(x_i)}
$$

Importance Sampling & Variance

Back to Estimating *ℓ^k* (*θ*)

Back to Estimating *ℓ^k* (*θ*)

 $\mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \Big| - \lambda \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}}$ *H*−1 ∑ *h*=0 ln 1 $\pi_{\theta}(a_h | s_h)$

• To estimate

$$
\ell^{k}(\theta) := \mathbb{E}_{s_0, \dots, s_{H-1} \sim \rho_{\pi_{\theta^k}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)}\left[A\right]\right]
$$

Back to Estimating *ℓ^k* (*θ*)

• To estimate

$$
\ell^k(\theta) := \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \right] - \lambda \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \ln \frac{1}{\pi_{\theta}(a_h | s_h)} \right]
$$

• we will use importance sampling:

$$
= \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta^k}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta^k}(\cdot | s_h)} \left[\frac{\pi_{\theta}(a_h | s_h)}{\pi_{\theta^k}(a_h | s_h)} A^{\pi_{\theta^k}(s_h, a_h, h)}\right] - \lambda \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}}\left[\sum_{h=0}^{H-1} \ln \frac{1}{\pi_{\theta}(a_h | s_h)}\right]\right]
$$

Back to Estimating *ℓ^k* (*θ*)

• To estimate

$$
\ell^k(\theta) := \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \right] - \lambda \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \ln \frac{1}{\pi_{\theta}(a_h | s_h)} \right]
$$

• we will use importance sampling:

$$
= \mathbb{E}_{s_0, \ldots, s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta^k}(\cdot | s_h)} \left[\frac{\pi_{\theta}(a_h | s_h)}{\pi_{\theta^k}(a_h | s_h)} A^{\pi_{\theta^k}(s_h, a_h, h)} \right] - \lambda \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \ln \frac{1}{\pi_{\theta}(a_h | s_h)} \right]
$$

$$
= \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \left(\frac{\pi_{\theta}(a_h | s_h)}{\pi_{\theta^k}(a_h | s_h)} A^{\pi_{\theta^k}(s_h, a_h, h)} - \lambda \ln \frac{1}{\pi_{\theta}(a_h | s_h)} \right) \right]
$$

Estimating $\ell^k(\theta)$ and its gradient

1. Using N trajectories sampled under $\rho_{\pi_{\theta^k}}$ to learn a $\widetilde{b}(s,h) \approx V_h^{\pi_{\theta^k}}$ $\frac{\partial \pi}{\partial h} \delta(x)$

Estimating $\ell^k(\theta)$ and its gradient

 \widetilde{b} $b_h^{}$

1. Using N trajectories sampled under $\rho_{\pi_{\theta^k}}$ to learn a $\widetilde{b}(s,h) \approx V_h^{\pi_{\theta^k}}$ $\frac{\partial \pi}{\partial h} \delta(x)$ 2. Obtain M NEW trajectories $\tau_1, ... \tau_M \thicksim \rho_{\pi_{\theta^k}}$ Set $\widehat{\ell}^k(\theta) =$ for SGD, use gradient: 1 *M M* ∑ *m*=1 *H*−1 ∑ *^h*=0 ($g(\theta) := \nabla_{\theta} \widehat{e}^k$

Estimating $\ell^k(\theta)$ and its gradient

 \sim

$$
\text{der } \rho_{\pi_{\theta^k}} \text{ to learn a } b_h
$$

$$
\frac{\pi_{\theta}(a_h^m \mid s_h^m)}{\pi_{\theta}(a_h^m \mid s_h^m)} \left(R_h(\tau_m) - \widetilde{b}(s_h^m, h)\right) - \lambda \ln \frac{1}{\pi_{\theta}(a_h^m \mid s_h^m)}
$$

$$
\int_{\theta} \widehat{\ell}^{k}(\theta)
$$

1. Using N trajectories sampled under $\rho_{\pi_{\theta^k}}$ to learn a $\widetilde{b}(s,h) \approx V_h^{\pi_{\theta^k}}$ $\frac{\partial \pi}{\partial h} \delta(x)$ 2. Obtain M NEW trajectories $\tau_1, ... \tau_M \thicksim \rho_{\pi_{\theta^k}}$ Set $\widehat{\ell}^k(\theta) =$ for SGD, use gradient: 1 *M M* ∑ *m*=1 *H*−1 ∑ *^h*=0 ($g(\theta) := \nabla_{\theta} \widehat{e}^k$

 $g(\theta^k)$ is unbiased for $\nabla_{\theta} \ell^k$

Estimating $\ell^k(\theta)$ and its gradient

 \sim

$$
\text{der } \rho_{\pi_{\theta^k}} \text{ to learn a } b_h
$$

$$
\frac{\pi_{\theta}(a_h^m \mid s_h^m)}{\pi_{\theta}(a_h^m \mid s_h^m)} \left(R_h(\tau_m) - \widetilde{b}(s_h^m, h)\right) - \lambda \ln \frac{1}{\pi_{\theta}(a_h^m \mid s_h^m)}
$$

$$
\int_{\theta} \widehat{\ell}^{-k}(\theta)
$$

$$
\left.\text{and for }\nabla_{\theta} \ell^k(\theta)\right|_{\theta=\theta^k}
$$

Summary:

Feedback: bit.ly/3RHtlxy

Attendance: bit.ly/3RcTC9T

- 1. NPG: a simpler way to do TRPO, a "pre-conditioned" gradient method.
- 2. PPO: "first order" approximation to TRPO