
From TRPO/NPG to Proximal Policy
Optimization (PPO)

 
Lucas Janson 

CS/Stat 184(0): Introduction to Reinforcement Learning  
Fall 2024

1

• Feedback from last lecture

• Recap

• TRPO -> NPG derivation

• Proximal Policy Optimization (PPO)

• Importance sampling

Today

2

Feedback from feedback forms

3

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

3

• Feedback from last lecture

• Recap

• TRPO -> NPG derivation

• Proximal Policy Optimization (PPO)

• Importance sampling

Today

4

PG with a Learned Baseline:

5

PG with a Learned Baseline:

5

Let g′ (θ, τ, b()) :=
H−1

∑
h=0

∇θln πθ(ah |sh)(Rh(τ) − b(sh, h))

PG with a Learned Baseline:

1. Initialize , parameters: θ0 η1, η2, …

5

Let g′ (θ, τ, b()) :=
H−1

∑
h=0

∇θln πθ(ah |sh)(Rh(τ) − b(sh, h))

PG with a Learned Baseline:

1. Initialize , parameters: θ0 η1, η2, …
2. For : k = 0,…

5

Let g′ (θ, τ, b()) :=
H−1

∑
h=0

∇θln πθ(ah |sh)(Rh(τ) − b(sh, h))

PG with a Learned Baseline:

1. Initialize , parameters: θ0 η1, η2, …
2. For : k = 0,…

1. Supervised Learning: Using trajectories sampled under , estimate a baseline  N πθk b̃
b̃(s, h) ≈ Vθk

h (s)

5

Let g′ (θ, τ, b()) :=
H−1

∑
h=0

∇θln πθ(ah |sh)(Rh(τ) − b(sh, h))

PG with a Learned Baseline:

1. Initialize , parameters: θ0 η1, η2, …
2. For : k = 0,…

1. Supervised Learning: Using trajectories sampled under , estimate a baseline  N πθk b̃
b̃(s, h) ≈ Vθk

h (s)
2. Obtain a trajectory  

Compute  
τ ∼ ρθk

g′ (θk, τ, b̃())

5

Let g′ (θ, τ, b()) :=
H−1

∑
h=0

∇θln πθ(ah |sh)(Rh(τ) − b(sh, h))

PG with a Learned Baseline:

1. Initialize , parameters: θ0 η1, η2, …
2. For : k = 0,…

1. Supervised Learning: Using trajectories sampled under , estimate a baseline  N πθk b̃
b̃(s, h) ≈ Vθk

h (s)
2. Obtain a trajectory  

Compute  
τ ∼ ρθk

g′ (θk, τ, b̃())

3. Update: θk+1 = θk + ηkg′ (θk, τ, b̃())

5

Let g′ (θ, τ, b()) :=
H−1

∑
h=0

∇θln πθ(ah |sh)(Rh(τ) − b(sh, h))

PG with a Learned Baseline:

1. Initialize , parameters: θ0 η1, η2, …
2. For : k = 0,…

1. Supervised Learning: Using trajectories sampled under , estimate a baseline  N πθk b̃
b̃(s, h) ≈ Vθk

h (s)
2. Obtain a trajectory  

Compute  
τ ∼ ρθk

g′ (θk, τ, b̃())

3. Update: θk+1 = θk + ηkg′ (θk, τ, b̃())

5

Note that regardless of our choice of , we still get unbiased gradient estimates.b̃

Let g′ (θ, τ, b()) :=
H−1

∑
h=0

∇θln πθ(ah |sh)(Rh(τ) − b(sh, h))

The Performance Difference Lemma (PDL)

6

The Performance Difference Lemma (PDL)

6

•Let be the distribution of trajectories from starting state acting under .  
(we are making the starting distribution explicit now).

ρπ̃,s s π̃

The Performance Difference Lemma (PDL)

6

•Let be the distribution of trajectories from starting state acting under .  
(we are making the starting distribution explicit now).

ρπ̃,s s π̃

•For any two policies and and any state , 

	  

 

π π̃ s

Vπ̃(s) − Vπ(s) = &τ∼ρπ̃,s [
H−1

∑
h=0

Aπ(sh, ah, h)]

The Performance Difference Lemma (PDL)

6

•Let be the distribution of trajectories from starting state acting under .  
(we are making the starting distribution explicit now).

ρπ̃,s s π̃

•For any two policies and and any state , 

	  

 

π π̃ s

Vπ̃(s) − Vπ(s) = &τ∼ρπ̃,s [
H−1

∑
h=0

Aπ(sh, ah, h)]
Comments:

The Performance Difference Lemma (PDL)

6

•Let be the distribution of trajectories from starting state acting under .  
(we are making the starting distribution explicit now).

ρπ̃,s s π̃

•For any two policies and and any state , 

	  

 

π π̃ s

Vπ̃(s) − Vπ(s) = &τ∼ρπ̃,s [
H−1

∑
h=0

Aπ(sh, ah, h)]
Comments:
•Helps us think about error analysis, instabilities of fitted PI, and sub-optimality.

The Performance Difference Lemma (PDL)

6

•Let be the distribution of trajectories from starting state acting under .  
(we are making the starting distribution explicit now).

ρπ̃,s s π̃

•For any two policies and and any state , 

	  

 

π π̃ s

Vπ̃(s) − Vπ(s) = &τ∼ρπ̃,s [
H−1

∑
h=0

Aπ(sh, ah, h)]
Comments:
•Helps us think about error analysis, instabilities of fitted PI, and sub-optimality.
•Helps to understand algorithm design (TRPO, NPG, PPO)

The Performance Difference Lemma (PDL)

6

•Let be the distribution of trajectories from starting state acting under .  
(we are making the starting distribution explicit now).

ρπ̃,s s π̃

•For any two policies and and any state , 

	  

 

π π̃ s

Vπ̃(s) − Vπ(s) = &τ∼ρπ̃,s [
H−1

∑
h=0

Aπ(sh, ah, h)]
Comments:
•Helps us think about error analysis, instabilities of fitted PI, and sub-optimality.
•Helps to understand algorithm design (TRPO, NPG, PPO)
•This also motivates the use of “local” methods (e.g. policy gradient descent)

Back to Fitted Policy Iteration

7

Back to Fitted Policy Iteration

7

•Suppose gets updated to . How much worse could be?πk πk+1 πk+1

Back to Fitted Policy Iteration

7

•Suppose gets updated to . How much worse could be?πk πk+1 πk+1

• In Fitted Policy Iteration, is achieved via supervised learning on ̂Aπk ≈ Aπk τ1, …τN ∼ ρπk

Back to Fitted Policy Iteration

7

•Suppose gets updated to . How much worse could be?πk πk+1 πk+1

• In Fitted Policy Iteration, is achieved via supervised learning on ̂Aπk ≈ Aπk τ1, …τN ∼ ρπk

•This means we expect &τ∼ρπk,s [
H−1

∑
h=0

̂Aπk(sh, ah, h)] ≈ &τ∼ρπk,s [
H−1

∑
h=0

Aπk(sh, ah, h)]

Back to Fitted Policy Iteration

7

•Suppose gets updated to . How much worse could be?πk πk+1 πk+1

• In Fitted Policy Iteration, is achieved via supervised learning on ̂Aπk ≈ Aπk τ1, …τN ∼ ρπk

•This means we expect &τ∼ρπk,s [
H−1

∑
h=0

̂Aπk(sh, ah, h)] ≈ &τ∼ρπk,s [
H−1

∑
h=0

Aπk(sh, ah, h)]
• In particular, should be close to where visits often… ̂Aπk Aπk πk

Back to Fitted Policy Iteration

7

•Suppose gets updated to . How much worse could be?πk πk+1 πk+1

• In Fitted Policy Iteration, is achieved via supervised learning on ̂Aπk ≈ Aπk τ1, …τN ∼ ρπk

•This means we expect &τ∼ρπk,s [
H−1

∑
h=0

̂Aπk(sh, ah, h)] ≈ &τ∼ρπk,s [
H−1

∑
h=0

Aπk(sh, ah, h)]
• In particular, should be close to where visits often… ̂Aπk Aπk πk

•But it could be very bad in places visits rarely, and nothing stops from visiting those
bad places very often!

πk πk+1

Back to Fitted Policy Iteration

7

•Suppose gets updated to . How much worse could be?πk πk+1 πk+1

• In Fitted Policy Iteration, is achieved via supervised learning on ̂Aπk ≈ Aπk τ1, …τN ∼ ρπk

•This means we expect &τ∼ρπk,s [
H−1

∑
h=0

̂Aπk(sh, ah, h)] ≈ &τ∼ρπk,s [
H−1

∑
h=0

Aπk(sh, ah, h)]
• In particular, should be close to where visits often… ̂Aπk Aπk πk

•But it could be very bad in places visits rarely, and nothing stops from visiting those
bad places very often!

πk πk+1

•So could end up being (much) worse than  πk+1 πk

Back to Fitted Policy Iteration

7

•Suppose gets updated to . How much worse could be?πk πk+1 πk+1

• In Fitted Policy Iteration, is achieved via supervised learning on ̂Aπk ≈ Aπk τ1, …τN ∼ ρπk

•This means we expect &τ∼ρπk,s [
H−1

∑
h=0

̂Aπk(sh, ah, h)] ≈ &τ∼ρπk,s [
H−1

∑
h=0

Aπk(sh, ah, h)]
• In particular, should be close to where visits often… ̂Aπk Aπk πk

•But it could be very bad in places visits rarely, and nothing stops from visiting those
bad places very often!

πk πk+1

•So could end up being (much) worse than  πk+1 πk

•Problem is a mismatch between expectations: what we really want is  

&τ∼ρπk+1,s [
H−1

∑
h=0

̂Aπk(sh, ah, h)] ≈ &τ∼ρπk+1,s [
H−1

∑
h=0

Aπk(sh, ah, h)]

Back to Fitted Policy Iteration

7

•Suppose gets updated to . How much worse could be?πk πk+1 πk+1

• In Fitted Policy Iteration, is achieved via supervised learning on ̂Aπk ≈ Aπk τ1, …τN ∼ ρπk

•This means we expect &τ∼ρπk,s [
H−1

∑
h=0

̂Aπk(sh, ah, h)] ≈ &τ∼ρπk,s [
H−1

∑
h=0

Aπk(sh, ah, h)]
• In particular, should be close to where visits often… ̂Aπk Aπk πk

•But it could be very bad in places visits rarely, and nothing stops from visiting those
bad places very often!

πk πk+1

•So could end up being (much) worse than  πk+1 πk

•Problem is a mismatch between expectations: what we really want is  

&τ∼ρπk+1,s [
H−1

∑
h=0

̂Aπk(sh, ah, h)] ≈ &τ∼ρπk+1,s [
H−1

∑
h=0

Aπk(sh, ah, h)]
•One way to ensure this: keep πk+1 ≈ πk

1. Initialize

2. For :  

try to approximately solve: 

	  

	 	 s.t.

3. Return

θ0

k = 0,…, K

θk+1 = arg max
θ

&s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]
KL (ρπθk |ρπθ) ≤ δ

πθK

8

• We want to maximize local advantage against ,  
but we want the new policy to be close to (in the KL sense)

• How do we implement this with sampled trajectories?)

πθk

πθk

Trust Region Policy Optimization (TRPO)

KL-divergence: measures the distance between two distributions

Given two distributions , where ,

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = &x∼P [ln P(x)
Q(x)]

9

KL-divergence: measures the distance between two distributions

Given two distributions , where ,

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = &x∼P [ln P(x)
Q(x)]

Examples:

If , then Q = P KL(P |Q) = KL(Q |P) = 0

9

KL-divergence: measures the distance between two distributions

Given two distributions , where ,

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = &x∼P [ln P(x)
Q(x)]

Examples:

If , then Q = P KL(P |Q) = KL(Q |P) = 0

If , then P = ,(μ1, σ2I), Q = ,(μ2, σ2I) KL(P |Q) = 1
2σ2 ∥μ1 − μ2∥2

9

KL-divergence: measures the distance between two distributions

Given two distributions , where ,

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = &x∼P [ln P(x)
Q(x)]

Examples:

If , then Q = P KL(P |Q) = KL(Q |P) = 0

If , then P = ,(μ1, σ2I), Q = ,(μ2, σ2I) KL(P |Q) = 1
2σ2 ∥μ1 − μ2∥2

Fact:
, and is if and only if KL(P |Q) ≥ 0 0 P = Q

9

TRPO is locally equivalent to a much simpler algorithm

max
θ

&s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]
s.t. KL (ρπθk |ρπθ) ≤ δ

Intuition: maximize local advantage
subject to being incremental (in KL)

TRPO at iteration k:

10

TRPO is locally equivalent to a much simpler algorithm

max
θ

&s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]
s.t. KL (ρπθk |ρπθ) ≤ δ

First-order Taylor expansion at θk

second-order Taylor expansion at θk

Intuition: maximize local advantage
subject to being incremental (in KL)

TRPO at iteration k:

10

TRPO is locally equivalent to a much simpler algorithm

max
θ

&s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]
s.t. KL (ρπθk |ρπθ) ≤ δ

First-order Taylor expansion at θk

second-order Taylor expansion at θk

Intuition: maximize local advantage
subject to being incremental (in KL)

TRPO at iteration k:

10

TRPO is locally equivalent to a much simpler algorithm

max
θ

&s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]
s.t. KL (ρπθk |ρπθ) ≤ δ

First-order Taylor expansion at θk

second-order Taylor expansion at θk

max
θ

∇θJ(θk)⊤(θ − θk)Intuition: maximize local advantage
subject to being incremental (in KL)

TRPO at iteration k:

10

TRPO is locally equivalent to a much simpler algorithm

max
θ

&s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]
s.t. KL (ρπθk |ρπθ) ≤ δ

First-order Taylor expansion at θk

second-order Taylor expansion at θk

max
θ

∇θJ(θk)⊤(θ − θk)
s.t. (θ − θk)⊤Fθk(θ − θk) ≤ δ

Intuition: maximize local advantage
subject to being incremental (in KL)

TRPO at iteration k:

10

TRPO is locally equivalent to a much simpler algorithm

max
θ

&s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]
s.t. KL (ρπθk |ρπθ) ≤ δ

First-order Taylor expansion at θk

second-order Taylor expansion at θk

max
θ

∇θJ(θk)⊤(θ − θk)
s.t. (θ − θk)⊤Fθk(θ − θk) ≤ δ

(Where is the “Fisher Information Matrix”)Fθk

Intuition: maximize local advantage
subject to being incremental (in KL)

TRPO at iteration k:

10

1. Initialize

2. For :  

	  

	 s.t.

3. Return

θ0

k = 0,…, K
θk+1 = arg max

θ
∇θJ(θk)⊤(θ − θk)

(θ − θk)⊤Fθk(θ − θk) ≤ δ
πθK

11

Natural Policy Gradient (NPG): A “leading order” equivalent program to TRPO:

1. Initialize

2. For :  

	  

	 s.t.

3. Return

θ0

k = 0,…, K
θk+1 = arg max

θ
∇θJ(θk)⊤(θ − θk)

(θ − θk)⊤Fθk(θ − θk) ≤ δ
πθK

11

Natural Policy Gradient (NPG): A “leading order” equivalent program to TRPO:

• Where is the gradient of evaluated at , and

• is (basically) the Fisher information matrix at , defined as:  
	  
 

 	

∇θJ(θk) J(θ) θk

Fθ θ ∈ ℝd

Fθ := &τ∼ρπθ [∇θln ρθ(τ)(∇θln ρθ(τ))⊤] ∈ ℝd×d

= &τ∼ρπθ [
H−1

∑
h=0

∇θln πθ(ah |sh)(∇θln πθ(ah |sh))⊤]

NPG has a closed form update!

12

1. Initialize

2. For :  

	  

	 s.t.

3. Return

θ0

k = 0,…, K
θk+1 = arg max

θ
∇θJ(θk)⊤(θ − θk)

(θ − θk)⊤Fθk(θ − θk) ≤ δ
πθK

NPG has a closed form update!

Linear objective and quadratic convex constraint: we can solve it optimally!

12

1. Initialize

2. For :  

	  

	 s.t.

3. Return

θ0

k = 0,…, K
θk+1 = arg max

θ
∇θJ(θk)⊤(θ − θk)

(θ − θk)⊤Fθk(θ − θk) ≤ δ
πθK

NPG has a closed form update!

Linear objective and quadratic convex constraint: we can solve it optimally!
Indeed this gives us:

θk+1 = θk + ηF−1
θk ∇θJ(θk)

12

1. Initialize

2. For :  

	  

	 s.t.

3. Return

θ0

k = 0,…, K
θk+1 = arg max

θ
∇θJ(θk)⊤(θ − θk)

(θ − θk)⊤Fθk(θ − θk) ≤ δ
πθK

NPG has a closed form update!

Linear objective and quadratic convex constraint: we can solve it optimally!
Indeed this gives us:

θk+1 = θk + ηF−1
θk ∇θJ(θk)

Where η = δ
∇θJ(θk)⊤F−1

θk ∇θJ(θk)
12

1. Initialize

2. For :  

	  

	 s.t.

3. Return

θ0

k = 0,…, K
θk+1 = arg max

θ
∇θJ(θk)⊤(θ − θk)

(θ − θk)⊤Fθk(θ − θk) ≤ δ
πθK

1. Initialize

2. For :

• Obtain approximation of Policy Gradient:

• Obtain approximation of Fisher information:

• Natural Gradient Ascent:

3. Return

θ0

k = 0,…, K
̂g ≈ ∇θJ(θk)

̂F ≈ Fθk

θk+1 = θk + η ̂F−1 ̂g
πθK

13

An Implementation: Sample Based NPG

1. Initialize

2. For :

• Obtain approximation of Policy Gradient:

• Obtain approximation of Fisher information:

• Natural Gradient Ascent:

3. Return

θ0

k = 0,…, K
̂g ≈ ∇θJ(θk)

̂F ≈ Fθk

θk+1 = θk + η ̂F−1 ̂g
πθK

13

An Implementation: Sample Based NPG

(We will implement it in HW4 on Cartpole)

• Feedback from last lecture

• Recap

• TRPO -> NPG derivation

• Proximal Policy Optimization (PPO)

• Importance sampling

Today

14

First Order Expansion on the Objective Function

f k(θ) := &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]

15

First Order Expansion on the Objective Function

Let’s look at a first order Taylor expansion around :θ = θk

f k(θ) := &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]

15

First Order Expansion on the Objective Function

Let’s look at a first order Taylor expansion around :θ = θk

f k(θ) := &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]

15

≈ f k(θk) + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk = constant + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk

First Order Expansion on the Objective Function

Let’s look at a first order Taylor expansion around :θ = θk

f k(θ) := &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]

15

≈ f k(θk) + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk = constant + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk

x = ∇θ&s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]] θ=θk

First Order Expansion on the Objective Function

Let’s look at a first order Taylor expansion around :θ = θk

f k(θ) := &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]

15

≈ f k(θk) + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk = constant + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk

= &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

∇θ&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]
θ=θk]

x = ∇θ&s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]] θ=θk

First Order Expansion on the Objective Function

Let’s look at a first order Taylor expansion around :θ = θk

f k(θ) := &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]

15

= &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθk(⋅|sh) [∇θln πθ(ah |sh)Aπθk(sh, ah, h)]] θ=θk

≈ f k(θk) + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk = constant + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk

= &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

∇θ&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]
θ=θk]

x = ∇θ&s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]] θ=θk

First Order Expansion on the Objective Function

Let’s look at a first order Taylor expansion around :θ = θk

f k(θ) := &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]

15

= &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθk(⋅|sh) [∇θln πθ(ah |sh)Aπθk(sh, ah, h)]] θ=θk

≈ f k(θk) + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk = constant + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk

= &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

∇θ&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]
θ=θk]

= &τ∼ρπθk [
H−1

∑
h=0

∇θln πθ(ah |sh)Aπθk(sh, ah, h)] θ=θk

x = ∇θ&s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]] θ=θk

First Order Expansion on the Objective Function

Let’s look at a first order Taylor expansion around :θ = θk

f k(θ) := &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]

15

= &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθk(⋅|sh) [∇θln πθ(ah |sh)Aπθk(sh, ah, h)]] θ=θk

≈ f k(θk) + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk = constant + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk

= &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

∇θ&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]
θ=θk]

= &τ∼ρπθk [
H−1

∑
h=0

∇θln πθ(ah |sh)Aπθk(sh, ah, h)] θ=θk
= &τ∼ρπθk [

H−1

∑
h=0

∇θln πθ(ah |sh)Rh(τ)] θ=θk

x = ∇θ&s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]] θ=θk

First Order Expansion on the Objective Function

Let’s look at a first order Taylor expansion around :θ = θk

f k(θ) := &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]

15

= &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθk(⋅|sh) [∇θln πθ(ah |sh)Aπθk(sh, ah, h)]] θ=θk

≈ f k(θk) + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk = constant + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk

= &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

∇θ&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]
θ=θk]

= &τ∼ρπθk [
H−1

∑
h=0

∇θln πθ(ah |sh)Aπθk(sh, ah, h)] θ=θk

= ∇θJ(θ) |θ=θk= &τ∼ρπθk [
H−1

∑
h=0

∇θln πθ(ah |sh)Rh(τ)] θ=θk

x = ∇θ&s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]] θ=θk

Taylor Expansion on the Constraint  
(we need it to be second-order. Why?)

16

Taylor Expansion on the Constraint  
(we need it to be second-order. Why?)

ℓ(θ) := KL(ρθ̃ |ρθ)

16

Taylor Expansion on the Constraint  
(we need it to be second-order. Why?)

ℓ(θ) := KL(ρθ̃ |ρθ)

ℓ(θ) ≈ ℓ(θ̃) + (θ − θ̃)⊤ ∇θℓ(θ) |θ=θ̃ + 1
2 (θ − θ̃)⊤[∇2

θℓ(θ) |θ=θ̃](θ − θ̃)

16

Taylor Expansion on the Constraint  
(we need it to be second-order. Why?)

ℓ(θ) := KL(ρθ̃ |ρθ)

ℓ(θ) ≈ ℓ(θ̃) + (θ − θ̃)⊤ ∇θℓ(θ) |θ=θ̃ + 1
2 (θ − θ̃)⊤[∇2

θℓ(θ) |θ=θ̃](θ − θ̃)

ℓ(θ̃) = KL(ρθ̃ |ρθ̃) = 0

16

Taylor Expansion on the Constraint  
(we need it to be second-order. Why?)

ℓ(θ) := KL(ρθ̃ |ρθ)

ℓ(θ) ≈ ℓ(θ̃) + (θ − θ̃)⊤ ∇θℓ(θ) |θ=θ̃ + 1
2 (θ − θ̃)⊤[∇2

θℓ(θ) |θ=θ̃](θ − θ̃)

ℓ(θ̃) = KL(ρθ̃ |ρθ̃) = 0

We will show that and has the claimed form!∇θℓ(θ) |θ=θ̃ = 0, ∇2
θℓ(θ) |θ=θ̃

16

Taylor Expansion on the Constraint  
(we need it to be second-order. Why?)

ℓ(θ) := KL(ρθ̃ |ρθ)

ℓ(θ) ≈ ℓ(θ̃) + (θ − θ̃)⊤ ∇θℓ(θ) |θ=θ̃ + 1
2 (θ − θ̃)⊤[∇2

θℓ(θ) |θ=θ̃](θ − θ̃)

ℓ(θ̃) = KL(ρθ̃ |ρθ̃) = 0

We will show that and has the claimed form!∇θℓ(θ) |θ=θ̃ = 0, ∇2
θℓ(θ) |θ=θ̃

16

(ρθ̃ := ρπθk and ρθ := ρπθ
)

The gradient of the KL-divergence is zero at θk

Change from trajectory distribution to state-action distribution:

17

ℓ(θ) := KL (ρθ̃ |ρθ) = &τ∼ρθ̃ [ln
ρθ̃(τ)
ρθ(τ)] = &τ∼ρθ̃ [ln ρθ̃(τ) − ln ρθ(τ)]

The gradient of the KL-divergence is zero at θk

∇θℓ(θ)
θ=θ̃

= − &τ∼ρθ̃ [∇θln ρθ(τ)]
θ=θ̃

Change from trajectory distribution to state-action distribution:

17

ℓ(θ) := KL (ρθ̃ |ρθ) = &τ∼ρθ̃ [ln
ρθ̃(τ)
ρθ(τ)] = &τ∼ρθ̃ [ln ρθ̃(τ) − ln ρθ(τ)]

The gradient of the KL-divergence is zero at θk

∇θℓ(θ)
θ=θ̃

= − &τ∼ρθ̃ [∇θln ρθ(τ)]
θ=θ̃

= − ∑
τ

ρθ̃(τ) ∇θ ρθ(τ)
ρθ(τ) θ=θ̃

Change from trajectory distribution to state-action distribution:

17

ℓ(θ) := KL (ρθ̃ |ρθ) = &τ∼ρθ̃ [ln
ρθ̃(τ)
ρθ(τ)] = &τ∼ρθ̃ [ln ρθ̃(τ) − ln ρθ(τ)]

The gradient of the KL-divergence is zero at θk

∇θℓ(θ)
θ=θ̃

= − &τ∼ρθ̃ [∇θln ρθ(τ)]
θ=θ̃

= − ∑
τ

ρθ̃(τ) ∇θ ρθ(τ)
ρθ(τ) θ=θ̃

Change from trajectory distribution to state-action distribution:

17

ℓ(θ) := KL (ρθ̃ |ρθ) = &τ∼ρθ̃ [ln
ρθ̃(τ)
ρθ(τ)] = &τ∼ρθ̃ [ln ρθ̃(τ) − ln ρθ(τ)]

= − ∑
τ

∇θ ρθ(τ)
θ=θ̃

The gradient of the KL-divergence is zero at θk

∇θℓ(θ)
θ=θ̃

= − &τ∼ρθ̃ [∇θln ρθ(τ)]
θ=θ̃

= − ∑
τ

ρθ̃(τ) ∇θ ρθ(τ)
ρθ(τ) θ=θ̃

Change from trajectory distribution to state-action distribution:

17

ℓ(θ) := KL (ρθ̃ |ρθ) = &τ∼ρθ̃ [ln
ρθ̃(τ)
ρθ(τ)] = &τ∼ρθ̃ [ln ρθ̃(τ) − ln ρθ(τ)]

= − ∑
τ

∇θ ρθ(τ)
θ=θ̃

= − ∇θ ∑
τ

ρθ(τ)
θ=θ̃

The gradient of the KL-divergence is zero at θk

∇θℓ(θ)
θ=θ̃

= − &τ∼ρθ̃ [∇θln ρθ(τ)]
θ=θ̃

= − ∑
τ

ρθ̃(τ) ∇θ ρθ(τ)
ρθ(τ) θ=θ̃

= 0

Change from trajectory distribution to state-action distribution:

17

ℓ(θ) := KL (ρθ̃ |ρθ) = &τ∼ρθ̃ [ln
ρθ̃(τ)
ρθ(τ)] = &τ∼ρθ̃ [ln ρθ̃(τ) − ln ρθ(τ)]

= − ∑
τ

∇θ ρθ(τ)
θ=θ̃

= − ∇θ ∑
τ

ρθ(τ)
θ=θ̃

Let’s compute the Hessian of the KL-divergence at θk

18

ℓ(θ) := KL (ρθ̃ |ρθ) = &τ∼ρθ̃ [ln
ρθ̃(τ)
ρθ(τ)] = &τ∼ρθ̃ [ln ρθ̃(τ) − ln ρθ(τ)]

Let’s compute the Hessian of the KL-divergence at θk

18

∇2
θℓ(θ)

θ=θ̃
= − &τ∼ρθ̃ [∇2

θln ρθ(τ)]
θ=θ̃

ℓ(θ) := KL (ρθ̃ |ρθ) = &τ∼ρθ̃ [ln
ρθ̃(τ)
ρθ(τ)] = &τ∼ρθ̃ [ln ρθ̃(τ) − ln ρθ(τ)]

Let’s compute the Hessian of the KL-divergence at θk

= − ∑
τ

ρθ̃(τ)(∇2
θ ρθ(τ)
ρθ(τ) − ∇θ ρθ(τ)∇θ ρθ(τ)⊤

(ρθ(τ))2) θ=θ̃

18

∇2
θℓ(θ)

θ=θ̃
= − &τ∼ρθ̃ [∇2

θln ρθ(τ)]
θ=θ̃

ℓ(θ) := KL (ρθ̃ |ρθ) = &τ∼ρθ̃ [ln
ρθ̃(τ)
ρθ(τ)] = &τ∼ρθ̃ [ln ρθ̃(τ) − ln ρθ(τ)]

Let’s compute the Hessian of the KL-divergence at θk

= − ∑
τ

ρθ̃(τ)(∇2
θ ρθ(τ)
ρθ(τ) − ∇θ ρθ(τ)∇θ ρθ(τ)⊤

(ρθ(τ))2) θ=θ̃

18

∇2
θℓ(θ)

θ=θ̃
= − &τ∼ρθ̃ [∇2

θln ρθ(τ)]
θ=θ̃

ℓ(θ) := KL (ρθ̃ |ρθ) = &τ∼ρθ̃ [ln
ρθ̃(τ)
ρθ(τ)] = &τ∼ρθ̃ [ln ρθ̃(τ) − ln ρθ(τ)]

= ∑
τ

ρθ̃(τ) ∇θ ρθ(τ)∇θ ρθ(τ)⊤

(ρθ(τ))2 θ=θ̃Why?

Let’s compute the Hessian of the KL-divergence at θk

= − ∑
τ

ρθ̃(τ)(∇2
θ ρθ(τ)
ρθ(τ) − ∇θ ρθ(τ)∇θ ρθ(τ)⊤

(ρθ(τ))2) θ=θ̃

= &τ∼ρθ [∇θln ρθ(τ)(∇θln ρθ(τ))⊤] θ=θ̃
∈ ℝd×d

18

∇2
θℓ(θ)

θ=θ̃
= − &τ∼ρθ̃ [∇2

θln ρθ(τ)]
θ=θ̃

ℓ(θ) := KL (ρθ̃ |ρθ) = &τ∼ρθ̃ [ln
ρθ̃(τ)
ρθ(τ)] = &τ∼ρθ̃ [ln ρθ̃(τ) − ln ρθ(τ)]

= ∑
τ

ρθ̃(τ) ∇θ ρθ(τ)∇θ ρθ(τ)⊤

(ρθ(τ))2 θ=θ̃Why?
-

Let’s compute the Hessian of the KL-divergence at θk

= − ∑
τ

ρθ̃(τ)(∇2
θ ρθ(τ)
ρθ(τ) − ∇θ ρθ(τ)∇θ ρθ(τ)⊤

(ρθ(τ))2) θ=θ̃

= &τ∼ρθ [∇θln ρθ(τ)(∇θln ρθ(τ))⊤] θ=θ̃
∈ ℝd×d

It’s called the Fisher Information Matrix!

18

∇2
θℓ(θ)

θ=θ̃
= − &τ∼ρθ̃ [∇2

θln ρθ(τ)]
θ=θ̃

ℓ(θ) := KL (ρθ̃ |ρθ) = &τ∼ρθ̃ [ln
ρθ̃(τ)
ρθ(τ)] = &τ∼ρθ̃ [ln ρθ̃(τ) − ln ρθ(τ)]

= ∑
τ

ρθ̃(τ) ∇θ ρθ(τ)∇θ ρθ(τ)⊤

(ρθ(τ))2 θ=θ̃Why?
~

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

19

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

19

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Every possible policy is a
point on the line segment,
parameterized by .θ

19

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Every possible policy is a
point on the line segment,
parameterized by .θ

19

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Gradient: ∇θJ(θ) = 99 exp(θ)
(1 + exp(θ))2

Every possible policy is a
point on the line segment,
parameterized by .θ

19

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆
Exact PG: θk+1 = θk + η

99 exp(θk)
(1 + exp(θk))2

Gradient: ∇θJ(θ) = 99 exp(θ)
(1 + exp(θ))2

Every possible policy is a
point on the line segment,
parameterized by .θ

19

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆
Exact PG: θk+1 = θk + η

99 exp(θk)
(1 + exp(θk))2

Gradient: ∇θJ(θ) = 99 exp(θ)
(1 + exp(θ))2

i.e., vanilla GA moves to with smaller
and smaller steps, since as

θ = ∞
∇θJ(θ) → 0

θ → ∞
Every possible policy is a
point on the line segment,
parameterized by .θ

19

Fi

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Fisher information scalar: Fθ = exp(θ)
(1 + exp(θ))2

Exact PG: θk+1 = θk + η
99 exp(θk)

(1 + exp(θk))2

Gradient: ∇θJ(θ) = 99 exp(θ)
(1 + exp(θ))2

i.e., vanilla GA moves to with smaller
and smaller steps, since as

θ = ∞
∇θJ(θ) → 0

θ → ∞
Every possible policy is a
point on the line segment,
parameterized by .θ

19

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Fisher information scalar: Fθ = exp(θ)
(1 + exp(θ))2

NPG: θk+1 = θk + η
∇θJ(θk)

Fθk

Exact PG: θk+1 = θk + η
99 exp(θk)

(1 + exp(θk))2

Gradient: ∇θJ(θ) = 99 exp(θ)
(1 + exp(θ))2

i.e., vanilla GA moves to with smaller
and smaller steps, since as

θ = ∞
∇θJ(θ) → 0

θ → ∞
Every possible policy is a
point on the line segment,
parameterized by .θ

19

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Fisher information scalar: Fθ = exp(θ)
(1 + exp(θ))2

NPG: θk+1 = θk + η
∇θJ(θk)

Fθk

Exact PG: θk+1 = θk + η
99 exp(θk)

(1 + exp(θk))2

Gradient: ∇θJ(θ) = 99 exp(θ)
(1 + exp(θ))2

i.e., vanilla GA moves to with smaller
and smaller steps, since as

θ = ∞
∇θJ(θ) → 0

θ → ∞
Every possible policy is a
point on the line segment,
parameterized by .θ

= θt + η ⋅ 99

19

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

NPG moves to much more quickly  
(for a fixed)

θ = ∞
η

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Fisher information scalar: Fθ = exp(θ)
(1 + exp(θ))2

NPG: θk+1 = θk + η
∇θJ(θk)

Fθk

Exact PG: θk+1 = θk + η
99 exp(θk)

(1 + exp(θk))2

Gradient: ∇θJ(θ) = 99 exp(θ)
(1 + exp(θ))2

i.e., vanilla GA moves to with smaller
and smaller steps, since as

θ = ∞
∇θJ(θ) → 0

θ → ∞
Every possible policy is a
point on the line segment,
parameterized by .θ

= θt + η ⋅ 99

19

Pitok

• Feedback from last lecture

• Recap

• TRPO -> NPG derivation

• Proximal Policy Optimization (PPO)

• Importance sampling

Today

20

21

Back to TRPO/NPG

1. Initialize

2. For :  

try to approximately solve:  

	  

	 	 s.t.

3. Return

θ0

k = 0,…, K

θk+1 = arg max
θ

&s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]
KL (ρπθk |ρπθ) ≤ δ

πθK

21

• The difficulty with TRPO and NPG is that they could be computationally costly.  
Need to solve constrained optimization or matrix inversion (“second order”) problems.

Back to TRPO/NPG

1. Initialize

2. For :  

try to approximately solve:  

	  

	 	 s.t.

3. Return

θ0

k = 0,…, K

θk+1 = arg max
θ

&s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]
KL (ρπθk |ρπθ) ≤ δ

πθK

21

• The difficulty with TRPO and NPG is that they could be computationally costly.  
Need to solve constrained optimization or matrix inversion (“second order”) problems.

• Can we use a method which only uses gradients?  

Back to TRPO/NPG

1. Initialize

2. For :  

try to approximately solve:  

	  

	 	 s.t.

3. Return

θ0

k = 0,…, K

θk+1 = arg max
θ

&s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]
KL (ρπθk |ρπθ) ≤ δ

πθK

21

• The difficulty with TRPO and NPG is that they could be computationally costly.  
Need to solve constrained optimization or matrix inversion (“second order”) problems.

• Can we use a method which only uses gradients?  

Let’s try to use a “Lagrangian relaxation” of TRPO

Back to TRPO/NPG

1. Initialize

2. For :  

try to approximately solve:  

	  

	 	 s.t.

3. Return

θ0

k = 0,…, K

θk+1 = arg max
θ

&s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]
KL (ρπθk |ρπθ) ≤ δ

πθK

1. Initialize

2. For :  

try to approximately solve: 

3. Return

θ0

k = 0,…, K

θk+1 = arg max
θ

&s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]−λ KL (ρπθk |ρπθ)
regularization

πθK

22

Proximal Policy Optimization (PPO)

The regularization term is:

23

KL (ρπθk |ρπθ) = &τ∼ρπθk [ln
ρπθk(τ)
ρπθ

(τ)]

The regularization term is:

23

KL (ρπθk |ρπθ) = &τ∼ρπθk [ln
ρπθk(τ)
ρπθ

(τ)]

ρθ(τ) = μ(s0)πθ(a0 |s0)P(s1 |s0, a0)…P(sH−1 |sH−2, aH−2)πθ(aH−1 |sH−1)

The regularization term is:

23

KL (ρπθk |ρπθ) = &τ∼ρπθk [ln
ρπθk(τ)
ρπθ

(τ)]

ρθ(τ) = μ(s0)πθ(a0 |s0)P(s1 |s0, a0)…P(sH−1 |sH−2, aH−2)πθ(aH−1 |sH−1)

= &τ∼ρπθk [
H−1

∑
h=0

ln πθk(ah |sh)
πθ(ah |sh)]

The regularization term is:

= &τ∼ρπθk [
H−1

∑
h=0

ln 1
πθ(ah |sh)] + [term not a function of θ]

23

KL (ρπθk |ρπθ) = &τ∼ρπθk [ln
ρπθk(τ)
ρπθ

(τ)]

ρθ(τ) = μ(s0)πθ(a0 |s0)P(s1 |s0, a0)…P(sH−1 |sH−2, aH−2)πθ(aH−1 |sH−1)

= &τ∼ρπθk [
H−1

∑
h=0

ln πθk(ah |sh)
πθ(ah |sh)]

Proximal Policy Optimization (PPO)

24

1. Initialize

2. For :  

use SGD to approximately solve:  
 

where: 

3. Return

θ0

k = 0,…, K

θk+1 = arg max
θ

ℓk(θ)

ℓk(θ) := &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]] − λ&τ∼ρπθk [
H−1

∑
h=0

ln 1
πθ(ah |sh)]

πθK

How do we estimate this objective?

• Feedback from last lecture

• Recap

• TRPO -> NPG derivation

• Proximal Policy Optimization (PPO)

• Importance sampling

Today

25

SGD and Importance Sampling

26

SGD and Importance Sampling

26

• Recall that SGD requires an unbiased estimate of the objective function’s gradient

SGD and Importance Sampling

26

• Recall that SGD requires an unbiased estimate of the objective function’s gradient

• This was easy when the objective function was an expectation, and the only -dependence
appears inside the expectation

• This was true for supervised learning / ERM

• Not true for RL, and was part of why we needed likelihood ratio method in REINFORCE

θ

SGD and Importance Sampling

26

• Recall that SGD requires an unbiased estimate of the objective function’s gradient

• This was easy when the objective function was an expectation, and the only -dependence
appears inside the expectation

• This was true for supervised learning / ERM

• Not true for RL, and was part of why we needed likelihood ratio method in REINFORCE

θ

• When not true (as in PPO), we want to make it so, if possible

SGD and Importance Sampling

26

• Recall that SGD requires an unbiased estimate of the objective function’s gradient

• This was easy when the objective function was an expectation, and the only -dependence
appears inside the expectation

• This was true for supervised learning / ERM

• Not true for RL, and was part of why we needed likelihood ratio method in REINFORCE

θ

• When not true (as in PPO), we want to make it so, if possible
• Enter: importance sampling

• rewrites expectations by changing the distribution the expectation is over

• we will use this to move that distribution’s -dependence inside the expectationθ

SGD and Importance Sampling

26

• Recall that SGD requires an unbiased estimate of the objective function’s gradient

• This was easy when the objective function was an expectation, and the only -dependence
appears inside the expectation

• This was true for supervised learning / ERM

• Not true for RL, and was part of why we needed likelihood ratio method in REINFORCE

θ

• When not true (as in PPO), we want to make it so, if possible
• Enter: importance sampling

• rewrites expectations by changing the distribution the expectation is over

• we will use this to move that distribution’s -dependence inside the expectationθ

• Key point: once all -dependence inside objective’s expectation,

• Can estimate objective unbiasedly via sample average

• Can estimate objective’s gradient unbiasedly via gradient of sample average

θ

Importance Sampling

27

Importance Sampling

27

• Suppose we seek to estimate .!x∼p̃[f(x)]

Importance Sampling

27

• Suppose we seek to estimate .!x∼p̃[f(x)]
• Assume: we have an (i.i.d.) dataset , where , where is known, and

• and are known.

• we are not able to collect values of for . 

(e.g. we have already collected our data from some costly experiment).  

x1, …xN xi ∼ p p
f p̃

f(x) x ∼ p̃

Importance Sampling

27

• Suppose we seek to estimate .!x∼p̃[f(x)]
• Assume: we have an (i.i.d.) dataset , where , where is known, and

• and are known.

• we are not able to collect values of for . 

(e.g. we have already collected our data from some costly experiment).  

x1, …xN xi ∼ p p
f p̃

f(x) x ∼ p̃

• Note: !x∼p̃ [f(x)] =

Importance Sampling

27

• Suppose we seek to estimate .!x∼p̃[f(x)]
• Assume: we have an (i.i.d.) dataset , where , where is known, and

• and are known.

• we are not able to collect values of for . 

(e.g. we have already collected our data from some costly experiment).  

x1, …xN xi ∼ p p
f p̃

f(x) x ∼ p̃

• Note: !x∼p̃ [f(x)] = !x∼p [p̃(x)
p(x) f(x)]

Importance Sampling

27

• Suppose we seek to estimate .!x∼p̃[f(x)]
• Assume: we have an (i.i.d.) dataset , where , where is known, and

• and are known.

• we are not able to collect values of for . 

(e.g. we have already collected our data from some costly experiment).  

x1, …xN xi ∼ p p
f p̃

f(x) x ∼ p̃

• Note: !x∼p̃ [f(x)] =

• So an unbiased estimate of is given by !x∼p̃[f(x)] 1
N

N

∑
i=1

p̃(xi)
p(xi)

f(xi)

!x∼p [p̃(x)
p(x) f(x)]

Importance Sampling

27

• Suppose we seek to estimate .!x∼p̃[f(x)]
• Assume: we have an (i.i.d.) dataset , where , where is known, and

• and are known.

• we are not able to collect values of for . 

(e.g. we have already collected our data from some costly experiment).  

x1, …xN xi ∼ p p
f p̃

f(x) x ∼ p̃

• Note: !x∼p̃ [f(x)] =

• So an unbiased estimate of is given by !x∼p̃[f(x)] 1
N

N

∑
i=1

p̃(xi)
p(xi)

f(xi)

• Terminology:

• is the target distribution

• is the proposal distribution

• is the likelihood ratio or importance weight

p̃(x)
p(x)
p̃(x)/p(x)

!x∼p [p̃(x)
p(x) f(x)]

Importance Sampling

27

• Suppose we seek to estimate .!x∼p̃[f(x)]
• Assume: we have an (i.i.d.) dataset , where , where is known, and

• and are known.

• we are not able to collect values of for . 

(e.g. we have already collected our data from some costly experiment).  

x1, …xN xi ∼ p p
f p̃

f(x) x ∼ p̃

• Note: !x∼p̃ [f(x)] =

• So an unbiased estimate of is given by !x∼p̃[f(x)] 1
N

N

∑
i=1

p̃(xi)
p(xi)

f(xi)

• Terminology:

• is the target distribution

• is the proposal distribution

• is the likelihood ratio or importance weight

p̃(x)
p(x)
p̃(x)/p(x)

• What about the variance of this estimator?

!x∼p [p̃(x)
p(x) f(x)]

Importance Sampling & Variance

28

Back to Estimating ℓk(θ)

29

Back to Estimating ℓk(θ)

29

• To estimate  

 ℓk(θ) := !s0,…,sH−1∼ρπθk [
H−1

∑
h=0

!ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]] − λ!τ∼ρπθk [
H−1

∑
h=0

ln 1
πθ(ah |sh)]

Back to Estimating ℓk(θ)

29

• To estimate  

 ℓk(θ) := !s0,…,sH−1∼ρπθk [
H−1

∑
h=0

!ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]] − λ!τ∼ρπθk [
H−1

∑
h=0

ln 1
πθ(ah |sh)]

• we will use importance sampling: 
 

= !s0,…,sH−1∼ρπθk

H−1

∑
h=0

!ah∼πθk(⋅|sh) [πθ(ah |sh)
πθk(ah |sh)

Aπθk(sh, ah, h)] − λ!τ∼ρπθk [
H−1

∑
h=0

ln 1
πθ(ah |sh)]

Back to Estimating ℓk(θ)

29

• To estimate  

 ℓk(θ) := !s0,…,sH−1∼ρπθk [
H−1

∑
h=0

!ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]] − λ!τ∼ρπθk [
H−1

∑
h=0

ln 1
πθ(ah |sh)]

• we will use importance sampling: 
 

= !s0,…,sH−1∼ρπθk

H−1

∑
h=0

!ah∼πθk(⋅|sh) [πθ(ah |sh)
πθk(ah |sh)

Aπθk(sh, ah, h)] − λ!τ∼ρπθk [
H−1

∑
h=0

ln 1
πθ(ah |sh)]

= !τ∼ρπθk

H−1

∑
h=0 (πθ(ah |sh)

πθk(ah |sh)
Aπθk(sh, ah, h) − λ ln 1

πθ(ah |sh))

Estimating and its gradientℓk(θ)

30

Estimating and its gradientℓk(θ)

30

1. Using trajectories sampled under to learn a  N ρπθk b̃h

b̃(s, h) ≈ Vπθk
h (s)

Estimating and its gradientℓk(θ)

30

1. Using trajectories sampled under to learn a  N ρπθk b̃h

b̃(s, h) ≈ Vπθk
h (s)

2. Obtain NEW trajectories  

Set  

 
for SGD, use gradient:

M τ1, …τM ∼ ρπθk

̂ℓ k(θ) = 1
M

M

∑
m=1

H−1

∑
h=0 (πθ(am

h |sm
h)

πθk(am
h |sm

h) (Rh(τm) − b̃(sm
h , h)) − λ ln 1

πθ(am
h |sm

h))
g(θ) := ∇θ ̂ℓ k(θ)

Estimating and its gradientℓk(θ)

30

1. Using trajectories sampled under to learn a  N ρπθk b̃h

b̃(s, h) ≈ Vπθk
h (s)

2. Obtain NEW trajectories  

Set  

 
for SGD, use gradient:

M τ1, …τM ∼ ρπθk

̂ℓ k(θ) = 1
M

M

∑
m=1

H−1

∑
h=0 (πθ(am

h |sm
h)

πθk(am
h |sm

h) (Rh(τm) − b̃(sm
h , h)) − λ ln 1

πθ(am
h |sm

h))
g(θ) := ∇θ ̂ℓ k(θ)

 is unbiased for g(θk) ∇θℓk(θ)
θ=θk

Summary:

Feedback:

bit.ly/3RHtlxy

31

Attendance: 
bit.ly/3RcTC9T

1. NPG: a simpler way to do TRPO, a “pre-conditioned” gradient method.

2. PPO: “first order” approximation to TRPO

