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Note that regardless of our choice of , we still get unbiased gradient estimates.b̃
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•Let  be the distribution of trajectories from starting state  acting under .  
(we are making the starting distribution explicit now).

ρπ̃,s s π̃

•For any two policies  and  and any state , 

	  

 

π π̃ s

Vπ̃(s) − Vπ(s) = &τ∼ρπ̃,s [
H−1

∑
h=0

Aπ(sh, ah, h)]
Comments:
•Helps us think about error analysis, instabilities of fitted PI, and sub-optimality.
•Helps to understand algorithm design (TRPO, NPG, PPO)
•This also motivates the use of “local” methods (e.g. policy gradient descent)
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1. Initialize 

2. For  :   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• We want to maximize local advantage against ,  
but we want the new policy to be close to  (in the KL sense)


• How do we implement this with sampled trajectories?)

πθk

πθk

Trust Region Policy Optimization (TRPO)
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Natural Policy Gradient (NPG): A “leading order” equivalent program to TRPO:

• Where  is the gradient of  evaluated at , and 

•  is (basically) the Fisher information matrix at , defined as:  
	  
 

 	     

∇θJ(θk) J(θ) θk

Fθ θ ∈ ℝd

Fθ := &τ∼ρπθ [∇θln ρθ(τ)(∇θln ρθ(τ))⊤] ∈ ℝd×d

= &τ∼ρπθ [
H−1

∑
h=0

∇θln πθ(ah |sh)(∇θln πθ(ah |sh))⊤]
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An Implementation: Sample Based NPG

(We will implement it in HW4 on Cartpole)



• Feedback from last lecture

• Recap

• TRPO -> NPG derivation

• Proximal Policy Optimization (PPO)

• Importance sampling

Today

14



First Order Expansion on the Objective Function

f k(θ) := &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]

15



First Order Expansion on the Objective Function

Let’s look at a first order Taylor expansion around :θ = θk

f k(θ) := &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]

15



First Order Expansion on the Objective Function

Let’s look at a first order Taylor expansion around :θ = θk

f k(θ) := &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]

15

≈ f k(θk) + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk =  constant  + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk



First Order Expansion on the Objective Function

Let’s look at a first order Taylor expansion around :θ = θk

f k(θ) := &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]

15

≈ f k(θk) + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk =  constant  + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk

x = ∇θ&s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]] θ=θk



First Order Expansion on the Objective Function

Let’s look at a first order Taylor expansion around :θ = θk

f k(θ) := &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]

15

≈ f k(θk) + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk =  constant  + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk

= &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

∇θ&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]
θ=θk ]

x = ∇θ&s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]] θ=θk



First Order Expansion on the Objective Function

Let’s look at a first order Taylor expansion around :θ = θk

f k(θ) := &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]

15

= &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθk(⋅|sh) [∇θln πθ(ah |sh)Aπθk(sh, ah, h)]] θ=θk

≈ f k(θk) + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk =  constant  + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk

= &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

∇θ&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]
θ=θk ]

x = ∇θ&s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]] θ=θk



First Order Expansion on the Objective Function

Let’s look at a first order Taylor expansion around :θ = θk

f k(θ) := &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]

15

= &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθk(⋅|sh) [∇θln πθ(ah |sh)Aπθk(sh, ah, h)]] θ=θk

≈ f k(θk) + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk =  constant  + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk

= &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

∇θ&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]
θ=θk ]

= &τ∼ρπθk [
H−1

∑
h=0

∇θln πθ(ah |sh)Aπθk(sh, ah, h)] θ=θk

x = ∇θ&s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]] θ=θk



First Order Expansion on the Objective Function

Let’s look at a first order Taylor expansion around :θ = θk

f k(θ) := &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]

15

= &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθk(⋅|sh) [∇θln πθ(ah |sh)Aπθk(sh, ah, h)]] θ=θk

≈ f k(θk) + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk =  constant  + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk

= &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

∇θ&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]
θ=θk ]

= &τ∼ρπθk [
H−1

∑
h=0

∇θln πθ(ah |sh)Aπθk(sh, ah, h)] θ=θk
= &τ∼ρπθk [

H−1

∑
h=0

∇θln πθ(ah |sh)Rh(τ)] θ=θk

x = ∇θ&s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]] θ=θk



First Order Expansion on the Objective Function

Let’s look at a first order Taylor expansion around :θ = θk

f k(θ) := &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]

15

= &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθk(⋅|sh) [∇θln πθ(ah |sh)Aπθk(sh, ah, h)]] θ=θk

≈ f k(θk) + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk =  constant  + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk

= &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

∇θ&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]
θ=θk ]

= &τ∼ρπθk [
H−1

∑
h=0

∇θln πθ(ah |sh)Aπθk(sh, ah, h)] θ=θk

= ∇θJ(θ) |θ=θk= &τ∼ρπθk [
H−1

∑
h=0

∇θln πθ(ah |sh)Rh(τ)] θ=θk

x = ∇θ&s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]] θ=θk



Taylor Expansion on the Constraint  
(we need it to be second-order. Why?)

16



Taylor Expansion on the Constraint  
(we need it to be second-order. Why?)

ℓ(θ) := KL(ρθ̃ |ρθ)

16



Taylor Expansion on the Constraint  
(we need it to be second-order. Why?)

ℓ(θ) := KL(ρθ̃ |ρθ)

ℓ(θ) ≈ ℓ(θ̃) + (θ − θ̃)⊤ ∇θℓ(θ) |θ=θ̃ + 1
2 (θ − θ̃)⊤[∇2

θℓ(θ) |θ=θ̃ ](θ − θ̃)

16



Taylor Expansion on the Constraint  
(we need it to be second-order. Why?)

ℓ(θ) := KL(ρθ̃ |ρθ)

ℓ(θ) ≈ ℓ(θ̃) + (θ − θ̃)⊤ ∇θℓ(θ) |θ=θ̃ + 1
2 (θ − θ̃)⊤[∇2

θℓ(θ) |θ=θ̃ ](θ − θ̃)

ℓ(θ̃) = KL(ρθ̃ |ρθ̃) = 0

16



Taylor Expansion on the Constraint  
(we need it to be second-order. Why?)

ℓ(θ) := KL(ρθ̃ |ρθ)

ℓ(θ) ≈ ℓ(θ̃) + (θ − θ̃)⊤ ∇θℓ(θ) |θ=θ̃ + 1
2 (θ − θ̃)⊤[∇2

θℓ(θ) |θ=θ̃ ](θ − θ̃)

ℓ(θ̃) = KL(ρθ̃ |ρθ̃) = 0

We will show that  and  has the claimed form!∇θℓ(θ) |θ=θ̃ = 0, ∇2
θℓ(θ) |θ=θ̃

16



Taylor Expansion on the Constraint  
(we need it to be second-order. Why?)

ℓ(θ) := KL(ρθ̃ |ρθ)

ℓ(θ) ≈ ℓ(θ̃) + (θ − θ̃)⊤ ∇θℓ(θ) |θ=θ̃ + 1
2 (θ − θ̃)⊤[∇2

θℓ(θ) |θ=θ̃ ](θ − θ̃)

ℓ(θ̃) = KL(ρθ̃ |ρθ̃) = 0

We will show that  and  has the claimed form!∇θℓ(θ) |θ=θ̃ = 0, ∇2
θℓ(θ) |θ=θ̃

16

(ρθ̃ := ρπθk and ρθ := ρπθ
)
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J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

19



Example of Natural Gradient on 1-d problem: 2 actions, 1 state

(πθ[1], πθ[2]) := ( exp(θ)
1 + exp(θ) , 1

1 + exp(θ) )
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

19



Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

(πθ[1], πθ[2]) := ( exp(θ)
1 + exp(θ) , 1

1 + exp(θ) )
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Every possible policy is a 
point on the line segment, 
parameterized by .θ

19



Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := ( exp(θ)
1 + exp(θ) , 1

1 + exp(θ) )
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Every possible policy is a 
point on the line segment, 
parameterized by .θ

19



Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := ( exp(θ)
1 + exp(θ) , 1

1 + exp(θ) )
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Gradient: ∇θJ(θ) = 99 exp(θ)
(1 + exp(θ))2

Every possible policy is a 
point on the line segment, 
parameterized by .θ

19



Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := ( exp(θ)
1 + exp(θ) , 1

1 + exp(θ) )
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆
Exact PG: θk+1 = θk + η

99 exp(θk)
(1 + exp(θk))2

Gradient: ∇θJ(θ) = 99 exp(θ)
(1 + exp(θ))2

Every possible policy is a 
point on the line segment, 
parameterized by .θ

19



Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := ( exp(θ)
1 + exp(θ) , 1

1 + exp(θ) )
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆
Exact PG: θk+1 = θk + η

99 exp(θk)
(1 + exp(θk))2

Gradient: ∇θJ(θ) = 99 exp(θ)
(1 + exp(θ))2

i.e., vanilla GA moves to  with smaller 
and smaller steps, since  as 

θ = ∞
∇θJ(θ) → 0

θ → ∞
Every possible policy is a 
point on the line segment, 
parameterized by .θ

19

Fi



Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := ( exp(θ)
1 + exp(θ) , 1

1 + exp(θ) )
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Fisher information scalar: Fθ = exp(θ)
(1 + exp(θ))2

Exact PG: θk+1 = θk + η
99 exp(θk)

(1 + exp(θk))2

Gradient: ∇θJ(θ) = 99 exp(θ)
(1 + exp(θ))2

i.e., vanilla GA moves to  with smaller 
and smaller steps, since  as 

θ = ∞
∇θJ(θ) → 0

θ → ∞
Every possible policy is a 
point on the line segment, 
parameterized by .θ

19



Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := ( exp(θ)
1 + exp(θ) , 1

1 + exp(θ) )
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Fisher information scalar: Fθ = exp(θ)
(1 + exp(θ))2

NPG:  θk+1 = θk + η
∇θJ(θk)

Fθk

Exact PG: θk+1 = θk + η
99 exp(θk)

(1 + exp(θk))2

Gradient: ∇θJ(θ) = 99 exp(θ)
(1 + exp(θ))2

i.e., vanilla GA moves to  with smaller 
and smaller steps, since  as 

θ = ∞
∇θJ(θ) → 0

θ → ∞
Every possible policy is a 
point on the line segment, 
parameterized by .θ

19



Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := ( exp(θ)
1 + exp(θ) , 1

1 + exp(θ) )
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Fisher information scalar: Fθ = exp(θ)
(1 + exp(θ))2

NPG:  θk+1 = θk + η
∇θJ(θk)

Fθk

Exact PG: θk+1 = θk + η
99 exp(θk)

(1 + exp(θk))2

Gradient: ∇θJ(θ) = 99 exp(θ)
(1 + exp(θ))2

i.e., vanilla GA moves to  with smaller 
and smaller steps, since  as 

θ = ∞
∇θJ(θ) → 0

θ → ∞
Every possible policy is a 
point on the line segment, 
parameterized by .θ

= θt + η ⋅ 99

19



Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

NPG moves to  much more quickly  
(for a fixed )

θ = ∞
η

(πθ[1], πθ[2]) := ( exp(θ)
1 + exp(θ) , 1

1 + exp(θ) )
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Fisher information scalar: Fθ = exp(θ)
(1 + exp(θ))2

NPG:  θk+1 = θk + η
∇θJ(θk)

Fθk

Exact PG: θk+1 = θk + η
99 exp(θk)

(1 + exp(θk))2

Gradient: ∇θJ(θ) = 99 exp(θ)
(1 + exp(θ))2

i.e., vanilla GA moves to  with smaller 
and smaller steps, since  as 

θ = ∞
∇θJ(θ) → 0

θ → ∞
Every possible policy is a 
point on the line segment, 
parameterized by .θ

= θt + η ⋅ 99

19

Pitok



• Feedback from last lecture

• Recap

• TRPO -> NPG derivation

• Proximal Policy Optimization (PPO)

• Importance sampling

Today
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Back to TRPO/NPG

1. Initialize 

2. For  :  

try to approximately solve:  

	  

	 	 s.t. 


3. Return 

θ0

k = 0,…, K

θk+1 = arg max
θ

&s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]
KL (ρπθk |ρπθ) ≤ δ

πθK
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1. Initialize 

2. For  :  

try to approximately solve: 




3. Return 

θ0

k = 0,…, K

θk+1 = arg max
θ

&s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]−λ KL (ρπθk |ρπθ)
regularization

πθK

22

Proximal Policy Optimization (PPO)



The regularization term is:
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The regularization term is:

= &τ∼ρπθk [
H−1

∑
h=0

ln 1
πθ(ah |sh) ] + [term not a function of θ]
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H−1

∑
h=0

ln πθk(ah |sh)
πθ(ah |sh) ]
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1. Initialize 

2. For  :  

use SGD to approximately solve:  
 

where: 




3. Return 

θ0

k = 0,…, K

θk+1 = arg max
θ

ℓk(θ)

ℓk(θ) := &s0,…,sH−1∼ρπθk [
H−1

∑
h=0

&ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]] − λ&τ∼ρπθk [
H−1

∑
h=0

ln 1
πθ(ah |sh) ]

πθK

How do we estimate this objective?



• Feedback from last lecture

• Recap

• TRPO -> NPG derivation

• Proximal Policy Optimization (PPO)

• Importance sampling

Today
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• Recall that SGD requires an unbiased estimate of the objective function’s gradient

• This was easy when the objective function was an expectation, and the only -dependence 
appears inside the expectation

• This was true for supervised learning / ERM

• Not true for RL, and was part of why we needed likelihood ratio method in REINFORCE

θ

• When not true (as in PPO), we want to make it so, if possible
• Enter: importance sampling

• rewrites expectations by changing the distribution the expectation is over


• we will use this to move that distribution’s -dependence inside the expectationθ

• Key point: once all -dependence inside objective’s expectation,

• Can estimate objective unbiasedly via sample average

• Can estimate objective’s gradient unbiasedly via gradient of sample average

θ
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• Assume: we have an (i.i.d.) dataset , where , where  is known, and

•  and  are known.

• we are not able to collect values of  for . 

(e.g. we have already collected our data from some costly experiment).  

x1, …xN xi ∼ p p
f p̃

f(x) x ∼ p̃
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• Assume: we have an (i.i.d.) dataset , where , where  is known, and

•  and  are known.

• we are not able to collect values of  for . 

(e.g. we have already collected our data from some costly experiment).  

x1, …xN xi ∼ p p
f p̃

f(x) x ∼ p̃

• Note:  !x∼p̃ [f(x)] =

• So an unbiased estimate of  is given by !x∼p̃[ f(x)] 1
N
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• Suppose we seek to estimate .!x∼p̃[ f(x)]
• Assume: we have an (i.i.d.) dataset , where , where  is known, and

•  and  are known.

• we are not able to collect values of  for . 

(e.g. we have already collected our data from some costly experiment).  

x1, …xN xi ∼ p p
f p̃

f(x) x ∼ p̃

• Note:  !x∼p̃ [f(x)] =

• So an unbiased estimate of  is given by !x∼p̃[ f(x)] 1
N

N

∑
i=1

p̃(xi)
p(xi)

f(xi)

• Terminology: 

•  is the target distribution

•  is the proposal distribution

•  is the likelihood ratio or importance weight

p̃(x)
p(x)
p̃(x)/p(x)

• What about the variance of this estimator?

!x∼p [ p̃(x)
p(x) f(x)]



Importance Sampling & Variance
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• To estimate  

 ℓk(θ) := !s0,…,sH−1∼ρπθk [
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ℓk(θ) := !s0,…,sH−1∼ρπθk [
H−1

∑
h=0

!ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]] − λ!τ∼ρπθk [
H−1

∑
h=0

ln 1
πθ(ah |sh) ]

• we will use importance sampling: 
 

= !s0,…,sH−1∼ρπθk

H−1

∑
h=0

!ah∼πθk(⋅|sh) [ πθ(ah |sh)
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• To estimate  

 ℓk(θ) := !s0,…,sH−1∼ρπθk [
H−1

∑
h=0

!ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]] − λ!τ∼ρπθk [
H−1

∑
h=0

ln 1
πθ(ah |sh) ]

• we will use importance sampling: 
 

= !s0,…,sH−1∼ρπθk

H−1

∑
h=0

!ah∼πθk(⋅|sh) [ πθ(ah |sh)
πθk(ah |sh)

Aπθk(sh, ah, h)] − λ!τ∼ρπθk [
H−1

∑
h=0

ln 1
πθ(ah |sh) ]

= !τ∼ρπθk

H−1

∑
h=0 ( πθ(ah |sh)

πθk(ah |sh)
Aπθk(sh, ah, h) − λ ln 1

πθ(ah |sh) )
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1. Using  trajectories sampled under  to learn a  N ρπθk b̃h

b̃(s, h) ≈ Vπθk
h (s)



Estimating  and its gradientℓk(θ)

30

1. Using  trajectories sampled under  to learn a  N ρπθk b̃h

b̃(s, h) ≈ Vπθk
h (s)

2. Obtain  NEW trajectories  

Set  

 
for SGD, use gradient: 

M τ1, …τM ∼ ρπθk

̂ℓ k(θ) = 1
M

M

∑
m=1

H−1

∑
h=0 ( πθ(am

h |sm
h )

πθk(am
h |sm

h ) (Rh(τm) − b̃(sm
h , h)) − λ ln 1

πθ(am
h |sm

h ) )
g(θ) := ∇θ ̂ℓ k(θ)
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1. Using  trajectories sampled under  to learn a  N ρπθk b̃h

b̃(s, h) ≈ Vπθk
h (s)

2. Obtain  NEW trajectories  

Set  

 
for SGD, use gradient: 

M τ1, …τM ∼ ρπθk

̂ℓ k(θ) = 1
M

M

∑
m=1

H−1

∑
h=0 ( πθ(am

h |sm
h )

πθk(am
h |sm

h ) (Rh(τm) − b̃(sm
h , h)) − λ ln 1

πθ(am
h |sm

h ) )
g(θ) := ∇θ ̂ℓ k(θ)

 is unbiased for g(θk) ∇θℓk(θ)
θ=θk



Summary:

Feedback: 

bit.ly/3RHtlxy

31

Attendance: 
bit.ly/3RcTC9T

1. NPG: a simpler way to do TRPO, a “pre-conditioned” gradient method.

2. PPO: “first order” approximation to TRPO


