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Feedback from feedback forms

1. Thank you to everyone who filled out the forms!
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PG with a Learned Baseline:

1. Initialize , parameters: 

2. For : 


1. Supervised Learning: Using  trajectories sampled under , estimate a baseline  



2. Obtain a trajectory  
Compute  

3. Update: 

θ0 η1, η2, …
k = 0,…

N πθk b̃
b̃(s, h) ≈ Vθk

h (s)
τ ∼ ρθk

g′ (θk, τ, b̃())

θk+1 = θk + ηkg′ (θk, τ, b̃())
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Note that regardless of our choice of , we still get unbiased gradient estimates.b̃

Let g′ (θ, τ, b()) :=
H−1

∑
h=0

∇θln πθ(ah |sh)(Rh(τ) − b(sh, h))



The Performance Difference Lemma (PDL)
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•Let  be the distribution of trajectories from starting state  acting under .  
(we are making the starting distribution explicit now).

•For any two policies  and  and any state , 

	  

 

Comments:

•Helps us think about error analysis, instabilities of fitted PI, and sub-optimality.

•Helps to understand algorithm design (TRPO, NPG, PPO)

•This also motivates the use of “local” methods (e.g. policy gradient descent)

ρπ̃,s s π̃

π π̃ s

Vπ̃(s) − Vπ(s) = 𝔼τ∼ρπ̃,s [
H−1

∑
h=0

Aπ(sh, ah, h)]



Back to Fitted Policy Iteration
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•Suppose  gets updated to .  How much worse could  be?

• In Fitted Policy Iteration,  is achieved via supervised learning on 


•This means we expect 


• In particular,  should be close to  where  visits often… 

•But it could be very bad in places  visits rarely, and nothing stops  from visiting those 
bad places very often!

•So  could end up being (much) worse than  

•Problem is a mismatch between expectations: what we really want is 




•One way to ensure this: keep 

πk πk+1 πk+1

̂Aπk ≈ Aπk τ1, …τN ∼ ρπk

𝔼τ∼ρπk,s [
H−1

∑
h=0

̂Aπk(sh, ah, h)] ≈ 𝔼τ∼ρπk,s [
H−1

∑
h=0

Aπk(sh, ah, h)]
̂Aπk Aπk πk

πk πk+1

πk+1 πk

𝔼τ∼ρπk+1,s [
H−1

∑
h=0

̂Aπk(sh, ah, h)] ≈ 𝔼τ∼ρπk+1,s [
H−1

∑
h=0

Aπk(sh, ah, h)]
πk+1 ≈ πk



1. Initialize 

2. For  :   

try to approximately solve: 

	  

	 	 s.t. 


3. Return 

θ0

k = 0,…, K

θk+1 = arg max
θ

𝔼s0,…,sH−1∼ρπθk [
H−1

∑
h=0

𝔼ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]
KL (ρπθk

|ρπθ) ≤ δ

πθK
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• We want to maximize local advantage against ,  
but we want the new policy to be close to  (in the KL sense)


• How do we implement this with sampled trajectories?)

πθk

πθk

Trust Region Policy Optimization (TRPO)



KL-divergence: measures the distance between two distributions

Given two distributions , where , 

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = 𝔼x∼P [ln
P(x)
Q(x) ]

Examples: 

If , then Q = P KL(P |Q) = KL(Q |P) = 0

If , then P = 𝒩(μ1, σ2I), Q = 𝒩(μ2, σ2I) KL(P |Q) =
1

2σ2
∥μ1 − μ2∥2

Fact: 

, and is  if and only if KL(P |Q) ≥ 0 0 P = Q
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TRPO is locally equivalent to a much simpler algorithm

max
θ

𝔼s0,…,sH−1∼ρπθk [
H−1

∑
h=0

𝔼ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]
s.t. KL (ρπθk

|ρπθ) ≤ δ

First-order Taylor expansion at θk

second-order Taylor expansion at θk

max
θ

∇θJ(θk)⊤(θ − θk)
s.t. (θ − θk)⊤Fθk(θ − θk) ≤ δ

(Where  is the “Fisher Information Matrix”)Fθk

Intuition: maximize local advantage 
subject to being incremental (in KL)

TRPO at iteration k:
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1. Initialize 

2. For  :  

	  

	  s.t. 

3. Return 

θ0

k = 0,…, K
θk+1 = arg max

θ
∇θJ(θk)⊤(θ − θk)

(θ − θk)⊤Fθk(θ − θk) ≤ δ
πθK
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Natural Policy Gradient (NPG): A “leading order” equivalent program to TRPO:

• Where  is the gradient of  evaluated at , and 

•  is (basically) the Fisher information matrix at , defined as: 

	  

 

 	     

∇θJ(θk) J(θ) θk

Fθ θ ∈ ℝd

Fθ := 𝔼τ∼ρπθ [∇θln ρθ(τ)(∇θln ρθ(τ))⊤] ∈ ℝd×d

= 𝔼τ∼ρπθ [
H−1

∑
h=0

∇θln πθ(ah |sh)(∇θln πθ(ah |sh))⊤]



NPG has a closed form update!

Linear objective and quadratic convex constraint: we can solve it optimally!
Indeed this gives us:

θk+1 = θk + ηF−1
θk ∇θJ(θk)

Where η =
δ

∇θJ(θk)⊤F−1
θk ∇θJ(θk)
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1. Initialize 

2. For  :  

	  

	  s.t. 

3. Return 

θ0

k = 0,…, K
θk+1 = arg max

θ
∇θJ(θk)⊤(θ − θk)

(θ − θk)⊤Fθk(θ − θk) ≤ δ
πθK



1. Initialize 

2. For  : 


• Obtain approximation of Policy Gradient: 


• Obtain approximation of Fisher information: 


• Natural Gradient Ascent:   

3. Return 

θ0

k = 0,…, K
̂g ≈ ∇θJ(θk)

̂F ≈ Fθk

θk+1 = θk + η ̂F−1 ̂g
πθK
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An Implementation: Sample Based NPG

(We will implement it in HW4 on Cartpole)
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First Order Expansion on the Objective Function

Let’s look at a first order Taylor expansion around :θ = θk

f k(θ) := 𝔼s0,…,sH−1∼ρπθk [
H−1

∑
h=0

𝔼ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]
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= 𝔼s0,…,sH−1∼ρπθk [
H−1

∑
h=0

𝔼ah∼πθk(⋅|sh) [∇θln πθ(ah |sh)Aπθk(sh, ah, h)]] θ=θk

≈ f k(θk) + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk =  constant  + (θ − θk) ⋅ ∇θ f k(θ) |θ=θk

= 𝔼s0,…,sH−1∼ρπθk [
H−1

∑
h=0

∇θ𝔼ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]
θ=θk ]

= 𝔼τ∼ρπθk [
H−1

∑
h=0

∇θln πθ(ah |sh)Aπθk(sh, ah, h)] θ=θk

= ∇θJ(θ) |θ=θk= 𝔼τ∼ρπθk [
H−1

∑
h=0

∇θln πθ(ah |sh)Rh(τ)] θ=θk

x = ∇θ𝔼s0,…,sH−1∼ρπθk [
H−1

∑
h=0

𝔼ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]] θ=θk



Taylor Expansion on the Constraint  
(we need it to be second-order. Why?)

ℓ(θ) := KL(ρθ̃ |ρθ)

ℓ(θ) ≈ ℓ(θ̃) + (θ − θ̃)⊤ ∇θℓ(θ) |θ=θ̃ +
1
2

(θ − θ̃)⊤[∇2
θℓ(θ) |θ=θ̃ ](θ − θ̃)

ℓ(θ̃) = KL(ρθ̃ |ρθ̃) = 0

We will show that  and  has the claimed form!∇θℓ(θ) |θ=θ̃ = 0, ∇2
θℓ(θ) |θ=θ̃
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(ρθ̃ := ρπθk
 and ρθ := ρπθ

)



The gradient of the KL-divergence is zero at  θk

∇θℓ(θ)
θ=θ̃

= − 𝔼τ∼ρθ̃ [∇θln ρθ(τ)]
θ=θ̃

= − ∑
τ

ρθ̃(τ)
∇θ ρθ(τ)

ρθ(τ) θ=θ̃

= 0

Change from trajectory distribution to state-action distribution:
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ℓ(θ) := KL (ρθ̃ |ρθ) = 𝔼τ∼ρθ̃ [ln
ρθ̃(τ)
ρθ(τ) ] = 𝔼τ∼ρθ̃ [ln ρθ̃(τ) − ln ρθ(τ)]

= − ∑
τ

∇θ ρθ(τ)
θ=θ̃

= − ∇θ ∑
τ

ρθ(τ)
θ=θ̃



Let’s compute the Hessian of the KL-divergence at θk

= − ∑
τ

ρθ̃(τ)( ∇2
θ ρθ(τ)
ρθ(τ)

−
∇θ ρθ(τ)∇θ ρθ(τ)⊤

(ρθ(τ))2 ) θ=θ̃

= 𝔼τ∼ρθ [∇θln ρθ(τ)(∇θln ρθ(τ))⊤] θ=θ̃
∈ ℝd×d

It’s called the Fisher Information Matrix!
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∇2
θℓ(θ)

θ=θ̃
= − 𝔼τ∼ρθ̃ [∇2

θln ρθ(τ)]
θ=θ̃

ℓ(θ) := KL (ρθ̃ |ρθ) = 𝔼τ∼ρθ̃ [ln
ρθ̃(τ)
ρθ(τ) ] = 𝔼τ∼ρθ̃ [ln ρθ̃(τ) − ln ρθ(τ)]

= ∑
τ

ρθ̃(τ)
∇θ ρθ(τ)∇θ ρθ(τ)⊤

(ρθ(τ))2 θ=θ̃Why?



Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

NPG moves to  much more quickly 
(for a fixed )

θ = ∞
η

(πθ[1], πθ[2]) := ( exp(θ)
1 + exp(θ)

,
1

1 + exp(θ) )
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Fisher information scalar: Fθ =
exp(θ)

(1 + exp(θ))2

NPG:  θk+1 = θk + η
∇θJ(θk)

Fθk

Exact PG: θk+1 = θk + η
99 exp(θk)

(1 + exp(θk))2

Gradient: ∇θJ(θ) =
99 exp(θ)

(1 + exp(θ))2

i.e., vanilla GA moves to  with smaller 
and smaller steps, since  as 

θ = ∞
∇θJ(θ) → 0

θ → ∞
Every possible policy is a 
point on the line segment, 
parameterized by .θ

= θt + η ⋅ 99
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• The difficulty with TRPO and NPG is that they could be computationally costly.  
Need to solve constrained optimization or matrix inversion (“second order”) problems. 


• Can we use a method which only uses gradients? 

Let’s try to use a “Lagrangian relaxation” of TRPO

Back to TRPO/NPG

1. Initialize 

2. For  :  

try to approximately solve:  

	  

	 	 s.t. 


3. Return 

θ0

k = 0,…, K

θk+1 = arg max
θ

𝔼s0,…,sH−1∼ρπθk [
H−1

∑
h=0

𝔼ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]
KL (ρπθk

|ρπθ) ≤ δ

πθK



1. Initialize 

2. For  :  

try to approximately solve: 




3. Return 

θ0

k = 0,…, K

θk+1 = arg max
θ

𝔼s0,…,sH−1∼ρπθk [
H−1

∑
h=0

𝔼ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]−λ KL (ρπθk
|ρπθ)

regularization
πθK
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Proximal Policy Optimization (PPO)



The regularization term is:

= 𝔼τ∼ρπθk [
H−1

∑
h=0

ln
1

πθ(ah |sh) ] + [term not a function of θ]
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KL (ρπθk
|ρπθ) = 𝔼τ∼ρπθk [ln

ρπθk
(τ)

ρπθ
(τ) ]

ρθ(τ) = μ(s0)πθ(a0 |s0)P(s1 |s0, a0)…P(sH−1 |sH−2, aH−2)πθ(aH−1 |sH−1)

= 𝔼τ∼ρπθk [
H−1

∑
h=0

ln
πθk(ah |sh)
πθ(ah |sh) ]



Proximal Policy Optimization (PPO)
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1. Initialize 

2. For  :  

use SGD to approximately solve: 
 

where: 




3. Return 

θ0

k = 0,…, K

θk+1 = arg max
θ

ℓk(θ)

ℓk(θ) := 𝔼s0,…,sH−1∼ρπθk [
H−1

∑
h=0

𝔼ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]] − λ𝔼τ∼ρπθk [
H−1

∑
h=0

ln
1

πθ(ah |sh) ]
πθK

How do we estimate this objective?
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SGD and Importance Sampling
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• Recall that SGD requires an unbiased estimate of the objective function’s gradient


• This was easy when the objective function was an expectation, and the only -dependence 

appears inside the expectation


• This was true for supervised learning / ERM


• Not true for RL, and was part of why we needed likelihood ratio method in REINFORCE


• When not true (as in PPO), we want to make it so, if possible


• Enter: importance sampling


• rewrites expectations by changing the distribution the expectation is over


• we will use this to move that distribution’s -dependence inside the expectation


• Key point: once all -dependence inside objective’s expectation,


• Can estimate objective unbiasedly via sample average


• Can estimate objective’s gradient unbiasedly via gradient of sample average

θ

θ

θ



Importance Sampling
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• Suppose we seek to estimate .


• Assume: we have an (i.i.d.) dataset , where , where  is known, and

•  and  are known.

• we are not able to collect values of  for . 

(e.g. we have already collected our data from some costly experiment). 

• Note:  


• So an unbiased estimate of  is given by 


• Terminology: 

•  is the target distribution

•  is the proposal distribution

•  is the likelihood ratio or importance weight


• What about the variance of this estimator?

𝔼x∼p̃[ f(x)]
x1, …xN xi ∼ p p

f p̃
f(x) x ∼ p̃

𝔼x∼p̃ [f(x)] =

𝔼x∼p̃[ f(x)]
1
N

N

∑
i=1

p̃(xi)
p(xi)

f(xi)

p̃(x)
p(x)
p̃(x)/p(x)

𝔼x∼p [ p̃(x)
p(x)

f(x)]



Importance Sampling & Variance

28



Back to Estimating ℓk(θ)
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• To estimate  

 

• we will use importance sampling: 
 

ℓk(θ) := 𝔼s0,…,sH−1∼ρπθk [
H−1

∑
h=0

𝔼ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]] − λ𝔼τ∼ρπθk [
H−1

∑
h=0

ln
1

πθ(ah |sh) ]

= 𝔼s0,…,sH−1∼ρπθk

H−1

∑
h=0

𝔼ah∼πθk(⋅|sh) [ πθ(ah |sh)
πθk(ah |sh)

Aπθk(sh, ah, h)] − λ𝔼τ∼ρπθk [
H−1

∑
h=0

ln
1

πθ(ah |sh) ]
= 𝔼τ∼ρπθk

H−1

∑
h=0 ( πθ(ah |sh)

πθk(ah |sh)
Aπθk(sh, ah, h) − λ ln

1
πθ(ah |sh) )



Estimating  and its gradientℓk(θ)
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1. Using  trajectories sampled under  to learn a  



2. Obtain  NEW trajectories  

Set  

 
for SGD, use gradient: 

N ρπθk
b̃h

b̃(s, h) ≈ Vπθk
h (s)

M τ1, …τM ∼ ρπθk

̂ℓ k(θ) =
1
M

M

∑
m=1

H−1

∑
h=0 ( πθ(am

h |sm
h )

πθk(am
h |sm

h ) (Rh(τm) − b̃(sm
h , h)) − λ ln

1
πθ(am

h |sm
h ) )

g(θ) := ∇θ
̂ℓ k(θ)

 is unbiased for g(θk) ∇θℓk(θ)
θ=θk



Summary:

Feedback: 

bit.ly/3RHtlxy
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Attendance: 
bit.ly/3RcTC9T

1. NPG: a simpler way to do TRPO, a “pre-conditioned” gradient method.

2. PPO: “first order” approximation to TRPO

http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

