From TRPO/NPG to Proximal Policy Optimization (PPO)

Lucas Janson **CS/Stat 184(0): Introduction to Reinforcement Learning** Fall 2024

- Feedback from last lecture
- Recap
- TRPO -> NPG derivation
- Proximal Policy Optimization (PPO)
- Importance sampling

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

- Recap
- TRPO -> NPG derivation
- Proximal Policy Optimization (PPO)
- Importance sampling

PG with a Learned Baseline:

Let
$$g'(\theta, \tau, b()) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) (R_h(\tau) - b(s_h, h))$$

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Supervised Learning: Using N trajector $\widetilde{b}(s,h) \approx V_h^{\theta^k}(s)$
 - 2. Obtain a trajectory $\tau \sim \rho_{\theta^k}$ Compute $g'(\theta^k, \tau, \tilde{b}())$
 - 3. Update: $\theta^{k+1} = \theta^k + \eta^k g'(\theta^k, \tau, \widetilde{b}())$

Note that regardless of our choice of \tilde{b} , we still get unbiased gradient estimates.

1. Supervised Learning: Using N trajectories sampled under π_{θ^k} , estimate a baseline b

The Performance Difference Lemma (PDL)

- (we are making the starting distribution explicit now).
- For any two policies π and $\widetilde{\pi}$ and any state s,

Comments:

- •Helps to understand algorithm design (TRPO, NPG, PPO)

• Let $\rho_{\tilde{\pi},s}$ be the distribution of trajectories from starting state s acting under $\tilde{\pi}$.

 $V^{\widetilde{\pi}}(s) - V^{\pi}(s) = \mathbb{E}_{\tau \sim \rho_{\widetilde{\pi},s}} \left[\sum_{h=0}^{H-1} A^{\pi}(s_h, a_h, h) \right]$

• Helps us think about error analysis, instabilities of fitted PI, and sub-optimality. • This also motivates the use of "local" methods (e.g. policy gradient descent)

Back to Fitted Policy Iteration

- Suppose π^k gets updated to π^{k+1} . How much worse could π^{k+1} be?

This means we expect $\mathbb{E}_{\tau \sim \rho_{\pi^{k},s}} \left[\sum_{h=0}^{H-1} \hat{A}^{\pi^{k}}(s_{h}, h) \right]$

- In particular, \hat{A}^{π^k} should be close to A^{π^k} where π^k visits often...
- bad places very often!
- So π^{k+1} could end up being (much) worse than π^k
- Problem is a mismatch between expectations: what we really want is

 $\mathbb{E}_{\tau \sim \rho_{\pi^{k+1},s}} \left[\sum_{h=0}^{H-1} \hat{A}^{\pi^k}(s_h, a_h, h) \right] \approx \mathbb{E}_{\tau \sim \rho_{\pi^{k+1},s}} \left[\sum_{h=0}^{H-1} A^{\pi^k}(s_h, a_h, h) \right]$

•One way to ensure this: keep $\pi^{k+1} \approx \pi^k$

• In Fitted Policy Iteration, $\hat{A}^{\pi^k} \approx A^{\pi^k}$ is achieved via supervised learning on $\tau_1, \ldots, \tau_N \sim \rho_{\pi^k}$

$$[a_h, h] \approx \mathbb{E}_{\tau \sim \rho_{\pi^{k}, s}} \left[\sum_{h=0}^{H-1} A^{\pi^k}(s_h, a_h, h) \right]$$

• But it could be very bad in places π^k visits rarely, and nothing stops π^{k+1} from visiting those

$$\sum_{h=0}^{n} A^{\pi^{n}}(s_{h}, a_{h}, a_{h})$$

Trust Region Policy Optimization (TRPO)

1. Initialize
$$\theta^{0}$$

2. For $k = 0, ..., K$:
try to approximately solve:
 $\theta^{k+1} = \arg \max_{\theta} \mathbb{E}_{s_0, ..., s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \right]$
s.t. $KL \left(\rho_{\pi_{\theta^k}} | \rho_{\pi_{\theta}} \right) \leq \delta$
3. Return π_{θ^K}

• We want to maximize local advantage against π_{θ^k} ,

 \bullet

but we want the new policy to be close to π_{θ^k} (in the KL sense) How do we implement this with sampled trajectories?)

KL-divergence: measures the distance between two distributions

 $KL(P \mid Q) =$

If Q = P, then KL

If $P = \mathcal{N}(\mu_1, \sigma^2 I), Q = \mathcal{N}(\mu_2, \sigma^2 I)$

 $KL(P \mid Q) \ge 0$, and is 0 if and only if P = Q

Given two distributions P & Q, where $P \in \Delta(X), Q \in \Delta(X)$, KL Divergence is defined as:

$$= \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]$$

Examples:

$$(P | Q) = KL(Q | P) = 0$$

 $\sigma^2 I$, then $KL(P | Q) = \frac{1}{2\sigma^2} ||\mu_1 - \mu_2||^2$

Fact:

TRPO is locally equivalent to a much simpler algorithm

TRPO at iteration k:

s.t. $KL\left(\rho_{\pi_{\theta^k}}|\rho_{\pi_{\theta}}\right) \leq \delta$

Intuition: maximize local advantage subject to being incremental (in KL)

(Where F_{θ^k} is the "Fisher Information Matrix")

Natural Policy Gradient (NPG): A "leading order" equivalent program to TRPO:

1. Initialize
$$\theta^0$$

2. For $k = 0, ..., K$:
 $\theta^{k+1} = \arg \max_{\theta} \nabla_{\theta} J(\theta^k)^{\top} (\theta - \theta^k)$
s.t. $(\theta - \theta^k)^{\top} F_{\theta^k} (\theta - \theta^k) \leq \delta$
3. Return π_{θ^K}

- Where $\nabla_{\theta} J(\theta^k)$ is the gradient of $J(\theta)$ evaluated at θ^k , and
- F_{θ} is (basically) the Fisher information matrix at $\theta \in \mathbb{R}^d$, defined as:

$$F_{\theta} := \mathbb{E}_{\tau \sim \rho_{\pi_{\theta}}} \left[\nabla_{\theta} \ln \rho_{\theta}(\tau) (\nabla_{\theta} \ln \rho_{\theta}(\tau)) \right]$$

$$= \mathbb{E}_{\tau \sim \rho_{\pi_{\theta}}} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \left(\nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \right)^{\mathsf{T}} \right]$$

 $\ln \rho_{\theta}(\tau) \big)^{\mathsf{T}} \in \mathbb{R}^{d \times d}$

NPG has a closed form update!

1. Initialize
$$\theta^0$$

2. For $k = 0, ..., K$:
 $\theta^{k+1} = \arg \max_{\theta} \nabla_{\theta} J(\theta^k)^{\mathsf{T}}(\theta - \theta^k)$
s.t. $(\theta - \theta^k)^{\mathsf{T}} F_{\theta^k}(\theta - \theta^k) \leq \delta$
3. Return π_{θ^K}

Linear objective and quadratic convex constraint: we can solve it optimally! Indeed this gives us:

$$\theta^{k+1} = \theta^{k} + \eta F_{\theta^{k}}^{-1} \nabla_{\theta} J(\theta^{k})$$

Where $\eta = \sqrt{\frac{\delta}{\nabla_{\theta} J(\theta^{k})^{\mathsf{T}} F_{\theta^{k}}^{-1} \nabla_{\theta} J(\theta^{k})}}$

 (θ^k)

An Implementation: Sample Based NPG

- 1. Initialize θ^0
- 2. For k = 0, ..., K:
 - Obtain approximation of Policy Gradi
 - Obtain approximation of Fisher inform
 - Natural Gradient Ascent: $\theta^{k+1} = \theta^k$
- 3. Return π_{θ^K}

(We will implement it in HW4 on Cartpole)

$$\begin{array}{l} \text{ient: } \hat{g} \approx \nabla_{\theta} J(\theta^{k}) \\ \text{nation: } \hat{F} \approx F_{\theta^{k}} \\ + \eta \hat{F}^{-1} \hat{g} \end{array}$$

- TRPO -> NPG derivation
- Proximal Policy Optimization (PPO)
- Importance sampling

First Order Expansion on the Objective Function

$$f^{k}(\theta) := \mathbb{E}_{s_{0}, \dots, s_{H-1} \sim \rho_{\pi_{\theta}}}$$

 $\approx f^{k}(\theta^{k}) + (\theta - \theta^{k}) \cdot \nabla_{\theta} f^{k}(\theta)|_{\theta = \theta^{k}} = \text{ constant } + (\theta - \theta^{k}) \cdot \nabla_{\theta} f^{k}(\theta)|_{\theta = \theta^{k}}$

$$\begin{aligned} & = \nabla_{\theta} \mathbb{E}_{s_{0},\dots,s_{H-1} \sim \rho_{\pi_{\theta^{k}}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_{h} \sim \pi_{\theta}(\cdot|s_{h})} \left[A^{\pi_{\theta^{k}}}(s_{h},a_{h},h) \right] \right] \\ & = \mathbb{E}_{s_{0},\dots,s_{H-1} \sim \rho_{\pi_{\theta^{k}}}} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \mathbb{E}_{a_{h} \sim \pi_{\theta}(\cdot|s_{h})} \left[A^{\pi_{\theta^{k}}}(s_{h},a_{h},h) \right] \right] \\ & = \mathbb{E}_{s_{0},\dots,s_{H-1} \sim \rho_{\pi_{\theta^{k}}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_{h} \sim \pi_{\theta^{k}}(\cdot|s_{h})} \left[\nabla_{\theta} \ln \pi_{\theta}(a_{h}|s_{h}) \right] \right] \\ & = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^{k}}}} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_{h}|s_{h}) A^{\pi_{\theta^{k}}}(s_{h},a_{h},h) \right] \right] \end{aligned}$$

- Let's look at a first order Taylor expansion around $\theta = \theta^k$:

Taylor Expansion on the Constraint (we need it to be second-order. Why?)

 $\mathscr{E}(\theta) := KL(\rho_{\widetilde{\theta}} | \rho_{\theta}) \qquad (\rho_{\widetilde{\theta}} := \rho_{\pi_{\theta^{k}}} \text{ and } \rho_{\theta} := \rho_{\pi_{\theta}})$

$\ell(\theta) \approx \ell(\widetilde{\theta}) + (\theta - \widetilde{\theta})^{\mathsf{T}} \nabla_{\theta} \ell(\theta) \mid$

$$_{\theta = \widetilde{\theta}} + \frac{1}{2} (\theta - \widetilde{\theta})^{\mathsf{T}} \left[\nabla_{\theta}^{2} \mathscr{E}(\theta) \big|_{\theta = \widetilde{\theta}} \right] (\theta - \widetilde{\theta})$$

 $\ell(\widetilde{\theta}) = KL(\rho_{\widetilde{\theta}} | \rho_{\widetilde{\theta}}) = 0$

We will show that $\nabla_{\theta} \mathscr{E}(\theta)|_{\theta=\tilde{\theta}} = 0$, and $\nabla_{\theta}^2 \mathscr{E}(\theta)|_{\theta=\tilde{\theta}}$ has the claimed form!

The gradient of the KL-divergence is zero at θ^k

Change from trajectory distribution to state-action distribution:

$$\mathscr{E}(\theta) := KL\left(\rho_{\widetilde{\theta}} \,|\, \rho_{\theta}\right) = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}}\left[\ln \frac{\rho_{\widetilde{\theta}}(\tau)}{\rho_{\theta}(\tau)}\right] = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}}\left[\ln \rho_{\widetilde{\theta}}(\tau) - \ln \rho_{\theta}(\tau)\right]$$

$$\begin{split} \nabla_{\theta} \mathscr{E}(\theta) \Big|_{\theta = \widetilde{\theta}} &= -\mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\nabla_{\theta} \ln \rho_{\theta}(\tau) \right] \Big|_{\theta = \widetilde{\theta}} \\ &= -\sum_{\tau} \rho_{\widetilde{\theta}}(\tau) \frac{\nabla_{\theta} \rho_{\theta}(\tau)}{\rho_{\theta}(\tau)} \Big|_{\theta = \widetilde{\theta}} \\ &= -\sum_{\tau} \nabla_{\theta} \rho_{\theta}(\tau) \Big|_{\theta = \widetilde{\theta}} = -\nabla_{\tau} \nabla_{\theta} \rho_{\theta}(\tau) \Big|_{\theta = \widetilde{\theta}} \end{split}$$

 $= -\nabla_{\theta} \sum_{\tau} \rho_{\theta}(\tau) \Big|_{\theta = \tilde{\theta}}$

Let's compute the Hessian of the KL-divergence at θ^k

$$\mathscr{E}(\theta) := KL\left(\rho_{\widetilde{\theta}} | \rho_{\theta}\right) = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}}$$

$$\nabla^{2}_{\theta} \mathscr{E}(\theta) \Big|_{\theta = \widetilde{\theta}} = - \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\nabla^{2}_{\theta} \ln \rho_{\theta}(\tau) \right] \Big|_{\theta = \widetilde{\theta}}$$

$$= -\sum_{\tau} \rho_{\widetilde{\theta}}(\tau) \left(\frac{\nabla_{\theta}^{2} \rho_{\theta}(\tau)}{\rho_{\theta}(\tau)} - \frac{\nabla_{\theta} \rho_{\theta}(\tau) \nabla_{\theta} \rho_{\theta}(\tau)}{(\rho_{\theta}(\tau))^{2}} - \frac{\nabla_{\theta} \rho_{\theta}(\tau) \nabla_{\theta} \rho_{\theta}(\tau)}{(\rho_{\theta}(\tau))^{2}} \right)$$

$$= \sum_{\tau} \rho_{\widetilde{\theta}}(\tau) \frac{\nabla_{\theta} \rho_{\theta}(\tau) \nabla_{\theta} \rho_{\theta}(\tau)}{(\rho_{\theta}(\tau))^{2}} \Big|_{\theta = \widetilde{\theta}}$$
Why? τ

 $\int_{\widetilde{\sigma}} \left| \ln \frac{\rho_{\widetilde{\theta}}(\tau)}{\rho_{\theta}(\tau)} \right| = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\ln \rho_{\widetilde{\theta}}(\tau) - \ln \rho_{\theta}(\tau) \right]$

 $= \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\nabla_{\theta} \ln \rho_{\theta}(\tau) \left(\nabla_{\theta} \ln \rho_{\theta}(\tau) \right)^{\mathsf{T}} \right] \Big|_{\theta = \widetilde{\theta}} \in \mathbb{R}^{d \times d}$

It's called the Fisher Information Matrix!

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

Gradient:
$$\nabla_{\theta} J(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$

i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $\nabla_{\theta} J(\theta) \rightarrow 0$ as $\theta \to \infty$ Fisher information scalar: $F_{\theta} = \frac{\exp(\theta)}{(1 + \exp(\theta))^2}$

NPG:
$$\theta^{k+1} = \theta^k + \eta \frac{\nabla_{\theta} J(\theta^k)}{F_{\theta^k}} = \theta_t + \eta \cdot 99$$

NPG moves to $\theta = \infty$ much more quickly (for a fixed η)

- Feedback from last lecture Recap
 TRPO -> NPG derivation
 - Proximal Policy Optimization (PPO)
 - Importance sampling

Back to TRPO/NPG

1. Initialize
$$\theta^{0}$$

2. For $k = 0, ..., K$:
try to approximately solve:
 $\theta^{k+1} = \arg \max_{\theta} \mathbb{E}_{s_0, ..., s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot|s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \right]$
s.t. $KL \left(\rho_{\pi_{\theta^k}} | \rho_{\pi_{\theta}} \right) \leq \delta$
3. Return π_{θ^K}

- The difficulty with TRPO and NPG is that they could be computationally costly.
- Can we use a method which only uses gradients? \bullet

Let's try to use a "Lagrangian relaxation" of TRPO

Need to solve constrained optimization or matrix inversion ("second order") problems.

Proximal Policy Optimization (PPO)

$$\mathbb{E}_{a_h \sim \pi_{\theta}(\cdot|s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] - \lambda KL \left(\rho_{\pi_{\theta^k}} | \rho_{$$

regularization

The regularization term is:

$$\begin{split} KL\left(\rho_{\pi_{\theta^{k}}}|\rho_{\pi_{\theta}}\right) &= \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^{k}}}}\left[\ln\frac{\rho_{\pi_{\theta^{k}}}(\tau)}{\rho_{\pi_{\theta}}(\tau)}\right] \\ &= \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^{k}}}}\left[\sum_{h=0}^{H-1}\ln\frac{\pi_{\theta^{k}}(a_{h}|s_{h})}{\pi_{\theta}(a_{h}|s_{h})}\right] \\ &= \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^{k}}}}\left[\sum_{h=0}^{H-1}\ln\frac{1}{\pi_{\theta}(a_{h}|s_{h})}\right] + \left[\text{term not a function of }\theta\right] \end{split}$$

 $\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 | s_0)P(s_1 | s_0, a_0)\dots P(s_{H-1} | s_{H-2}, a_{H-2})\pi_{\theta}(a_{H-1} | s_{H-1})$

Proximal Policy Optimization (PPO)

1. Initialize
$$\theta^{0}$$

2. For $k = 0, ..., K$:
use SGD to approximately solve:
 $\theta^{k+1} = \underset{\theta}{\operatorname{arg max}} \ell^{k}(\theta)$
where:
 $\ell^{k}(\theta) := \mathbb{E}_{s_{0},...,s_{H-1}\sim\rho_{\pi_{0}k}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_{h}\sim\pi_{\theta}(\cdot|s_{h})} \left[A^{\pi_{\theta}k}(s_{h}, a_{h}, h) \right] \right] - \lambda \mathbb{E}_{\tau\sim\rho_{\pi_{0}k}} \left[\sum_{h=0}^{H-1} \ln \frac{1}{\pi_{\theta}(a_{h}|s_{h})} \right]$
3. Return $\pi_{\theta^{K}}$

How do we estimate this objective?

- Feedback from last lecture Recap TRPO -> NPG derivation
 Proximal Policy Optimization (PPO)

 - Importance sampling

SGD and Importance Sampling

- Recall that SGD requires an unbiased estimate of the objective function's gradient
- This was easy when the objective function was an expectation, and the only θ -dependence appears inside the expectation
 - This was true for supervised learning / ERM
- Not true for RL, and was part of why we needed likelihood ratio method in REINFORCE • When not true (as in PPO), we want to make it so, if possible
- Enter: importance sampling
 - rewrites expectations by changing the distribution the expectation is over
 - we will use this to move that distribution's θ -dependence inside the expectation
- **Key point**: once all θ -dependence inside objective's expectation,
 - Can estimate objective unbiasedly via sample average
 - Can estimate objective's gradient unbiasedly via gradient of sample average

Importance Sampling

- Suppose we seek to estimate $\mathbb{E}_{x \sim \tilde{p}}[f(x)]$.
- - f and \widetilde{p} are known.
 - we are not able to collect values of f(x) for $x \sim \widetilde{p}$. (e.g. we have already collected our data from some costly experiment).
- Note: $\mathbb{E}_{x \sim \widetilde{p}} [f(x)] = \mathbb{E}_{x \sim p} \left[\frac{p(x)}{p(x)} f(x) \right]$

So an unbiased estimate of $\mathbb{E}_{x \sim \tilde{p}}[f(x)]$

- Terminology:
 - $\widetilde{p}(x)$ is the target distribution
 - p(x) is the proposal distribution
 - $\widetilde{p}(x)/p(x)$ is the likelihood ratio or importance weight
- What about the variance of this estimator?

• Assume: we have an (i.i.d.) dataset $x_1, \ldots x_N$, where $x_i \sim p$, where p is known, and

is given by
$$\frac{1}{N} \sum_{i=1}^{N} \frac{\widetilde{p}(x_i)}{p(x_i)} f(x_i)$$

Importance Sampling & Variance

• To estimate

$$\mathscr{C}^{k}(\boldsymbol{\theta}) := \mathbb{E}_{s_{0},\ldots,s_{H-1}\sim\rho_{\pi_{\boldsymbol{\theta}^{k}}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_{h}\sim\pi_{\boldsymbol{\theta}}(\cdot|s_{h})} \left[A^{\pi_{\boldsymbol{\theta}^{k}}}(s_{h},a_{h},h) \right] \right] - \lambda \mathbb{E}_{\tau\sim\rho_{\pi_{\boldsymbol{\theta}^{k}}}} \left[\sum_{h=0}^{H-1} \ln \frac{1}{\pi_{\boldsymbol{\theta}}(a_{h}|s_{h})} \right]$$

• we will use importance sampling:

$$= \mathbb{E}_{s_0, \dots, s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta^k}(\cdot | s_h)} \left[\frac{\pi_{\theta}(a_h | s_h)}{\pi_{\theta^k}(a_h | s_h)} A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \right] - \lambda \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \ln \frac{1}{\pi_{\theta}(a_h | s_h)} A^{\pi_{\theta^k}}(s_h, a_h, h) - \lambda \ln \frac{1}{\pi_{\theta}(a_h | s_h)} \right] \right]$$

Back to Estimating $\ell^k(\theta)$

1. Using *N* trajectories sampled und $\widetilde{b}(s,h) \approx V_h^{\pi_{\theta^k}}(s)$ 2. Obtain M NEW trajectories τ_1, \ldots Set $\widehat{\ell}^{k}(\theta) = \frac{1}{M} \sum_{m=1}^{M} \sum_{h=0}^{H-1} \left(\frac{\pi_{\theta}(a_{h}^{m})}{\pi_{\theta^{k}}(a_{h}^{n})} \right)$ for SGD, use gradient: $g(\theta) := \nabla$

 $g(\theta^k)$ is unbiase

Estimating $\ell^k(\theta)$ and its gradient

 \sim

der
$$ho_{\pi_{ heta^k}}$$
 to learn a b_h

$$\tau_{M} \sim \rho_{\pi_{\theta^{k}}}$$

$$\frac{\gamma_{h}^{m} | s_{h}^{m} \rangle}{\sigma_{h}^{m} | s_{h}^{m} \rangle} \left(R_{h}(\tau_{m}) - \widetilde{b}(s_{h}^{m}, h) \right) - \lambda \ln \frac{1}{\pi_{\theta}(a_{h}^{m} | s_{h}^{m})}$$

$$\theta \, \widehat{\ell}^{k}(\theta)$$

ed for
$$\nabla_{\theta} \mathscr{C}^k(\theta) \Big|_{\theta = \theta^k}$$

Summary:

- 1. NPG: a simpler way to do TRPO, a "pre-conditioned" gradient method.
- 2. PPO: "first order" approximation to TRPO

Attendance: bit.ly/3RcTC9T

"pre-conditioned" gradient method. TRPO

Feedback: bit.ly/3RHtlxy

