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Feedback from feedback forms

1. Thank you to everyone who filled out the forms!
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PG with a Learned Baseline:

H-1
Let ¢'(0,7,50) := ) Vylnzyay|s,)(Ry() — b(s;, h))
h=0

1. Initialize 6°, parameters: ;71, ;72,
2. Fork=0,...:
1. Supervised Learning: Using N trajectories sampled under 7, estimate a baseline b
— ok
b(s,h) = V; (s)
2. Obtain a trajectory 7 ~ p
Compute (6%, 7. b())

3. Update: 0" = 0 + ' o'(0", . Z())

Note that regardless of our choice of b, we still get unbiased gradient estimates.



The Performance Difference Lemma (PDL)

-Let p ; be the distribution of trajectories from starting state s acting under .
(we are making the starting distribution explicit now).
- For any two policies 7 and 7 and any state s,

H-1
VE(s) = V(s) = E,, | ), A™(sy ay )
h=0

Comments:
*Helps us think about error analysis, instabilities of fitted Pl, and sub-optimality.

*Helps to understand algorithm design (TRPO, NPG, PPO)
» This also motivates the use of “local” methods (e.g. policy gradient descent)



Back to Fitted Policy lteration

*Suppose " gets updated to 71, How much worse could 75! be?

Ak k
-In Fitted Policy Iteration, A" ~ A" is achieved via supervised learning on 7, ... Ty ~ P«

H-1 H-1
_ Ak k
_This means we expect [ o, Z A" (s, a, )| = E__ " Z A" (s, ay, h)
k h=0 h=0
.In particular, A* should be close to A* where ¥ visits often...

But it could be very bad in places 7~ visits rarely, and nothing stops 71 from visiting those
bad places very often!

.So 78+ could end up being (much) worse than .

*Problem is a mismatch between expectations: what we really want is

H—-1 H-1
Ak k
_ E T ~ [ E T
TNpﬂk_i_l’S A (Sh9 ah? h) i TNpﬂ-k‘Fl,S A (Sh9 ah’ h)

k+1 k

~ JU

-One way to ensure this: keep 7



Trust Region Policy Optimization (TRPO)

1. Initialize 6°

2. Fork=0,...,K:
try to approximately solve;

H-1
k+1 __ — — TCok
9 a— arg mele SO,. . .,SH_leﬂ.ek Z ahNﬂ:@("Sh) [A (Sh9 ah? h)]
h=0

s.t. KL (pﬂ@k\pﬂg) <o

3. Return myx

« We want to maximize local advantage against 7,

but we want the new policy to be close to 7, (in the KL sense)
« How do we implement this with sampled trajectories?)



KL-divergence: measures the distance between two distributions

Given two distributions P & O, where P € A(X), O € A(X),
KL Divergence is defined as:

KL(P|0) = E [ln P(x)]
o)

Examples:
If O = P, then KL(P|Q) = KL(Q|P)=0

if P = N (g, 6°1), 0 = N (iy, 6°I), then KL(P | Q) = — ||y — i, ]|?

20%

Fact:

KL(P|0QO)>0,andisOifandonlyif P = Q
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TRPO is locally equivalent to a much simpler algorithm

TRPO at iteration k:

H-1
- - Tyl
Inng S0+ SH-1~Pr Z ap~7rg(+|Sp) [A *(Sp> A h)] —>  First-order Taylor expansion at §*
h=0
— _ : k
S.l. KL (pﬂgk\ pﬂ8> <0 second-order Taylor expansion at ¢
Intuition: maximize local advantage INT r
subject to being incremental (in KL) max VQJ(H ) (0 —07%)

0
s.t. (0 —0NTF (60— 0 <6

(Where ng is the “Fisher Information Matrix”)
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Natural Policy Gradient (NPG): A “leading order” equivalent program to TRPO:

1. Initialize 6"
2. Fork=0,...,K:
0"t = arg max V,J(0%) " (0 — 6%

v,
s.t. (0 — 0N F (-0 <6
3. Return myx

« Where VQJ(HI‘) s the gradient of J(0) evaluated at 9%, and
« F,is (basically) the Fisher information matrix at 0 Rd, defined as:

Fy:=1 V,ln p9(7)< V,ln pg(f))T] e R

T~p Y

H—-1

T

_TNIOEQ Z V@ln ﬂg(ah ‘ Sh)( V@ln ﬂ@(ah ‘ Sh)) ]
h=0
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NPG has a closed form update!

1. Initialize 6"
2. Fork=0,...,K:
0"t = arg max V,J(0%) " (0 — 0%

0
s.t. (0 — 0N F (-0 <6
3. Return myx

Linear objective and quadratic convex constraint: we can solve it optimally!

Indeed this gives us:

Ot = 0" + nF,' V,J(0"

Wh 0
ere v —
T VIO TFRIV (0%
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An Implementation: Sample Based NPG

1. Initialize 6°
2. Fork=0,...,.K:

» Obtain approximation of Policy Gradient: g

 QObtain approximation of Fisk

e Natural Gradient Ascent: @%t

3. Return my«

(We will implement it in HW4 on Cartpole)
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First Order Expansion on the Objective Function

746) =

$05+++5SH-1~Pr [

H-1

2

h=0

ay~my(-|sp)

(A7 (s),, ay, )]

Let’s look at a first order Taylor expansion around @ = 6"
~ 5O + (0 — 6% - Vof O, = constant + (0 — 0% - V,r5O)|,_,

=

.

H—-1

TP [

H—-1

S0+« -8 1

_ah"’ﬂe(' |57,) [

h=0

h=0

ay~ny(-|sp)

A

Tok(s,, d h)]]

[A”@k(sh, a, h)]

e—ek]

O=0k

H—-1
Npﬂek [ Z _ahNﬂgk('lsh) [V@ln ﬂe(ah ‘ Sh)Aﬂek(Sh, a, h)] ]

h=0

h=0

H-1
2 Voln ny(ay, | s;)A"(s;, a, h)]

=0
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TP [

O=0*

H-1
D Vylnzya,|s,)R,(7)
h=0

|

=0k

= VoJ(0) | g



Taylor Expansion on the Constraint
(we need it to be second-order. Why?)

£(0) := KL(p5lpy)  (py:=p,, andpy:=p.)

n NT 1 NT [ o2 n
)~ £(0)+ O —0) Vo£(O)|,_5+ 5(9 —0)'[V3£(0)],_5|0 - 0)
£(0) = KL(pj| py) = 0

We will show that V,£(0)|,_5 = 0, and ng(é’) | ,_7 has the claimed form!

16



The gradient of the KL-divergence is zero at A

Change from trajectory distribution to state-action distribution:

5(7)
£(0) := KL (pglpy) =E,., |In la - [Inp3(2) — In py(7)]
0 PQ(T) 0

Vol©)| _=—E,, [Volnpy) |9=5

- ). p(—2280 ‘
O pe(t) =0

1
|
<
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>
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|
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VL) =

Let’s compute the Hessian of the KL-divergence at Ok

50)
£(0) = KL (pg1py) = E,.,, [In M

_ _T%[Vgln Pe(7)] L

) Zp~<f>< V30iD)  Vopy®) Vop,d)]
0

Po(7) ( Po(7) ) 2

Py(7)

) 0=0

] =E,.,. In p5(7) — In py(7)]

=y | Voln 20 (Vgln )|

It’s called the Fisher Information Matrix!
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| 2] A

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

TR T +exp(0) 1 + exp() (1 + exp(6))

99 exp(@k)

J(6) =100 - (1] + 1 - my[2] Exact PG: 07! = 9% +
’ ’ ” ! (1 + exp(6¥))?
% .e., vanilla GA moves to = oo with smaller
— 0 0o and smaller steps, since V,J(f) — 0 as
0 — oo
. o | | | exp(6)
Every possible policy Is a Fisher information scalar: F, =
point on the line segment, (1 + exp(0))?
parameterized by 0. V. J(OF
NPG: 0! = gk 4 p—2 ) =0, +1n-99

Fy

1 ﬂ[lj
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Back to TRPO/NPG

1. Initialize 6°

2. Fork=0,...,K:
try to approximately solve;

H-1
k+1 __ — — TCok
H — arg mHaX SO,. . .,SH_leﬂek Z Cthﬂ'@(- |Sh) A (Sh9 ah? h)]
h=0

s.t. KL (pﬂgk\p@) <o

3. Return myx

* The difficulty with TRPO and NPG is that they could be computationally costly.
Need to solve constrained optimization or matrix inversion (“second order”) problems.
 (Can we use a method which only uses gradients?

Let’s try to use a “Lagrangian relaxation” of TRPO
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Proximal Policy Optimization (PPO)

1. Initialize @°

2. Fork=0,...,K:

try to approximately solve;
H-1

k+1 T
0" = arg mgx _SO’“'aSH—lNIOnHk Z —ay~my(-|sy) [A *(Sps Aps h)] —AKL (pﬂek‘pﬂe)
h=0

regularization
3. Return myx
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The regularization term is:

Pr,(T)
KL (pyy1psy) = Ervyy |In

1
I
N
l
>
X
[
N
| |
—
)
S
=~
Q
—
)
—
) ——
I

term not a function of 4

H-1 1
oty 2 In +

PQ(T) = ﬂ(So)ﬂe(ao | S())P(Sl | 50> Clo)- - -P(SH_l ‘SH—za ClH_z)ﬂe(aH_l ‘SH_l)
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1. Initialize 6"

2. Fork =0,.

Proximal Policy Optimization (PPO)

LK

use SGD to approximately solve:

9k+1

where:

H—-1
CNO0) =By, s, 2. Bl [A™ (51 h)]] — Ak, | [Z n————

3. Return myx

— arg max £~(6)

0

How do we estimate this objective”?
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SGD and Importance Sampling

* Recall that SGD requires an unbiased estimate of the objective function’s gradient

» This was easy when the objective function was an expectation, and the only 6-dependence

appears inside the expectation

* This was true for supervised learning / ERM

* Not true for RL, and was part of why we needed likelihood ratio method in REINFORCE
* \When not true (as in PPO), we want to make it so, if possible
* Enter: importance sampling

* rewrites expectations by changing the distribution the expectation is over

» we will use this to move that distribution’s 8-dependence inside the expectation

« Key point: once all f-dependence inside objective’s expectation,

* Can estimate objective unbiasedly via sample average

* Can estimate objective’s gradient unbiasedly via gradient of sample average

26



Importance Sampling

» Suppose we seek to estimate & x~5[ f(x)].

« Assume: we have an (i.l.d.) dataset x, .. .x,, where x. ~ p, where p is known, and

« fand p are known.

« we are not able to collect values of f(x) for x ~ p.
(e.g. we have already collected our data from some costly experiment).

. Note: - [/0] = E,_, [Z gg f(x)] )
1

So an unbiased estimate of [=_~| f(x)| is given by — 2 PLx) f(x;)
. g N 1 p(x;)

* Terminology:
» p(x) is the target distribution
« p(x) is the proposal distribution

« p(x)/p(x)is the likelihood ratio or importance weight
* What about the variance of this estimator?
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Importance Sampling & Variance



Back to Estimating £~(9)

e To estimate

H-1 H-1
k — [E — T —
c(0) = S5+ >SH-1"~Pr 1 [Z ap~my(-|sp) [A *(Sh> Ap h)]] — 4 TP lz In
h=0 h=0

|
I
=
2
>
N
o~

H-1
woay | sy) .
SN 7+ |53) lﬂgk (ah ‘ Sh) A ek(Sh, ay, h) — AE P

H—-1
a | s 1
"0 Ty Clh Sh

= \ 7oay | sp)
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Estimating Z%(0) and its gradient

1. Using N trajectories sampled under Pr to learn a 'Eh
b(s, h) ~ V7(s)
2. Obtain M NEW trajectories 7y, ...7Ty; ~ Py

M H-1
Ik ﬂe(ah ‘ Sh - = - 1
Set 7 K(0) = Z Y (ﬂ o (Rh(’[m) b(s! ,h)) i S;’Z“>>

nlﬁlh 0

for SGD, use gradient: g(¢)) := V, ?k(é’)

2(0%) is unbiased for V,t ()

O=0k
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Summary:

1. NPG: a simpler way to do TRPO, a “pre-conditioned” gradient method.
2. PPO: “first order” approximation to TRPO

Attendance: Feedback:
bit.ly/3RcTCOT bit.ly/3RHtIxy
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http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

