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•Consider a parameterized class of policies: 
	  
(why do we make it stochastic?)  

•Objective , where 

	  

•Policy Gradient Descent: 
	

{πθ(a |s) |θ ∈ ℝd}

max
θ

J(θ)

J(θ) := #s0∼μ [Vπθ(s0)] = #τ∼ρπθ [
H−1

∑
h=0

r(sh, ah)]
θk+1 = θk + η∇J(θk)



REINFORCE: A Policy Gradient Algorithm

6

•Let  be the probability of a trajectory , i.e. 
	  

•Let  be the cumulative reward on trajectory , i.e. 


•Our objective function is: 
	 

•From the likelihood ratio method, we have:  
	  

•The REINFORCE Policy Gradient expression: 

	

ρθ(τ) τ = {s0, a0, s1, a1, …, sH−1, aH−1}
ρθ(τ) = μ(s0)πθ(a0 |s0)P(s1 |s0, a0)…P(sH−1 |sH−2, aH−2)πθ(aH−1 |sH−1)

R(τ) τ R(τ) :=
H−1

∑
h=0

r(sh, ah)

J(θ) = Eτ∼ρθ[R(τ)]
∇θJ(θ) = #τ∼ρθ [∇θln ρθ(τ) R(τ)]

∇θln ρθ(τ) R(τ) = (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)
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Obtaining an Unbiased Gradient Estimate at θ

∇θJ(θ) := #τ∼ρθ (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

1. Obtain a trajectory  
(which we can do in our learning setting)

τ ∼ ρθ

2. Set:  

	  g(θ, τ) := (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

We have: #[g(θ, τ)] = ∇θJ(θ)
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Other PG formulas  
(that are lower variance for sampling)
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∑
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Other PG formulas  
(that are lower variance for sampling)

∇θJ(θ) = #τ∼ρθ (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

= #τ∼ρθ

H−1

∑
h=0 (∇θln πθ(ah |sh)

H−1

∑
t=h

r(st, at))
= #τ∼ρθ [

H−1

∑
h=0

∇θln πθ(ah |sh)Qπθ
h (sh, ah)]

Intuition: Changing the action distribution at  only affects rewards later on…h
HW: You will show these simplified version are also valid PG expressions
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With a “baseline” function:

For any function only of the state, , we have:bh : S → ℝ
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#x∼Pθ [∇θlog Pθ(x) c] = 0
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This is (basically) the method of control variates.

• For the proof, it was helpful to note: 
#x∼Pθ [∇θlog Pθ(x) c] = 0

∇θJ(θ) = #τ∼ρθ [
H−1

∑
h=0

∇θln πθ(ah |sh)(Rh(τ) − bh(sh))]
= #τ∼ρθ [

H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]
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Vπ
h (s) = # [

H−1

∑
t=h

r(st, at) sh = s] Qπ
h (s, a) = # [

H−1

∑
t=h

r(st, at) (sh, ah) = (s, a)]
• The Advantage function is defined as: 
	 Aπ

h (s, a) = Qπ
h (s, a) − Vπ

h (s)
• We have that: 
	 #a∼π(⋅|s)[Aπ

h (s, a) s, h] = ∑
a

π(a |s)Aπ
h (s, a) = 0

• We know  Aπ⋆
h (s, a) ≤ 0 ∀s, a

• For the discounted case, Aπ(s, a) = Qπ(s, a) − Vπ(s)
11



The Advantage-based PG: 

∇θJ(θ) = #τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]

12



The Advantage-based PG: 

= #τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)Aπθ
h (sh, ah)]

∇θJ(θ) = #τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]

12



The Advantage-based PG: 

• The second step follows by choosing .bh(s) = Vπ
h (s)

= #τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)Aπθ
h (sh, ah)]

∇θJ(θ) = #τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]

12



The Advantage-based PG: 

• The second step follows by choosing .bh(s) = Vπ
h (s)

• In practice, the most common approach is to use  that’s an estimate of .bh(s) Vπ
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Note that regardless of our choice of , we still get unbiased gradient estimates.b̃

Let g′ (θ, τ, b()) :=
H−1

∑
h=0

∇θln πθ(ah |sh)(Rh(τ) − b(sh, h))
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1. Initialize , parameters: θ0 η1, η2, …
2. For : k = 0,…

1. Supervised Learning: Using  trajectories sampled under , estimate a baseline  N πθk b̃
b̃(s, h) ≈ Vθk

h (s)
2. Obtain  trajectories  

Compute  

M τ1, …τM ∼ ρθk

g = 1
M

M

∑
m=1

g′ (θk, τm, b̃())

3. Update: θk+1 = θk + ηkg
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• Feedback from last lecture

• Recap

• The Performance Difference Lemma

• Trust Region Policy Optimization (TRPO)

• The Natural Policy Gradient (NPG)
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• Initialization: choose a policy  and a sample size 

• For 


1. Fitted Policy Evaluation: Using  sampled trajectories 
, obtain approximation 


2. Policy Improvement: set 

π0 : S ↦ A N
k = 0,1,…

N
τ1, …τN ∼ ρπk Q̂πk ≈ Qπk

πk+1
h (s) := arg max

a
Q̂πk(s, a, h)
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• For 


1. Fitted Policy Evaluation: Using  sampled trajectories 
, obtain approximation 


2. Policy Improvement: set 

π0 : S ↦ A N
k = 0,1,…

N
τ1, …τN ∼ ρπk ̂Aπk ≈ Aπk

πk+1
h (s) := arg max

a
̂Aπk(s, a, h)
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•Let  be the distribution of trajectories from starting state  acting under .  
(we are making the starting distribution explicit now).

ρπ̃,s s π̃

•For any two policies  and  and any state , 

	  

 

π π̃ s

Vπ̃(s) − Vπ(s) = #τ∼ρπ̃,s [
H−1

∑
h=0

Aπ(sh, ah, h)]
Comments:
•Helps us think about error analysis, instabilities of fitted PI, and sub-optimality.
•Helps to understand algorithm design (TRPO, NPG, PPO)
•This also motivates the use of “local” methods (e.g. policy gradient descent)
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•So  could end up being (much) worse than  πk+1 πk

•Problem is a mismatch between expectations: what we really want is  

#τ∼ρπk+1,s [
H−1

∑
h=0
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•One way to ensure this: keep πk+1 ≈ πk
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If , then P = 1(μ1, σ2I), Q = 1(μ2, σ2I) KL(P |Q) = 1
2σ2 ∥μ1 − μ2∥2

Fact: 
, and is  if and only if KL(P |Q) ≥ 0 0 P = Q
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1. Initialize 

2. For  :   

try to approximately solve: 

	  

	 	 s.t. 


3. Return 

θ0

k = 0,…, K

θk+1 = arg max
θ

#s0,…,sH−1∼ρπθk [
H−1

∑
h=0

#ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]
KL (ρπθk |ρπθ) ≤ δ

πθK
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• We want to maximize local advantage against ,  
but we want the new policy to be close to  (in the KL sense)


• How do we implement this with sampled trajectories?)

πθk

πθk

Trust Region Policy Optimization (TRPO)

,
S



How do we implement TRPO with samples?

1. Initialize parameter , sample size , and tolerance 

2. For  : 


1. [Advantage-Evaluation Subroutine]  
Using  sampled trajectories , obtain approximation 


2. Solve the following optimization problem to obtain : 

 

 

s.t. 


θ0 M δ
k = 0,…, K

M τ1, …τM ∼ ρπθk
̂Aπθk ≈ Aπθk

θk+1

max
θ

M

∑
m=1

H−1

∑
h=0

#a∼πθ(⋅|sm
h ) [ ̂Aπθk(sm

h , a, h)]
M

∑
m=1

H−1

∑
h=0

ln πθk(am
h |sm

h )
πθ(am

h |sm
h ) ≤ δ
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Approximate expectation

by importance sampling:


#a∼πθ(⋅|sm
h ) [ ̂Aπθk(sm

h , a, h)]
= #a∼πθk(⋅|sm

h ) [ πθ(a |sm
h )

πθk(a |sm
h )

̂Aπθk(sm
h , a, h)]
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• Feedback from last lecture

• Recap

• The Performance Difference Lemma

• Trust Region Policy Optimization (TRPO)

• The Natural Policy Gradient (NPG)



TRPO is locally equivalent to a much simpler algorithm

max
θ

#s0,…,sH−1∼ρπθk [
H−1

∑
h=0

#ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]
s.t. KL (ρπθk |ρπθ) ≤ δ

Intuition: maximize local advantage 
subject to being incremental (in KL)

TRPO at iteration k:
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max
θ

∇θJ(θk)⊤(θ − θk)
s.t. (θ − θk)⊤Fθk(θ − θk) ≤ δ

(Where  is the “Fisher Information Matrix”)Fθk

Intuition: maximize local advantage 
subject to being incremental (in KL)

TRPO at iteration k:
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1. Initialize 

2. For  :  

	  

	  s.t. 

3. Return 

θ0

k = 0,…, K
θk+1 = arg max

θ
∇θJ(θk)⊤(θ − θk)

(θ − θk)⊤Fθk(θ − θk) ≤ δ
πθK
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Natural Policy Gradient (NPG): A “leading order” equivalent program to TRPO:

• Where  is the gradient of  evaluated at , and 

•  is (basically) the Fisher information matrix at , defined as:  
	  
 

 	     

∇θJ(θk) J(θ) θk

Fθ θ ∈ ℝd

Fθ := #τ∼ρπθ [∇θln ρθ(τ)(∇θln ρθ(τ))⊤] ∈ ℝd×d

= #τ∼ρπθ [
H−1

∑
h=0

∇θln πθ(ah |sh)(∇θln πθ(ah |sh))⊤]



NPG has a closed form update!
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NPG has a closed form update!

Linear objective and quadratic convex constraint: we can solve it optimally!
Indeed this gives us:

θk+1 = θk + ηF−1
θk ∇θJ(θk)

Where η = δ
∇θJ(θk)⊤F−1

θk ∇θJ(θk)
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1. Initialize 

2. For  : 

• Obtain approximation of Policy Gradient: 

• Obtain approximation of Fisher information: 

• Natural Gradient Ascent:   


3. Return 

θ0

k = 0,…, K
̂g ≈ ∇θJ(θk)

̂F ≈ Fθk

θk+1 = θk + η ̂F−1 ̂g
πθK
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• Obtain approximation of Policy Gradient: 

• Obtain approximation of Fisher information: 

• Natural Gradient Ascent:   


3. Return 

θ0

k = 0,…, K
̂g ≈ ∇θJ(θk)

̂F ≈ Fθk

θk+1 = θk + η ̂F−1 ̂g
πθK

29

An Implementation: Sample Based NPG

(We will implement it in HW4 on Cartpole)
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• Feedback from last lecture

• Recap

• The Performance Difference Lemma

• Trust Region Policy Optimization (TRPO)

• The Natural Policy Gradient (NPG)



Summary:

Feedback: 

bit.ly/3RHtlxy
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Attendance: 
bit.ly/3RcTC9T

1. Performance Difference Lemma tells us we need to stay local

2. TRPO and NPG ensure we don’t move too much each step



Example of Natural Gradient on 1-d problem: 2 actions, 1 state

(πθ[1], πθ[2]) := ( exp(θ)
1 + exp(θ) , 1

1 + exp(θ) )
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]
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