
Trust Region Policy Optimization 
& The Natural Policy Gradient 

 
Lucas Janson 

CS/Stat 184(0): Introduction to Reinforcement Learning  
Fall 2024

1

Today

2

• Feedback from last lecture

• Recap

• The Performance Difference Lemma

• Trust Region Policy Optimization (TRPO)

• The Natural Policy Gradient (NPG)

Feedback from feedback forms

3

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

3

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!
2. Discuss projects!

3

Today

4

• Feedback from last lecture

• Recap

• The Performance Difference Lemma

• Trust Region Policy Optimization (TRPO)

• The Natural Policy Gradient (NPG)

Optimization Objective

5

•Consider a parameterized class of policies: 
	  
(why do we make it stochastic?)  

•Objective , where 

	  

•Policy Gradient Descent: 
	

{πθ(a |s) |θ ∈ ℝd}

max
θ

J(θ)

J(θ) := #s0∼μ [Vπθ(s0)] = #τ∼ρπθ [
H−1

∑
h=0

r(sh, ah)]
θk+1 = θk + η∇J(θk)

REINFORCE: A Policy Gradient Algorithm

6

•Let be the probability of a trajectory , i.e. 
	  

•Let be the cumulative reward on trajectory , i.e.

•Our objective function is: 
	

•From the likelihood ratio method, we have:  
	  

•The REINFORCE Policy Gradient expression: 

	

ρθ(τ) τ = {s0, a0, s1, a1, …, sH−1, aH−1}
ρθ(τ) = μ(s0)πθ(a0 |s0)P(s1 |s0, a0)…P(sH−1 |sH−2, aH−2)πθ(aH−1 |sH−1)

R(τ) τ R(τ) :=
H−1

∑
h=0

r(sh, ah)

J(θ) = Eτ∼ρθ[R(τ)]
∇θJ(θ) = #τ∼ρθ [∇θln ρθ(τ) R(τ)]

∇θln ρθ(τ) R(τ) = (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

Obtaining an Unbiased Gradient Estimate at θ

∇θJ(θ) := #τ∼ρθ (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

7

Obtaining an Unbiased Gradient Estimate at θ

∇θJ(θ) := #τ∼ρθ (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

1. Obtain a trajectory  
(which we can do in our learning setting)

τ ∼ ρθ

7

Obtaining an Unbiased Gradient Estimate at θ

∇θJ(θ) := #τ∼ρθ (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

1. Obtain a trajectory  
(which we can do in our learning setting)

τ ∼ ρθ

2. Set:  

	  g(θ, τ) := (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

7

Obtaining an Unbiased Gradient Estimate at θ

∇θJ(θ) := #τ∼ρθ (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

1. Obtain a trajectory  
(which we can do in our learning setting)

τ ∼ ρθ

2. Set:  

	  g(θ, τ) := (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

We have: #[g(θ, τ)] = ∇θJ(θ)

7

PG with REINFORCE:

8

PG with REINFORCE:

1. Initialize , step size parameters: θ0 η1, η2, …

8

PG with REINFORCE:

1. Initialize , step size parameters: θ0 η1, η2, …
2. For : k = 0,…

8

PG with REINFORCE:

1. Initialize , step size parameters: θ0 η1, η2, …
2. For : k = 0,…

1. Obtain a trajectory  
Compute  

τ ∼ ρθk

g(θk, τ)

8

PG with REINFORCE:

1. Initialize , step size parameters: θ0 η1, η2, …
2. For : k = 0,…

1. Obtain a trajectory  
Compute  

τ ∼ ρθk

g(θk, τ)

2. Update: θk+1 = θk + ηkg(θk, τ)

8

Other PG formulas  
(that are lower variance for sampling)

∇θJ(θ) = #τ∼ρθ (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

9

(REINFORCE)

Other PG formulas  
(that are lower variance for sampling)

∇θJ(θ) = #τ∼ρθ (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

= #τ∼ρθ

H−1

∑
h=0 (∇θln πθ(ah |sh)

H−1

∑
t=h

r(st, at))

9

(REINFORCE)

Other PG formulas  
(that are lower variance for sampling)

∇θJ(θ) = #τ∼ρθ (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

= #τ∼ρθ

H−1

∑
h=0 (∇θln πθ(ah |sh)

H−1

∑
t=h

r(st, at))
= #τ∼ρθ [

H−1

∑
h=0

∇θln πθ(ah |sh)Qπθ
h (sh, ah)]

9

(REINFORCE)

Other PG formulas  
(that are lower variance for sampling)

∇θJ(θ) = #τ∼ρθ (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

= #τ∼ρθ

H−1

∑
h=0 (∇θln πθ(ah |sh)

H−1

∑
t=h

r(st, at))
= #τ∼ρθ [

H−1

∑
h=0

∇θln πθ(ah |sh)Qπθ
h (sh, ah)]

Intuition: Changing the action distribution at only affects rewards later on…h
HW: You will show these simplified version are also valid PG expressions

9

(REINFORCE)

With a “baseline” function:

For any function only of the state, , we have:bh : S → ℝ

10

This is (basically) the method of control variates.

• For the proof, it was helpful to note: 
#x∼Pθ [∇θlog Pθ(x) c] = 0

With a “baseline” function:

For any function only of the state, , we have:bh : S → ℝ

10

This is (basically) the method of control variates.

• For the proof, it was helpful to note: 
#x∼Pθ [∇θlog Pθ(x) c] = 0

∇θJ(θ) = #τ∼ρθ [
H−1

∑
h=0

∇θln πθ(ah |sh)(Rh(τ) − bh(sh))]
= #τ∼ρθ [

H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]

The Advantage Function (finite horizon)

Vπ
h (s) = # [

H−1

∑
t=h

r(st, at) sh = s] Qπ
h (s, a) = # [

H−1

∑
t=h

r(st, at) (sh, ah) = (s, a)]

11

The Advantage Function (finite horizon)

Vπ
h (s) = # [

H−1

∑
t=h

r(st, at) sh = s] Qπ
h (s, a) = # [

H−1

∑
t=h

r(st, at) (sh, ah) = (s, a)]
• The Advantage function is defined as: 
	 Aπ

h (s, a) = Qπ
h (s, a) − Vπ

h (s)

11

The Advantage Function (finite horizon)

Vπ
h (s) = # [

H−1

∑
t=h

r(st, at) sh = s] Qπ
h (s, a) = # [

H−1

∑
t=h

r(st, at) (sh, ah) = (s, a)]
• The Advantage function is defined as: 
	 Aπ

h (s, a) = Qπ
h (s, a) − Vπ

h (s)
• We have that: 
	 #a∼π(⋅|s)[Aπ

h (s, a) s, h] = ∑
a

π(a |s)Aπ
h (s, a) = 0

11

The Advantage Function (finite horizon)

Vπ
h (s) = # [

H−1

∑
t=h

r(st, at) sh = s] Qπ
h (s, a) = # [

H−1

∑
t=h

r(st, at) (sh, ah) = (s, a)]
• The Advantage function is defined as: 
	 Aπ

h (s, a) = Qπ
h (s, a) − Vπ

h (s)
• We have that: 
	 #a∼π(⋅|s)[Aπ

h (s, a) s, h] = ∑
a

π(a |s)Aπ
h (s, a) = 0

• We know  Aπ⋆
h (s, a) ≤ 0 ∀s, a

11

The Advantage Function (finite horizon)

Vπ
h (s) = # [

H−1

∑
t=h

r(st, at) sh = s] Qπ
h (s, a) = # [

H−1

∑
t=h

r(st, at) (sh, ah) = (s, a)]
• The Advantage function is defined as: 
	 Aπ

h (s, a) = Qπ
h (s, a) − Vπ

h (s)
• We have that: 
	 #a∼π(⋅|s)[Aπ

h (s, a) s, h] = ∑
a

π(a |s)Aπ
h (s, a) = 0

• We know  Aπ⋆
h (s, a) ≤ 0 ∀s, a

• For the discounted case, Aπ(s, a) = Qπ(s, a) − Vπ(s)
11

The Advantage-based PG:

∇θJ(θ) = #τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]

12

The Advantage-based PG:

= #τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)Aπθ
h (sh, ah)]

∇θJ(θ) = #τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]

12

The Advantage-based PG:

• The second step follows by choosing .bh(s) = Vπ
h (s)

= #τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)Aπθ
h (sh, ah)]

∇θJ(θ) = #τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]

12

The Advantage-based PG:

• The second step follows by choosing .bh(s) = Vπ
h (s)

• In practice, the most common approach is to use that’s an estimate of .bh(s) Vπ
h (s)

= #τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)Aπθ
h (sh, ah)]

∇θJ(θ) = #τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]

12

PG with a Learned Baseline:

13

PG with a Learned Baseline:

13

Let g′ (θ, τ, b()) :=
H−1

∑
h=0

∇θln πθ(ah |sh)(Rh(τ) − b(sh, h))

PG with a Learned Baseline:

1. Initialize , parameters: θ0 η1, η2, …

13

Let g′ (θ, τ, b()) :=
H−1

∑
h=0

∇θln πθ(ah |sh)(Rh(τ) − b(sh, h))

PG with a Learned Baseline:

1. Initialize , parameters: θ0 η1, η2, …
2. For : k = 0,…

13

Let g′ (θ, τ, b()) :=
H−1

∑
h=0

∇θln πθ(ah |sh)(Rh(τ) − b(sh, h))

PG with a Learned Baseline:

1. Initialize , parameters: θ0 η1, η2, …
2. For : k = 0,…

1. Supervised Learning: Using trajectories sampled under , estimate a baseline  N πθk b̃
b̃(s, h) ≈ Vθk

h (s)

13

Let g′ (θ, τ, b()) :=
H−1

∑
h=0

∇θln πθ(ah |sh)(Rh(τ) − b(sh, h))

PG with a Learned Baseline:

1. Initialize , parameters: θ0 η1, η2, …
2. For : k = 0,…

1. Supervised Learning: Using trajectories sampled under , estimate a baseline  N πθk b̃
b̃(s, h) ≈ Vθk

h (s)
2. Obtain a trajectory  

Compute  
τ ∼ ρθk

g′ (θk, τ, b̃())

13

Let g′ (θ, τ, b()) :=
H−1

∑
h=0

∇θln πθ(ah |sh)(Rh(τ) − b(sh, h))

PG with a Learned Baseline:

1. Initialize , parameters: θ0 η1, η2, …
2. For : k = 0,…

1. Supervised Learning: Using trajectories sampled under , estimate a baseline  N πθk b̃
b̃(s, h) ≈ Vθk

h (s)
2. Obtain a trajectory  

Compute  
τ ∼ ρθk

g′ (θk, τ, b̃())

3. Update: θk+1 = θk + ηkg′ (θk, τ, b̃())

13

Let g′ (θ, τ, b()) :=
H−1

∑
h=0

∇θln πθ(ah |sh)(Rh(τ) − b(sh, h))

PG with a Learned Baseline:

1. Initialize , parameters: θ0 η1, η2, …
2. For : k = 0,…

1. Supervised Learning: Using trajectories sampled under , estimate a baseline  N πθk b̃
b̃(s, h) ≈ Vθk

h (s)
2. Obtain a trajectory  

Compute  
τ ∼ ρθk

g′ (θk, τ, b̃())

3. Update: θk+1 = θk + ηkg′ (θk, τ, b̃())

13

Note that regardless of our choice of , we still get unbiased gradient estimates.b̃

Let g′ (θ, τ, b()) :=
H−1

∑
h=0

∇θln πθ(ah |sh)(Rh(τ) − b(sh, h))

(minibatch) PG with a Learned Baseline:

14

(minibatch) PG with a Learned Baseline:

14

1. Initialize , parameters: θ0 η1, η2, …

(minibatch) PG with a Learned Baseline:

14

1. Initialize , parameters: θ0 η1, η2, …
2. For : k = 0,…

(minibatch) PG with a Learned Baseline:

14

1. Initialize , parameters: θ0 η1, η2, …
2. For : k = 0,…

1. Supervised Learning: Using trajectories sampled under , estimate a baseline  N πθk b̃
b̃(s, h) ≈ Vθk

h (s)

(minibatch) PG with a Learned Baseline:

14

1. Initialize , parameters: θ0 η1, η2, …
2. For : k = 0,…

1. Supervised Learning: Using trajectories sampled under , estimate a baseline  N πθk b̃
b̃(s, h) ≈ Vθk

h (s)
2. Obtain trajectories  

Compute  

M τ1, …τM ∼ ρθk

g = 1
M

M

∑
m=1

g′ (θk, τm, b̃())

(minibatch) PG with a Learned Baseline:

14

1. Initialize , parameters: θ0 η1, η2, …
2. For : k = 0,…

1. Supervised Learning: Using trajectories sampled under , estimate a baseline  N πθk b̃
b̃(s, h) ≈ Vθk

h (s)
2. Obtain trajectories  

Compute  

M τ1, …τM ∼ ρθk

g = 1
M

M

∑
m=1

g′ (θk, τm, b̃())

3. Update: θk+1 = θk + ηkg

Today

15

• Feedback from last lecture

• Recap

• The Performance Difference Lemma

• Trust Region Policy Optimization (TRPO)

• The Natural Policy Gradient (NPG)

Recall: Fitted Policy Iteration

16

• Initialization: choose a policy and a sample size

• For

1. Fitted Policy Evaluation: Using sampled trajectories
, obtain approximation

2. Policy Improvement: set

π0 : S ↦ A N
k = 0,1,…

N
τ1, …τN ∼ ρπk Q̂πk ≈ Qπk

πk+1
h (s) := arg max

a
Q̂πk(s, a, h)

Fitted Policy Iteration: Advantage Version

17

• Initialization: choose a policy and a sample size

• For

1. Fitted Policy Evaluation: Using sampled trajectories
, obtain approximation

2. Policy Improvement: set

π0 : S ↦ A N
k = 0,1,…

N
τ1, …τN ∼ ρπk ̂Aπk ≈ Aπk

πk+1
h (s) := arg max

a
̂Aπk(s, a, h)

The Performance Difference Lemma (PDL)

18

The Performance Difference Lemma (PDL)

18

•Let be the distribution of trajectories from starting state acting under .  
(we are making the starting distribution explicit now).

ρπ̃,s s π̃

The Performance Difference Lemma (PDL)

18

•Let be the distribution of trajectories from starting state acting under .  
(we are making the starting distribution explicit now).

ρπ̃,s s π̃

•For any two policies and and any state , 

	  

 

π π̃ s

Vπ̃(s) − Vπ(s) = #τ∼ρπ̃,s [
H−1

∑
h=0

Aπ(sh, ah, h)]

The Performance Difference Lemma (PDL)

18

•Let be the distribution of trajectories from starting state acting under .  
(we are making the starting distribution explicit now).

ρπ̃,s s π̃

•For any two policies and and any state , 

	  

 

π π̃ s

Vπ̃(s) − Vπ(s) = #τ∼ρπ̃,s [
H−1

∑
h=0

Aπ(sh, ah, h)]
Comments:

The Performance Difference Lemma (PDL)

18

•Let be the distribution of trajectories from starting state acting under .  
(we are making the starting distribution explicit now).

ρπ̃,s s π̃

•For any two policies and and any state , 

	  

 

π π̃ s

Vπ̃(s) − Vπ(s) = #τ∼ρπ̃,s [
H−1

∑
h=0

Aπ(sh, ah, h)]
Comments:
•Helps us think about error analysis, instabilities of fitted PI, and sub-optimality.

The Performance Difference Lemma (PDL)

18

•Let be the distribution of trajectories from starting state acting under .  
(we are making the starting distribution explicit now).

ρπ̃,s s π̃

•For any two policies and and any state , 

	  

 

π π̃ s

Vπ̃(s) − Vπ(s) = #τ∼ρπ̃,s [
H−1

∑
h=0

Aπ(sh, ah, h)]
Comments:
•Helps us think about error analysis, instabilities of fitted PI, and sub-optimality.
•Helps to understand algorithm design (TRPO, NPG, PPO)

The Performance Difference Lemma (PDL)

18

•Let be the distribution of trajectories from starting state acting under .  
(we are making the starting distribution explicit now).

ρπ̃,s s π̃

•For any two policies and and any state , 

	  

 

π π̃ s

Vπ̃(s) − Vπ(s) = #τ∼ρπ̃,s [
H−1

∑
h=0

Aπ(sh, ah, h)]
Comments:
•Helps us think about error analysis, instabilities of fitted PI, and sub-optimality.
•Helps to understand algorithm design (TRPO, NPG, PPO)
•This also motivates the use of “local” methods (e.g. policy gradient descent)

Back to Fitted Policy Iteration

19

Back to Fitted Policy Iteration

19

•Suppose gets updated to . How much worse could be?πk πk+1 πk+1

Back to Fitted Policy Iteration

19

•Suppose gets updated to . How much worse could be?πk πk+1 πk+1

• In Fitted Policy Iteration, is achieved via supervised learning on ̂Aπk ≈ Aπk τ1, …τN ∼ ρπk

Back to Fitted Policy Iteration

19

•Suppose gets updated to . How much worse could be?πk πk+1 πk+1

• In Fitted Policy Iteration, is achieved via supervised learning on ̂Aπk ≈ Aπk τ1, …τN ∼ ρπk

•This means we expect #τ∼ρπk,s [
H−1

∑
h=0

̂Aπk(sh, ah, h)] ≈ #τ∼ρπk,s [
H−1

∑
h=0

Aπk(sh, ah, h)]

Back to Fitted Policy Iteration

19

•Suppose gets updated to . How much worse could be?πk πk+1 πk+1

• In Fitted Policy Iteration, is achieved via supervised learning on ̂Aπk ≈ Aπk τ1, …τN ∼ ρπk

•This means we expect #τ∼ρπk,s [
H−1

∑
h=0

̂Aπk(sh, ah, h)] ≈ #τ∼ρπk,s [
H−1

∑
h=0

Aπk(sh, ah, h)]
• In particular, should be close to where visits often… ̂Aπk Aπk πk

Back to Fitted Policy Iteration

19

•Suppose gets updated to . How much worse could be?πk πk+1 πk+1

• In Fitted Policy Iteration, is achieved via supervised learning on ̂Aπk ≈ Aπk τ1, …τN ∼ ρπk

•This means we expect #τ∼ρπk,s [
H−1

∑
h=0

̂Aπk(sh, ah, h)] ≈ #τ∼ρπk,s [
H−1

∑
h=0

Aπk(sh, ah, h)]
• In particular, should be close to where visits often… ̂Aπk Aπk πk

•But it could be very bad in places visits rarely, and nothing stops from visiting those
bad places very often!

πk πk+1

Back to Fitted Policy Iteration

19

•Suppose gets updated to . How much worse could be?πk πk+1 πk+1

• In Fitted Policy Iteration, is achieved via supervised learning on ̂Aπk ≈ Aπk τ1, …τN ∼ ρπk

•This means we expect #τ∼ρπk,s [
H−1

∑
h=0

̂Aπk(sh, ah, h)] ≈ #τ∼ρπk,s [
H−1

∑
h=0

Aπk(sh, ah, h)]
• In particular, should be close to where visits often… ̂Aπk Aπk πk

•But it could be very bad in places visits rarely, and nothing stops from visiting those
bad places very often!

πk πk+1

•So could end up being (much) worse than  πk+1 πk

Back to Fitted Policy Iteration

19

•Suppose gets updated to . How much worse could be?πk πk+1 πk+1

• In Fitted Policy Iteration, is achieved via supervised learning on ̂Aπk ≈ Aπk τ1, …τN ∼ ρπk

•This means we expect #τ∼ρπk,s [
H−1

∑
h=0

̂Aπk(sh, ah, h)] ≈ #τ∼ρπk,s [
H−1

∑
h=0

Aπk(sh, ah, h)]
• In particular, should be close to where visits often… ̂Aπk Aπk πk

•But it could be very bad in places visits rarely, and nothing stops from visiting those
bad places very often!

πk πk+1

•So could end up being (much) worse than  πk+1 πk

•Problem is a mismatch between expectations: what we really want is  

#τ∼ρπk+1,s [
H−1

∑
h=0

̂Aπk(sh, ah, h)] ≈ #τ∼ρπk+1,s [
H−1

∑
h=0

Aπk(sh, ah, h)]

Back to Fitted Policy Iteration

19

•Suppose gets updated to . How much worse could be?πk πk+1 πk+1

• In Fitted Policy Iteration, is achieved via supervised learning on ̂Aπk ≈ Aπk τ1, …τN ∼ ρπk

•This means we expect #τ∼ρπk,s [
H−1

∑
h=0

̂Aπk(sh, ah, h)] ≈ #τ∼ρπk,s [
H−1

∑
h=0

Aπk(sh, ah, h)]
• In particular, should be close to where visits often… ̂Aπk Aπk πk

•But it could be very bad in places visits rarely, and nothing stops from visiting those
bad places very often!

πk πk+1

•So could end up being (much) worse than  πk+1 πk

•Problem is a mismatch between expectations: what we really want is  

#τ∼ρπk+1,s [
H−1

∑
h=0

̂Aπk(sh, ah, h)] ≈ #τ∼ρπk+1,s [
H−1

∑
h=0

Aπk(sh, ah, h)]
•One way to ensure this: keep πk+1 ≈ πk

Today

20

• Feedback from last lecture

• Recap

• The Performance Difference Lemma

• Trust Region Policy Optimization (TRPO)

• The Natural Policy Gradient (NPG)

21

A trust region formulation for policy update:

21

• What’s bad about fitted PI? 
even if we pick better actions “on average”, the trajectory updates are unstable

A trust region formulation for policy update:

21

• What’s bad about fitted PI? 
even if we pick better actions “on average”, the trajectory updates are unstable

• Can we fix this? 
Let’s look at an incremental policy updating approach

A trust region formulation for policy update:

21

• What’s bad about fitted PI? 
even if we pick better actions “on average”, the trajectory updates are unstable

• Can we fix this? 
Let’s look at an incremental policy updating approach

A trust region formulation for policy update:

1. Initialize

2. For :  

try to approximately solve: 

	  

	 s.t. is “close” to

3. Return

θ0

k = 0,…, K

θk+1 = arg max
θ

#s0,…,sH−1∼ρπθk [
H−1

∑
h=0

#ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]
ρθ ρπθk

πθK

21

• What’s bad about fitted PI? 
even if we pick better actions “on average”, the trajectory updates are unstable

• Can we fix this? 
Let’s look at an incremental policy updating approach

A trust region formulation for policy update:

•How should we define “close”, i.e., what is our “trust region?

1. Initialize

2. For :  

try to approximately solve: 

	  

	 s.t. is “close” to

3. Return

θ0

k = 0,…, K

θk+1 = arg max
θ

#s0,…,sH−1∼ρπθk [
H−1

∑
h=0

#ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]
ρθ ρπθk

πθK

Il

KL-divergence: measures the distance between two distributions

Given two distributions , where ,

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = #x∼P [ln P(x)
Q(x)]

22

KL-divergence: measures the distance between two distributions

Given two distributions , where ,

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = #x∼P [ln P(x)
Q(x)]

Examples:

If , then Q = P KL(P |Q) = KL(Q |P) = 0

22

KL-divergence: measures the distance between two distributions

Given two distributions , where ,

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = #x∼P [ln P(x)
Q(x)]

Examples:

If , then Q = P KL(P |Q) = KL(Q |P) = 0

If , then P = 1(μ1, σ2I), Q = 1(μ2, σ2I) KL(P |Q) = 1
2σ2 ∥μ1 − μ2∥2

22

KL-divergence: measures the distance between two distributions

Given two distributions , where ,

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = #x∼P [ln P(x)
Q(x)]

Examples:

If , then Q = P KL(P |Q) = KL(Q |P) = 0

If , then P = 1(μ1, σ2I), Q = 1(μ2, σ2I) KL(P |Q) = 1
2σ2 ∥μ1 − μ2∥2

Fact:
, and is if and only if KL(P |Q) ≥ 0 0 P = Q

22

1. Initialize

2. For :  

try to approximately solve: 

	  

	 	 s.t.

3. Return

θ0

k = 0,…, K

θk+1 = arg max
θ

#s0,…,sH−1∼ρπθk [
H−1

∑
h=0

#ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]
KL (ρπθk |ρπθ) ≤ δ

πθK

23

• We want to maximize local advantage against ,  
but we want the new policy to be close to (in the KL sense)

• How do we implement this with sampled trajectories?)

πθk

πθk

Trust Region Policy Optimization (TRPO)

,
S

How do we implement TRPO with samples?

1. Initialize parameter , sample size , and tolerance

2. For :

1. [Advantage-Evaluation Subroutine]  
Using sampled trajectories , obtain approximation

2. Solve the following optimization problem to obtain : 

 

 

s.t.

θ0 M δ
k = 0,…, K

M τ1, …τM ∼ ρπθk
̂Aπθk ≈ Aπθk

θk+1

max
θ

M

∑
m=1

H−1

∑
h=0

#a∼πθ(⋅|sm
h) [̂Aπθk(sm

h , a, h)]
M

∑
m=1

H−1

∑
h=0

ln πθk(am
h |sm

h)
πθ(am

h |sm
h) ≤ δ

24

How do we implement TRPO with samples?

1. Initialize parameter , sample size , and tolerance

2. For :

1. [Advantage-Evaluation Subroutine]  
Using sampled trajectories , obtain approximation

2. Solve the following optimization problem to obtain : 

 

 

s.t.

θ0 M δ
k = 0,…, K

M τ1, …τM ∼ ρπθk
̂Aπθk ≈ Aπθk

θk+1

max
θ

M

∑
m=1

H−1

∑
h=0

#a∼πθ(⋅|sm
h) [̂Aπθk(sm

h , a, h)]
M

∑
m=1

H−1

∑
h=0

ln πθk(am
h |sm

h)
πθ(am

h |sm
h) ≤ δ

24

Approximate expectation

by importance sampling:

#a∼πθ(⋅|sm
h) [̂Aπθk(sm

h , a, h)]
= #a∼πθk(⋅|sm

h) [πθ(a |sm
h)

πθk(a |sm
h)

̂Aπθk(sm
h , a, h)]

Today

25

• Feedback from last lecture

• Recap

• The Performance Difference Lemma

• Trust Region Policy Optimization (TRPO)

• The Natural Policy Gradient (NPG)

TRPO is locally equivalent to a much simpler algorithm

max
θ

#s0,…,sH−1∼ρπθk [
H−1

∑
h=0

#ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]
s.t. KL (ρπθk |ρπθ) ≤ δ

Intuition: maximize local advantage
subject to being incremental (in KL)

TRPO at iteration k:

26

TRPO is locally equivalent to a much simpler algorithm

max
θ

#s0,…,sH−1∼ρπθk [
H−1

∑
h=0

#ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]
s.t. KL (ρπθk |ρπθ) ≤ δ

First-order Taylor expansion at θk

second-order Taylor expansion at θk

Intuition: maximize local advantage
subject to being incremental (in KL)

TRPO at iteration k:

26

TRPO is locally equivalent to a much simpler algorithm

max
θ

#s0,…,sH−1∼ρπθk [
H−1

∑
h=0

#ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]
s.t. KL (ρπθk |ρπθ) ≤ δ

First-order Taylor expansion at θk

second-order Taylor expansion at θk

Intuition: maximize local advantage
subject to being incremental (in KL)

TRPO at iteration k:

26

TRPO is locally equivalent to a much simpler algorithm

max
θ

#s0,…,sH−1∼ρπθk [
H−1

∑
h=0

#ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]
s.t. KL (ρπθk |ρπθ) ≤ δ

First-order Taylor expansion at θk

second-order Taylor expansion at θk

max
θ

∇θJ(θk)⊤(θ − θk)Intuition: maximize local advantage
subject to being incremental (in KL)

TRPO at iteration k:

26

TRPO is locally equivalent to a much simpler algorithm

max
θ

#s0,…,sH−1∼ρπθk [
H−1

∑
h=0

#ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]
s.t. KL (ρπθk |ρπθ) ≤ δ

First-order Taylor expansion at θk

second-order Taylor expansion at θk

max
θ

∇θJ(θk)⊤(θ − θk)
s.t. (θ − θk)⊤Fθk(θ − θk) ≤ δ

Intuition: maximize local advantage
subject to being incremental (in KL)

TRPO at iteration k:

26

TRPO is locally equivalent to a much simpler algorithm

max
θ

#s0,…,sH−1∼ρπθk [
H−1

∑
h=0

#ah∼πθ(⋅|sh) [Aπθk(sh, ah, h)]]
s.t. KL (ρπθk |ρπθ) ≤ δ

First-order Taylor expansion at θk

second-order Taylor expansion at θk

max
θ

∇θJ(θk)⊤(θ − θk)
s.t. (θ − θk)⊤Fθk(θ − θk) ≤ δ

(Where is the “Fisher Information Matrix”)Fθk

Intuition: maximize local advantage
subject to being incremental (in KL)

TRPO at iteration k:

26

1. Initialize

2. For :  

	  

	 s.t.

3. Return

θ0

k = 0,…, K
θk+1 = arg max

θ
∇θJ(θk)⊤(θ − θk)

(θ − θk)⊤Fθk(θ − θk) ≤ δ
πθK

27

Natural Policy Gradient (NPG): A “leading order” equivalent program to TRPO:

1. Initialize

2. For :  

	  

	 s.t.

3. Return

θ0

k = 0,…, K
θk+1 = arg max

θ
∇θJ(θk)⊤(θ − θk)

(θ − θk)⊤Fθk(θ − θk) ≤ δ
πθK

27

Natural Policy Gradient (NPG): A “leading order” equivalent program to TRPO:

• Where is the gradient of evaluated at , and

• is (basically) the Fisher information matrix at , defined as:  
	  
 

 	

∇θJ(θk) J(θ) θk

Fθ θ ∈ ℝd

Fθ := #τ∼ρπθ [∇θln ρθ(τ)(∇θln ρθ(τ))⊤] ∈ ℝd×d

= #τ∼ρπθ [
H−1

∑
h=0

∇θln πθ(ah |sh)(∇θln πθ(ah |sh))⊤]

NPG has a closed form update!

28

1. Initialize

2. For :  

	  

	 s.t.

3. Return

θ0

k = 0,…, K
θk+1 = arg max

θ
∇θJ(θk)⊤(θ − θk)

(θ − θk)⊤Fθk(θ − θk) ≤ δ
πθK

NPG has a closed form update!

Linear objective and quadratic convex constraint: we can solve it optimally!

28

1. Initialize

2. For :  

	  

	 s.t.

3. Return

θ0

k = 0,…, K
θk+1 = arg max

θ
∇θJ(θk)⊤(θ − θk)

(θ − θk)⊤Fθk(θ − θk) ≤ δ
πθK

NPG has a closed form update!

Linear objective and quadratic convex constraint: we can solve it optimally!
Indeed this gives us:

θk+1 = θk + ηF−1
θk ∇θJ(θk)

28

1. Initialize

2. For :  

	  

	 s.t.

3. Return

θ0

k = 0,…, K
θk+1 = arg max

θ
∇θJ(θk)⊤(θ − θk)

(θ − θk)⊤Fθk(θ − θk) ≤ δ
πθK

NPG has a closed form update!

Linear objective and quadratic convex constraint: we can solve it optimally!
Indeed this gives us:

θk+1 = θk + ηF−1
θk ∇θJ(θk)

Where η = δ
∇θJ(θk)⊤F−1

θk ∇θJ(θk)
28

1. Initialize

2. For :  

	  

	 s.t.

3. Return

θ0

k = 0,…, K
θk+1 = arg max

θ
∇θJ(θk)⊤(θ − θk)

(θ − θk)⊤Fθk(θ − θk) ≤ δ
πθK

1. Initialize

2. For :

• Obtain approximation of Policy Gradient:

• Obtain approximation of Fisher information:

• Natural Gradient Ascent:

3. Return

θ0

k = 0,…, K
̂g ≈ ∇θJ(θk)

̂F ≈ Fθk

θk+1 = θk + η ̂F−1 ̂g
πθK

29

An Implementation: Sample Based NPG

1. Initialize

2. For :

• Obtain approximation of Policy Gradient:

• Obtain approximation of Fisher information:

• Natural Gradient Ascent:

3. Return

θ0

k = 0,…, K
̂g ≈ ∇θJ(θk)

̂F ≈ Fθk

θk+1 = θk + η ̂F−1 ̂g
πθK

29

An Implementation: Sample Based NPG

(We will implement it in HW4 on Cartpole)

Today

30

• Feedback from last lecture

• Recap

• The Performance Difference Lemma

• Trust Region Policy Optimization (TRPO)

• The Natural Policy Gradient (NPG)

Summary:

Feedback:

bit.ly/3RHtlxy

31

Attendance: 
bit.ly/3RcTC9T

1. Performance Difference Lemma tells us we need to stay local

2. TRPO and NPG ensure we don’t move too much each step

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

32

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

32

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Every possible policy is a
point on the line segment,
parameterized by .θ

32

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Every possible policy is a
point on the line segment,
parameterized by .θ

32

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Gradient: ∇θJ(θ) = 99 exp(θ)
(1 + exp(θ))2

Every possible policy is a
point on the line segment,
parameterized by .θ

32

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆
Exact PG: θk+1 = θk + η

99 exp(θk)
(1 + exp(θk))2

Gradient: ∇θJ(θ) = 99 exp(θ)
(1 + exp(θ))2

Every possible policy is a
point on the line segment,
parameterized by .θ

32

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆
Exact PG: θk+1 = θk + η

99 exp(θk)
(1 + exp(θk))2

Gradient: ∇θJ(θ) = 99 exp(θ)
(1 + exp(θ))2

i.e., vanilla GA moves to with smaller
and smaller steps, since as

θ = ∞
∇θJ(θ) → 0

θ → ∞
Every possible policy is a
point on the line segment,
parameterized by .θ

32

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Fisher information scalar: Fθ = exp(θ)
(1 + exp(θ))2

Exact PG: θk+1 = θk + η
99 exp(θk)

(1 + exp(θk))2

Gradient: ∇θJ(θ) = 99 exp(θ)
(1 + exp(θ))2

i.e., vanilla GA moves to with smaller
and smaller steps, since as

θ = ∞
∇θJ(θ) → 0

θ → ∞
Every possible policy is a
point on the line segment,
parameterized by .θ

32

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Fisher information scalar: Fθ = exp(θ)
(1 + exp(θ))2

NPG: θk+1 = θk + η
∇θJ(θk)

Fθk

Exact PG: θk+1 = θk + η
99 exp(θk)

(1 + exp(θk))2

Gradient: ∇θJ(θ) = 99 exp(θ)
(1 + exp(θ))2

i.e., vanilla GA moves to with smaller
and smaller steps, since as

θ = ∞
∇θJ(θ) → 0

θ → ∞
Every possible policy is a
point on the line segment,
parameterized by .θ

32

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Fisher information scalar: Fθ = exp(θ)
(1 + exp(θ))2

NPG: θk+1 = θk + η
∇θJ(θk)

Fθk

Exact PG: θk+1 = θk + η
99 exp(θk)

(1 + exp(θk))2

Gradient: ∇θJ(θ) = 99 exp(θ)
(1 + exp(θ))2

i.e., vanilla GA moves to with smaller
and smaller steps, since as

θ = ∞
∇θJ(θ) → 0

θ → ∞
Every possible policy is a
point on the line segment,
parameterized by .θ

= θt + η ⋅ 99

32

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

NPG moves to much more quickly  
(for a fixed)

θ = ∞
η

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Fisher information scalar: Fθ = exp(θ)
(1 + exp(θ))2

NPG: θk+1 = θk + η
∇θJ(θk)

Fθk

Exact PG: θk+1 = θk + η
99 exp(θk)

(1 + exp(θk))2

Gradient: ∇θJ(θ) = 99 exp(θ)
(1 + exp(θ))2

i.e., vanilla GA moves to with smaller
and smaller steps, since as

θ = ∞
∇θJ(θ) → 0

θ → ∞
Every possible policy is a
point on the line segment,
parameterized by .θ

= θt + η ⋅ 99

32

