Trust Region Policy Optimization & The Natural Policy Gradient

Lucas Janson **CS/Stat 184(0): Introduction to Reinforcement Learning Fall 2024**

Today

- Feedback from last lecture
- Recap
- The Performance Difference Lemma
- Trust Region Policy Optimization (TRPO)
- The Natural Policy Gradient (NPG)

Feedback from feedback forms

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

Feedback from feedback forms

- 1. Thank you to everyone who filled out the forms!
- 2. Discuss projects!

Today

- Recap
- The Performance Difference Lemma
- Trust Region Policy Optimization (TRPO)
- The Natural Policy Gradient (NPG)

Optimization Objective

• Consider a parameterized class of policies: $\{\pi_{\theta}(a \mid s) \mid \theta \in \mathbb{R}^d\}$ (why do we make it stochastic?)

•Objective $\max J(\theta)$, where θ

• Policy Gradient Descent:

 $\theta^{k+1} = \theta^k + \eta \nabla J(\theta^k)$

 $J(\theta) := \mathbb{E}_{s_0 \sim \mu} \left[V^{\pi_{\theta}}(s_0) \right] = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta}}} \left[\sum_{h=0}^{H-1} r(s_h, a_h) \right]$

REINFORCE: A Policy Gradient Algorithm

- Let $R(\tau)$ be the cumulative reward on
- Our objective function is:
- $J(\theta) = E_{\tau \sim \rho_{\theta}} \left[R(\tau) \right]$ • From the likelihood ratio method, we have: $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\nabla_{\theta} \ln \rho_{\theta}(\tau) R(\tau) \right]$
- The REINFORCE Policy Gradient expression:

• Let $\rho_{\theta}(\tau)$ be the probability of a trajectory $\tau = \{s_0, a_0, s_1, a_1, \dots, s_{H-1}, a_{H-1}\}$, i.e. $\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 | s_0)P(s_1 | s_0, a_0)\dots P(s_{H-1} | s_{H-2}, a_{H-2})\pi_{\theta}(a_{H-1} | s_{H-1})$

trajectory
$$\tau$$
, i.e. $R(\tau) := \sum_{h=0}^{H-1} r(s_h, a_h)$

 $\nabla_{\theta} \ln \rho_{\theta}(\tau) \ R(\tau) = \left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h)\right) R(\tau)$

 $\nabla_{\theta} J(\theta) := \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \right) R(\tau) \right]$

$$\nabla_{\theta} J(\theta) := \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\left(\begin{array}{c} \\ \end{array} \right) \right]$$

1. Obtain a trajectory $\tau \sim \rho_{\theta}$

 $\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h)\right) R(\tau)$

(which we can do in our learning setting)

$$\nabla_{\theta} J(\theta) := \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\left(\begin{array}{c} \\ \end{array} \right) \right]$$

- 1. Obtain a trajectory $\tau \sim \rho_{\theta}$
- 2. Set:

 $\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h)\right) R(\tau)$

(which we can do in our learning setting)

 $g(\theta, \tau) := \left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h)\right) R(\tau)$

$$\nabla_{\theta} J(\theta) := \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\left(\int_{0}^{\infty} \int_{0}^{$$

- 1. Obtain a trajectory $\tau \sim \rho_{\theta}$
- 2. Set:

We have: $\mathbb{E}[g(\theta, \tau)] = \nabla_{\theta} J(\theta)$

 $\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) R(\tau)$

(which we can do in our learning setting)

 $g(\theta, \tau) := \left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h)\right) R(\tau)$

1. Initialize θ^0 , step size parameters: η^1, η^2, \dots

1. Initialize θ^0 , step size parameters: η^1, η^2, \dots

2. For k = 0,...:

- 2. For k = 0,...:
 - 1. Obtain a trajectory $\tau \sim \rho_{\theta^k}$ Compute $g(\theta^k, \tau)$

1. Initialize θ^0 , step size parameters: η^1, η^2, \dots

- 2. For k = 0, ...:
 - 1. Obtain a trajectory $\tau \sim \rho_{\theta^k}$ Compute $g(\theta^k, \tau)$
 - 2. Update: $\theta^{k+1} = \theta^k + \eta^k g(\theta^k, \tau)$

1. Initialize θ^0 , step size parameters: η^1, η^2, \ldots

Other PG formulas (that are lower variance for sampling)

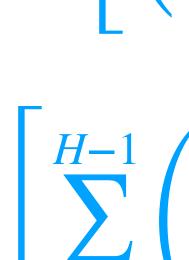
 $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \right) R(\tau) \right]$ (REINFORCE)

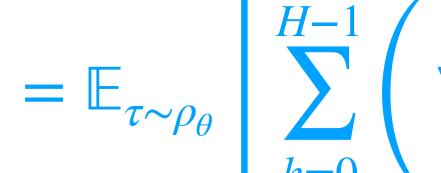
Other PG formulas (that are lower variance for sampling)

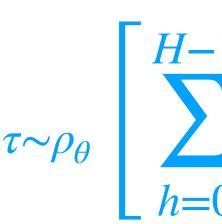
 $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \right) R(\tau) \right]$ (REINFORCE)

 $= \mathbb{E}_{\tau \sim \rho_{\theta}} \left| \sum_{h=0}^{H-1} \left(\nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \sum_{t=h}^{H-1} r(s_t, a_t) \right) \right|$

Other PG formulas (that are lower variance for sampling)



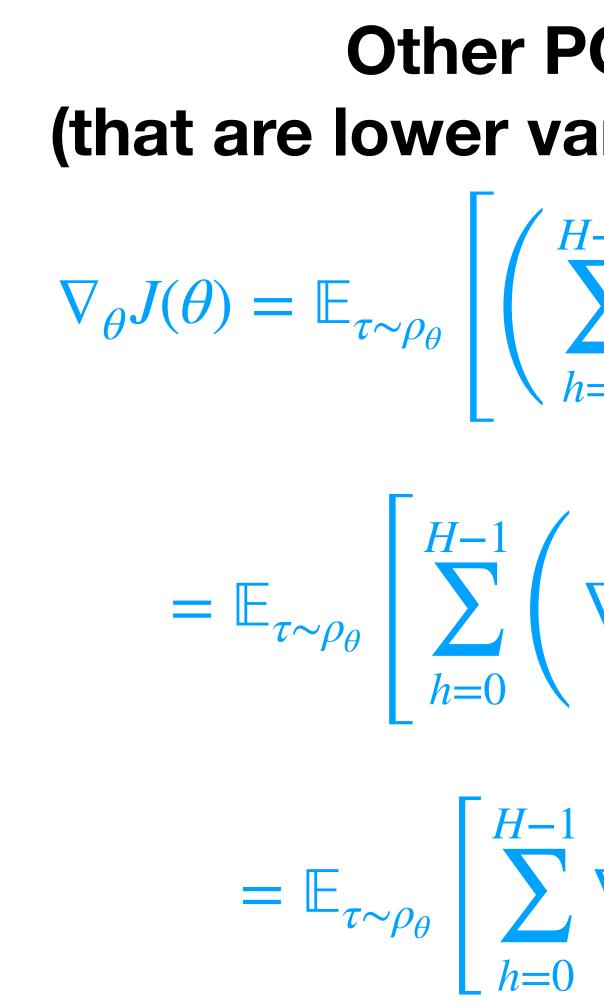




 $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \right) R(\tau) \right]$ (REINFORCE)

$$\nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \sum_{t=h}^{H-1} r(s_t, a_t) \bigg)$$

 $= \mathbb{E}_{\tau \sim \rho_{\theta}} \left| \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_{h} | s_{h}) Q_{h}^{\pi_{\theta}}(s_{h}, a_{h}) \right|$



Intuition: Changing the action distribution at h only affects rewards later on... **HW:** You will show these simplified version are also valid PG expressions

Other PG formulas (that are lower variance for sampling)

$$\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) R(\tau)$$

$$\left[\nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \sum_{t=h}^{H-1} r(s_t, a_t) \right]$$

$$\int_{\theta} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) Q_h^{\pi_{\theta}}(s_h, a_h)$$

With a "baseline" function:

This is (basically) the method of control variates.

• For the proof, it was helpful to note: $\mathbb{E}_{x \sim P_{\theta}} \left[\nabla_{\theta} \log P_{\theta}(x) \ c \right] = 0$

For any function only of the state, $b_h : S \to \mathbb{R}$, we have:

With a "baseline" function:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \theta \right]$$
$$= \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \theta \right]$$

This is (basically) the method of control variates.

For the proof, it was helpful to note: $\mathbb{E}_{x \sim P_{\theta}} \left[\nabla_{\theta} \log P_{\theta}(x) \ c \right] = 0$

For any function only of the state, $b_h : S \to \mathbb{R}$, we have:

 $\pi_{\theta}(a_h | s_h) \left(R_h(\tau) - b_h(s_h) \right)$

 $\pi_{\theta}(a_h | s_h) \left(Q_h^{\pi_{\theta}}(s_h, a_h) - b_h(s_h) \right)$

$$V_h^{\pi}(s) = \mathbb{E}\left[\left|\sum_{t=h}^{H-1} r(s_t, a_t)\right| s_h = s\right]$$

$$Q_h^{\pi}(s,a) = \mathbb{E}\left[\left|\sum_{t=h}^{H-1} r(s_t,a_t)\right| (s_h,a_h) = (s,a)\right]$$

$$V_h^{\pi}(s) = \mathbb{E}\left[\left|\sum_{t=h}^{H-1} r(s_t, a_t)\right| s_h = s\right]$$

 The Advantage function is defined as: $A_h^{\pi}(s, a) = Q_h^{\pi}(s, a) - V_h^{\pi}(s)$

$$Q_h^{\pi}(s,a) = \mathbb{E}\left[\left|\sum_{t=h}^{H-1} r(s_t,a_t)\right| (s_h,a_h) = (s,a)\right]$$

$$V_h^{\pi}(s) = \mathbb{E}\left[\left|\sum_{t=h}^{H-1} r(s_t, a_t)\right| s_h = s\right]$$

- The Advantage function is defined as: $A_{h}^{\pi}(s,a) = Q_{h}^{\pi}(s,a) - V_{h}^{\pi}(s)$
- We have that:

$$\mathbb{E}_{a \sim \pi(\cdot|s)} \left[A_h^{\pi}(s,a) \, \middle| \, s,h \right] = \sum_{k=1}^{n}$$

$$Q_h^{\pi}(s,a) = \mathbb{E}\left[\left|\sum_{t=h}^{H-1} r(s_t,a_t)\right| (s_h,a_h) = (s,a)\right]$$

 $\sum \pi(a \mid s) A_h^{\pi}(s, a) = 0$ \mathcal{A}

$$V_h^{\pi}(s) = \mathbb{E}\left[\left|\sum_{t=h}^{H-1} r(s_t, a_t)\right| s_h = s\right]$$

- The Advantage function is defined as: $A_{h}^{\pi}(s,a) = Q_{h}^{\pi}(s,a) - V_{h}^{\pi}(s)$
- We have that:

$$\mathbb{E}_{a \sim \pi(\cdot|s)} \left[A_h^{\pi}(s,a) \, \middle| \, s,h \right] = \sum_{k=1}^{n} \left[A_k^{\pi}(s,a) \, \middle| \, s,h \right] = \sum_{k=1}^{n} \left[A_k^{\pi}(s,a) \, \middle| \, s,h \right] = \sum_{k=1}^{n} \left[A_k^{\pi}(s,a) \, \middle| \, s,h \right]$$

• We know $A_h^{\pi^*}(s, a) \leq 0 \quad \forall s, a$

$$Q_h^{\pi}(s,a) = \mathbb{E}\left[\left|\sum_{t=h}^{H-1} r(s_t,a_t)\right| (s_h,a_h) = (s,a)\right]$$

 $\sum \pi(a \mid s) A_h^{\pi}(s, a) = 0$ \mathcal{A}

$$V_h^{\pi}(s) = \mathbb{E}\left[\left|\sum_{t=h}^{H-1} r(s_t, a_t)\right| s_h = s\right]$$

- The Advantage function is defined as: $A_{h}^{\pi}(s,a) = Q_{h}^{\pi}(s,a) - V_{h}^{\pi}(s)$
- We have that:

$$\mathbb{E}_{a \sim \pi(\cdot|s)} \left[A_h^{\pi}(s,a) \middle| s,h \right] =$$

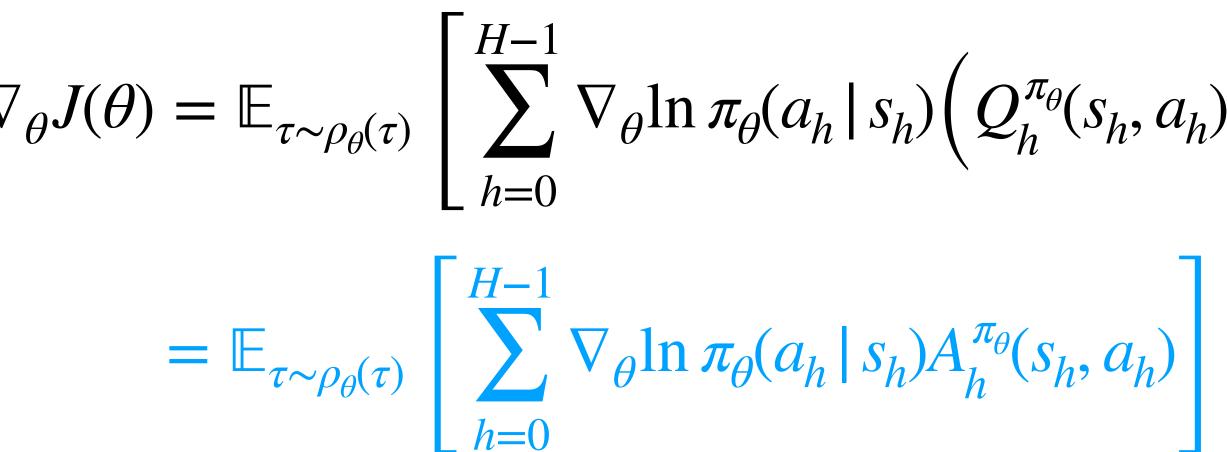
- We know $A_h^{\pi^*}(s, a) \leq 0 \quad \forall s, a$
- For the discounted case, $A^{\pi}(s, a) = Q^{\pi}(s, a) V^{\pi}(s)$

$$Q_h^{\pi}(s,a) = \mathbb{E}\left[\left|\sum_{t=h}^{H-1} r(s_t,a_t)\right| (s_h,a_h) = (s,a)\right]$$

 $\sum \pi(a \mid s) A_h^{\pi}(s, a) = 0$

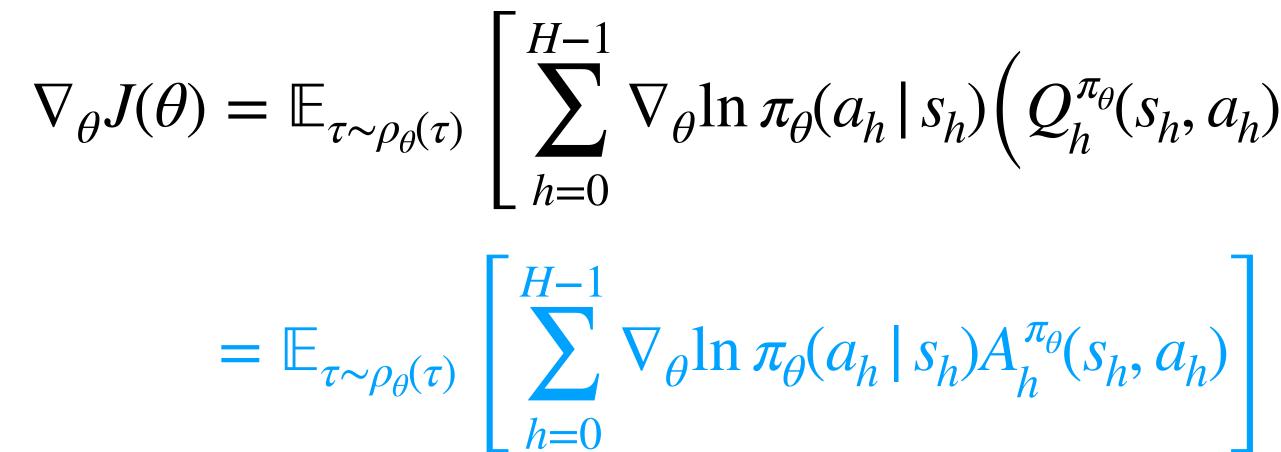
 $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \left(Q_h^{\pi_{\theta}}(s_h, a_h) - b_h(s_h) \right) \right]$

 $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \left(Q_h^{\pi_{\theta}}(s_h, a_h) - b_h(s_h) \right) \right]$ $= \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) A_h^{\pi_{\theta}}(s_h, a_h) \right]$



• The second step follows by choosing $b_h(s) = V_h^{\pi}(s)$.

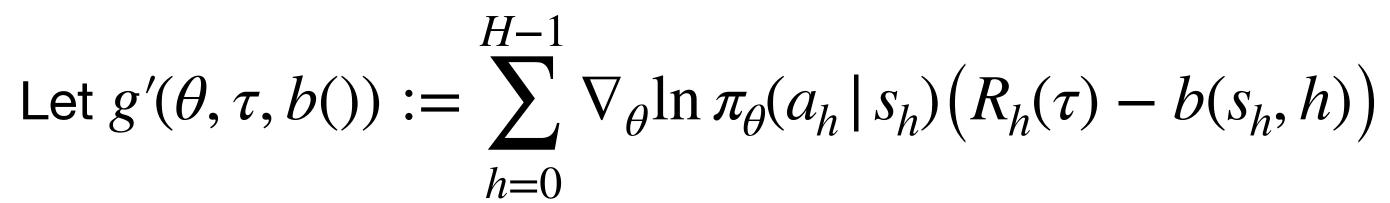
 $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \left(Q_h^{\pi_{\theta}}(s_h, a_h) - b_h(s_h) \right) \right]$



- The second step follows by choosing $b_h(s) = V_h^{\pi}(s)$.

$$n \pi_{\theta}(a_h | s_h) \left(Q_h^{\pi_{\theta}}(s_h, a_h) - b_h(s_h) \right)$$

• In practice, the most common approach is to use $b_h(s)$ that's an estimate of $V_h^{\pi}(s)$.



Let
$$g'(\theta, \tau, b()) := \sum_{h=0}^{H-1} \nabla$$

1. Initialize θ^0 , parameters: η^1, η^2, \dots

 $\nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) (R_h(\tau) - b(s_h, h))$

Let
$$g'(\theta, \tau, b()) := \sum_{h=0}^{H-1} \nabla$$

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:

 $\nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) (R_h(\tau) - b(s_h, h))$

Let
$$g'(\theta, \tau, b()) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \left(R_h(\tau) - b(s_h, h) \right)$$

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Supervised Learning: Using N trajectory $\widetilde{b}(s,h) \approx V_h^{\theta^k}(s)$

Let
$$g'(\theta, \tau, b()) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) (R_h(\tau) - b(s_h, h))$$

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Supervised Learning: Using N trajector $\widetilde{b}(s,h) \approx V_h^{\theta^k}(s)$
 - 2. Obtain a trajectory $\tau \sim \rho_{\theta^k}$ Compute $g'(\theta^k, \tau, \widetilde{b}())$

Let
$$g'(\theta, \tau, b()) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) (R_h(\tau) - b(s_h, h))$$

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Supervised Learning: Using N trajector $\widetilde{b}(s,h) \approx V_h^{\theta^k}(s)$
 - 2. Obtain a trajectory $\tau \sim \rho_{\theta^k}$ Compute $g'(\theta^k, \tau, \widetilde{b}())$
 - 3. Update: $\theta^{k+1} = \theta^k + \eta^k g'(\theta^k, \tau, \widetilde{b}())$

Let
$$g'(\theta, \tau, b()) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) (R_h(\tau) - b(s_h, h))$$

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Supervised Learning: Using N trajector $\widetilde{b}(s,h) \approx V_h^{\theta^k}(s)$
 - 2. Obtain a trajectory $\tau \sim \rho_{\theta^k}$ Compute $g'(\theta^k, \tau, \tilde{b}())$
 - 3. Update: $\theta^{k+1} = \theta^k + \eta^k g'(\theta^k, \tau, \widetilde{b}())$

Note that regardless of our choice of \tilde{b} , we still get unbiased gradient estimates.

1. Initialize θ^0 , parameters: η^1, η^2, \dots

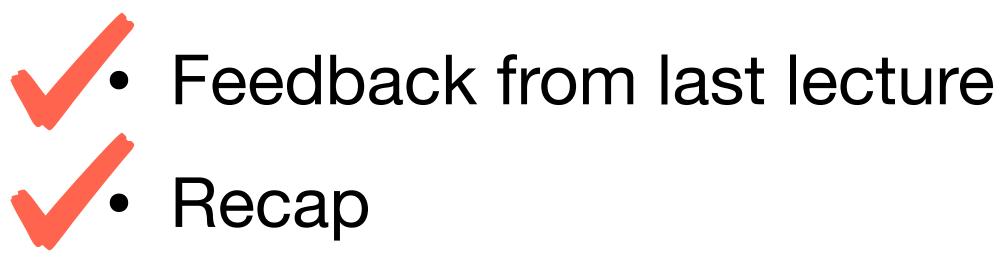
- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Supervised Learning: Using N trajectory $\widetilde{b}(s,h) \approx V_h^{\theta^k}(s)$

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Supervised Learning: Using N trajectory $\widetilde{b}(s,h) \approx V_h^{\theta^k}(s)$
 - 2. Obtain *M* trajectories $\tau_1, \dots, \tau_M \sim \rho_{\theta^k}$ Compute $g = \frac{1}{M} \sum_{m=1}^M g'(\theta^k, \tau_m, \widetilde{b}())$

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Supervised Learning: Using N trajectory $\widetilde{b}(s,h) \approx V_h^{\theta^k}(s)$
 - 2. Obtain *M* trajectories $\tau_1, ..., \tau_M \sim \rho_{\theta^k}$ Compute $g = \frac{1}{M} \sum_{m=1}^M g'(\theta^k, \tau_m, \widetilde{b}())$
 - 3. Update: $\theta^{k+1} = \theta^k + \eta^k g$

Today



- The Performance Difference Lemma
- Trust Region Policy Optimization (TRPO)
- The Natural Policy Gradient (NPG)

Recall: Fitted Policy Iteration

• Initialization: choose a policy $\pi^0: S \mapsto A$ and a sample size N • For k = 0, 1, ...1. Fitted Policy Evaluation: Using N sampled trajectories $\tau_1, \ldots \tau_N \sim \rho_{\pi^k}$, obtain approximation $\hat{Q}^{\pi^k} \approx Q^{\pi^k}$ 2. Policy Improvement: set $\pi_h^{k+1}(s) := \arg \max \hat{Q}^{\pi^k}(s, a, h)$

Fitted Policy Iteration: Advantage Version

Initialization: choose a policy π⁰ : S → A and a sample size N
For k = 0,1,...
1. Fitted Policy Evaluation: Using N sampled trajectories τ₁, ...τ_N ~ ρ_{π^k}, obtain approximation Â^{π^k} ≈ A^{π^k}
2. Policy Improvement: set π_h^{k+1}(s) := arg max Â^{π^k}(s, a, h)

(we are making the starting distribution explicit now).

- (we are making the starting distribution explicit now).
- For any two policies π and $\widetilde{\pi}$ and any state s,

$$V^{\widetilde{\pi}}(s) - V^{\pi}(s) = \mathbb{E}_{\tau \sim \rho}$$

 $\sim \rho_{\widetilde{\pi},s}$ $\sum_{h=0}^{H-1} A^{\pi}(s_h, a_h, h)$

- (we are making the starting distribution explicit now).
- For any two policies π and $\widetilde{\pi}$ and any state s,

Comments:

 $V^{\widetilde{\pi}}(s) - V^{\pi}(s) = \mathbb{E}_{\tau \sim \rho_{\widetilde{\pi},s}} \left[\sum_{h=0}^{H-1} A^{\pi}(s_h, a_h, h) \right]$

- (we are making the starting distribution explicit now).
- For any two policies π and $\widetilde{\pi}$ and any state s,

$$V^{\widetilde{\pi}}(s) - V^{\pi}(s) = \mathbb{E}_{\tau \sim \rho_{\widetilde{\pi},s}} \left[\sum_{h=0}^{H-1} A^{\pi}(s_h, a_h, h) \right]$$

Comments:

• Helps us think about error analysis, instabilities of fitted PI, and sub-optimality.

- (we are making the starting distribution explicit now).
- For any two policies π and $\widetilde{\pi}$ and any state s,

$$V^{\widetilde{\pi}}(s) - V^{\pi}(s) = \mathbb{E}_{\tau \sim t}$$

Comments:

- •Helps to understand algorithm design (TRPO, NPG, PPO)

• Let $\rho_{\tilde{\pi},s}$ be the distribution of trajectories from starting state s acting under $\tilde{\pi}$.

 $\sim \rho_{\widetilde{\pi},s}$ $\begin{array}{c} H-1 \\ \sum_{h=0} A^{\pi}(s_h, a_h, h) \\ h=0 \end{array}$

• Helps us think about error analysis, instabilities of fitted PI, and sub-optimality.

- (we are making the starting distribution explicit now).
- For any two policies π and $\widetilde{\pi}$ and any state s,

Comments:

- •Helps to understand algorithm design (TRPO, NPG, PPO)

• Let $\rho_{\tilde{\pi},s}$ be the distribution of trajectories from starting state s acting under $\tilde{\pi}$.

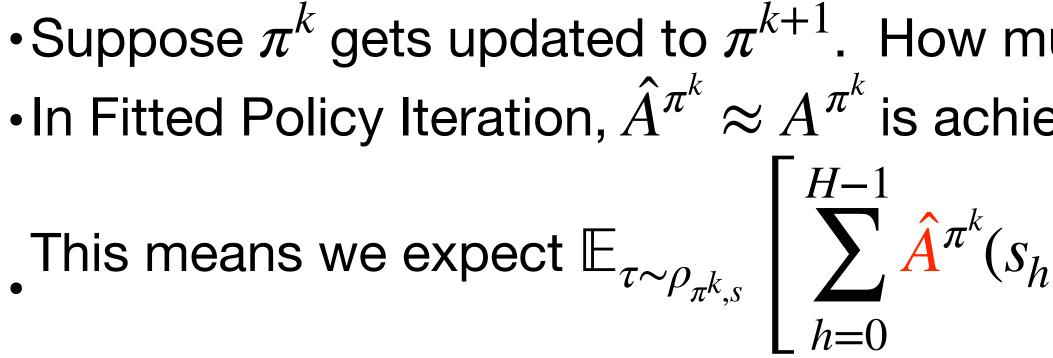
 $V^{\widetilde{\pi}}(s) - V^{\pi}(s) = \mathbb{E}_{\tau \sim \rho_{\widetilde{\pi},s}} \left[\sum_{h=0}^{H-1} A^{\pi}(s_h, a_h, h) \right]$

• Helps us think about error analysis, instabilities of fitted PI, and sub-optimality. • This also motivates the use of "local" methods (e.g. policy gradient descent)

•Suppose π^k gets updated to π^{k+1} . How much worse could π^{k+1} be?

- Suppose π^k gets updated to π^{k+1} . How much worse could π^{k+1} be?

• In Fitted Policy Iteration, $\hat{A}^{\pi^k} \approx A^{\pi^k}$ is achieved via supervised learning on $\tau_1, \ldots, \tau_N \sim \rho_{\pi^k}$



•Suppose π^k gets updated to π^{k+1} . How much worse could π^{k+1} be? •In Fitted Policy Iteration, $\hat{A}^{\pi^k} \approx A^{\pi^k}$ is achieved via supervised learning on $\tau_1, \ldots \tau_N \sim \rho_{\pi^k}$. •This means we expect $\mathbb{E}_{\tau \sim \rho_{\pi^k,s}} \left[\sum_{h=0}^{H-1} \hat{A}^{\pi^k}(s_h, a_h, h) \right] \approx \mathbb{E}_{\tau \sim \rho_{\pi^k,s}} \left[\sum_{h=0}^{H-1} A^{\pi^k}(s_h, a_h, h) \right]$

•Suppose π^k gets updated to π^{k+1} . How much worse could π^{k+1} be? •In Fitted Policy Iteration, $\hat{A}^{\pi^k} \approx A^{\pi^k}$ is achieved via supervised learning on $\tau_1, \ldots \tau_N \sim \rho_{\pi^k}$

This means we expect $\mathbb{E}_{\tau \sim \rho_{\pi^{k},s}} \left[\sum_{h=0}^{H-1} \hat{A}^{\pi^{k}}(s_{h}, a_{h}, h) \right] \approx \mathbb{E}_{\tau \sim \rho_{\pi^{k},s}} \left[\cdot \ln \text{ particular, } \hat{A}^{\pi^{k}} \text{ should be close to } A^{\pi^{k}} \text{ where } \pi^{k} \text{ visits often...} \right]$

$$\left. , a_{h}, h \right) \right] \approx \mathbb{E}_{\tau \sim \rho_{\pi^{k}, s}} \left[\sum_{h=0}^{H-1} A^{\pi^{k}}(s_{h}, a_{h}, h) \right]$$

- •Suppose π^k gets updated to π^{k+1} . How much worse could π^{k+1} be? •In Fitted Policy Iteration, $\hat{A}^{\pi^k} \approx A^{\pi^k}$ is achieved via supervised learning on $\tau_1, \ldots, \tau_N \sim \rho_{\pi^k}$

This means we expect $\mathbb{E}_{\tau \sim \rho_{\pi^{k},s}} \left[\sum_{h=0}^{H-1} \hat{A}^{\pi^{k}}(s_{h}, t_{h}) \right]$

- In particular, \hat{A}^{π^k} should be close to A^{π^k} where π^k visits often...
- bad places very often!

$$[a_h, h] \approx \mathbb{E}_{\tau \sim \rho_{\pi^k, s}} \left[\sum_{h=0}^{H-1} A^{\pi^k}(s_h, a_h, h) \right]$$

- Suppose π^k gets updated to π^{k+1} . How much worse could π^{k+1} be?

This means we expect $\mathbb{E}_{\tau \sim \rho_{\pi^{k},s}} \left[\sum_{h=0}^{H-1} \hat{A}^{\pi^{k}}(s_{h}, t_{h}) \right]$

- In particular, \hat{A}^{π^k} should be close to A^{π^k} where π^k visits often...
- bad places very often!
- So π^{k+1} could end up being (much) worse than π^k

• In Fitted Policy Iteration, $\hat{A}^{\pi^k} \approx A^{\pi^k}$ is achieved via supervised learning on $\tau_1, \ldots \tau_N \sim \rho_{\pi^k}$

$$[a_h, h] \approx \mathbb{E}_{\tau \sim \rho_{\pi^{k}, s}} \left[\sum_{h=0}^{H-1} A^{\pi^k}(s_h, a_h, h) \right]$$

- Suppose π^k gets updated to π^{k+1} . How much worse could π^{k+1} be?

This means we expect $\mathbb{E}_{\tau \sim \rho_{\pi^{k},s}} \left[\sum_{h=0}^{H-1} \hat{A}^{\pi^{k}}(s_{h}, ds_{h}) \right]$

- In particular, \hat{A}^{π^k} should be close to A^{π^k} where π^k visits often...
- bad places very often!
- So π^{k+1} could end up being (much) worse than π^k
- Problem is a mismatch between expectations: what we really want is

$$\mathbb{E}_{\tau \sim \rho_{\pi^{k+1},s}} \left[\sum_{h=0}^{H-1} \hat{A}^{\pi^{k}}(s_{h}, a_{h}, h) \right] \approx \mathbb{E}_{\tau \sim \rho_{\pi^{k+1},s}}$$

• In Fitted Policy Iteration, $\hat{A}^{\pi^k} \approx A^{\pi^k}$ is achieved via supervised learning on $\tau_1, \ldots, \tau_N \sim \rho_{\pi^k}$

$$[a_h, h] \approx \mathbb{E}_{\tau \sim \rho_{\pi^{k}, s}} \left[\sum_{h=0}^{H-1} A^{\pi^k}(s_h, a_h, h) \right]$$

$$\sum_{h=0}^{n-1} A^{\pi^k}(s_h, a_h, h)$$

- Suppose π^k gets updated to π^{k+1} . How much worse could π^{k+1} be?
- In Fitted Policy Iteration, $\hat{A}^{\pi^k} \approx A^{\pi^k}$ is achieved via supervised learning on $\tau_1, \ldots, \tau_N \sim \rho_{\pi^k}$

This means we expect $\mathbb{E}_{\tau \sim \rho_{\pi^{k},s}} \left[\sum_{h=0}^{H-1} \hat{A}^{\pi^{k}}(s_{h}, h) \right]$

- In particular, \hat{A}^{π^k} should be close to A^{π^k} where π^k visits often...
- bad places very often!
- So π^{k+1} could end up being (much) worse than π^k
- Problem is a mismatch between expectations: what we really want is

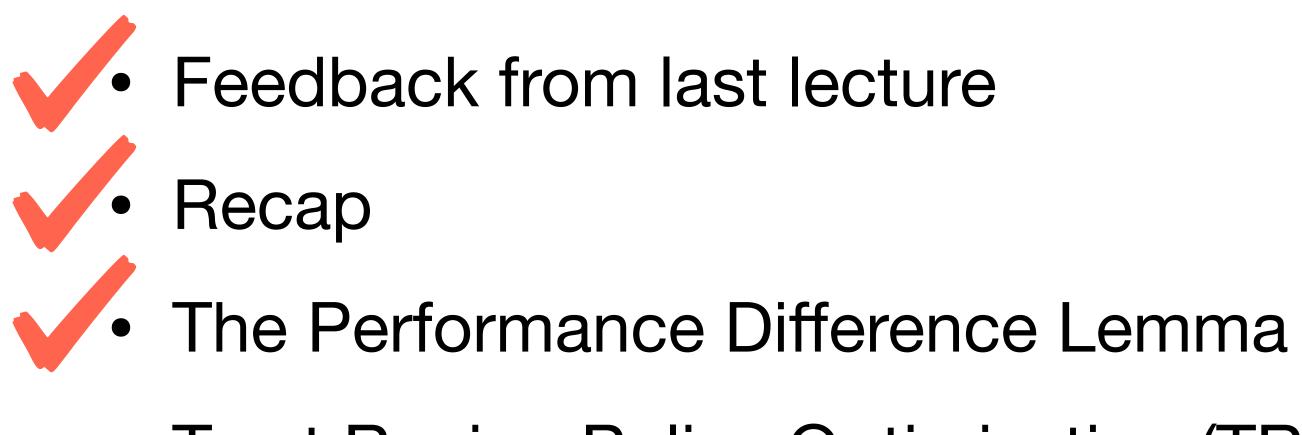
 $\mathbb{E}_{\tau \sim \rho_{\pi^{k+1},s}} \left[\sum_{h=0}^{H-1} \hat{A}^{\pi^{k}}(s_{h}, a_{h}, h) \right] \approx \mathbb{E}_{\tau \sim \rho_{\pi^{k+1},s}} \left[\sum_{h=0}^{H-1} \hat{A}^{\pi^{k}}(s_{h}, a_{h}, h) \right]$

•One way to ensure this: keep $\pi^{k+1} \approx \pi^k$

$$[a_h, h] \approx \mathbb{E}_{\tau \sim \rho_{\pi^{k}, s}} \left[\sum_{h=0}^{H-1} A^{\pi^k}(s_h, a_h, h) \right]$$

$$\sum_{h=0}^{n-1} A^{\pi^k}(s_h, a_h, h)$$

Today



- Trust Region Policy Optimization (TRPO)
- The Natural Policy Gradient (NPG)

What's bad about fitted PI?
 even if we pick better actions "on average

- What's bad about fitted PI?
- Can we fix this? Let's look at an incremental policy updating approach

- What's bad about fitted PI?
- Can we fix this? Let's look at an incremental policy updating approach

1. Initialize
$$\theta^{0}$$

2. For $k = 0, ..., K$:
try to approximately solve:
 $\theta^{k+1} = \arg \max_{\theta} \mathbb{E}_{s_0, ..., s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot|s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \right]$
s.t. ρ_{θ} is "close" to $\rho_{\pi_{\theta^k}}$
3. Return π_{θ^k}

- What's bad about fitted PI?
- Can we fix this? Let's look at an incremental policy updating approach

1. Initialize
$$\theta^{0}$$

2. For $k = 0, ..., K$:
try to approximately solve:
 $\theta^{k+1} = \arg \max_{\theta} \mathbb{E}_{s_0, ..., s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot|s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \right]$
s.t. ρ_{θ} is "close" to $\rho_{\pi_{\theta^k}}$
3. Return π_{θ^K}

• How should we define "close", i.e., what is our "trust" region?

KL-divergence: measures the distance between two distributions

Given two distributions P & Q, where $P \in \Delta(X), Q \in \Delta(X)$, KL Divergence is defined as:

 $KL(P \mid Q) = \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{O(x)} \right]$

KL-divergence: measures the distance between two distributions

 $KL(P \mid Q) =$

Given two distributions P & Q, where $P \in \Delta(X), Q \in \Delta(X)$, KL Divergence is defined as:

$$= \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]$$

Examples:

If Q = P, then KL(P | Q) = KL(Q | P) = 0

KL-divergence: measures the distance between two distributions

 $KL(P \mid Q) =$

If Q = P, then KL

If $P = \mathcal{N}(\mu_1, \sigma^2 I), Q = \mathcal{N}(\mu_2, \sigma^2 I)$

Given two distributions P & Q, where $P \in \Delta(X), Q \in \Delta(X)$, KL Divergence is defined as:

$$= \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]$$

Examples:

$$(P | Q) = KL(Q | P) = 0$$

 $\sigma^2 I$, then $KL(P | Q) = \frac{1}{2\sigma^2} ||\mu_1 - \mu_2||^2$

KL-divergence: measures the distance between two distributions

 $KL(P \mid Q) =$

If Q = P, then KL

If $P = \mathcal{N}(\mu_1, \sigma^2 I), Q = \mathcal{N}(\mu_2, \sigma^2 I)$

Given two distributions P & Q, where $P \in \Delta(X), Q \in \Delta(X)$, KL Divergence is defined as:

$$= \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]$$

Examples:

$$(P | Q) = KL(Q | P) = 0$$

 $\sigma^2 I$, then $KL(P | Q) = \frac{1}{2\sigma^2} ||\mu_1 - \mu_2||^2$

Fact:

 $KL(P \mid Q) \ge 0$, and is 0 if and only if P = Q

Trust Region Policy Optimization (TRPO)

1. Initialize
$$\theta^{0} \int_{\theta} \delta$$

2. For $k = 0, ..., K$:
try to approximately solve:
 $\theta^{k+1} = \arg \max_{\theta} \mathbb{E}_{s_{0},...,s_{H-1} \sim \rho_{\pi_{\theta}k}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_{h} \sim \pi_{\theta}(\cdot|s_{h})} \left[A^{\pi_{\theta}k}(s_{h}, a_{h}, h) \right] \right]$
s.t. $KL \left(\rho_{\pi_{\theta}k} | \rho_{\pi_{\theta}} \right) \leq \delta$
3. Return $\pi_{\theta^{K}}$

- We want to maximize local advantage against π_{θ^k} ,
- \bullet

but we want the new policy to be close to π_{θ^k} (in the KL sense) How do we implement this with sampled trajectories?)

How do we implement TRPO with samples?

- 1. Initialize parameter θ^0 , sample size M, and tolerance δ
- 2. For k = 0, ..., K:
 - 1. [Advantage-Evaluation Subroutine]
 - 2. Solve the following optimization problem to obtain θ^{k+1} : $\max_{\theta} \sum_{m=1}^{\infty} \sum_{h=0}^{\infty} \mathbb{E}_{a \sim \pi_{\theta}(\cdot | s_h^m)} \left[\hat{A}^{\pi_{\theta^k}}(s_h^m, a, h) \right]$ M H-1

s.t.
$$\sum_{m=1}^{M} \sum_{h=0}^{H-1} \ln \frac{\pi_{\theta^k}(a_h^m | s_h^m)}{\pi_{\theta}(a_h^m | s_h^m)} \leq \delta$$

Using *M* sampled trajectories $\tau_1, \ldots \tau_M \sim \rho_{\pi_{\alpha k}}$, obtain approximation $\hat{A}^{\pi_{\theta k}} \approx A^{\pi_{\theta k}}$

How do we implement TRPO with samples?

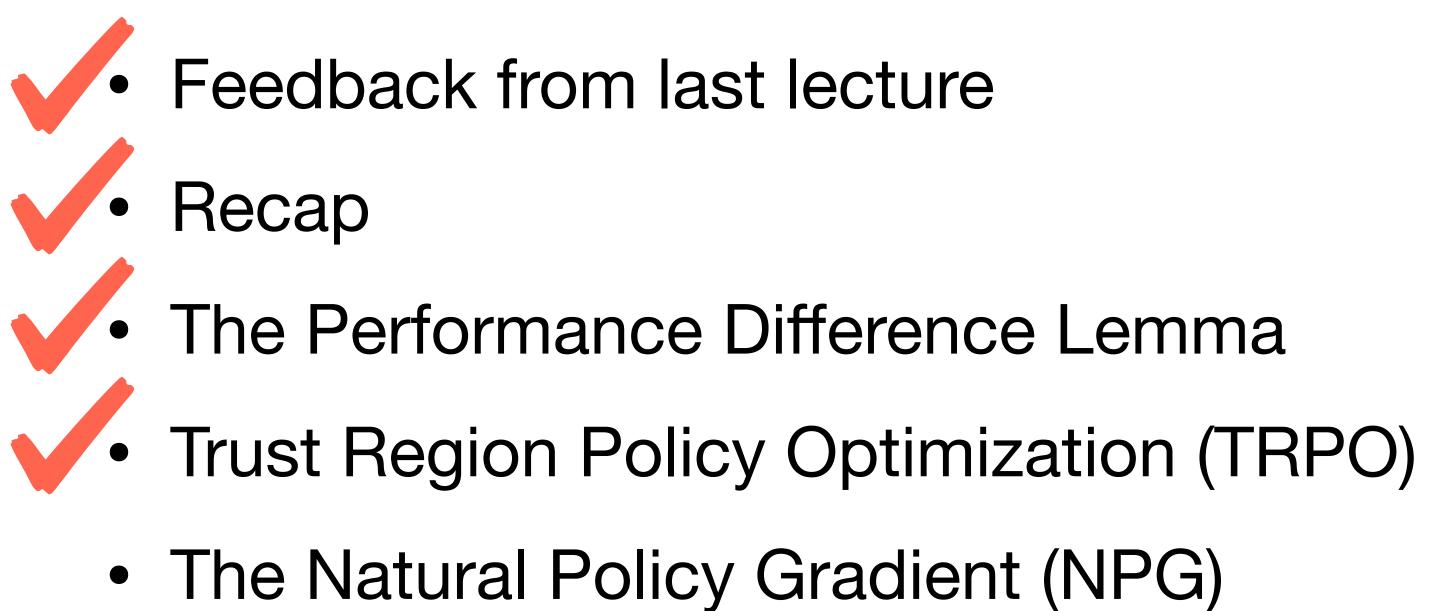
- 1. Initialize parameter θ^0 , sample size M, and tolerance δ
- 2. For k = 0, ..., K:
 - 1. [Advantage-Evaluation Subroutine]
 - 2. Solve the following optimization problem to obtain θ^{k+1} : $\max_{\theta} \sum_{m=1}^{n} \sum_{h=0}^{n} \mathbb{E}_{a \sim \pi_{\theta}(\cdot | s_h^m)} \left[\hat{A}^{\pi_{\theta k}}(s_h^m, a, h) \right]$ M H-1

s.t.
$$\sum_{m=1}^{M} \sum_{h=0}^{H-1} \ln \frac{\pi_{\theta^k}(a_h^m | s_h^m)}{\pi_{\theta}(a_h^m | s_h^m)} \leq \delta$$

Using *M* sampled trajectories $\tau_1, \ldots \tau_M \sim \rho_{\pi_{\alpha k}}$, obtain approximation $\hat{A}^{\pi_{\theta k}} \approx A^{\pi_{\theta k}}$

Approximate expectation by importance sampling: $\mathbb{E}_{a \sim \pi_{\theta}(\cdot | s_h^m)} \left| \hat{A}^{\pi_{\theta^k}}(s_h^m, a, h) \right|$ $= \mathbb{E}_{a \sim \pi_{\theta^{k}}(\cdot | s_{h}^{m})} \frac{\pi_{\theta}(a | s_{h}^{m})}{\pi_{\theta^{k}}(a | s_{h}^{m})} \hat{A}^{\pi_{\theta^{k}}}(s_{h}^{m}, a, h)$

Today



TRPO at iteration k:

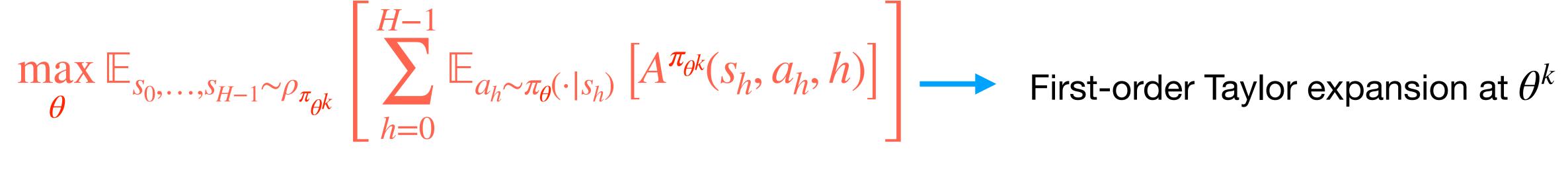
 $\max_{\theta} \mathbb{E}_{s_0, \dots, s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \right]$ s.t. $KL\left(\rho_{\pi_{\theta^k}}|\rho_{\pi_{\theta}}\right) \leq \delta$

Intuition: maximize local advantage subject to being incremental (in KL)

TRPO at iteration k:

s.t. $KL\left(\rho_{\pi_{\theta^k}}|\rho_{\pi_{\theta}}\right) \leq \delta$

Intuition: maximize local advantage subject to being incremental (in KL)

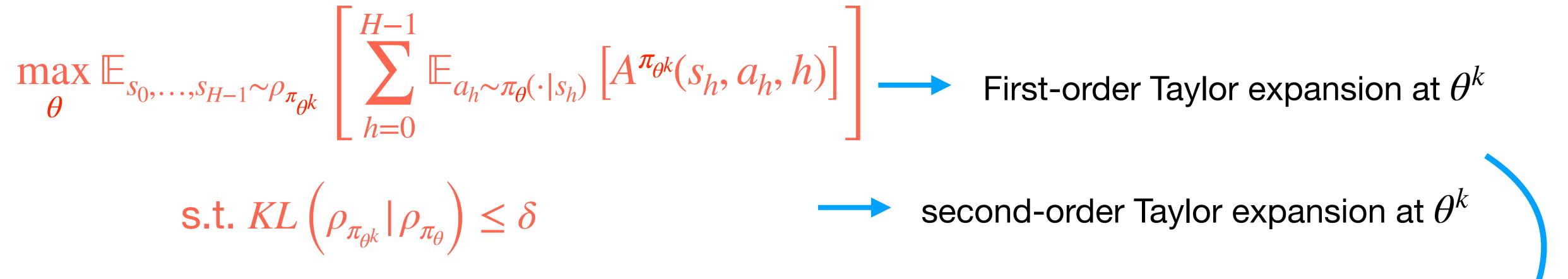


second-order Taylor expansion at θ^k

TRPO at iteration k:

s.t. $KL\left(\rho_{\pi_{\theta k}} | \rho_{\pi_{\theta}}\right) \leq \delta$

Intuition: maximize local advantage subject to being incremental (in KL)



TRPO at iteration k:

 $\max_{\theta} \mathbb{E}_{s_0, \dots, s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \right] \longrightarrow \text{First-order Taylor expansion at } \theta^k$ s.t. $KL\left(\rho_{\pi_{\theta^k}}|\rho_{\pi_{\theta}}\right) \leq \delta$

Intuition: maximize local advantage subject to being incremental (in KL)

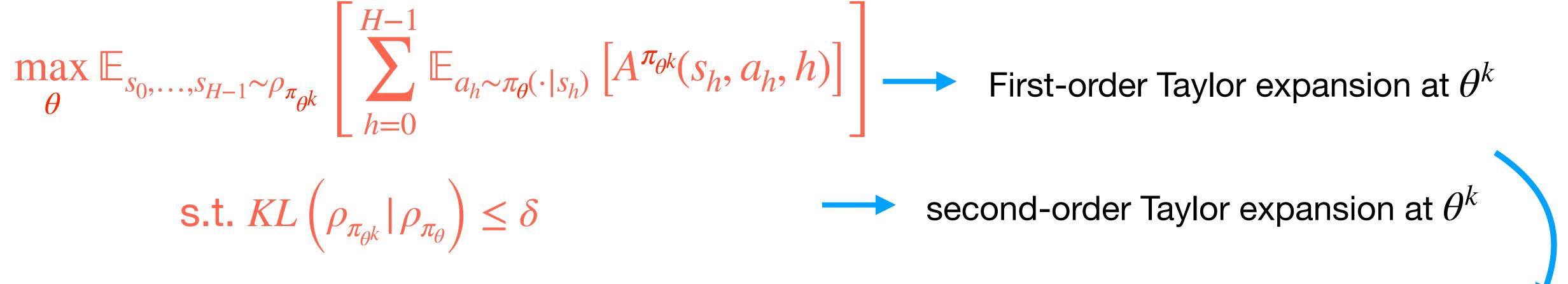
second-order Taylor expansion at θ^k

$\max_{\theta} \nabla_{\theta} J(\theta^k)^{\mathsf{T}}(\theta - \theta^k)$

TRPO at iteration k:

s.t. $KL\left(\rho_{\pi_{\theta^k}}|\rho_{\pi_{\theta}}\right) \leq \delta$

Intuition: maximize local advantage subject to being incremental (in KL)

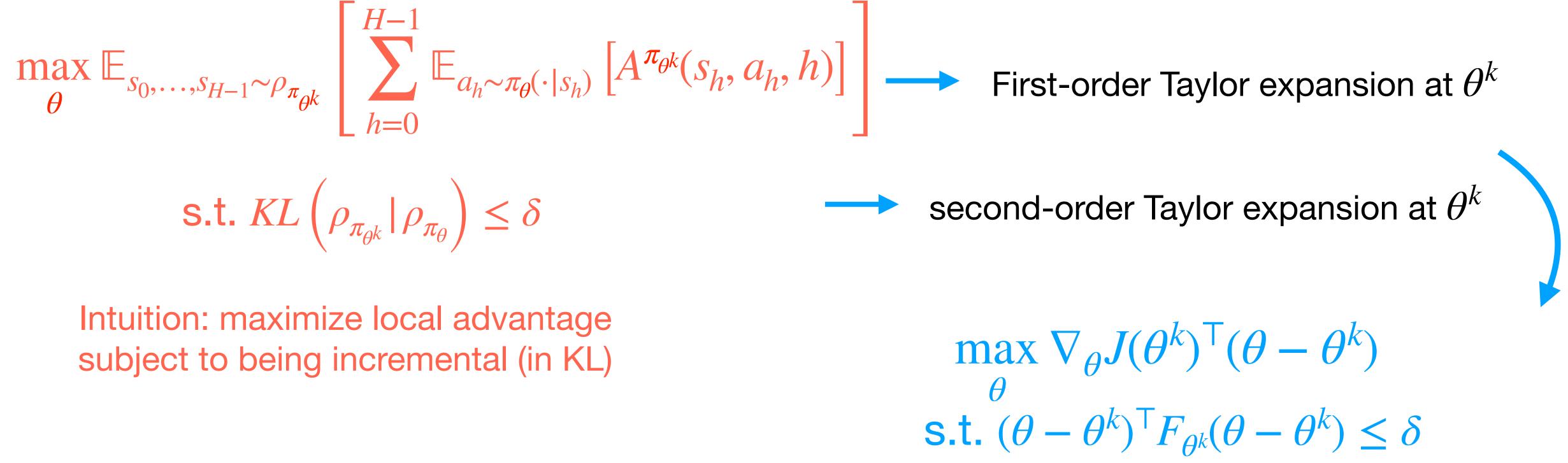


 $\max_{\theta} \nabla_{\theta} J(\theta^{k})^{\mathsf{T}} (\theta - \theta^{k})$ s.t. $(\theta - \theta^{k})^{\mathsf{T}} F_{\theta^{k}} (\theta - \theta^{k}) \leq \delta$

TRPO at iteration k:

s.t. $KL\left(\rho_{\pi_{\theta^k}}|\rho_{\pi_{\theta}}\right) \leq \delta$

Intuition: maximize local advantage subject to being incremental (in KL)



(Where F_{θ^k} is the "Fisher Information Matrix")

Natural Policy Gradient (NPG): A "leading order" equivalent program to TRPO:

1. Initialize θ^0 2. For k = 0, ..., K: $\theta^{k+1} = \arg$ s.t. (*θ* – *θ*[/] 3. Return π_{θ^K}

$$\max_{\theta} \nabla_{\theta} J(\theta^{k})^{\mathsf{T}} (\theta - \theta^{k})$$

$$\overset{k}{}^{\mathsf{T}} F_{\theta^{k}}(\theta - \theta^{k}) \leq \delta$$

Natural Policy Gradient (NPG): A "leading order" equivalent program to TRPO:

1. Initialize
$$\theta^0$$

2. For $k = 0, ..., K$:
 $\theta^{k+1} = \arg \max_{\theta} \nabla_{\theta} J(\theta^k)^{\top} (\theta - \theta^k)$
s.t. $(\theta - \theta^k)^{\top} F_{\theta^k} (\theta - \theta^k) \leq \delta$
3. Return π_{θ^K}

- Where $\nabla_{\theta} J(\theta^k)$ is the gradient of $J(\theta)$ evaluated at θ^k , and
- F_{θ} is (basically) the Fisher information matrix at $\theta \in \mathbb{R}^d$, defined as:

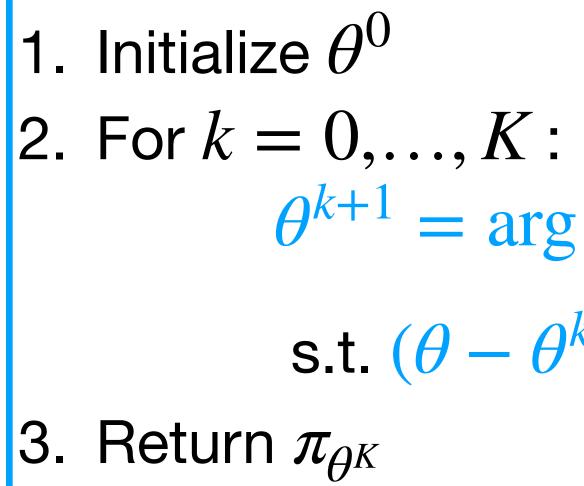
$$F_{\theta} := \mathbb{E}_{\tau \sim \rho_{\pi_{\theta}}} \left[\nabla_{\theta} \ln \rho_{\theta}(\tau) (\nabla_{\theta} \ln \rho_{\theta}(\tau)) \right]$$

$$= \mathbb{E}_{\tau \sim \rho_{\pi_{\theta}}} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \left(\nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \right)^{\mathsf{T}} \right]$$

 $\ln \rho_{\theta}(\tau) \big)^{\mathsf{T}} \in \mathbb{R}^{d \times d}$

1. Initialize θ^0 2. For k = 0, ..., K: $\theta^{k+1} = \arg$ s.t. $(\theta - \theta^k)$ 3. Return π_{θ^K}

 $\theta^{k+1} = \arg \max_{\theta} \nabla_{\theta} J(\theta^{k})^{\mathsf{T}} (\theta - \theta^{k})$ s.t. $(\theta - \theta^{k})^{\mathsf{T}} F_{\theta^{k}} (\theta - \theta^{k}) \leq \delta$



$$\max_{\substack{\theta \\ k}} \nabla_{\theta} J(\theta^{k})^{\mathsf{T}} (\theta - \theta^{k})$$

Linear objective and quadratic convex constraint: we can solve it optimally!

1. Initialize
$$\theta^0$$

2. For $k = 0, ..., K$:
 $\theta^{k+1} = \arg \max_{\theta} \nabla_{\theta} J(\theta^k)^{\mathsf{T}}(\theta - \theta^k)$
s.t. $(\theta - \theta^k)^{\mathsf{T}} F_{\theta^k}(\theta - \theta^k) \leq \delta$
3. Return π_{θ^K}

Linear objective and quadratic convex constraint: we can solve it optimally! Indeed this gives us:

$$\theta^{k+1} = \theta^k + \eta F_{\theta^k}^{-1} \nabla$$

 $7_{\theta} J(\theta^k)$

1. Initialize
$$\theta^0$$

2. For $k = 0, ..., K$:
 $\theta^{k+1} = \arg \max_{\theta} \nabla_{\theta} J(\theta^k)^{\mathsf{T}}(\theta - \theta^k)$
s.t. $(\theta - \theta^k)^{\mathsf{T}} F_{\theta^k}(\theta - \theta^k) \leq \delta$
3. Return π_{θ^K}

Linear objective and quadratic convex constraint: we can solve it optimally! Indeed this gives us:

$$\theta^{k+1} = \theta^{k} + \eta F_{\theta^{k}}^{-1} \nabla_{\theta} J(\theta^{k})$$

Where $\eta = \sqrt{\frac{\delta}{\nabla_{\theta} J(\theta^{k})^{\mathsf{T}} F_{\theta^{k}}^{-1} \nabla_{\theta} J(\theta^{k})}}$

An Implementation: Sample Based NPG

- 1. Initialize θ^0
- 2. For k = 0, ..., K:
 - Obtain approximation of Policy Gradi
 - Obtain approximation of Fisher inform
 - Natural Gradient Ascent: $\theta^{k+1} = \theta^k$
- 3. Return π_{θ^K}

$$\begin{array}{l} \text{ient: } \hat{g} \approx \nabla_{\theta} J(\theta^{k}) \\ \text{mation: } \hat{F} \approx F_{\theta^{k}} \\ + \eta \hat{F}^{-1} \hat{g} \end{array}$$

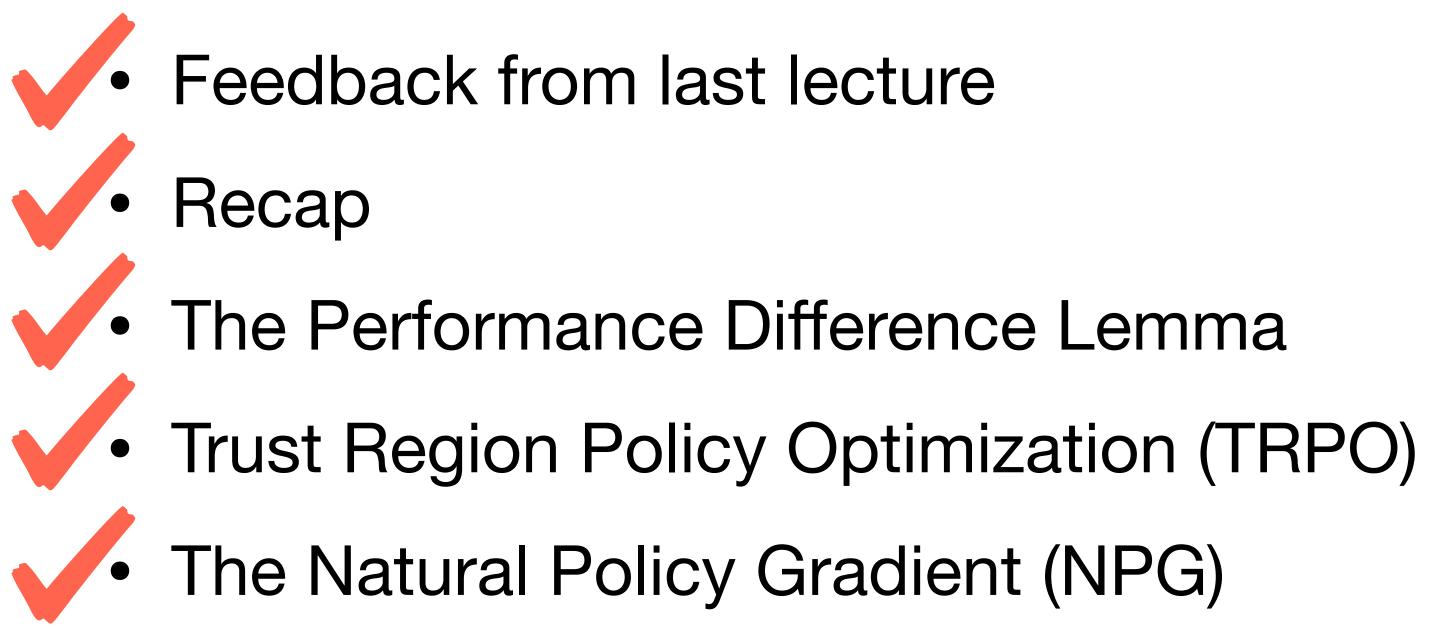
An Implementation: Sample Based NPG

- 1. Initialize θ^0
- 2. For k = 0, ..., K:
 - Obtain approximation of Policy Gradi
 - Obtain approximation of Fisher inform
 - Natural Gradient Ascent: $\theta^{k+1} = \theta^k$
- 3. Return π_{θ^K}

$$\begin{array}{l} \text{ient: } \hat{g} \approx \nabla_{\theta} J(\theta^{k}) \\ \text{mation: } \hat{F} \approx F_{\theta^{k}} \\ + \eta \hat{F}^{-1} \hat{g} \end{array}$$

(We will implement it in HW4 on Cartpole)

Today



Summary:

- 1. Performance Difference Lemma tells us we need to stay local
- 2. TRPO and NPG ensure we don't move too much each step

Attendance: bit.ly/3RcTC9T

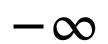
s us we need to stay local ove too much each step

Feedback: bit.ly/3RHtlxy

$$(\pi_{\theta}[1], \pi_{\theta}[2]) := \left(\frac{\exp(\theta)}{1 + \exp(\theta)}, \frac{1}{1 + \exp(\theta)}\right)$$

 $J(\theta) = 100 \cdot \pi_{\theta}[1] + 1 \cdot \pi_{\theta}[2]$

$$(\pi_{\theta}[1], \pi_{\theta}[2]) := \left(\frac{\exp(\theta)}{1 + \exp(\theta)}, \frac{1}{1 + \exp(\theta)}\right)$$
$$J(\theta) = 100 \cdot \pi_{\theta}[1] + 1 \cdot \pi_{\theta}[2]$$



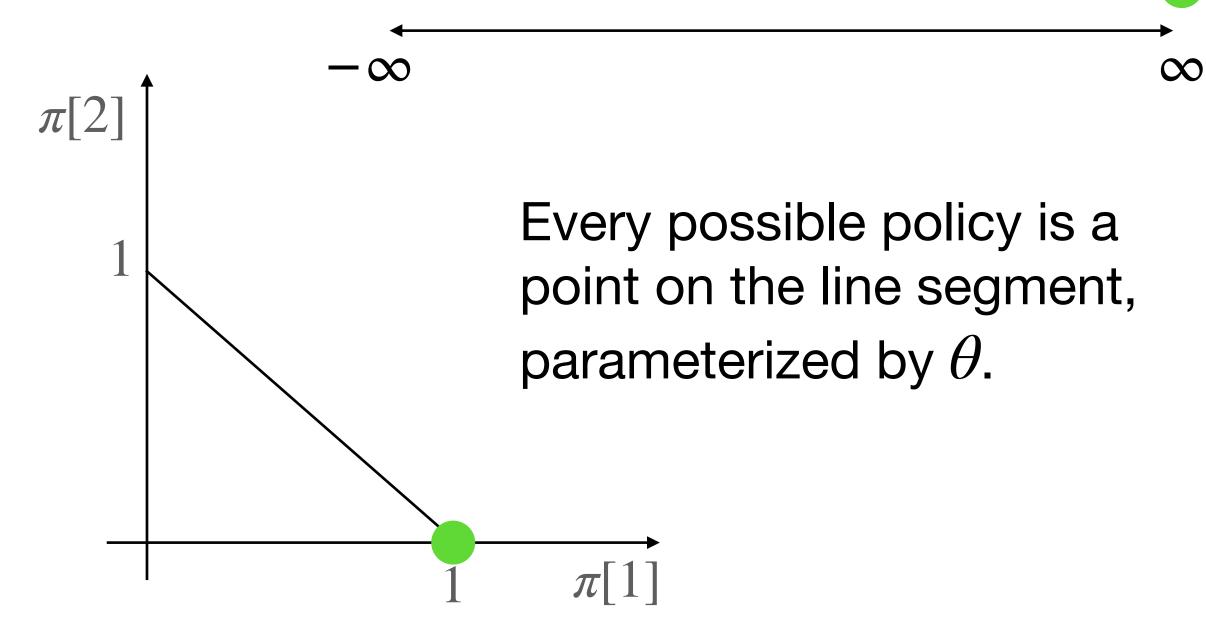
 θ^{\star}

 ∞

32

$$(\pi_{\theta}[1], \pi_{\theta}[2]) := \left(\frac{\exp(\theta)}{1 + \exp(\theta)}, \frac{1}{1 + \exp(\theta)}\right)$$

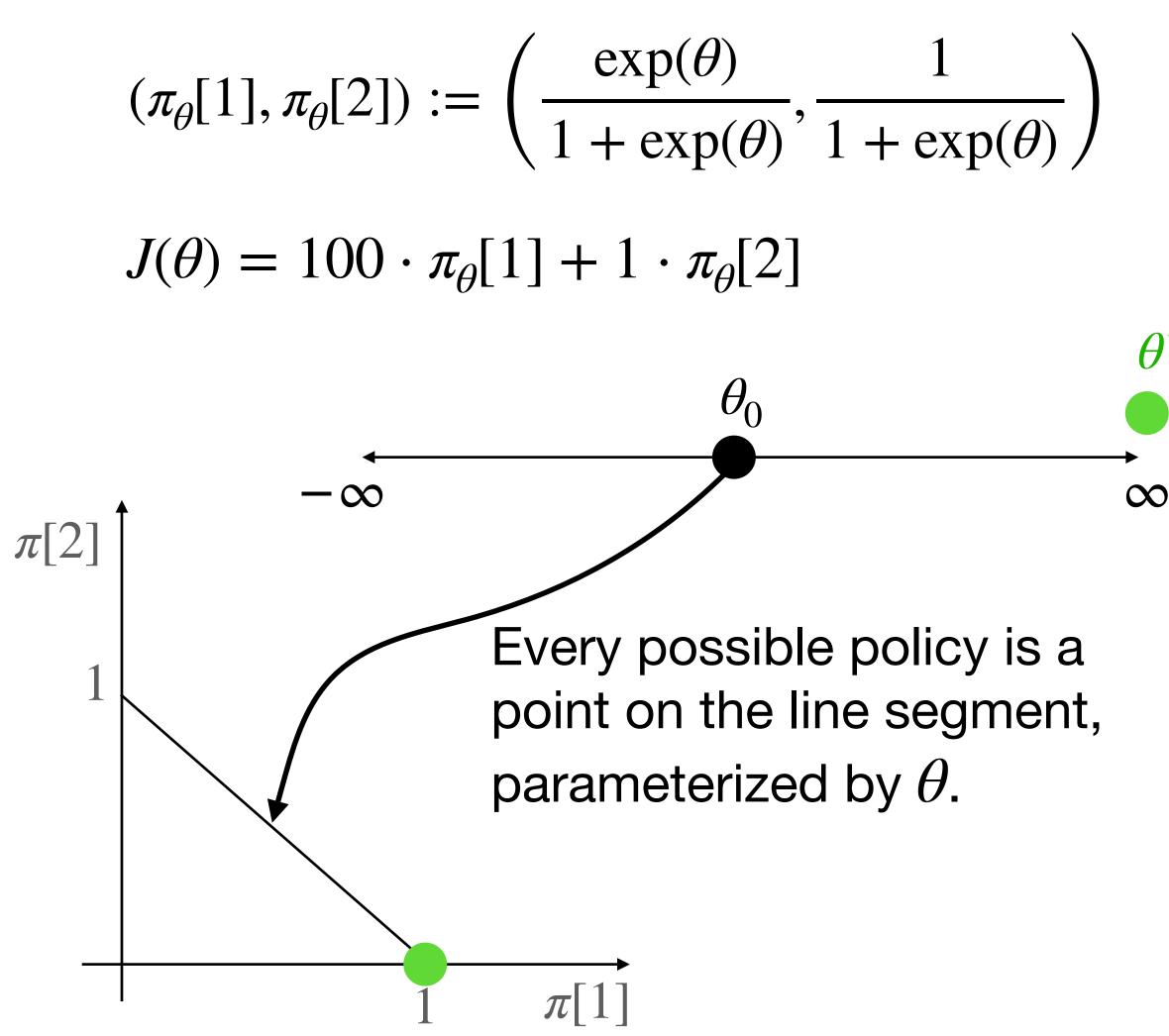
 $J(\theta) = 100 \cdot \pi_{\theta}[1] + 1 \cdot \pi_{\theta}[2]$



 θ^{\star}

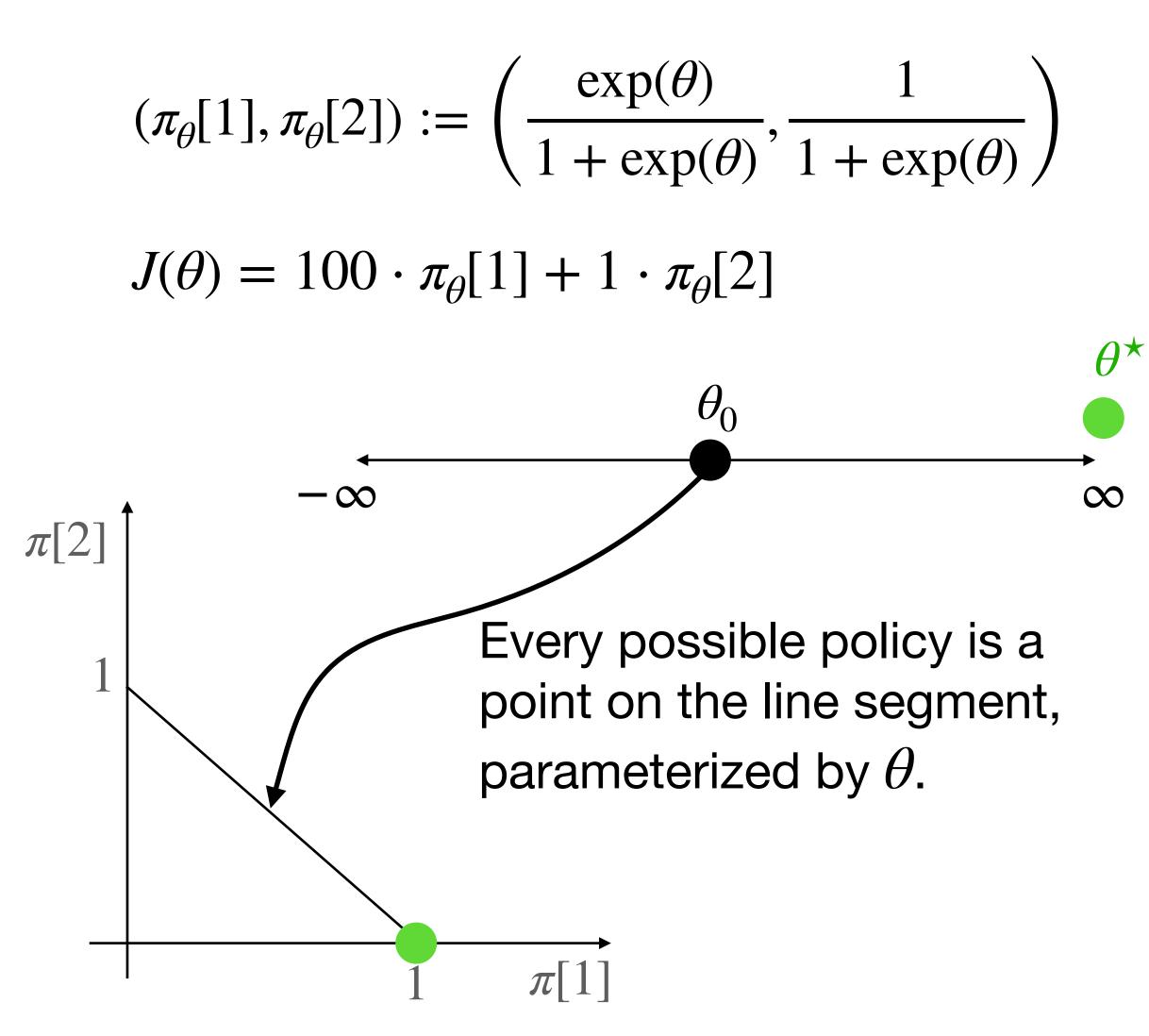
)

32



 θ^{\star}

32



Gradient: $\nabla_{\theta} J(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$



Gradient: $\nabla_{\theta} J(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$ Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$



Gradient:
$$\nabla_{\theta} J(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$

i.e., vanilla GA moves to $\theta=\infty$ with smaller and smaller steps, since $\nabla_{\theta}J(\theta)\to 0$ as $\theta\to\infty$



Gradient:
$$\nabla_{\theta} J(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$

i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $\nabla_{\theta} J(\theta) \rightarrow 0$ as $\theta \to \infty$ Fisher information scalar: $F_{\theta} = \frac{\exp(\theta)}{(1 + \exp(\theta))^2}$



Gradient:
$$\nabla_{\theta} J(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$

i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $\nabla_{\theta} J(\theta) \rightarrow 0$ as $\theta \to \infty$ Fisher information scalar: $F_{\theta} = \frac{\exp(\theta)}{(1 + \exp(\theta))^2}$

NPG:
$$\theta^{k+1} = \theta^k + \eta \frac{\nabla_{\theta} J(\theta^k)}{F_{\theta^k}}$$



Gradient:
$$\nabla_{\theta} J(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$

i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $\nabla_{\theta} J(\theta) \rightarrow 0$ as $\theta \to \infty$ Fisher information scalar: $F_{\theta} = \frac{\exp(\theta)}{(1 + \exp(\theta))^2}$

NPG: $\theta^{k+1} = \theta^k + \eta \frac{\nabla_{\theta} J(\theta^k)}{F_{\alpha k}} = \theta_t + \eta \cdot 99$



Gradient:
$$\nabla_{\theta} J(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$

i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $\nabla_{\theta} J(\theta) \rightarrow 0$ as $\theta \to \infty$ Fisher information scalar: $F_{\theta} = \frac{\exp(\theta)}{(1 + \exp(\theta))^2}$

NPG:
$$\theta^{k+1} = \theta^k + \eta \frac{\nabla_{\theta} J(\theta^k)}{F_{\theta^k}} = \theta_t + \eta \cdot 99$$

NPG moves to $\theta = \infty$ much more quickly (for a fixed η)

