Trust Region Policy Optimization & The Natural Policy Gradient

Lucas Janson CS/Stat 184(0): Introduction to Reinforcement Learning Fall 2024

Today

- Feedback from last lecture
- Recap
- The Performance Difference Lemma
- Trust Region Policy Optimization (TRPO)
- The Natural Policy Gradient (NPG)

Feedback from feedback forms

- 1. Thank you to everyone who filled out the forms!
- 2. Discuss projects!

Today

- Recap
- The Performance Difference Lemma
- Trust Region Policy Optimization (TRPO)
- The Natural Policy Gradient (NPG)

Optimization Objective

•Consider a parameterized class of policies: (why do we make it stochastic?) $\{\pi_{\theta}(a | s) | \theta \in \mathbb{R}^d\}$

Cobjective max $J(\theta)$, where *θ*

> $J(\theta) \coloneqq$ $s_0 \sim \mu \left[V^{\pi} \theta(s_0) \right] =$

•Policy Gradient Descent:

 $\theta^{k+1} = \theta^k + \eta \, \nabla J(\theta^k)$

^τ∼*ρπθ* [*H*−1 ∑ *h*=0 $r(s_h, a_h)$]

REINFORCE: A Policy Gradient Algorithm

-
- Let $R(\tau)$ be the cumulative reward on trajectory τ , i.e. $R(\tau) :=$
- •Our objective function is:
- •From the likelihood ratio method, we have: $J(\theta) = E_{\tau \sim \rho_{\theta}} |R(\tau)|$ $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\nabla_{\theta} \ln \rho_{\theta}(\tau) R(\tau) \right]$
- •The REINFORCE Policy Gradient expression: $\nabla_{\theta} \ln \rho_{\theta}(\tau) R(\tau) =$ *H*−1 ∑

• Let $\rho_{\theta}(\tau)$ be the probability of a trajectory $\tau = \{s_0, a_0, s_1, a_1, ..., s_{H-1}, a_{H-1}\}$, i.e. $\rho_{\theta}(\tau) = \mu(s_0) \pi_{\theta}(a_0 | s_0) P(s_1 | s_0, a_0) ... P(s_{H-1} | s_{H-2}, a_{H-2}) \pi_{\theta}(a_{H-1} | s_{H-1})$

trajectory
$$
\tau
$$
, i.e. $R(\tau) := \sum_{h=0}^{H-1} r(s_h, a_h)$

 ∇_{θ} ln $\pi_{\theta}(a_h | s_h)$ | $R(\tau)$

h=0

Obtaining an Unbiased Gradient Estimate at *θ*

H−1 ∑ *h*=0 ∇_{θ} ln $\pi_{\theta}(a_h | s_h)$ | $R(\tau)$

- 1. Obtain a trajectory *τ* ∼ *ρθ*
- 2. Set:
- $g(\theta, \tau) :=$

 W e have: $\mathbb{E}[g(\theta, \tau)] = \nabla_{\theta}J(\theta)$

$$
\nabla_{\theta} J(\theta) := \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\left(\begin{array}{c} \end{array} \right)
$$

H−1 ∑ *h*=0 ∇_{θ} ln $\pi_{\theta}(a_h | s_h)$ | $R(\tau)$

(which we can do in our learning setting)

PG with REINFORCE:

-
- 2. For $k = 0, \ldots$:
	- 1. Obtain a trajectory *τ* ∼ $ρ_{θ^k}$ Compute *g*(*θ^k* , *τ*)
	-

1. Initialize θ^0 , step size parameters: $\eta^1, \eta^2, ...$

2. Update: $\theta^{k+1} = \theta^k + \eta^k g(\theta^k, \tau)$

Other PG formulas (that are lower variance for sampling)

$$
\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \bigg) R(\tau)
$$

$$
\sum_{h=0}^{H-1} \left(\nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \sum_{t=h}^{H-1} r(s_t, a_t) \right)
$$

$$
\int_{0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}(a_{h} | s_{h}) Q_{h}^{\pi_{\theta}}(s_{h}, a_{h})
$$

Intuition: Changing the action distribution at *h* only affects rewards later on… **HW:** You will show these simplified version are also valid PG expressions

(REINFORCE)

With a "baseline" function:

• For the proof, it was helpful to note: $E_{x \sim P_{\theta}} \left[\nabla_{\theta} \log P_{\theta}(x) c \right] = 0$

For any function only of the state, $b_h : S \to \mathbb{R}$, we have:

This is (basically) the method of control variates.

 ∇_{θ} ln $\pi_{\theta}(a_h | s_h)(R_h(\tau) - b_h(s_h))$]

 $\nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \left(Q_h^{\pi_{\theta}}(s_h, a_h) - b_h(s_h) \right)$ $\frac{1}{2}$

$$
\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \right]
$$

$$
= \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \right]
$$

The Advantage Function (finite horizon)

$$
V_h^{\pi}(s) = \mathbb{E}\left[\sum_{t=h}^{H-1} r(s_t, a_t)\middle| s_h = s\right]
$$

$$
Q_h^{\pi}(s, a) = \mathbb{E}\left[\sum_{t=h}^{H-1} r(s_t, a_t) \middle| (s_h, a_h) = (s, a)\right]
$$

a $\pi(a|s)A_h^{\pi}$ $\frac{\pi}{h}(s, a) = 0$

- The Advantage function is defined as: $A_h^{\pi}(s, a) = Q_h^{\pi}(s, a) - V_h^{\pi}(s)$
- We have that:

$$
\mathbb{E}_{a \sim \pi(\cdot | s)} [A_h^{\pi}(s, a) | s, h] = \sum
$$

- We know $A_h^{\pi^{\star}}$ $\frac{\pi}{h}(s, a) \leq 0 \quad \forall s, a$
- For the discounted case, $A^{\pi}(s, a) = Q^{\pi}(s, a) V^{\pi}(s)$

The Advantage-based PG:

 ∇_{θ} ln $\pi_{\theta}(a_h | s_h)A_h^{\pi_{\theta}}$ $\frac{\pi_{\theta}(s_{h}, a_{h})}{\theta(s_{h}, a_{h})}$]

• In practice, the most common approach is to use $b_h(s)$ that's an estimate of $V^\pi_h(s)$.

- The second step follows by choosing $b_h(s) = V_h^{\pi}(s)$.
-

$$
\nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \bigg(Q_h^{\pi_{\theta}}(s_h, a_h) - b_h(s_h) \bigg)
$$

PG with a Learned Baseline:

 \widetilde{b} *b*

- 1. Initialize θ^0 , parameters: $\eta^1, \eta^2, ...$
- 2. For $k = 0, \ldots$:
	- 1. Supervised Learning: Using N trajectories sampled under π_{θ^k} , estimate a baseline $\widetilde{b}(s,h) \approx V_h^{\theta^k}$ $\frac{\partial^n f}{\partial h}(S)$
	- 2. Obtain a trajectory *τ* ∼ *ρ*_θ*κ* Compute *g*′(*θ^k* , *τ*, \widetilde{b} *b*())
	- 3. Update: $\theta^{k+1} = \theta^k + \eta^k g'(\theta^k, \tau)$ \widetilde{b} *b*())

Note that regardless of our choice of \widetilde{b} *b*, we still get unbiased gradient estimates.

Let
$$
g'(\theta, \tau, b()) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) (R_h(\tau) - b(s_h, h))
$$

(minibatch) PG with a Learned Baseline:

- 1. Initialize θ^0 , parameters: $\eta^1, \eta^2, ...$
- 2. For $k = 0, \ldots$:
	- 1. Supervised Learning: Using N trajectories sampled under π_{θ^k} , estimate a baseline $\widetilde{b}(s,h) \approx V_h^{\theta^k}$ $\frac{\partial^n f}{\partial h}(S)$
	- 2. Obtain M trajectories $\tau_1, \ldots \tau_M \thicksim \rho_{\theta^k}$ Compute $g =$ 1 *M M* ∑ $m=1$ $g'(\theta^k, \tau_m,$ \widetilde{b} *b*())
	- 3. Update: $\theta^{k+1} = \theta^k + \eta^k g$

 \widetilde{b} *b*

Today

- The Performance Difference Lemma
- Trust Region Policy Optimization (TRPO)
- The Natural Policy Gradient (NPG)

Recall: Fitted Policy Iteration

• Initialization: choose a policy $\pi^0 : S \mapsto A$ and a sample size N • For $k = 0, 1, \ldots$ 1. Fitted Policy Evaluation: Using N sampled trajectories $\tau_1, \ldots \tau_N \thicksim \rho_{\pi^k}$, obtain approximation Q 2. **Policy Improvement**: set π_h^{k+1}

̂ $\pi^k \thickapprox \mathcal{Q}^{\pi^k}$ $h^{k+1}(s) := \arg \max_a Q$ *a* ̂ *πk* (*s*, *a*, *h*)

Fitted Policy Iteration: Advantage Version

• Initialization: choose a policy $\pi^0 : S \mapsto A$ and a sample size N • For $k = 0, 1, \ldots$ 1. Fitted Policy Evaluation: Using N sampled trajectories , obtain approximation 2. **Policy Improvement**: set $\tau_1,\dots\tau_N\thicksim \rho_{\pi^k}$, obtain approximation $\hat{A}^{\pi^k}\thickapprox A^{\pi^k}$ ̂ π_h^{k+1} $h^{k+1}(s) := \argmax_{a}$ *a* $\widehat{A}^{\boldsymbol{\pi}^k}$ ̂ (*s*, *a*, *h*)

The Performance Difference Lemma (PDL)

- (we are making the starting distribution explicit now).
- For any two policies π and $\widetilde{\pi}$ and any state s ,

Comments:

•Helps us think about error analysis, instabilities of fitted PI, and sub-optimality. •This also motivates the use of "local" methods (e.g. policy gradient descent)

-
- •Helps to understand algorithm design (TRPO, NPG, PPO)
-

• Let $\rho_{\widetilde{\pi},s}$ be the distribution of trajectories from starting state s acting under $\widetilde{\pi}.$

$$
V^{\widetilde{\pi}}(s) - V^{\pi}(s) = \mathbb{E}_{\tau \sim \mu}
$$

τ∼*ρπ* ˜ ,*s* [*H*−1 ∑ *h*=0 *Aπ* (*sh*, *ah*, *h*)]

Back to Fitted Policy Iteration

- •Suppose π^k gets updated to π^{k+1} . How much worse could π^{k+1} be?
- ̂

• This means we expect *τ*∼*ρπ^k* $\overline{\mathcal{S}}$ *H*−1 ∑ *h*=0 \hat{A}^{π^k} ̂

- \cdot In particular, \hat{A}^{π^k} should be close to A^{π^k} where π^k visits often... ̂
- bad places very often!
- \cdot So π^{k+1} could end up being (much) worse than π^k
-

•Problem is a mismatch between expectations: what we really want is $\tau \sim \rho_{\pi^{k+1}}$,*^s* [*H*−1 ∑ *h*=0 \hat{A}^{π^k} ̂ $(S_h, a_h, h) \geq \mathbb{E}_{\tau \sim \rho_{\pi^{k+1},s}}$ *H*−1 ∑ *h*=0 $A^{\pi^k}(s_h, a_h, h)$]

•One way to ensure this: keep $\pi^{k+1} \approx \pi^k$

 \bullet In Fitted Policy Iteration, $\hat{A}^{\pi^k}\approx A^{\pi^k}$ is achieved via supervised learning on $\tau_1,\dots\tau_N\sim\rho_{\pi^k}$

$$
(s_h, a_h, h) \sim \mathbb{E}_{\tau \sim \rho_{\pi^{k,s}}} \left[\sum_{h=0}^{H-1} A^{\pi^k}(s_h, a_h, h) \right]
$$

•But it could be very bad in places π^k visits rarely, and nothing stops π^{k+1} from visiting those

Today

- Trust Region Policy Optimization (TRPO)
- The Natural Policy Gradient (NPG)

even if we pick better actions "on average", the trajectory updates are unstable

- What's bad about fitted PI?
- Can we fix this? Let's look at an incremental policy updating approach

A trust region formulation for policy update:

•How should we define "close", i.e., what is our "trust region?

1. Initialize
$$
\theta^0
$$

\n2. For $k = 0,..., K$:
\ntry to approximately solve:
\n
$$
\theta^{k+1} = \arg \max_{\theta} \mathbb{E}_{s_0,...,s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \right]
$$
\n
$$
\text{s.t. } \rho_{\theta} \text{ is "close" to } \rho_{\pi_{\theta^k}}
$$
\n3. Return π_{θ^K}

KL-divergence: measures the distance between two distributions

 $KL(P|Q) =$

If $Q = P$, then KL (

If $P = \mathcal{N}(\mu_1, \sigma^2 I), Q = \mathcal{N}(\mu_2, \sigma^2 I)$, then

 $KL(P|Q) \geq 0$, and is 0 if and only if $P = Q$

Given two distributions $P \& Q$, where $P \in \Delta(X)$, $Q \in \Delta(X)$, KL Divergence is defined as:

$$
= \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]
$$

Examples:

$$
(P|Q) = KL(Q|P) = 0
$$

$$
\sigma^2 I
$$
, then
$$
KL(P|Q) = \frac{1}{2\sigma^2} ||\mu_1 - \mu_2||^2
$$

Fact:

1. Initialize
$$
\theta^0
$$

\n2. For $k = 0,..., K$:
\ntry to approximately solve:
\n
$$
\theta^{k+1} = \arg \max_{\theta} \mathbb{E}_{s_0,...,s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \right]
$$
\n
$$
\text{s.t. } KL\left(\rho_{\pi_{\theta^k}} | \rho_{\pi_{\theta}}\right) \le \delta
$$
\n3. Return π_{θ^K}

- We want to maximize local advantage against π_{θ^k} ,
-

but we want the new policy to be close to π_{θ^k} (in the KL sense) • How do we implement this with sampled trajectories?)

Trust Region Policy Optimization (TRPO)

How do we implement TRPO with samples?

- 1. Initialize parameter θ^{\vee} , sample size M , and tolerance θ^0 , sample size M , and tolerance δ
- 2. For $k = 0, ..., K$:
	- 1. [Advantage-Evaluation Subroutine]
	- 2. Solve the following optimization problem to obtain θ^{k+1} : max *θ M* ∑ *m*=1 *H*−1 ∑ *h*=0 $a \sim \pi_{\theta}(\cdot | s_h^m)$ $\left| \hat{A}^{\pi} \right|$ ̂ *θk* (s_h^m)

Using M sampled trajectories $\tau_1, \ldots \tau_M \sim \rho_{\pi,\nu}$, obtain approximation M sampled trajectories $\tau_1, ... \tau_M \thicksim \rho_{\pi_{\theta^k}}$, obtain approximation $\hat{A}^{\pi_{\theta^k}} \approx A^{\pi_{\theta^k}}$ ̂ *θk*+1

> $\left\{ \begin{array}{c} m,n, \ h, n \end{array} \right\}$ Approximate expectation by importance sampling: $a \sim \pi_{\theta}(\cdot | s_h^m)$ $\left| \hat{A}^{\pi} \right|$ ̂ *θk* (s_h^m) $\binom{m}{h}, a, h$ = $a \sim \pi_{\theta^k}(\cdot | s_h^m)$ [*πθ*(*a*|*s^m h*) *πθk*(*a*|*sm h*) *Aπ* ̂ *θk* (s_h^m) $\binom{m}{h}, a, h)$

$$
\text{s.t.} \sum_{m=1}^{M} \sum_{h=0}^{H-1} \ln \frac{\pi_{\theta^k}(a_h^m \mid s_h^m)}{\pi_{\theta}(a_h^m \mid s_h^m)} \le \delta
$$

Today

TRPO is locally equivalent to a much simpler algorithm

max *θ s*₀,…,*s*_{*H*−1}∼ ρ π θ^k [*H*−1 ∑ *h*=0 $a_h \sim \pi_\theta(\cdot|s_h)$ ^[*Aπ*θ^{*k*}(*S_h*, *a_h*, *h*)] $\textbf{s.t.} \ KL\left(\rho_{\pi_{\theta^k}} | \rho_{\pi_{\theta}}\right) \leq \delta$

(Where F_{θ^k} is the "Fisher Information Matrix")

Intuition: maximize local advantage subject to being incremental (in KL)

TRPO at iteration k:

1. Initialize
$$
\theta^0
$$

\n2. For $k = 0,..., K$
\n
$$
\theta^{k+1} = \arg \max_{\theta} \nabla_{\theta} J(\theta^k)^T (\theta - \theta^k)
$$
\n
$$
\text{s.t. } (\theta - \theta^k)^T F_{\theta^k} (\theta - \theta^k) \le \delta
$$
\n3. Return π_{θ^K}

- Where $\nabla_{\theta} J(\theta^k)$ is the gradient of $J(\theta)$ evaluated at θ^k , and
- F_{θ} is (basically) the Fisher information matrix at $\theta \in \mathbb{R}^{d}$, defined as:

Natural Policy Gradient (NPG): A "leading order" equivalent program to TRPO:

 ∇_{θ} ln $\pi_{\theta}(a_h | s_h)$ (∇_{θ} ln $\pi_{\theta}(a_h | s_h)$) ⊤]

$$
F_{\theta} := \mathbb{E}_{\tau \sim \rho_{\pi_{\theta}}} \left[\nabla_{\theta} \ln \rho_{\theta}(\tau) \left(\nabla_{\theta} \ln \rho_{\theta}(\tau) \right) \right]
$$

⊤] ∈ ℝ*d*×*^d*

=

$$
\tau \sim \rho_{\pi_{\theta}} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h) \right]
$$

NPG has a closed form update!

Linear objective and quadratic convex constraint: we can solve it optimally! Indeed this gives us:

$$
\theta^{k+1} = \theta^k + \eta F_{\theta^k}^{-1} \nabla_{\theta} J(\theta^k)
$$

Where
$$
\eta = \sqrt{\frac{\delta}{\nabla_{\theta} J(\theta^k)^\top F_{\theta^k}^{-1} \nabla_{\theta}}
$$

 $J(\theta^k)$

1. Initialize
$$
\theta^0
$$

\n2. For $k = 0,..., K$
\n
$$
\theta^{k+1} = \arg \max_{\theta} \nabla_{\theta} J(\theta^k)^T (\theta - \theta^k)
$$
\n
$$
\text{s.t. } (\theta - \theta^k)^T F_{\theta^k} (\theta - \theta^k) \le \delta
$$
\n3. Return π_{θ^K}

ient:
$$
\hat{g}
$$
 ≈ $\nabla_{\theta} J(\theta^k)$
math: \hat{F} ≈ F_{θ^k}
+ $\eta \hat{F}^{-1} \hat{g}$

An Implementation: Sample Based NPG

- 1. Initialize θ^0
- 2. For $k = 0, ..., K$:
	- Obtain approximation of Policy Gradi
	- Obtain approximation of Fisher inforn
	- Natural Gradient Ascent: $\theta^{k+1} = \theta^k + \eta \hat{F}^{-1}$
- 3. Return π_{θ^K}

(We will implement it in HW4 on Cartpole)

Today

Summary:

Attendance: bit.ly/3RcTC9T

Feedback: bit.ly/3RHtlxy

- 1. Performance Difference Lemma tells us we need to stay local
- 2. TRPO and NPG ensure we don't move too much each step

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

Gradient:
$$
\nabla_{\theta} J(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}
$$

Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$

Fisher information scalar: F_{θ} = exp(*θ*) $(1 + \exp(\theta))^2$ i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $\nabla_{\theta} J(\theta) \rightarrow 0$ as $\theta \rightarrow \infty$

$$
\mathsf{NPG}\colon \theta^{k+1} = \theta^k + \eta \frac{\nabla_{\theta} J(\theta^k)}{F_{\theta^k}} = \theta_t + \eta \cdot 99
$$

 NPG moves to $\theta = \infty$ much more quickly (for a fixed η)

