Trust Region Policy Optimization & The Natural Policy Gradient

Lucas Janson

CS/Stat 184(0): Introduction to Reinforcement Learning Fall 2024

Today

- Feedback from last lecture
- Recap
- The Performance Difference Lemma
- Trust Region Policy Optimization (TRPO)
- The Natural Policy Gradient (NPG)

Feedback from feedback forms

- 1. Thank you to everyone who filled out the forms!
- 2. Discuss projects!

Today

- Feedback from last lecture
 - Recap
 - The Performance Difference Lemma
 - Trust Region Policy Optimization (TRPO)
 - The Natural Policy Gradient (NPG)

Optimization Objective

Consider a parameterized class of policies:

$$\{\pi_{\theta}(a \mid s) \mid \theta \in \mathbb{R}^d\}$$

(why do we make it stochastic?)

. Objective $\max_{\theta} J(\theta)$, where

$$J(\theta) := \mathbb{E}_{s_0 \sim \mu} \left[V^{\pi_{\theta}}(s_0) \right] = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta}}} \left[\sum_{h=0}^{H-1} r(s_h, a_h) \right]$$

Policy Gradient Descent:

$$\theta^{k+1} = \theta^k + \eta \nabla J(\theta^k)$$

REINFORCE: A Policy Gradient Algorithm

• Let $\rho_{\theta}(\tau)$ be the probability of a trajectory $\tau = \{s_0, a_0, s_1, a_1, \ldots, s_{H-1}, a_{H-1}\}$, i.e. $\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 \mid s_0)P(s_1 \mid s_0, a_0)\dots P(s_{H-1} \mid s_{H-2}, a_{H-2})\pi_{\theta}(a_{H-1} \mid s_{H-1})$

Let $R(\tau)$ be the cumulative reward on trajectory τ , i.e. $R(\tau) := \sum_{h=0}^{\infty} r(s_h, a_h)$

Our objective function is:

$$J(\theta) = E_{\tau \sim \rho_{\theta}} \left[R(\tau) \right]$$

• From the likelihood ratio method, we have:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\nabla_{\theta} \ln \rho_{\theta}(\tau) \ R(\tau) \right]$$

• The REINFORCE Policy Gradient expression:

$$\nabla_{\theta} \ln \rho_{\theta}(\tau) \ R(\tau) = \left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h)\right) R(\tau)$$

Obtaining an Unbiased Gradient Estimate at heta

$$\nabla_{\theta} J(\theta) := \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) \right) R(\tau) \right]$$

- 1. Obtain a trajectory $\tau \sim \rho_{\theta}$ (which we can do in our learning setting)
- 2. Set:

$$g(\theta, \tau) := \left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h)\right) R(\tau)$$

We have:
$$\mathbb{E}[g(\theta, \tau)] = \nabla_{\theta} J(\theta)$$

PG with REINFORCE:

- 1. Initialize θ^0 , step size parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Obtain a trajectory $\tau \sim \rho_{\theta^k}$ Compute $g(\theta^k, \tau)$
 - 2. Update: $\theta^{k+1} = \theta^k + \eta^k g(\theta^k, \tau)$

Other PG formulas (that are lower variance for sampling)

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \,|\, s_h) \right) R(\tau) \right]$$
 (REINFORCE)

$$= \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\sum_{h=0}^{H-1} \left(\nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) \sum_{t=h}^{H-1} r(s_t, a_t) \right) \right]$$

$$= \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) Q_h^{\pi_{\theta}}(s_h, a_h) \right]$$

Intuition: Changing the action distribution at h only affects rewards later on...

HW: You will show these simplified version are also valid PG expressions

With a "baseline" function:

For any function only of the state, $b_h: S \to \mathbb{R}$, we have:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) \left(R_h(\tau) - b_h(s_h) \right) \right]$$

$$= \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) \left(Q_h^{\pi_{\theta}}(s_h, a_h) - b_h(s_h) \right) \right]$$

This is (basically) the method of control variates.

• For the proof, it was helpful to note:

$$\mathbb{E}_{x \sim P_{\theta}} \left[\nabla_{\theta} \log P_{\theta}(x) \ c \right] = 0$$

The Advantage Function (finite horizon)

$$V_h^{\pi}(s) = \mathbb{E}\left[\sum_{t=h}^{H-1} r(s_t, a_t) \middle| s_h = s\right] \qquad Q_h^{\pi}(s, a) = \mathbb{E}\left[\sum_{t=h}^{H-1} r(s_t, a_t) \middle| (s_h, a_h) = (s, a)\right]$$

The Advantage function is defined as:

$$A_h^{\pi}(s, a) = Q_h^{\pi}(s, a) - V_h^{\pi}(s)$$

We have that:

$$\mathbb{E}_{a \sim \pi(\cdot|s)} [A_h^{\pi}(s, a) \, \Big| \, s, h] = \sum_{a} \pi(a \, | \, s) A_h^{\pi}(s, a) = 0$$

- We know $A_h^{\pi^*}(s, a) \le 0 \quad \forall s, a$
- For the discounted case, $A^{\pi}(s,a) = Q^{\pi}(s,a) V^{\pi}(s)$

The Advantage-based PG:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \left(Q_h^{\pi_{\theta}}(s_h, a_h) - b_h(s_h) \right) \right]$$
$$= \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) A_h^{\pi_{\theta}}(s_h, a_h) \right]$$

- The second step follows by choosing $b_h(s) = V_h^{\pi}(s)$.
- In practice, the most common approach is to use $b_h(s)$ that's an estimate of $V_h^{\pi}(s)$.

PG with a Learned Baseline:

Let
$$g'(\theta, \tau, b()) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) \left(R_h(\tau) - b(s_h, h) \right)$$

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Supervised Learning: Using N trajectories sampled under π_{θ^k} , estimate a baseline b $\widetilde{b}(s,h) \approx V_h^{\theta^k}(s)$
 - 2. Obtain a trajectory $\tau \sim \rho_{\theta^k}$ Compute $g'(\theta^k, \tau, b())$
 - 3. Update: $\theta^{k+1} = \theta^k + \eta^k g'(\theta^k, \tau, \widetilde{b}())$

Note that regardless of our choice of \widetilde{b} , we still get unbiased gradient estimates.

(minibatch) PG with a Learned Baseline:

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Supervised Learning: Using N trajectories sampled under π_{θ^k} , estimate a baseline b $\widetilde{b}(s,h) \approx V_h^{\theta^k}(s)$
 - 2. Obtain M trajectories $\tau_1, \dots \tau_M \sim \rho_{\theta^k}$

Compute
$$g = \frac{1}{M} \sum_{m=1}^{M} g'(\theta^k, \tau_m, \widetilde{b}())$$

3. Update: $\theta^{k+1} = \theta^k + \eta^k g$

Today

Feedback from last lecture

- - The Performance Difference Lemma
 - Trust Region Policy Optimization (TRPO)
 - The Natural Policy Gradient (NPG)

Recall: Fitted Policy Iteration

- Initialization: choose a policy $\pi^0:S\mapsto A$ and a sample size N
- For k = 0, 1, ...
 - 1. Fitted Policy Evaluation: Using N sampled trajectories $\tau_1, \ldots \tau_N \sim \rho_{\pi^k}$, obtain approximation $\hat{Q}^{\pi^k} \approx Q^{\pi^k}$
 - 2. Policy Improvement: set $\pi_h^{k+1}(s) := \arg\max_{a} \hat{Q}^{\pi^k}(s, a, h)$

Fitted Policy Iteration: Advantage Version

- Initialization: choose a policy $\pi^0:S\mapsto A$ and a sample size N
- For k = 0, 1, ...
 - 1. Fitted Policy Evaluation: Using N sampled trajectories $\tau_1, \ldots \tau_N \sim \rho_{\pi^k}$, obtain approximation $\hat{A}^{\pi^k} \approx A^{\pi^k}$
 - 2. Policy Improvement: set $\pi_h^{k+1}(s) := \arg\max_a \hat{A}^{\pi^k}(s, a, h)$

The Performance Difference Lemma (PDL)

- •Let $\rho_{\widetilde{\pi},s}$ be the distribution of trajectories from starting state s acting under $\widetilde{\pi}$. (we are making the starting distribution explicit now).
- For any two policies π and $\widetilde{\pi}$ and any state s,

$$V^{\widetilde{\pi}}(s) - V^{\pi}(s) = \mathbb{E}_{\tau \sim \rho_{\widetilde{\pi}, s}} \left[\sum_{h=0}^{H-1} A^{\pi}(s_h, a_h, h) \right]$$

Comments:

- · Helps us think about error analysis, instabilities of fitted PI, and sub-optimality.
- Helps to understand algorithm design (TRPO, NPG, PPO)
- This also motivates the use of "local" methods (e.g. policy gradient descent)

Back to Fitted Policy Iteration

- •Suppose π^k gets updated to π^{k+1} . How much worse could π^{k+1} be?

•In Fitted Policy Iteration,
$$\hat{A}^{\pi^k} \approx A^{\pi^k}$$
 is achieved via supervised learning on $\tau_1, \ldots \tau_N \sim \rho_{\pi^k}$. This means we expect $\mathbb{E}_{\tau \sim \rho_{\pi^k,s}} \left[\sum_{h=0}^{H-1} \hat{A}^{\pi^k}(s_h, a_h, h) \right] \approx \mathbb{E}_{\tau \sim \rho_{\pi^k,s}} \left[\sum_{h=0}^{H-1} A^{\pi^k}(s_h, a_h, h) \right]$

- •In particular, \hat{A}^{π^k} should be close to A^{π^k} where π^k visits often...
- •But it could be very bad in places π^k visits rarely, and nothing stops π^{k+1} from visiting those bad places very often!
- •So π^{k+1} could end up being (much) worse than π^k
- Problem is a mismatch between expectations: what we really want is

$$\mathbb{E}_{\tau \sim \rho_{\pi^{k+1},s}} \left[\sum_{h=0}^{H-1} \hat{A}^{\pi^k}(s_h, a_h, h) \right] \approx \mathbb{E}_{\tau \sim \rho_{\pi^{k+1},s}} \left[\sum_{h=0}^{H-1} A^{\pi^k}(s_h, a_h, h) \right]$$

•One way to ensure this: keep $\pi^{k+1} \approx \pi^k$

Today

Feedback from last lecture

Recap

• The Performance Difference Lemma

- Trust Region Policy Optimization (TRPO)
- The Natural Policy Gradient (NPG)

A trust region formulation for policy update:

- What's bad about fitted PI?
 even if we pick better actions "on average", the trajectory updates are unstable
- Can we fix this?
 Let's look at an incremental policy updating approach
 - 1. Initialize θ^0
 - 2. For k = 0, ..., K: try to approximately solve:

$$\theta^{k+1} = \arg\max_{\theta} \mathbb{E}_{s_0,\dots,s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot \mid s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \right]$$
s.t. ρ_{θ} is "close" to $\rho_{\pi_{\theta^k}}$

- 3. Return π_{θ^K}
- How should we define "close", i.e., what is our "trust region?

KL-divergence: measures the distance between two distributions

Given two distributions P & Q, where $P \in \Delta(X), Q \in \Delta(X)$, KL Divergence is defined as:

$$KL(P \mid Q) = \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]$$

Examples:

If
$$Q=P$$
, then $KL(P\,|\,Q)=KL(Q\,|\,P)=0$ If $P=\mathcal{N}(\mu_1,\sigma^2I), Q=\mathcal{N}(\mu_2,\sigma^2I)$, then $KL(P\,|\,Q)=\frac{1}{2\sigma^2}\|\mu_1-\mu_2\|^2$

Fact:

$$KL(P | Q) \ge 0$$
, and is 0 if and only if $P = Q$

Trust Region Policy Optimization (TRPO)

- 1. Initialize θ^0
- 2. For k = 0, ..., K: try to approximately solve:

$$\theta^{k+1} = \arg\max_{\theta} \mathbb{E}_{s_0, \dots, s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot \mid s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \right]$$
s.t. $KL\left(\rho_{\pi_{\theta^k}} \mid \rho_{\pi_{\theta}}\right) \leq \delta$

- 3. Return π_{θ^K}
 - We want to maximize local advantage against π_{θ^k} , but we want the new policy to be close to π_{θ^k} (in the KL sense)
 - How do we implement this with sampled trajectories?)

How do we implement TRPO with samples?

- 1. Initialize parameter $heta^0$, sample size M, and tolerance δ
- 2. For k = 0, ..., K:
 - 1. [Advantage-Evaluation Subroutine] Using M sampled trajectories $\tau_1, \ldots \tau_M \sim \rho_{\pi_{\theta^k}}$, obtain approximation $\hat{A}^{\pi_{\theta^k}} \approx A^{\pi_{\theta^k}}$
 - 2. Solve the following optimization problem to obtain θ^{k+1} :

$$\max_{\theta} \sum_{m=1}^{M} \sum_{h=0}^{H-1} \mathbb{E}_{a \sim \pi_{\theta}(\cdot | s_h^m)} \left[\hat{A}^{\pi_{\theta^k}}(s_h^m, a, h) \right]$$

s.t.
$$\sum_{m=1}^{M} \sum_{h=0}^{H-1} \ln \frac{\pi_{\theta^k}(a_h^m | s_h^m)}{\pi_{\theta}(a_h^m | s_h^m)} \le \delta$$

Approximate expectation by importance sampling:

$$\mathbb{E}_{a \sim \pi_{\boldsymbol{\theta}}(\cdot | S_h^m)} \left[\hat{A}^{\pi_{\boldsymbol{\theta}^k}}(S_h^m, a, h) \right]$$

$$= \mathbb{E}_{a \sim \pi_{\theta^{k}}(\cdot \mid S_{h}^{m})} \frac{\pi_{\theta}(a \mid S_{h}^{m})}{\pi_{\theta^{k}}(a \mid S_{h}^{m})} \hat{A}^{\pi_{\theta^{k}}}(S_{h}^{m}, a, h)$$

Today

- Feedback from last lecture
- Recap
- The Performance Difference Lemma
- Trust Region Policy Optimization (TRPO)
 - The Natural Policy Gradient (NPG)

TRPO is locally equivalent to a much simpler algorithm

TRPO at iteration k:

$$\max_{\theta} \mathbb{E}_{s_0, \dots, s_{H-1} \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot \mid s_h)} \left[A^{\pi_{\theta^k}}(s_h, a_h, h) \right] \right] \longrightarrow \text{ First-order Taylor expansion at } \theta^k$$

$$\text{s.t. } \mathit{KL}\left(\rho_{\pi_{\theta^k}}|\rho_{\pi_{\theta}}\right) \leq \delta$$

Intuition: maximize local advantage subject to being incremental (in KL)

second-order Taylor expansion at
$$\theta^k$$

$$\max_{\theta} \nabla_{\theta} J(\theta^{k})^{\mathsf{T}} (\theta - \theta^{k})$$
s.t. $(\theta - \theta^{k})^{\mathsf{T}} F_{\theta^{k}} (\theta - \theta^{k}) \leq \delta$

(Where F_{θ^k} is the "Fisher Information Matrix")

Natural Policy Gradient (NPG): A "leading order" equivalent program to TRPO:

- 1. Initialize θ^0
- 2. For k = 0, ..., K: $\theta^{k+1} = \arg\max_{\theta} \nabla_{\theta} J(\theta^k)^{\top} (\theta \theta^k)$ s.t. $(\theta \theta^k)^{\top} F_{\theta^k} (\theta \theta^k) \leq \delta$
- 3. Return π_{θ^K}
- Where $\nabla_{\theta}J(\theta^k)$ is the gradient of $J(\theta)$ evaluated at θ^k , and
- F_{θ} is (basically) the Fisher information matrix at $\theta \in \mathbb{R}^d$, defined as:

$$F_{\theta} := \mathbb{E}_{\tau \sim \rho_{\pi_{\theta}}} \left[\nabla_{\theta} \ln \rho_{\theta}(\tau) \left(\nabla_{\theta} \ln \rho_{\theta}(\tau) \right)^{\top} \right] \in \mathbb{R}^{d \times d}$$

$$= \mathbb{E}_{\tau \sim \rho_{\pi_{\theta}}} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \left(\nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \right)^{\top} \right]$$

NPG has a closed form update!

- 1. Initialize θ^0
- 2. For k = 0, ..., K: $\theta^{k+1} = \arg\max_{\theta} \nabla_{\theta} J(\theta^k)^{\top} (\theta \theta^k)$ s.t. $(\theta \theta^k)^{\top} F_{\theta^k} (\theta \theta^k) \leq \delta$
- 3. Return π_{θ^K}

Linear objective and quadratic convex constraint: we can solve it optimally!

Indeed this gives us:

$$\theta^{k+1} = \theta^k + \eta F_{\theta^k}^{-1} \nabla_{\theta} J(\theta^k)$$
 Where $\eta = \sqrt{\frac{\delta}{\nabla_{\theta} J(\theta^k)^{\top} F_{\theta^k}^{-1} \nabla_{\theta} J(\theta^k)}}$

An Implementation: Sample Based NPG

- 1. Initialize $heta^0$
- 2. For k = 0,...,K:
 - Obtain approximation of Policy Gradient: $\hat{g} pprox \nabla_{\theta} J(\theta^k)$
 - Obtain approximation of Fisher information: $\hat{F} \approx F_{\theta^k}$
 - Natural Gradient Ascent: $\theta^{k+1} = \theta^k + \eta \hat{F}^{-1} \hat{g}$
- 3. Return π_{θ^K}

(We will implement it in HW4 on Cartpole)

Today

Feedback from last lecture

Recap

The Performance Difference Lemma

Trust Region Policy Optimization (TRPO)

• The Natural Policy Gradient (NPG)

Summary:

- 1. Performance Difference Lemma tells us we need to stay local
- 2. TRPO and NPG ensure we don't move too much each step

Attendance:

bit.ly/3RcTC9T

Feedback: bit.ly/3RHtlxy

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

$$(\pi_{\theta}[1], \pi_{\theta}[2]) := \left(\frac{\exp(\theta)}{1 + \exp(\theta)}, \frac{1}{1 + \exp(\theta)}\right)$$

$$J(\theta) = 100 \cdot \pi_{\theta}[1] + 1 \cdot \pi_{\theta}[2]$$

Gradient:
$$\nabla_{\theta} J(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

Exact PG:
$$\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$$

i.e., vanilla GA moves to $\theta=\infty$ with smaller and smaller steps, since $\nabla_{\theta}J(\theta)\to 0$ as $\theta\to\infty$

Fisher information scalar:
$$F_{\theta} = \frac{\exp(\theta)}{(1 + \exp(\theta))^2}$$

$$\text{NPG: } \theta^{k+1} = \theta^k + \eta \frac{\nabla_{\theta} J(\theta^k)}{F_{\theta^k}} = \theta_t + \eta \cdot 99$$

NPG moves to $\theta = \infty$ much more quickly (for a fixed η)