Policy Gradient Methods: Estimation

Lucas Janson **CS/Stat 184(0): Introduction to Reinforcement Learning Fall 2024**

- Feedback from last lecture
- Recap
- Estimation: REINFORCE
- Variance Reduction
 - Other Gradient Expressions
 - Baselines and Advantages
- Examples

Feedback from feedback forms

1. Thank you to everyone who filled out the forms! 2.

- Recap
- Estimation: REINFORCE
- Variance Reduction
 - Other Gradient Expressions
 - Baselines and Advantages
- Examples

The Learning Setting: We don't know the MDP, but we can obtain trajectories.

- We start at $s_0 \sim \mu$.

Note that with a simulator, we can sample trajectories as specified in the above.

The Finite Horizon, Learning Setting. We can obtain trajectories as follows:

• We can act for H steps and observe the trajectory $\tau = \{s_0, a_0, s_1, a_1, \dots, s_{H-1}, a_{H-1}\}$

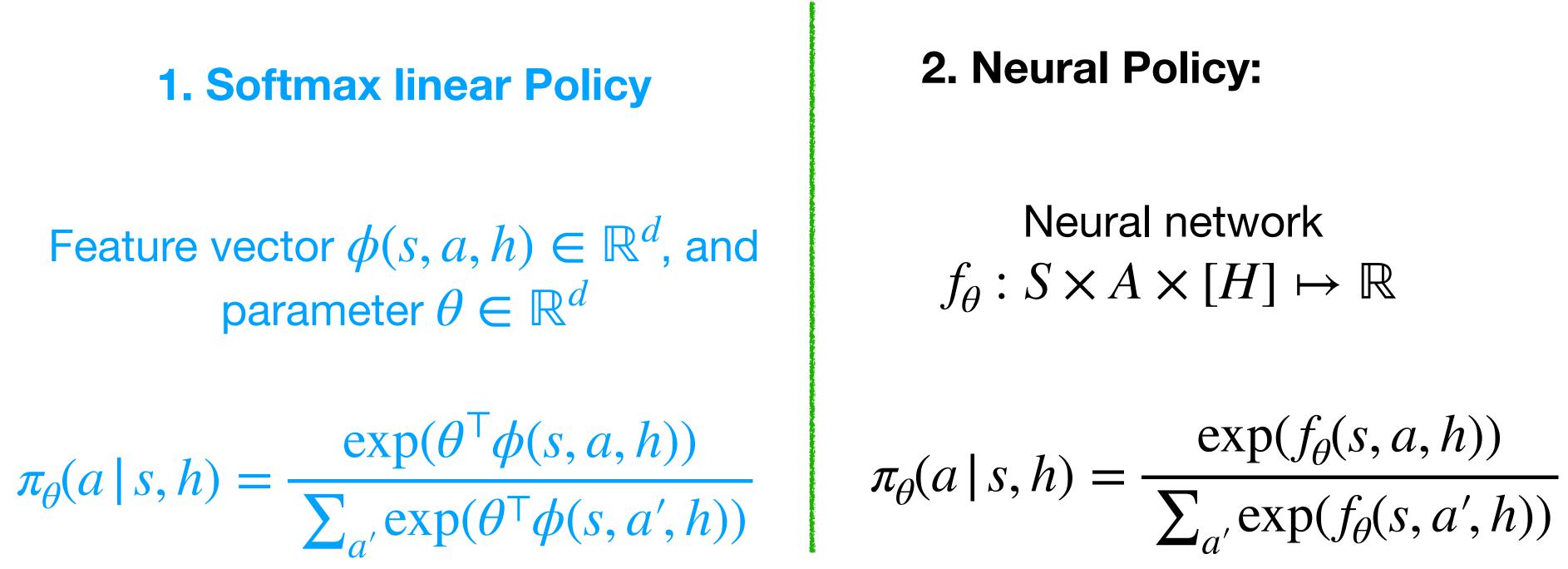
Optimization Objective

• Consider a parameterized class of policies: $\{\pi_{\theta}(a \mid s) \mid \theta \in \mathbb{R}^d\}$ (why do we make it stochastic?)

•Objective $\max J(\theta)$, where θ

• Policy Gradient Descent:

 $\theta^{k+1} = \theta^k + \eta \nabla J(\theta^k)$


 $J(\theta) := \mathbb{E}_{s_0 \sim \mu} \left[V^{\pi_{\theta}}(s_0) \right] = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta}}} \left[\sum_{h=0}^{H-1} r(s_h, a_h) \right]$

Example Policy Parameterizations

1. Softmax linear Policy

Feature vector $\phi(s, a, h) \in \mathbb{R}^d$, and parameter $\theta \in \mathbb{R}^d$

Recall that we consider parameterized policy $\pi_{\theta}(\cdot \mid s) \in \Delta(A), \forall s$

Example Policy Parameterization for "Controls"

Suppose $a \in \mathbb{R}^k$, as it might be for a control problem.

3. Gaussian + Linear Model

- Feature vector: $\phi(s, h) \in \mathbb{R}^d$,
- Parameters: $\theta \in \mathbb{R}^{k \times d}$, (and maybe $\sigma \in \mathbb{R}^+$)
- Policy: sample action from a (multivariate) Normal with mean $\theta \cdot \phi(s, h)$ and variance $\sigma^2 I$, i.e. $\pi_{\theta,\sigma}(\cdot \mid s,h) = \mathcal{N}\left(\theta \cdot \phi(s,h), \sigma^2 I\right)$
- Sampling:

 $a = \theta \cdot \phi(s, h) + \eta$, where $\eta \sim \mathcal{N}(0, \sigma^2 I)$

4. Gaussian + Neural Model

- Neural network $g_{\theta} : S \times [H] \mapsto \mathbb{R}^k$
- Parameters: $\theta \in \mathbb{R}^d$, (and maybe $\sigma \in \mathbb{R}^+$)
- Policy: a (multivariate) Normal with mean $g_{\theta}(s)$ and variance $\sigma^2 I$, i.e. $\pi_{\theta,\sigma}(\cdot \mid s,h) = \mathcal{N}(g_{\theta}(s,h),\sigma^2 I)$
- Sampling:

 $a = g_{\theta}(s, h) + \eta$, where $\eta \sim \mathcal{N}(0, \sigma^2 I)$

The Likelihood Ratio Method

Suppose
$$J(\theta) = \mathbb{E}_{x \sim P_{\theta}} [f(x)] = \sum_{x} P_{\theta}(x) f(x)$$

- Computing $\nabla_{\theta} J(\theta)$ exactly may be difficult (due to the sum over x=trajectories)
 - So GD not an option what about SGD?
 - In supervised learning, stochastic gradient was just gradient on one sample will that work here?

 - Won't work: θ -dependence is inside the distribution, not inside the expectation • So how can we unbiasedly estimate $V_{\theta}J(\theta)$?
- Suppose we can compute f(x), $P_{\theta}(x)$, and $\nabla P_{\theta}(x)$, and we can sample $x \sim P_{\theta}$
- We have that:

 $\nabla_{\theta} J(\theta) = \mathbb{E}_{x \sim P_{\theta}(x)} \left[\nabla_{\theta} \log P_{\theta}(x) f(x) \right]$

x), and our objective is $\max J(\theta)$.

Proof:

$$\nabla_{\theta} J(\theta) = \sum_{x} \nabla_{\theta} P_{\theta}(x) f(x)$$

$$= \sum_{x}^{x} P_{\theta}(x) \frac{\nabla_{\theta} P_{\theta}(x)}{P_{\theta}(x)} f(x)$$


$$= \sum_{x}^{x} P_{\theta}(x) \nabla_{\theta} \log P_{\theta}(x) f(x)$$

The Likelihood Ratio Method, continued

- We have: $\nabla_{\theta} J(\theta) = \mathbb{E}_{x \sim P_{\theta}(x)} \left[\nabla_{\theta} \log P_{\theta}(x) f(x) \right]$
- An unbiased estimate is given by: $\widehat{\nabla}_{\theta} J(\theta) = \nabla_{\theta} \log P_{\theta}(x) \cdot f(x)$, where $x \sim P_{\theta}$
- We can lower variance by drawing N i.i.d. samples from P_{θ} and averaging: $\widehat{\nabla}_{\theta} J(\theta) = \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}(x_i) f(x_i)$

- Estimation: REINFORCE
- Variance Reduction
 - Other Gradient Expressions
 - Baselines and Advantages
- Examples

Apply likelihood ratio method to policy gradient

Let $R(\tau)$ be the cumulative reward on

• Our objective function is:

 $J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[R(\tau) \right]$

• From the likelihood ratio method, we have: $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\nabla_{\theta} \ln \rho_{\theta}(\tau) \right]$

• But $\rho_{\theta}(\tau)$ involves the dynamics P, which we assumed we don't know!

• Let $\rho_{\theta}(\tau)$ be the probability of a trajectory $\tau = \{s_0, a_0, s_1, a_1, \dots, s_{H-1}, a_{H-1}\}$, i.e. $\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 | s_0)P(s_1 | s_0, a_0)\dots P(s_{H-1} | s_{H-2}, a_{H-2})\pi_{\theta}(a_{H-1} | s_{H-1})$

trajectory
$$\tau$$
, i.e. $R(\tau) := \sum_{h=0}^{H-1} r(s_h, a_h)$

$$\tau$$
) $R(\tau)$

REINFORCE: A Policy Gradient Algorithm

- The REINFORCE Policy Gradient expression: $\nabla_{\theta} \ln \rho_{\theta}(\tau) \ R(\tau) = \left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h)\right) R(\tau)$
- Proof: $\nabla_{\theta} \ln \rho_{\theta}(\tau) = \nabla_{\theta} \left(\ln \mu(s_0) + \ln \pi_{\theta}(a_0 | s_0) + \ln P(s_1 | s_0, a_0) + \dots \right)$
 - $= \nabla_{\theta} \left(\ln \pi_{\theta}(a_0 | s_0) + \ln \pi_{\theta}(a_1 | s_1) \dots \right)$

$$= \left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h)\right)$$

Obtaining an Unbiased Gradient Estimate at θ

$$\nabla_{\theta} J(\theta) := \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\left(\int_{0}^{\infty} \int_{0}^{$$

- 1. Obtain a trajectory $\tau \sim \rho_{\theta}$
- 2. Set:

We have: $\mathbb{E}[g(\theta, \tau)] = \nabla_{\theta} J(\theta)$

 $\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) R(\tau)$

(which we can do in our learning setting)

 $g(\theta, \tau) := \left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h)\right) R(\tau)$

PG with REINFORCE:

- 2. For k = 0, ...:
 - 1. Obtain a trajectory $\tau \sim \rho_{\theta^k}$ Compute $g(\theta^k, \tau)$
 - 2. Update: $\theta^{k+1} = \theta^k + \eta^k g(\theta^k, \tau)$

1. Initialize θ^0 , step size parameters: η^1, η^2, \ldots

The (mini-batch) PG procedure with REINFORCE

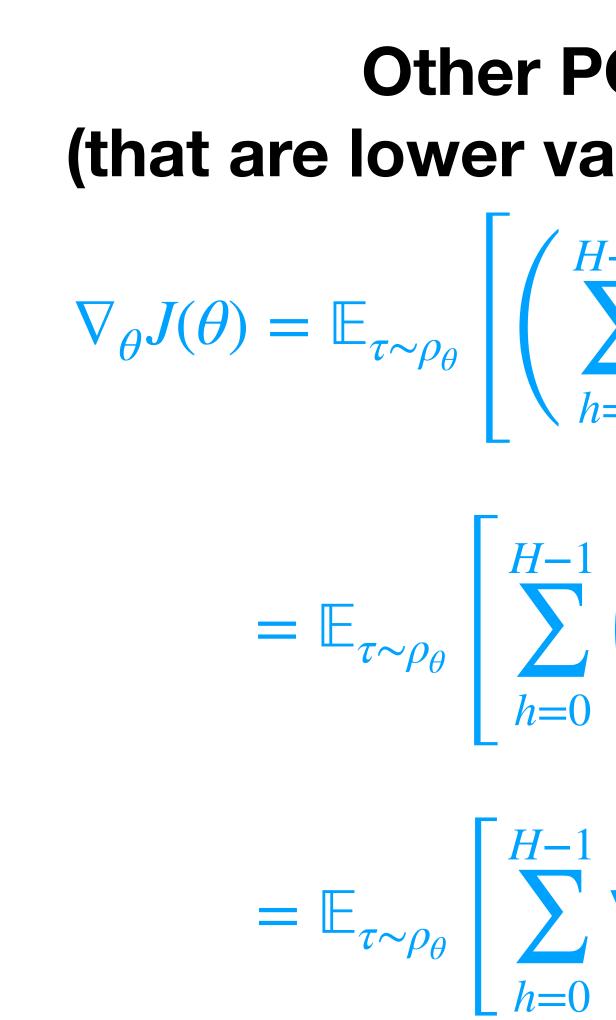
(reducing variance using batch sizes of M)

1. Initialize θ^0 , parameters: η^1, η^2, \dots

2. For
$$k = 0, ...$$

1. Init G = 0 and do M times: Obtain a trajectory $\tau \sim \rho_{\theta^k}$ $G + g(\theta^k, \tau)$

Update:
$$G \leftarrow 1$$


2. Set
$$g := \frac{1}{M}G$$

3. Update: $\theta^{k+1} = \theta^k + \eta^k g$

We still have that at the kth step, g is unbiased for $\nabla_{\theta} J(\theta)$ evaluated at θ^k

- Feedback from last lecture
- Recap
 Estimation: REINFORCE
 - Variance Reduction
 - Other Gradient Expressions
 - Baselines and Advantages
 - Examples

Intuition: Changing the action distribution at h only affects rewards later on... **HW:** You will show these simplified version are also valid PG expressions

Other PG formulas (that are lower variance for sampling)

$$\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) R(\tau)$$

$$\int_{0}^{1} \left(\nabla_{\theta} \ln \pi_{\theta}(a_{h} | s_{h}) \sum_{t=h}^{H-1} r_{t} \right)$$

$$\int_{0}^{n} \nabla_{\theta} \ln \pi_{\theta}(a_{h} | s_{h}) Q_{h}^{n}(s_{h}, a_{h}) -$$

An improved policy gradient procedure:

On a trajectory
$$\tau$$
, define:

$$R_{h}(\tau) = \sum_{t=h}^{H-1} r_{t}$$
2. F

And define:

$$g'(\theta, \tau) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) R_h(\tau)$$

Comments:

- We still have unbiased gradient estimates.

- nitialize θ^0 , parameters: η^1, η^2, \dots For k = 0, ...:
- 1. Obtain a trajectory $\tau \sim \rho_{\theta k}$ Set $g'(\theta^k, \tau)$
- 2. Update: $\theta^{k+1} = \theta^k + \eta^k g'(\theta^k, \tau)$

• Easy to use a mini-batch algorithm to reduce variance. • Easy to compute the gradient in "one pass" over the data.

- Feedback from last lecture
- Recap
 Estimation: REINFORCE
 - Variance Reduction
 - Other Gradient Expressions
 - Baselines and Advantages
 - Examples

With a "baseline" function:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \theta \right]$$
$$= \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \theta \right]$$

For any function only of the state, $b_h : S \to \mathbb{R}$, we have:

 $\pi_{\theta}(a_h | s_h) \left(R_h(\tau) - b_h(s_h) \right)$

 $\pi_{\theta}(a_h | s_h) \left(Q_h^{\pi_{\theta}}(s_h, a_h) - b_h(s_h) \right)$

This is (basically) the method of control variates.

- To see this, first note: $\mathbb{E}_{x \sim P_{\theta}} \left[\nabla_{\theta} \log P_{\theta}(x) c \right] =$
- Thus for any constant *c*, $\mathbb{E}_{x \sim P_{\theta}} \left[\nabla_{\theta} \log P_{\theta}(x) (f(x) - c) \right] = \mathbb{E}_{x \sim P_{\theta}} \left[\nabla_{\theta} \log P_{\theta}(x) f(x) \right]$
- Returning to RL, we have:

 $\mathbb{E}_{\tau \sim \rho_{\theta}} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \left(R_h(\tau) - b_h(s_h) \right) \right]$

(where $s_h \sim \rho_{\theta}$ is a sample from the marginal state distribut

Proof:

$$= \sum_{h=0}^{H-1} \mathbb{E}_{s_h \sim \rho_\theta} \left[\mathbb{E}_{a_h \sim \pi(\cdot | s_h)} \left[\nabla_\theta \ln \pi_\theta(a_h | s_h) \left(R_h(\tau) - b_h(\tau) \right) \right] \right]$$
$$= \sum_{h=0}^{H-1} \mathbb{E}_{s_h \sim \rho_\theta} \left[\mathbb{E}_{a_h \sim \pi(\cdot | s_h)} \left[\nabla_\theta \ln \pi_\theta(a_h | s_h) R_h(\tau) \right] \right]$$
tion at time *h*

PG with a Naive (constant) Baseline:

• Lets try to use a constant (time-dependent) baseline: $b_h^{\theta} = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[R_h(\tau) \right]$

$$g'(\theta, \tau, b) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \left(R_h(\tau) - b_h \right)$$

1. Initialize θ^0 , parameters: η^1, η^2, \ldots 2. For k = 0,...:

1. Sample *M* trajectories, $\tau_1, \ldots, \tau_M \sim \rho_{\underline{\theta}^k}$. Set:

$$\widetilde{b} = (\widetilde{b}_0, \dots, \widetilde{b}_{H-1}), \text{ where } \widetilde{b}_h = \frac{1}{M} \sum_{i=1}^M R_h(\tau_i)$$

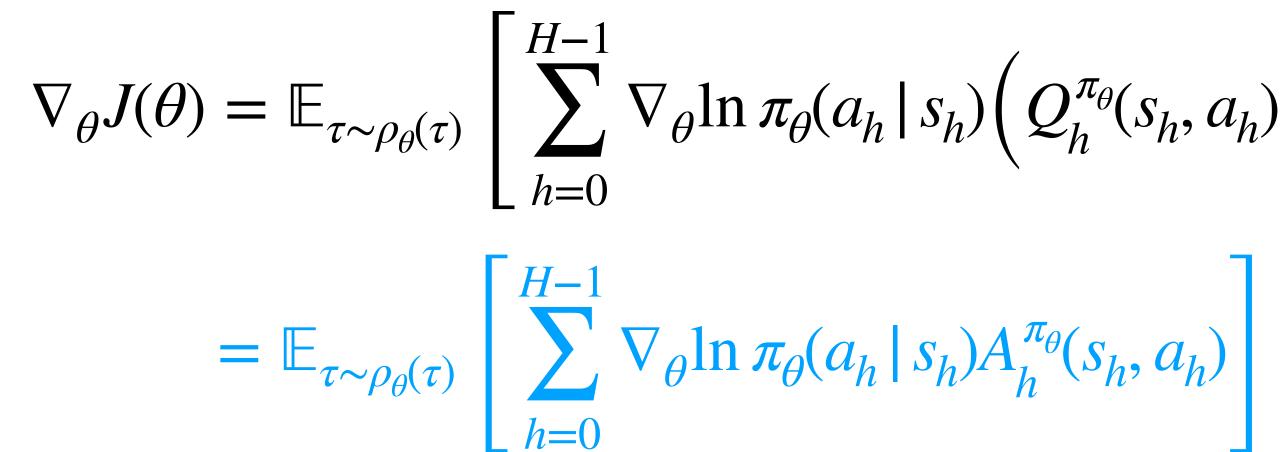
- 2. Obtain a trajectory $\tau \sim \rho_{\theta^k}$ Compute $g'(\theta^k, \tau, \widetilde{b})$
- 3. Update: $\theta^{k+1} = \theta^k + \eta^k g'(\theta^k, \tau, \widetilde{b}_h)$

The Advantage Function (finite horizon)

$$V_h^{\pi}(s) = \mathbb{E}\left[\left|\sum_{t=h}^{H-1} r(s_t, a_t)\right| s_h = s\right]$$

- The Advantage function is defined as: $A_{h}^{\pi}(s,a) = Q_{h}^{\pi}(s,a) - V_{h}^{\pi}(s)$
- We have that:

$$\mathbb{E}_{a \sim \pi(\cdot|s)} \left[A_h^{\pi}(s,a) \, \middle| \, s,h \right] = \sum_{k=1}^{n}$$


- What do we know about $A_h^{\pi^*}(s, a)$?
- For the discounted case, $A^{\pi}(s, a) =$

$$Q_h^{\pi}(s,a) = \mathbb{E}\left[\left|\sum_{t=h}^{H-1} r(s_t,a_t)\right| (s_h,a_h) = (s,a)\right]$$

 $\sum \pi(a \,|\, s) A_h^{\pi}(s, a) = ??$

$$= Q^{\pi}(s,a) - V^{\pi}(s)$$

The Advantage-based PG:

- The second step follows by choosing $b_h(s) = V_h^{\pi}(s)$.

$$n \pi_{\theta}(a_h | s_h) \left(Q_h^{\pi_{\theta}}(s_h, a_h) - b_h(s_h) \right)$$

• In practice, the most common approach is to use $b_h(s)$ that's an estimate of $V_h^{\pi}(s)$.

PG with a Learned Baseline:

Let
$$g'(\theta, \tau, b()) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) (R_h(\tau) - b(s_h, h))$$

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Supervised Learning: Using N trajector $\widetilde{b}(s,h) \approx V_h^{\theta^k}(s)$
 - 2. Obtain a trajectory $\tau \sim \rho_{\theta^k}$ Compute $g'(\theta^k, \tau, \tilde{b}())$
 - 3. Update: $\theta^{k+1} = \theta^k + \eta^k g'(\theta^k, \tau, \widetilde{b}())$

Note that regardless of our choice of \tilde{b} , we still get unbiased gradient estimates.

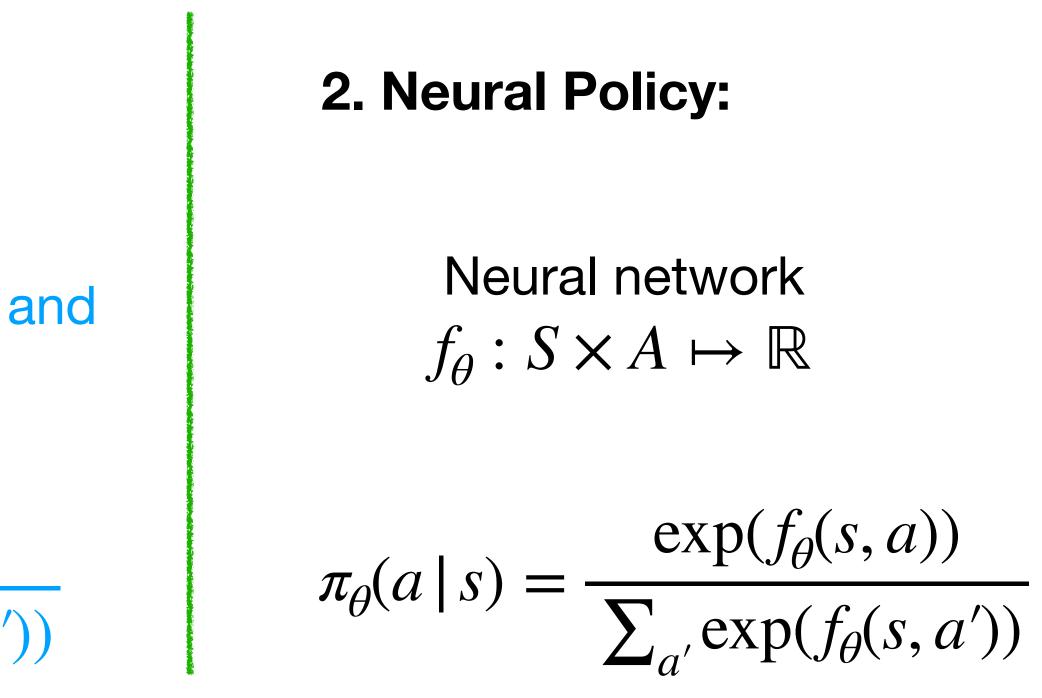
1. Supervised Learning: Using N trajectories sampled under π_{θ^k} , estimate a baseline b

(minibatch) PG with a Learned Baseline:

- 1. Initialize θ^0 , parameters: η^1, η^2, \dots
- 2. For k = 0,...:
 - 1. Supervised Learning: Using N trajectory $\widetilde{b}(s,h) \approx V_h^{\theta^k}(s)$
 - 2. Obtain *M* trajectories $\tau_1, ..., \tau_M \sim \rho_{\theta^k}$ Compute $g = \frac{1}{M} \sum_{m=1}^M g'(\theta^k, \tau_m, \widetilde{b}())$
 - 3. Update: $\theta^{k+1} = \theta^k + \eta^k g$

1. Supervised Learning: Using N trajectories sampled under π_{θ^k} , estimate a baseline \tilde{b}

- Feedback from last lecture
 - Recap
- Estimation: REINFORCE
 - Variance Reduction
 - Other Gradient Expressions
 - Baselines and Advantages
 - Examples


Policy Parameterizations

Recall that we consider parameterized policy $\pi_{\theta}(\cdot | s) \in \Delta(A), \forall s$

1. Softmax linear Policy

Feature vector $\phi(s, a) \in \mathbb{R}^d$, and parameter $\theta \in \mathbb{R}^d$

 $\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\top} \phi(s, a))}{\sum_{a'} \exp(\theta^{\top} \phi(s, a'))}$

Softmax Policy Properties

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\top} \phi(s, a))}{\sum_{a'} \exp(\theta^{\top} \phi(s, a'))}$$

We have: •

$$\nabla J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\sum_{h=0}^{H-1} Q_{h}^{\pi_{\theta}}(s_{h}, a_{h}) \left(\phi(s_{h}, a_{h}) - \mathbb{E}_{a' \sim \pi_{\theta}(\cdot|s_{h})}[\phi(s_{h}, a')] \right) \right]$$
$$= \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\sum_{h=0}^{H-1} A_{h}^{\pi_{\theta}}(s_{h}, a_{h}) \phi(s_{h}, a_{h}) \right]$$

- Two properties (see HW):
- More probable actions have features which align with θ . Precisely,
- $\pi_{\theta}(a \mid s) \ge \pi_{\theta}(a' \mid s)$ if and only if $\theta^{\top} \phi(s, a) \ge \theta^{\top} \phi(s, a')$

• The gradient of the log policy is: $\nabla_{\theta} \log(\pi_{\theta}(a \mid s)) = \phi(s, a) - \mathbb{E}_{a' \sim \pi_{\theta}(\cdot \mid s)}[\phi(s, a')]$

Summary:

- 1. REINFORCE (a direct application of the likelihood ratio method)
- 2. Variance Reduction: with baselines

Attendance: bit.ly/3RcTC9T

Feedback: <u>bit.ly/3RHtlxy</u>

