# **Policy Gradient Methods:** Estimation

# Lucas Janson **CS/Stat 184(0): Introduction to Reinforcement Learning Fall 2024**

- Feedback from last lecture
- Recap
- Estimation: REINFORCE
- Variance Reduction
  - Other Gradient Expressions
  - Baselines and Advantages
- Examples



# Feedback from feedback forms

1. Thank you to everyone who filled out the forms! 2.



- Recap
- Estimation: REINFORCE
- Variance Reduction
  - Other Gradient Expressions
  - Baselines and Advantages
- Examples



## The Learning Setting: We don't know the MDP, but we can obtain trajectories.

- We start at  $s_0 \sim \mu$ .

Note that with a simulator, we can sample trajectories as specified in the above.

The Finite Horizon, Learning Setting. We can obtain trajectories as follows:

• We can act for H steps and observe the trajectory  $\tau = \{s_0, a_0, s_1, a_1, \dots, s_{H-1}, a_{H-1}\}$ 

# **Optimization Objective**

• Consider a parameterized class of policies:  $\{\pi_{\theta}(a \mid s) \mid \theta \in \mathbb{R}^d\}$ (why do we make it stochastic?)

•Objective  $\max J(\theta)$ , where  $\theta$ 

• Policy Gradient Descent:

 $\theta^{k+1} = \theta^k + \eta \nabla J(\theta^k)$ 

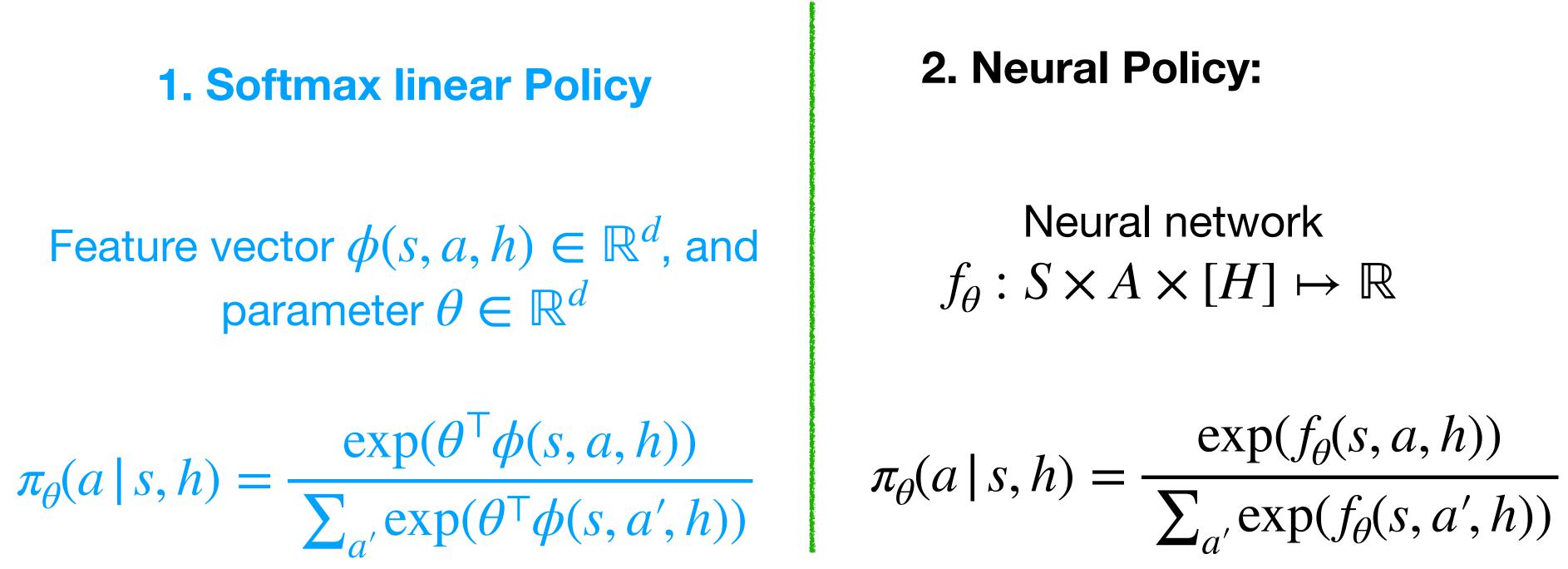
 $J(\theta) := \mathbb{E}_{s_0 \sim \mu} \left[ V^{\pi_{\theta}}(s_0) \right] = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta}}} \left[ \sum_{h=0}^{H-1} r(s_h, a_h) \right]$ 

### **Example Policy Parameterizations**

**1. Softmax linear Policy** 

Feature vector  $\phi(s, a, h) \in \mathbb{R}^d$ , and parameter  $\theta \in \mathbb{R}^d$ 

Recall that we consider parameterized policy  $\pi_{\theta}(\cdot \mid s) \in \Delta(A), \forall s$ 



### **Example Policy Parameterization for "Controls"**

Suppose  $a \in \mathbb{R}^k$ , as it might be for a control problem.

### 3. Gaussian + Linear Model

- Feature vector:  $\phi(s, h) \in \mathbb{R}^d$ ,
- Parameters:  $\theta \in \mathbb{R}^{k \times d}$ , (and maybe  $\sigma \in \mathbb{R}^+$ )
- Policy: sample action from a (multivariate) Normal with mean  $\theta \cdot \phi(s, h)$  and variance  $\sigma^2 I$ , i.e.  $\pi_{\theta,\sigma}(\cdot \mid s,h) = \mathcal{N}\left(\theta \cdot \phi(s,h), \sigma^2 I\right)$
- Sampling:

 $a = \theta \cdot \phi(s, h) + \eta$ , where  $\eta \sim \mathcal{N}(0, \sigma^2 I)$ 



### 4. Gaussian + Neural Model

- Neural network  $g_{\theta} : S \times [H] \mapsto \mathbb{R}^k$
- Parameters:  $\theta \in \mathbb{R}^d$ , (and maybe  $\sigma \in \mathbb{R}^+$ )
- Policy: a (multivariate) Normal with mean  $g_{\theta}(s)$  and variance  $\sigma^2 I$ , i.e.  $\pi_{\theta,\sigma}(\cdot \mid s,h) = \mathcal{N}(g_{\theta}(s,h),\sigma^2 I)$
- Sampling:

 $a = g_{\theta}(s, h) + \eta$ , where  $\eta \sim \mathcal{N}(0, \sigma^2 I)$ 



## The Likelihood Ratio Method

Suppose 
$$J(\theta) = \mathbb{E}_{x \sim P_{\theta}} [f(x)] = \sum_{x} P_{\theta}(x) f(x)$$

- Computing  $\nabla_{\theta} J(\theta)$  exactly may be difficult (due to the sum over x=trajectories)
  - So GD not an option what about SGD?
  - In supervised learning, stochastic gradient was just gradient on one sample will that work here?

  - Won't work:  $\theta$ -dependence is inside the distribution, not inside the expectation • So how can we unbiasedly estimate  $V_{\theta}J(\theta)$ ?
- Suppose we can compute f(x),  $P_{\theta}(x)$ , and  $\nabla P_{\theta}(x)$ , and we can sample  $x \sim P_{\theta}$
- We have that:

 $\nabla_{\theta} J(\theta) = \mathbb{E}_{x \sim P_{\theta}(x)} \left[ \nabla_{\theta} \log P_{\theta}(x) f(x) \right]$ 

x), and our objective is  $\max J(\theta)$ .

Proof:  

$$\nabla_{\theta} J(\theta) = \sum_{x} \nabla_{\theta} P_{\theta}(x) f(x)$$

$$= \sum_{x}^{x} P_{\theta}(x) \frac{\nabla_{\theta} P_{\theta}(x)}{P_{\theta}(x)} f(x)$$

$$= \sum_{x}^{x} P_{\theta}(x) \nabla_{\theta} \log P_{\theta}(x) f(x)$$



### The Likelihood Ratio Method, continued

- We have:  $\nabla_{\theta} J(\theta) = \mathbb{E}_{x \sim P_{\theta}(x)} \left[ \nabla_{\theta} \log P_{\theta}(x) f(x) \right]$
- An unbiased estimate is given by:  $\widehat{\nabla}_{\theta} J(\theta) = \nabla_{\theta} \log P_{\theta}(x) \cdot f(x)$ , where  $x \sim P_{\theta}$
- We can lower variance by drawing N i.i.d. samples from  $P_{\theta}$  and averaging:  $\widehat{\nabla}_{\theta} J(\theta) = \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}(x_i) f(x_i)$





- Estimation: REINFORCE
- Variance Reduction
  - Other Gradient Expressions
  - Baselines and Advantages
- Examples



### Apply likelihood ratio method to policy gradient

Let  $R(\tau)$  be the cumulative reward on

• Our objective function is:

 $J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[ R(\tau) \right]$ 

• From the likelihood ratio method, we have:  $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[ \nabla_{\theta} \ln \rho_{\theta}(\tau) \right]$ 

• But  $\rho_{\theta}(\tau)$  involves the dynamics P, which we assumed we don't know!

• Let  $\rho_{\theta}(\tau)$  be the probability of a trajectory  $\tau = \{s_0, a_0, s_1, a_1, \dots, s_{H-1}, a_{H-1}\}$ , i.e.  $\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 | s_0)P(s_1 | s_0, a_0)\dots P(s_{H-1} | s_{H-2}, a_{H-2})\pi_{\theta}(a_{H-1} | s_{H-1})$ 

trajectory 
$$\tau$$
, i.e.  $R(\tau) := \sum_{h=0}^{H-1} r(s_h, a_h)$ 

$$\tau$$
)  $R(\tau)$ 

### **REINFORCE: A Policy Gradient Algorithm**

- The REINFORCE Policy Gradient expression:  $\nabla_{\theta} \ln \rho_{\theta}(\tau) \ R(\tau) = \left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h)\right) R(\tau)$
- Proof:  $\nabla_{\theta} \ln \rho_{\theta}(\tau) = \nabla_{\theta} \left( \ln \mu(s_0) + \ln \pi_{\theta}(a_0 | s_0) + \ln P(s_1 | s_0, a_0) + \dots \right)$ 
  - $= \nabla_{\theta} \left( \ln \pi_{\theta}(a_0 | s_0) + \ln \pi_{\theta}(a_1 | s_1) \dots \right)$

$$= \left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h)\right)$$

### Obtaining an Unbiased Gradient Estimate at $\theta$

$$\nabla_{\theta} J(\theta) := \mathbb{E}_{\tau \sim \rho_{\theta}} \left[ \left( \int_{0}^{\infty} \int_{0}^{$$

- 1. Obtain a trajectory  $\tau \sim \rho_{\theta}$
- 2. Set:

We have:  $\mathbb{E}[g(\theta, \tau)] = \nabla_{\theta} J(\theta)$ 

 $\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) R(\tau)$ 

(which we can do in our learning setting)

 $g(\theta, \tau) := \left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h)\right) R(\tau)$ 

### **PG with REINFORCE:**

- 2. For k = 0, ...:
  - 1. Obtain a trajectory  $\tau \sim \rho_{\theta^k}$ Compute  $g(\theta^k, \tau)$
  - 2. Update:  $\theta^{k+1} = \theta^k + \eta^k g(\theta^k, \tau)$

1. Initialize  $\theta^0$ , step size parameters:  $\eta^1, \eta^2, \ldots$ 

# The (mini-batch) PG procedure with REINFORCE

(reducing variance using batch sizes of M)

1. Initialize  $\theta^0$ , parameters:  $\eta^1, \eta^2, \dots$ 

2. For 
$$k = 0, ...$$

1. Init G = 0 and do M times: Obtain a trajectory  $\tau \sim \rho_{\theta^k}$  $G + g(\theta^k, \tau)$ 

Update: 
$$G \leftarrow 1$$

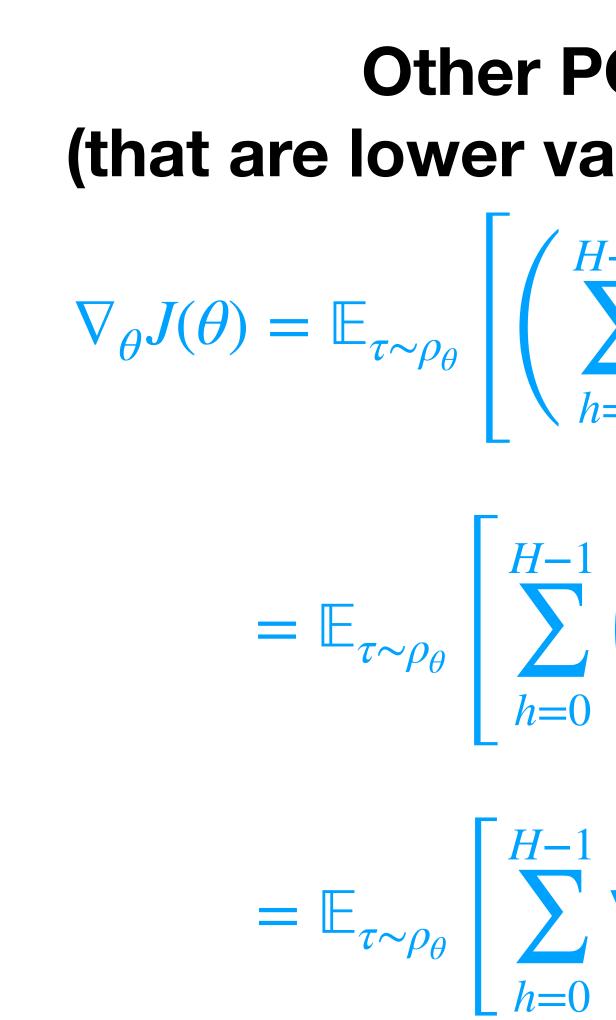
2. Set 
$$g := \frac{1}{M}G$$

3. Update:  $\theta^{k+1} = \theta^k + \eta^k g$ 

We still have that at the kth step, g is unbiased for  $\nabla_{\theta} J(\theta)$  evaluated at  $\theta^k$ 

- Feedback from last lecture
- Recap
  Estimation: REINFORCE
  - Variance Reduction
    - Other Gradient Expressions
    - Baselines and Advantages
  - Examples





Intuition: Changing the action distribution at h only affects rewards later on... **HW:** You will show these simplified version are also valid PG expressions

# Other PG formulas (that are lower variance for sampling)

$$\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) R(\tau)$$

$$\int_{0}^{1} \left( \nabla_{\theta} \ln \pi_{\theta}(a_{h} | s_{h}) \sum_{t=h}^{H-1} r_{t} \right)$$

$$\int_{0}^{n} \nabla_{\theta} \ln \pi_{\theta}(a_{h} | s_{h}) Q_{h}^{n}(s_{h}, a_{h}) -$$

## An improved policy gradient procedure:

On a trajectory 
$$\tau$$
, define:  

$$R_{h}(\tau) = \sum_{t=h}^{H-1} r_{t}$$
2. F

And define:  

$$g'(\theta, \tau) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) R_h(\tau)$$

Comments:

- We still have unbiased gradient estimates.

- nitialize  $\theta^0$ , parameters:  $\eta^1, \eta^2, \dots$ For k = 0, ...:
- 1. Obtain a trajectory  $\tau \sim \rho_{\theta k}$ Set  $g'(\theta^k, \tau)$
- 2. Update:  $\theta^{k+1} = \theta^k + \eta^k g'(\theta^k, \tau)$

• Easy to use a mini-batch algorithm to reduce variance. • Easy to compute the gradient in "one pass" over the data.

- Feedback from last lecture
- Recap
  Estimation: REINFORCE
  - Variance Reduction
    - Other Gradient Expressions
      - Baselines and Advantages
  - Examples



### With a "baseline" function:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[ \sum_{h=0}^{H-1} \nabla_{\theta} \ln \theta \right]$$
$$= \mathbb{E}_{\tau \sim \rho_{\theta}} \left[ \sum_{h=0}^{H-1} \nabla_{\theta} \ln \theta \right]$$

For any function only of the state,  $b_h : S \to \mathbb{R}$ , we have:

 $\pi_{\theta}(a_h | s_h) \left( R_h(\tau) - b_h(s_h) \right)$ 

 $\pi_{\theta}(a_h | s_h) \left( Q_h^{\pi_{\theta}}(s_h, a_h) - b_h(s_h) \right)$ 

This is (basically) the method of control variates.

- To see this, first note:  $\mathbb{E}_{x \sim P_{\theta}} \left[ \nabla_{\theta} \log P_{\theta}(x) c \right] =$
- Thus for any constant *c*,  $\mathbb{E}_{x \sim P_{\theta}} \left[ \nabla_{\theta} \log P_{\theta}(x) (f(x) - c) \right] = \mathbb{E}_{x \sim P_{\theta}} \left[ \nabla_{\theta} \log P_{\theta}(x) f(x) \right]$
- Returning to RL, we have:

 $\mathbb{E}_{\tau \sim \rho_{\theta}} \left[ \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \left( R_h(\tau) - b_h(s_h) \right) \right]$ 

(where  $s_h \sim \rho_{\theta}$  is a sample from the marginal state distribut

### **Proof:**

$$= \sum_{h=0}^{H-1} \mathbb{E}_{s_h \sim \rho_\theta} \left[ \mathbb{E}_{a_h \sim \pi(\cdot | s_h)} \left[ \nabla_\theta \ln \pi_\theta(a_h | s_h) \left( R_h(\tau) - b_h(\tau) \right) \right] \right]$$
$$= \sum_{h=0}^{H-1} \mathbb{E}_{s_h \sim \rho_\theta} \left[ \mathbb{E}_{a_h \sim \pi(\cdot | s_h)} \left[ \nabla_\theta \ln \pi_\theta(a_h | s_h) R_h(\tau) \right] \right]$$
tion at time *h*



### **PG with a Naive (constant) Baseline:**

• Lets try to use a constant (time-dependent) baseline:  $b_h^{\theta} = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[ R_h(\tau) \right]$ 

$$g'(\theta, \tau, b) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \left( R_h(\tau) - b_h \right)$$

1. Initialize  $\theta^0$ , parameters:  $\eta^1, \eta^2, \ldots$ 2. For k = 0,...:

1. Sample *M* trajectories,  $\tau_1, \ldots, \tau_M \sim \rho_{\underline{\theta}^k}$ . Set:

$$\widetilde{b} = (\widetilde{b}_0, \dots, \widetilde{b}_{H-1}), \text{ where } \widetilde{b}_h = \frac{1}{M} \sum_{i=1}^M R_h(\tau_i)$$

- 2. Obtain a trajectory  $\tau \sim \rho_{\theta^k}$ Compute  $g'(\theta^k, \tau, \widetilde{b})$
- 3. Update:  $\theta^{k+1} = \theta^k + \eta^k g'(\theta^k, \tau, \widetilde{b}_h)$

## The Advantage Function (finite horizon)

$$V_h^{\pi}(s) = \mathbb{E}\left[\left|\sum_{t=h}^{H-1} r(s_t, a_t)\right| s_h = s\right]$$

- The Advantage function is defined as:  $A_{h}^{\pi}(s,a) = Q_{h}^{\pi}(s,a) - V_{h}^{\pi}(s)$
- We have that:

$$\mathbb{E}_{a \sim \pi(\cdot|s)} \left[ A_h^{\pi}(s,a) \, \middle| \, s,h \right] = \sum_{k=1}^{n}$$

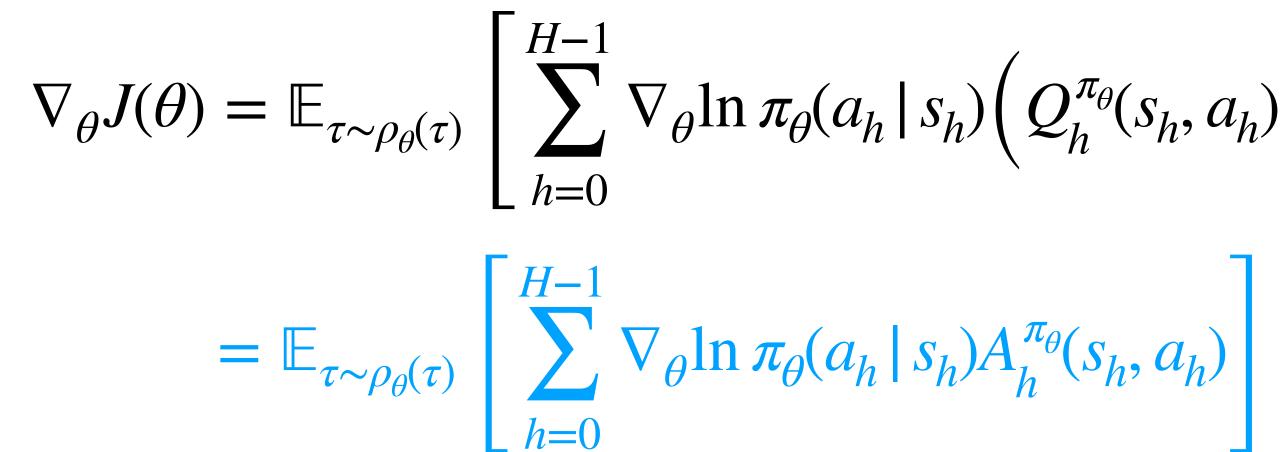
- What do we know about  $A_h^{\pi^*}(s, a)$ ?
- For the discounted case,  $A^{\pi}(s, a) =$

$$Q_h^{\pi}(s,a) = \mathbb{E}\left[\left|\sum_{t=h}^{H-1} r(s_t,a_t)\right| (s_h,a_h) = (s,a)\right]$$

 $\sum \pi(a \,|\, s) A_h^{\pi}(s, a) = ??$ 

$$= Q^{\pi}(s,a) - V^{\pi}(s)$$

### **The Advantage-based PG:**



- The second step follows by choosing  $b_h(s) = V_h^{\pi}(s)$ .

$$n \pi_{\theta}(a_h | s_h) \left( Q_h^{\pi_{\theta}}(s_h, a_h) - b_h(s_h) \right)$$

• In practice, the most common approach is to use  $b_h(s)$  that's an estimate of  $V_h^{\pi}(s)$ .

### **PG with a Learned Baseline:**

Let 
$$g'(\theta, \tau, b()) := \sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) (R_h(\tau) - b(s_h, h))$$

- 1. Initialize  $\theta^0$ , parameters:  $\eta^1, \eta^2, \dots$
- 2. For k = 0,...:
  - 1. Supervised Learning: Using N trajector  $\widetilde{b}(s,h) \approx V_h^{\theta^k}(s)$
  - 2. Obtain a trajectory  $\tau \sim \rho_{\theta^k}$ Compute  $g'(\theta^k, \tau, \tilde{b}())$
  - 3. Update:  $\theta^{k+1} = \theta^k + \eta^k g'(\theta^k, \tau, \widetilde{b}())$

Note that regardless of our choice of  $\tilde{b}$ , we still get unbiased gradient estimates.

1. Supervised Learning: Using N trajectories sampled under  $\pi_{\theta^k}$ , estimate a baseline b

## (minibatch) PG with a Learned Baseline:

- 1. Initialize  $\theta^0$ , parameters:  $\eta^1, \eta^2, \dots$
- 2. For k = 0,...:
  - 1. Supervised Learning: Using N trajectory  $\widetilde{b}(s,h) \approx V_h^{\theta^k}(s)$
  - 2. Obtain *M* trajectories  $\tau_1, ..., \tau_M \sim \rho_{\theta^k}$ Compute  $g = \frac{1}{M} \sum_{m=1}^M g'(\theta^k, \tau_m, \widetilde{b}())$
  - 3. Update:  $\theta^{k+1} = \theta^k + \eta^k g$

1. Supervised Learning: Using N trajectories sampled under  $\pi_{\theta^k}$ , estimate a baseline  $\tilde{b}$ 

- Feedback from last lecture
  - Recap
- Estimation: REINFORCE
  - Variance Reduction
  - Other Gradient Expressions
  - Baselines and Advantages
  - Examples



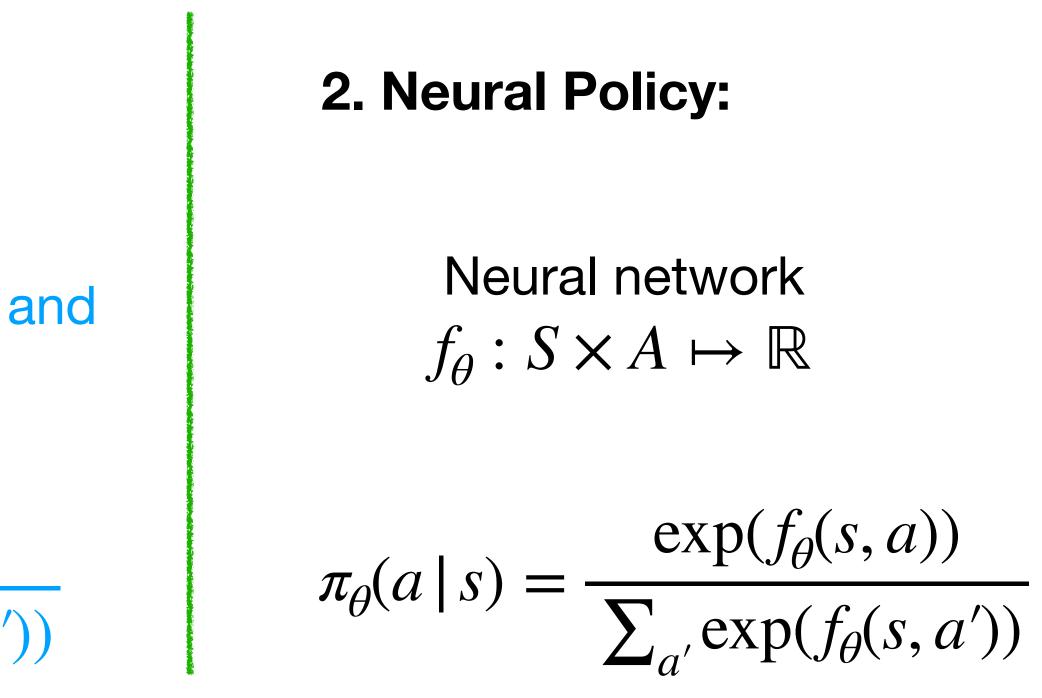
### **Policy Parameterizations**

Recall that we consider parameterized policy  $\pi_{\theta}(\cdot | s) \in \Delta(A), \forall s$ 

**1. Softmax linear Policy** 

Feature vector  $\phi(s, a) \in \mathbb{R}^d$ , and parameter  $\theta \in \mathbb{R}^d$ 

 $\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\top} \phi(s, a))}{\sum_{a'} \exp(\theta^{\top} \phi(s, a'))}$ 



## **Softmax Policy Properties**

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\top} \phi(s, a))}{\sum_{a'} \exp(\theta^{\top} \phi(s, a'))}$$

We have: •

$$\nabla J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[ \sum_{h=0}^{H-1} Q_{h}^{\pi_{\theta}}(s_{h}, a_{h}) \left( \phi(s_{h}, a_{h}) - \mathbb{E}_{a' \sim \pi_{\theta}(\cdot|s_{h})}[\phi(s_{h}, a')] \right) \right]$$
$$= \mathbb{E}_{\tau \sim \rho_{\theta}} \left[ \sum_{h=0}^{H-1} A_{h}^{\pi_{\theta}}(s_{h}, a_{h}) \phi(s_{h}, a_{h}) \right]$$

- Two properties (see HW):
- More probable actions have features which align with  $\theta$ . Precisely,
- $\pi_{\theta}(a \mid s) \ge \pi_{\theta}(a' \mid s)$  if and only if  $\theta^{\top} \phi(s, a) \ge \theta^{\top} \phi(s, a')$

• The gradient of the log policy is:  $\nabla_{\theta} \log(\pi_{\theta}(a \mid s)) = \phi(s, a) - \mathbb{E}_{a' \sim \pi_{\theta}(\cdot \mid s)}[\phi(s, a')]$ 



## Summary:

- 1. REINFORCE (a direct application of the likelihood ratio method)
- 2. Variance Reduction: with baselines

### Attendance: bit.ly/3RcTC9T



## Feedback: <u>bit.ly/3RHtlxy</u>

