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Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

2.
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The Learning Setting: 
We don’t know the MDP, but we can obtain trajectories.

The Finite Horizon, Learning Setting. We can obtain trajectories as follows:

• We start at .

• We can act for  steps and observe the trajectory  

Note that with a simulator, we can sample trajectories as specified in the above.

s0 ∼ μ
H τ = {s0, a0, s1, a1, …, sH−1, aH−1}

5



Optimization Objective
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•Consider a parameterized class of policies: 
	  
(why do we make it stochastic?) 

•Objective , where 

	  

•Policy Gradient Descent: 
	

{πθ(a |s) |θ ∈ ℝd}

max
θ

J(θ)

J(θ) := 𝔼s0∼μ [Vπθ(s0)] = 𝔼τ∼ρπθ [
H−1

∑
h=0

r(sh, ah)]
θk+1 = θk + η∇J(θk)



Example Policy Parameterizations

1. Softmax linear Policy

Feature vector , and 
parameter 

ϕ(s, a, h) ∈ ℝd

θ ∈ ℝd

πθ(a |s, h) =
exp(θ⊤ϕ(s, a, h))

∑a′ 
exp(θ⊤ϕ(s, a′ , h))

2. Neural Policy:

Neural network  
fθ : S × A × [H] ↦ ℝ

πθ(a |s, h) =
exp( fθ(s, a, h))

∑a′ 
exp( fθ(s, a′ , h))

Recall that we consider parameterized policy πθ( ⋅ |s) ∈ Δ(A), ∀s
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Example Policy Parameterization for “Controls”

3. Gaussian + Linear Model

Suppose , as it might be for a control problem.a ∈ Rk
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• Feature vector: ,

• Parameters: ,  

(and maybe ) 

• Policy: sample action from a (multivariate) Normal 
with mean  and variance , i.e. 
       


• Sampling: 
	 


ϕ(s, h) ∈ ℝd

θ ∈ ℝk×d

σ ∈ R+

θ ⋅ ϕ(s, h) σ2I
πθ,σ( ⋅ |s, h) = 𝒩 (θ ⋅ ϕ(s, h), σ2I)

a = θ ⋅ ϕ(s, h) + η, where η ∼ 𝒩(0,σ2I)

4. Gaussian + Neural Model

• Neural network  

• Parameters: , 

(and maybe ) 

• Policy: a (multivariate) Normal  
with mean  and variance , i.e. 
	 


• Sampling: 
       

gθ : S × [H] ↦ ℝk

θ ∈ Rd

σ ∈ R+

gθ(s) σ2I
πθ,σ( ⋅ |s, h) = 𝒩(gθ(s, h), σ2I)

a = gθ(s, h) + η, where η ∼ 𝒩(0,σ2I)



The Likelihood Ratio Method

• Suppose , and our objective is .


• Computing  exactly may be difficult (due to the sum over =trajectories)

• So GD not an option—what about SGD?

• In supervised learning, stochastic gradient was just gradient on one sample—will that work here?

• Won’t work: -dependence is inside the distribution, not inside the expectation

• So how can we unbiasedly estimate ?


• Suppose we can compute , , and , and we can sample 

• We have that:  

J(θ) = 𝔼x∼Pθ [f(x)] = ∑
x

Pθ(x)f(x) max
θ

J(θ)

∇θJ(θ) x

θ
∇θJ(θ)

f(x) Pθ(x) ∇Pθ(x) x ∼ Pθ

∇θJ(θ) = 𝔼x∼Pθ(x) [∇θlog Pθ(x) f(x)] Proof:







∇θJ(θ) = ∑
x

∇θPθ(x)f(x)

= ∑
x

Pθ(x)
∇θPθ(x)

Pθ(x)
f(x)

= ∑
x

Pθ(x)∇θlog Pθ(x)f(x)



The Likelihood Ratio Method, continued
• We have:  

	  

• An unbiased estimate is given by: 
, where  

• We can lower variance by drawing   i.i.d. samples from  and averaging:

∇θJ(θ) = 𝔼x∼Pθ(x) [∇θlog Pθ(x) f(x)]

̂∇ θJ(θ) = ∇θlog Pθ(x) ⋅ f(x) x ∼ Pθ

N Pθ

̂∇ θJ(θ) =
1
N

N

∑
i=1

∇θlog Pθ(xi) f(xi)
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Apply likelihood ratio method to policy gradient
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•Let  be the probability of a trajectory , i.e. 
	  

•Let  be the cumulative reward on trajectory , i.e. 


•Our objective function is: 
	 


•From the likelihood ratio method, we have: 
	 

•But  involves the dynamics , which we assumed we don’t know!

ρθ(τ) τ = {s0, a0, s1, a1, …, sH−1, aH−1}
ρθ(τ) = μ(s0)πθ(a0 |s0)P(s1 |s0, a0)…P(sH−1 |sH−2, aH−2)πθ(aH−1 |sH−1)

R(τ) τ R(τ) :=
H−1

∑
h=0

r(sh, ah)

J(θ) = 𝔼τ∼ρθ[R(τ)]
∇θJ(θ) = 𝔼τ∼ρθ [∇θln ρθ(τ) R(τ)]

ρθ(τ) P



REINFORCE: A Policy Gradient Algorithm
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•The REINFORCE Policy Gradient expression: 

	 


•Proof: 



 
 

 

∇θln ρθ(τ) R(τ) = (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

∇θln ρθ(τ) = ∇θ(ln μ(s0) + ln πθ(a0 |s0) + ln P(s1 |s0, a0) + …)
= ∇θ(ln πθ(a0 |s0) + ln πθ(a1 |s1)…)

= (
H−1

∑
h=0

∇θln πθ(ah |sh))



Obtaining an Unbiased Gradient Estimate at θ

∇θJ(θ) := 𝔼τ∼ρθ (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

1. Obtain a trajectory  
(which we can do in our learning setting)


2. Set:  

	  

We have: 

τ ∼ ρθ

g(θ, τ) := (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

𝔼[g(θ, τ)] = ∇θJ(θ)
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PG with REINFORCE:

1. Initialize , step size parameters: 

2. For : 


1. Obtain a trajectory  
Compute  

2. Update: 

θ0 η1, η2, …
k = 0,…

τ ∼ ρθk

g(θk, τ)

θk+1 = θk + ηkg(θk, τ)

15



The (mini-batch) PG procedure with REINFORCE  
(reducing variance using batch sizes of )M

1. Initialize , parameters: 

2. For : 


1. Init  and do  times: 
Obtain a trajectory  
Update: 


2. Set  

3. Update: 

θ0 η1, η2, …
k = 0,…

G = 0 M
τ ∼ ρθk

G ← G + g(θk, τ)
g :=

1
M

G

θk+1 = θk + ηkg
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We still have that at the th step,  is unbiased for  evaluated at k g ∇θJ(θ) θk
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Other PG formulas  
(that are lower variance for sampling)

∇θJ(θ) = 𝔼τ∼ρθ (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

= 𝔼τ∼ρθ

H−1

∑
h=0 (∇θln πθ(ah |sh)

H−1

∑
t=h

rt)
= 𝔼τ∼ρθ [

H−1

∑
h=0

∇θln πθ(ah |sh)Q
πθ
h (sh, ah)]

Intuition: Changing the action distribution at  only affects rewards later on…h
HW: You will show these simplified version are also valid PG expressions
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(REINFORCE)



An improved policy gradient procedure:

1. Initialize , parameters: 

2. For : 


1. Obtain a trajectory  
Set  

2. Update: 

θ0 η1, η2, …
k = 0,…

τ ∼ ρθk

g′ (θk, τ)

θk+1 = θk + ηkg′ (θk, τ)
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Comments:

• We still have unbiased gradient estimates.

• Easy to use a mini-batch algorithm to reduce variance.

• Easy to compute the gradient in “one pass” over the data.

On a trajectory , define: 

        

τ

Rh(τ) =
H−1

∑
t=h

rt

And define: 

        g′ (θ, τ) :=
H−1

∑
h=0

∇θln πθ(ah |sh)Rh(τ)
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With a “baseline” function:

∇θJ(θ) = 𝔼τ∼ρθ [
H−1

∑
h=0

∇θln πθ(ah |sh)(Rh(τ) − bh(sh))]
= 𝔼τ∼ρθ [

H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]

For any function only of the state, , we have:bh : S → ℝ

21

This is (basically) the method of control variates.



Proof:

• To see this, first note: 
 

• Thus for any constant , 
 

• Returning to RL, we have: 

 

(where  is a sample from the marginal state distribution at time )

𝔼x∼Pθ [∇θlog Pθ(x) c] =

c
𝔼x∼Pθ [∇θlog Pθ(x)(f(x) − c)] = 𝔼x∼Pθ [∇θlog Pθ(x)f(x)]

𝔼τ∼ρθ [
H−1

∑
h=0

∇θln πθ(ah |sh)(Rh(τ) − bh(sh))] =
H−1

∑
h=0

𝔼sh∼ρθ [𝔼ah∼π(⋅|sh) [∇θln πθ(ah |sh)(Rh(τ) − bh(sh))]]
=

H−1

∑
h=0

𝔼sh∼ρθ [𝔼ah∼π(⋅|sh) [∇θln πθ(ah |sh)Rh(τ)]]
sh ∼ ρθ h
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PG with a Naive (constant) Baseline:

1. Initialize , parameters: 

2. For : 


1. Sample  trajectories, . Set: 




2. Obtain a trajectory  
Compute  

3. Update: 

θ0 η1, η2, …
k = 0,…

M τ1, …, τM ∼ ρθk

b̃ = (b̃0, …, b̃H−1),  where b̃h =
1
M

M

∑
i=1

Rh(τi)

τ ∼ ρθk

g′ (θk, τ, b̃)

θk+1 = θk + ηkg′ (θk, τ, b̃h)

• Lets try to use a constant 
(time-dependent) baseline: 

 bθ
h = 𝔼τ∼ρθ(τ) [Rh(τ)]
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g′ (θ, τ, b) :=
H−1

∑
h=0

∇θln πθ(ah |sh)(Rh(τ) − bh)



The Advantage Function (finite horizon)

Vπ
h (s) = 𝔼 [

H−1

∑
t=h

r(st, at) sh = s] Qπ
h (s, a) = 𝔼 [

H−1

∑
t=h

r(st, at) (sh, ah) = (s, a)]
• The Advantage function is defined as: 
	 


• We have that: 

	 


• What do we know about ? 

• For the discounted case, 

Aπ
h (s, a) = Qπ

h (s, a) − Vπ
h (s)

𝔼a∼π(⋅|s)[Aπ
h (s, a) s, h] = ∑

a

π(a |s)Aπ
h (s, a) = ??

Aπ⋆

h (s, a)

Aπ(s, a) = Qπ(s, a) − Vπ(s)
24



The Advantage-based PG: 

• The second step follows by choosing .

• In practice, the most common approach is to use  that’s an estimate of . 

bh(s) = Vπ
h (s)

bh(s) Vπ
h (s)

= 𝔼τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)A
πθ
h (sh, ah)]

∇θJ(θ) = 𝔼τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]
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PG with a Learned Baseline:

1. Initialize , parameters: 

2. For : 


1. Supervised Learning: Using  trajectories sampled under , estimate a baseline  



2. Obtain a trajectory  
Compute  

3. Update: 

θ0 η1, η2, …
k = 0,…

N πθk b̃
b̃(s, h) ≈ Vθk

h (s)
τ ∼ ρθk

g′ (θk, τ, b̃())

θk+1 = θk + ηkg′ (θk, τ, b̃())

26

Note that regardless of our choice of , we still get unbiased gradient estimates.b̃

Let g′ (θ, τ, b()) :=
H−1

∑
h=0

∇θln πθ(ah |sh)(Rh(τ) − b(sh, h))



(minibatch) PG with a Learned Baseline:
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1. Initialize , parameters: 

2. For : 


1. Supervised Learning: Using  trajectories sampled under , estimate a baseline  



2. Obtain  trajectories  

Compute  

3. Update: 

θ0 η1, η2, …
k = 0,…

N πθk b̃
b̃(s, h) ≈ Vθk

h (s)
M τ1, …τM ∼ ρθk

g =
1
M

M

∑
m=1

g′ (θk, τm, b̃())

θk+1 = θk + ηkg
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Policy Parameterizations

1. Softmax linear Policy

Feature vector , and 
parameter 

ϕ(s, a) ∈ ℝd

θ ∈ ℝd

πθ(a |s) =
exp(θ⊤ϕ(s, a))

∑a′ 
exp(θ⊤ϕ(s, a′ ))

2. Neural Policy:

Neural network  
fθ : S × A ↦ ℝ

πθ(a |s) =
exp( fθ(s, a))

∑a′ 
exp( fθ(s, a′ ))

Recall that we consider parameterized policy πθ( ⋅ |s) ∈ Δ(A), ∀s
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Softmax Policy Properties

πθ(a |s) =
exp(θ⊤ϕ(s, a))

∑a′ 
exp(θ⊤ϕ(s, a′ ))
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Two properties (see HW):

•  More probable actions have features which align with . 
Precisely, 

 if and only if  

•The gradient of the log policy is: 

θ

πθ(a |s) ≥ πθ(a′ |s) θ⊤ϕ(s, a) ≥ θ⊤ϕ(s, a′ )

∇θlog(πθ(a |s)) = ϕ(s, a) − 𝔼a′ ∼πθ(⋅|s)[ϕ(s, a′ )]

• We have: 

	  

 

	             

∇J(θ) = 𝔼τ∼ρθ [
H−1

∑
h=0

Qπθ
h (sh, ah)(ϕ(sh, ah) − 𝔼a′ ∼πθ(⋅|sh)[ϕ(sh, a′ )])]

= 𝔼τ∼ρθ [
H−1

∑
h=0

Aπθ
h (sh, ah)ϕ(sh, ah)]



Summary:

Feedback: 

bit.ly/3RHtlxy
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Attendance: 
bit.ly/3RcTC9T

1. REINFORCE (a direct application of the likelihood ratio method)

2. Variance Reduction: with baselines

http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

