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Q-Value Dynamic Programming Algorithm:

5

Recall from HW1 the Bellman equations for :Q⋆

Q⋆
h (s, a) = r(s, a) + "s′ ∼P(⋅|s,a) [max

a′ 

Q⋆
h+1(s′ , a′ )]

1. Initialization:  

2. Solve (via dynamic programming): 




3. Return: 


Q(s, a, H) = 0 ∀s, a

Q(s, a, h) = r(s, a) + "s′ ∼P(s,a) [max
a′ ∈A

Q(s′ , a′ , h + 1)] ∀s, a, h

πh(s) = arg max
a {Q(s, a, h)}

Analogous Q-value DP, with same notational change as last lecture:  as argumenth



What if we can’t just evaluate the expectations?

6



What if we can’t just evaluate the expectations?

6

If  and/or  are very large, computing expectations could be very expensiveS A



What if we can’t just evaluate the expectations?

6

If  and/or  are very large, computing expectations could be very expensiveS A
We may not have a way to directly compute those expectations, but instead only 

have access to a simulator (or the real world), where we can collect data



What if we can’t just evaluate the expectations?

6

If  and/or  are very large, computing expectations could be very expensiveS A
We may not have a way to directly compute those expectations, but instead only 

have access to a simulator (or the real world), where we can collect data
This is now full RL!!



What if we can’t just evaluate the expectations?

6

If  and/or  are very large, computing expectations could be very expensiveS A

Suppose:

• We have  trajectories 


Each trajectory is of the form 

•  is often referred to as our data collection policy.

N τ1, …τN ∼ ρπdata

τi = {si
0, ai

0, …si
H−1, ai

H−1, si
H}

πdata

We may not have a way to directly compute those expectations, but instead only 
have access to a simulator (or the real world), where we can collect data

This is now full RL!!



What if we can’t just evaluate the expectations?

6

If  and/or  are very large, computing expectations could be very expensiveS A

Suppose:

• We have  trajectories 


Each trajectory is of the form 

•  is often referred to as our data collection policy.

N τ1, …τN ∼ ρπdata

τi = {si
0, ai

0, …si
H−1, ai

H−1, si
H}

πdata

Want: Q(s, a, h) ≈ r(s, a) + "s′ ∼P(s,a) [max
a′ ∈A

Q(s′ , a′ , h + 1)] ∀s, a, h

We may not have a way to directly compute those expectations, but instead only 
have access to a simulator (or the real world), where we can collect data

This is now full RL!!



What if we can’t just evaluate the expectations?

6

If  and/or  are very large, computing expectations could be very expensiveS A

Since we’re trying to approximate conditional expectations, seems like it kind of fits 
into supervised learning—can we use an approach like that?

Suppose:

• We have  trajectories 


Each trajectory is of the form 

•  is often referred to as our data collection policy.

N τ1, …τN ∼ ρπdata

τi = {si
0, ai

0, …si
H−1, ai

H−1, si
H}

πdata

Want: Q(s, a, h) ≈ r(s, a) + "s′ ∼P(s,a) [max
a′ ∈A

Q(s′ , a′ , h + 1)] ∀s, a, h

We may not have a way to directly compute those expectations, but instead only 
have access to a simulator (or the real world), where we can collect data

This is now full RL!!



What if we can’t just evaluate the expectations?

6

If  and/or  are very large, computing expectations could be very expensiveS A

Since we’re trying to approximate conditional expectations, seems like it kind of fits 
into supervised learning—can we use an approach like that? Yes!

Suppose:

• We have  trajectories 


Each trajectory is of the form 

•  is often referred to as our data collection policy.

N τ1, …τN ∼ ρπdata
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What are the  and ?y x

Q(s, a, h) ≈ r(s, a) + "s′ ∼P(s,a) [max
a′ ∈A

Q(s′ , a′ , h + 1)] ∀s, a, h

Note that the RHS can also be written as 

" [r(sh, ah) + max
a′ 

Q(sh+1, a′ , h + 1) sh, ah, h]
This suggests that  and  y = r(sh, ah) + max

a′ 

Q(sh+1, a′ , h + 1) x = (sh, ah, h)
Then we’d be happy if we found a 

Q(sh, ah, h) = f(x) = "[y |x] = " [r(sh, ah) + max
a′ 

Q(sh+1, a′ , h + 1) sh, ah, h]
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Setting that aside for the moment, to fit supervised learning, we’d minimize a least-

squares objective function: ̂f(x) = arg min
f∈ℱ

NH

∑
i=1

(yi − f(xi))2

Then if we have enough data, choose a good , and optimize well,ℱ

Q(sh, ah, h) := ̂f(x) ≈ "[y |x] = " [r(sh, ah) + max
a′ 

Q(sh+1, a′ , h + 1) sh, ah, h]

We can convert our data , into  pairs; how many?τ1, …τN ∼ ρπdata
(y, x) NH

BUT, to compute each , we need to already know !y Q
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3. With  as an estimate of , return 

τ1, …τN ∼ ρπdata

Q f0
k = 1,…, K
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f∈ℱ

N

∑
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H−1

∑
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(f(si
h, ai

h, h) − (r(si
h, ai

h) + max
a

fk−1(si
h+1, a, h + 1)))2

fK Q⋆ πh(s) = arg max
a {fK(s, a, h)}

9
Q-Learning is an online version, i.e., draw new trajectories at each  based on  as -functionk fk Q

To address the circularity problem of not knowing  for computing the , we have 
an algorithmic tool… what is it?

Q y

Hint: we used it for another VI algorithm before…
Fixed point iteration! Initialize, then at each step, pretend  is known by plugging in 

the previous time step’s  to compute the ’s, and then use that to get next 
Q

Q y Q
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• Initialize: Q(s, a, h)
• For  episodesk = 1,2,…K
• Within each episode, for h = 0,1,…H − 1
• Act: choose actions however you like! (but try to maintain exploration)
• Update: 

Q(sh, ah, h) ← Q(sh, ah, h) − η (Q(sh, ah, h) − r(sh, ah) − max
a

Q(sh+1, a, h + 1))
• Return Q(s, a, h)

• Update step is a single stochastic gradient step of size η
• Q-learning is online: actions are taken within the algorithm
• Q-learning is an “off-policy” algorithm.
• Guarantee: Assuming states, actions visited infinitely often (which can be guaranteed 

with the action policy), .Q → Q⋆



Q-Learning with Function Approximation 
(extra material: read later if interested)
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• Init:  

• For  episodes

• Within each episode, for 

• Act: choose actions however you like! 

(but try to maintain exploration)

• Update: 




• Return 

Q(s, a, h)
k = 1,2,…K

h = 0,1,…H − 1

θ ← θ − η(fθ(sh, ah, h) − r(sh, ah) − max
a

fθ(sh+1, a, h + 1))∇fθ(sh, ah, h)
Q(s, a, h)

• How to understand this expression?  
Consider doing a small step of SGD on the fitted-Q objective function.
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Again: what if we’re in full RL setting where we can’t just evaluate expectations?
This breaks the Policy Evaluation step, so can we do a fitted version?

Yes! RHS can be written as  " [r(sh, ah) + Qπk(sh+1, πk(sh), h + 1) sh, ah, h]
Spot the difference!
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Fitted Policy Evaluation

Input: policy , dataset 

1. Initialize fitted  function at  

2. For  :





3. Return the function  as an estimate of 

π τ1, …τN ∼ ρπ
Qπ f0

k = 1,…, K

fk = arg min
f∈ℱ

N

∑
i=1

H−1

∑
h=1

(f(si
h, ai

h, h) − (r(si
h, ai

h) + fk−1(si
h+1, π(si

h), h + 1)))2

fK Qπ

14

Use exact same strategy as before: fixed point iteration



Fitted Policy Iteration: 
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• Initialization: choose a policy  and a sample size 

• For 


1. Fitted Policy Evaluation: Using  sampled trajectories 
, obtain approximation 


2. Policy Improvement: set 

π0 : S ↦ A N
k = 0,1,…

N
τ1, …τN ∼ ρπk Q̂πk ≈ Qπk

πk+1
h (s) := arg max

a
Q̂πk(s, a, h)
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(Another) Fitted Policy Evaluation option

Input: policy , dataset 

Return:


π τ1, …τN ∼ ρπ

Q̂π = arg min
f∈ℱ

N

∑
i=1

H−1

∑
h=1

(f(si
h, ai

h, h) −
H−1

∑
t=h

r(si
t , ai

t))2

16

Using the definition of the  function, can do a non-iterative fitted policy evaluation Q

Qπ(s, a, h) = " [
H−1

∑
t=h

r(st, at) sh, ah, h]
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• Just like Q-learning, TD(0) is an “online” approach for policy evaluation.
• It can be helpful for variance reduction.

• Recall Bellman consistency conditions for : Qπ

Qπ(s, a, h) = r(s, a) + "s′ ∼P(⋅|s,a) [Qπ(s′ , πh+1(s′ ), h + 1)]
• “TD” stands for “Temporal Difference”
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• Feedback from last lecture

• Recap+

• Gradient Descent (ok this is also sort of recap)

• Policy Gradient 

• Likelihood ratio method
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• Given an objective function  
	 ,    (e.g., ), 
our objective is:  

J(θ) : ℝd ↦ ℝ J(θ) = "x,y( fθ(x) − y)2

min
θ

J(θ)

• Gradient Descent is an iterative approach,  
to decrease the objective function as follows:

• Initialize , for  :  
	  
 

θ0 k = 0,…
θk+1 = θk − η∇J(θk)

• Stochastic Gradient Descent uses (unbiased) estimates of :

• Initialize , for  :  

 ,    where 

∇J(θ)
θ0 k = 0,…

θk+1 = θk − ηkgk "[gk] = ∇θJ(θk)

-
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• Given an objective function  
	 ,    , 

our objective is: 

J(θ) : ℝ ↦ ℝ J(θ) = 1
2 (θ − c)2

min
θ

J(θ)
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• Given an objective function  
	 ,    , 

our objective is: 

J(θ) : ℝ ↦ ℝ J(θ) = 1
2 (θ − c)2

min
θ

J(θ)
• We have , so GD is:

• Initialize , 

• for  : 

	  
 

∇J(θ) = θ − c
θ0 = 0

k = 0,…
θk+1 = θk − η(θk − c)



Example of GD
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• Given an objective function  
	 ,    , 

our objective is: 

J(θ) : ℝ ↦ ℝ J(θ) = 1
2 (θ − c)2

min
θ

J(θ)
• We have , so GD is:

• Initialize , 

• for  : 

	  
 

∇J(θ) = θ − c
θ0 = 0

k = 0,…
θk+1 = θk − η(θk − c)

• Note with , we find the optima, , in one step.η = 1 θ⋆ = c
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• Different types of “stationary points” (e.g. points with 0 gradients):  
global optima, local optima, and saddle points (by picture)  

• For convex functions (with certain regularity conditions, such as “smoothness”),

•  GD (with an appropriate constant learning rate) converges to the global optima.

• SGD (with an appropriately decaying learning rate) converges to the global optima. 

(lower variance is better for SGD)  

• For non-convex functions, we could hope to find a local minima. 

• What we can prove (under some regularity conditions) is a little weaker:  
Both GD (with some constant learning rate) and SGD (with some decaying learning rate) 
converge to a stationary point, i.e. 
	 As , k → ∞ ∇J(θk) → 0

23



Today
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• Feedback from last lecture

• Recap+

• Gradient Descent (ok this is also sort of recap)

• Policy Gradient 

• Likelihood ratio method



Policy Optimization

[AlphaZero, Silver et.al, 17] [OpenAI Five, 18] [OpenAI,19]
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The Learning Setting: 
We don’t know the MDP, but we can obtain trajectories.

The Finite Horizon, Learning Setting. We can obtain trajectories as follows:

• We start at .

• We can act for  steps and observe the trajectory  

Note that with a simulator, we can sample trajectories as specified in the above.

s0 ∼ μ
H τ = {s0, a0, s1, a1, …, sH−1, aH−1}

26
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•Consider a parameterized class of policies: 
	  
(why do we make it stochastic?)  

•Objective , where 

	  

•Policy Gradient Descent: 
	

{πθ(a |s) |θ ∈ ℝd}

max
θ

J(θ)

J(θ) := "s0∼μ [Vπθ(s0)] = "τ∼ρπθ [
H−1

∑
h=0

r(sh, ah)]
θk+1 = θk + η∇J(θk)
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•Consider a parameterized class of policies: 
	  
(why do we make it stochastic?)  

•Objective , where 

	  

•Policy Gradient Descent: 
	

{πθ(a |s) |θ ∈ ℝd}

max
θ

J(θ)

J(θ) := "s0∼μ [Vπθ(s0)] = "τ∼ρπθ [
H−1

∑
h=0

r(sh, ah)]
θk+1 = θk + η∇J(θk)

Main question for today’s lecture: 

how to compute the gradient?



What are parameterized policies?

A state:

• Tabular case: an index in 

• Real world: a list/array of the relevant info about the world that makes the process Markovian.

• e.g. sometimes make a feature vector  which we believe is a “good 

representation” of the world

• we sometimes append history info into the current state

[ |S | ] = {1,… |S |}

ϕ(s, a, h) ∈ ℝd

28

[AlphaZero, Silver et.al, 17] [OpenAI Five, 18] [OpenAI,19]



Example Policy Parameterizations

1. Softmax linear Policy

Feature vector , and 
parameter 

ϕ(s, a, h) ∈ ℝd

θ ∈ ℝd

πθ(a |s, h) = exp(θ⊤ϕ(s, a, h))
∑a′ 

exp(θ⊤ϕ(s, a′ , h))

Recall that we consider parameterized policy πθ( ⋅ |s) ∈ Δ(A), ∀s
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Feature vector , and 
parameter 

ϕ(s, a, h) ∈ ℝd

θ ∈ ℝd

πθ(a |s, h) = exp(θ⊤ϕ(s, a, h))
∑a′ 

exp(θ⊤ϕ(s, a′ , h))

2. Neural Policy:

Neural network  
fθ : S × A × [H] ↦ ℝ

πθ(a |s, h) = exp( fθ(s, a, h))
∑a′ 

exp( fθ(s, a′ , h))

Recall that we consider parameterized policy πθ( ⋅ |s) ∈ Δ(A), ∀s

29



Example Policy Parameterization for “Controls”

Suppose , as it might be for a control problem.a ∈ Rk

30



Example Policy Parameterization for “Controls”

3. Gaussian + Linear Model

Suppose , as it might be for a control problem.a ∈ Rk

30

• Feature vector: ,

• Parameters: ,  

(and maybe ) 

• Policy: sample action from a (multivariate) Normal 
with mean  and variance , i.e.  
       


• Sampling: 
	 


ϕ(s, h) ∈ ℝd

θ ∈ ℝk×d

σ ∈ R+

θ ⋅ ϕ(s, h) σ2I
πθ,σ( ⋅ |s, h) = % (θ ⋅ ϕ(s, h), σ2I)

a = θ ⋅ ϕ(s, h) + η, where η ∼ %(0,σ2I)
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30

• Feature vector: ,

• Parameters: ,  

(and maybe ) 

• Policy: sample action from a (multivariate) Normal 
with mean  and variance , i.e.  
       


• Sampling: 
	 


ϕ(s, h) ∈ ℝd

θ ∈ ℝk×d

σ ∈ R+

θ ⋅ ϕ(s, h) σ2I
πθ,σ( ⋅ |s, h) = % (θ ⋅ ϕ(s, h), σ2I)

a = θ ⋅ ϕ(s, h) + η, where η ∼ %(0,σ2I)

4. Gaussian + Neural Model

• Neural network  gθ : S × [H] ↦ ℝk

• Parameters: , 
(and maybe ) 

θ ∈ Rd

σ ∈ R+

• Policy: a (multivariate) Normal  
with mean  and variance , i.e. 
	

gθ(s) σ2I
πθ,σ( ⋅ |s, h) = %(gθ(s, h), σ2I)

• Sampling: 
       a = gθ(s, h) + η, where η ∼ %(0,σ2I)
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• Policy Gradient 

• Likelihood ratio method
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The Likelihood Ratio Method, continued
• We have:  

	  ∇θJ(θ) = (x∼Pθ(x) [∇θlog Pθ(x) f(x)]
• An unbiased estimate is given by: 

, where  ̂∇ θJ(θ) = ∇θlog Pθ(x) ⋅ f(x) x ∼ Pθ

• We can lower variance by drawing   i.i.d. samples from  and averaging:N Pθ

̂∇ θJ(θ) = 1
N

N

∑
i=1

∇θlog Pθ(xi) f(xi)
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• Feedback from last lecture

• Recap+

• Gradient Descent (ok this is also sort of recap)

• Policy Gradient 

• Likelihood ratio method



Summary:

Feedback: 

bit.ly/3RHtlxy
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Attendance: 
bit.ly/3RcTC9T

•Q-learning and TD(0) are online variants of fitted DP that use SGD

•PG approach: let’s directly try to optimize the objective function of interest!


