
Policy Gradient Descent 
 

Lucas Janson 
CS/Stat 184(0): Introduction to Reinforcement Learning 

Fall 2024

Today

2

• Feedback from last lecture

• Recap+

• Gradient Descent (ok this is also sort of recap)

• Policy Gradient

• Likelihood ratio method

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

2.

3

Today

4

• Feedback from last lecture

• Recap+

• Gradient Descent (ok this is also sort of recap)

• Policy Gradient

• Likelihood ratio method

Q-Value Dynamic Programming Algorithm:

5

Recall from HW1 the Bellman equations for :Q⋆

Q⋆
h (s, a) = r(s, a) + 𝔼s′￼∼P(⋅|s,a) [max

a′￼

Q⋆
h+1(s′￼, a′￼)]

1. Initialization:

2. Solve (via dynamic programming): 

3. Return:

Q(s, a, H) = 0 ∀s, a

Q(s, a, h) = r(s, a) + 𝔼s′￼∼P(s,a) [max
a′￼∈A

Q(s′￼, a′￼, h + 1)] ∀s, a, h

πh(s) = arg max
a {Q(s, a, h)}

Analogous Q-value DP, with same notational change as last lecture: as argumenth

What if we can’t just evaluate the expectations?

6

If and/or are very large, computing expectations could be very expensiveS A

Since we’re trying to approximate conditional expectations, seems like it kind of fits
into supervised learning—can we use an approach like that? Yes!

Suppose:

• We have trajectories

Each trajectory is of the form

• is often referred to as our data collection policy.

N τ1, …τN ∼ ρπdata

τi = {si
0, ai

0, …si
H−1, ai

H−1, si
H}

πdata

Want: Q(s, a, h) ≈ r(s, a) + 𝔼s′￼∼P(s,a) [max
a′￼∈A

Q(s′￼, a′￼, h + 1)] ∀s, a, h

We may not have a way to directly compute those expectations, but instead only
have access to a simulator (or the real world), where we can collect data

This is now full RL!!

Connection to Supervised Learning

7

What are the and ?y x

Q(s, a, h) ≈ r(s, a) + 𝔼s′￼∼P(s,a) [max
a′￼∈A

Q(s′￼, a′￼, h + 1)] ∀s, a, h

Note that the RHS can also be written as

𝔼 [r(sh, ah) + max
a′￼

Q(sh+1, a′￼, h + 1) sh, ah, h]
This suggests that and y = r(sh, ah) + max

a′￼

Q(sh+1, a′￼, h + 1) x = (sh, ah, h)
Then we’d be happy if we found a

Q(sh, ah, h) = f(x) = 𝔼[y |x] = 𝔼 [r(sh, ah) + max
a′￼

Q(sh+1, a′￼, h + 1) sh, ah, h]

Connection to Supervised Learning (cont’d)

8

Setting that aside for the moment, to fit supervised learning, we’d minimize a least-

squares objective function: ̂f(x) = arg min
f∈ℱ

NH

∑
i=1

(yi − f(xi))2

Then if we have enough data, choose a good , and optimize well,ℱ

Q(sh, ah, h) := ̂f(x) ≈ 𝔼[y |x] = 𝔼 [r(sh, ah) + max
a′￼

Q(sh+1, a′￼, h + 1) sh, ah, h]

We can convert our data , into pairs; how many?τ1, …τN ∼ ρπdata
(y, x) NH

BUT, to compute each , we need to already know !y Q

Fitted (Q-)Value Iteration

Input: offline dataset

1. Initialize fitted function at

2. For :

3. With as an estimate of , return

τ1, …τN ∼ ρπdata

Q f0
k = 1,…, K

fk = arg min
f∈ℱ

N

∑
i=1

H−1

∑
h=1

(f(si
h, ai

h, h) − (r(si
h, ai

h) + max
a

fk−1(si
h+1, a, h + 1)))2

fK Q⋆ πh(s) = arg max
a {fK(s, a, h)}

9

Q-Learning is an online version, i.e., draw new trajectories at each based on as -functionk fk Q

To address the circularity problem of not knowing for computing the , we have
an algorithmic tool… what is it?

Q y

Hint: we used it for another VI algorithm before…

Fixed point iteration! Initialize, then at each step, pretend is known by plugging in
the previous time step’s to compute the ’s, and then use that to get next

Q
Q y Q

Bonus: Q-learning

10

(Tabular) Q-Learning

11

• Initialize:

• For episodes

• Within each episode, for

• Act: choose actions however you like! (but try to maintain exploration)

• Update: 

• Return

Q(s, a, h)
k = 1,2,…K

h = 0,1,…H − 1

Q(sh, ah, h) ← Q(sh, ah, h) − η (Q(sh, ah, h) − r(sh, ah) − max
a

Q(sh+1, a, h + 1))
Q(s, a, h)

• Update step is a single stochastic gradient step of size

• Q-learning is online: actions are taken within the algorithm

• Q-learning is an “off-policy” algorithm.

• Guarantee: Assuming states, actions visited infinitely often (which can be guaranteed

with the action policy), .

η

Q → Q⋆

Q-Learning with Function Approximation
(extra material: read later if interested)

12

• Init:

• For episodes

• Within each episode, for

• Act: choose actions however you like! 

(but try to maintain exploration)

• Update: 

• Return

Q(s, a, h)
k = 1,2,…K

h = 0,1,…H − 1

θ ← θ − η(fθ(sh, ah, h) − r(sh, ah) − max
a

fθ(sh+1, a, h + 1))∇fθ(sh, ah, h)

Q(s, a, h)

• How to understand this expression?  
Consider doing a small step of SGD on the fitted-Q objective function.

Recall: Policy Iteration (PI)
• Initialization: choose a policy

• For

1. Policy Evaluation: Solve (via dynamic programming):

2. Policy Improvement: set

π0 : S ↦ A
k = 0,1,…

Qπk(s, a, h) = r(s, a) + 𝔼s′￼∼P(⋅|s,a) [Qπk(s′￼, πk(s), h + 1)] ∀s, a, h

πk+1
h (s) := arg max

a
Qπk(s, a, h)

13

Again: what if we’re in full RL setting where we can’t just evaluate expectations?

This breaks the Policy Evaluation step, so can we do a fitted version?

Yes! RHS can be written as 𝔼 [r(sh, ah) + Qπk(sh+1, πk(sh), h + 1) sh, ah, h]
Spot the difference!

Fitted Policy Evaluation

Input: policy , dataset

1. Initialize fitted function at

2. For :

3. Return the function as an estimate of

π τ1, …τN ∼ ρπ
Qπ f0

k = 1,…, K

fk = arg min
f∈ℱ

N

∑
i=1

H−1

∑
h=1

(f(si
h, ai

h, h) − (r(si
h, ai

h) + fk−1(si
h+1, π(si

h), h + 1)))2

fK Qπ

14

Use exact same strategy as before: fixed point iteration

Fitted Policy Iteration:

15

• Initialization: choose a policy and a sample size

• For

1. Fitted Policy Evaluation: Using sampled trajectories
, obtain approximation

2. Policy Improvement: set

π0 : S ↦ A N
k = 0,1,…

N
τ1, …τN ∼ ρπk Q̂πk ≈ Qπk

πk+1
h (s) := arg max

a
Q̂πk(s, a, h)

(Another) Fitted Policy Evaluation option

Input: policy , dataset

Return:

π τ1, …τN ∼ ρπ

Q̂π = arg min
f∈ℱ

N

∑
i=1

H−1

∑
h=1

(f(si
h, ai

h, h) −
H−1

∑
t=h

r(si
t , ai

t))2

16

Using the definition of the function, can do a non-iterative fitted policy evaluation Q

Qπ(s, a, h) = 𝔼 [
H−1

∑
t=h

r(st, at) sh, ah, h]

Bonus: TD(0)

(see posted slides)

17

The “tabular” TD(0) Algorithm of Qπ

• Init:

• For episodes

• Within each episode, for

• Act according to

• update: 

• Return

Qπ(s, a, h)
k = 1,2,…K

h = 0,1,…H − 1
π

Qπ(sh, ah, h) ← Qπ(sh, ah, h) − η (Qπ(sh, ah, h) − r(sh, ah) − Qπ(sh+1, ah+1, h + 1))
Qπ(s, a, h)

18

• Just like Q-learning, TD(0) is an “online” approach for policy evaluation.

• It can be helpful for variance reduction.

• Recall Bellman consistency conditions for : 

• “TD” stands for “Temporal Difference”

Qπ

Qπ(s, a, h) = r(s, a) + 𝔼s′￼∼P(⋅|s,a) [Qπ(s′￼, πh+1(s′￼), h + 1)]

TD(0) Algorithm for , with function approximationQπ

• Init:

• For episodes

• Within each episode, for

• Act according to

• update: 

• Return

Q(s, a, h)
k = 1,2,…K

h = 0,1,…H − 1
π

θ ← θ − η(fθ(sh, ah, h) − r(sh, ah) − fθ(sh+1, ah+1, h + 1))∇fθ(sh, ah, h)

Q(s, a, h)

19

• Again, this is an “online” approach for policy evaluation, but with function
approximation.

Today

20

• Feedback from last lecture

• Recap+

• Gradient Descent (ok this is also sort of recap)

• Policy Gradient

• Likelihood ratio method

Gradient Descent (GD) and Stochastic Gradient Descent (SGD) 
(we really do ascent in RL, so we should say GA and SGA)

21

• Given an objective function  
	 , (e.g.,), 
our objective is:  

• Gradient Descent is an iterative approach,  
to decrease the objective function as follows:

• Initialize , for : 
	  
 

• Stochastic Gradient Descent uses (unbiased) estimates of :

• Initialize , for :  

 , where  

J(θ) : ℝd ↦ ℝ J(θ) = 𝔼x,y(fθ(x) − y)2

min
θ

J(θ)

θ0 k = 0,…
θk+1 = θk − η∇J(θk)

∇J(θ)
θ0 k = 0,…

θk+1 = θk − ηkgk 𝔼[gk] = ∇θJ(θk)

Example of GD

22

• Given an objective function  

	 , , 

our objective is:

• We have , so GD is:

• Initialize ,

• for : 

	  
 

• Note with , we find the optima, , in one step. 

J(θ) : ℝ ↦ ℝ J(θ) =
1
2

(θ − c)2

min
θ

J(θ)

∇J(θ) = θ − c
θ0 = 0

k = 0,…
θk+1 = θk − η(θk − c)

η = 1 θ⋆ = c

Brief overview of GD/SGD:

• Different types of “stationary points” (e.g. points with 0 gradients):  
global optima, local optima, and saddle points (by picture) 

• For convex functions (with certain regularity conditions, such as “smoothness”),

• GD (with an appropriate constant learning rate) converges to the global optima.

• SGD (with an appropriately decaying learning rate) converges to the global optima. 

(lower variance is better for SGD)  

• For non-convex functions, we could hope to find a local minima. 

• What we can prove (under some regularity conditions) is a little weaker: 
Both GD (with some constant learning rate) and SGD (with some decaying learning rate)
converge to a stationary point, i.e. 
	 As , k → ∞ ∇J(θk) → 0

23

Today

24

• Feedback from last lecture

• Recap+

• Gradient Descent (ok this is also sort of recap)

• Policy Gradient

• Likelihood ratio method

Policy Optimization

[AlphaZero, Silver et.al, 17] [OpenAI Five, 18] [OpenAI,19]

25

The Learning Setting:
We don’t know the MDP, but we can obtain trajectories.

The Finite Horizon, Learning Setting. We can obtain trajectories as follows:

• We start at .

• We can act for steps and observe the trajectory  

Note that with a simulator, we can sample trajectories as specified in the above.

s0 ∼ μ
H τ = {s0, a0, s1, a1, …, sH−1, aH−1}

26

Optimization Objective

27

•Consider a parameterized class of policies: 
	  
(why do we make it stochastic?) 

•Objective , where 

	  

•Policy Gradient Descent: 
	

{πθ(a |s) |θ ∈ ℝd}

max
θ

J(θ)

J(θ) := 𝔼s0∼μ [Vπθ(s0)] = 𝔼τ∼ρπθ [
H−1

∑
h=0

r(sh, ah)]
θk+1 = θk + η∇J(θk)

Main question for today’s lecture:

how to compute the gradient?

What are parameterized policies?

A state:

• Tabular case: an index in

• Real world: a list/array of the relevant info about the world that makes the process Markovian.

• e.g. sometimes make a feature vector which we believe is a “good

representation” of the world

• we sometimes append history info into the current state

[|S |] = {1,… |S |}

ϕ(s, a, h) ∈ ℝd

28

[AlphaZero, Silver et.al, 17] [OpenAI Five, 18] [OpenAI,19]

Example Policy Parameterizations

1. Softmax linear Policy

Feature vector , and
parameter

ϕ(s, a, h) ∈ ℝd

θ ∈ ℝd

πθ(a |s, h) =
exp(θ⊤ϕ(s, a, h))

∑a′￼
exp(θ⊤ϕ(s, a′￼, h))

2. Neural Policy:

Neural network
fθ : S × A × [H] ↦ ℝ

πθ(a |s, h) =
exp(fθ(s, a, h))

∑a′￼
exp(fθ(s, a′￼, h))

Recall that we consider parameterized policy πθ(⋅ |s) ∈ Δ(A), ∀s

29

Example Policy Parameterization for “Controls”

3. Gaussian + Linear Model

Suppose , as it might be for a control problem.a ∈ Rk

30

• Feature vector: ,

• Parameters: ,  

(and maybe) 

• Policy: sample action from a (multivariate) Normal
with mean and variance , i.e. 

• Sampling: 
	

ϕ(s, h) ∈ ℝd

θ ∈ ℝk×d

σ ∈ R+

θ ⋅ ϕ(s, h) σ2I
πθ,σ(⋅ |s, h) = 𝒩 (θ ⋅ ϕ(s, h), σ2I)

a = θ ⋅ ϕ(s, h) + η, where η ∼ 𝒩(0,σ2I)

4. Gaussian + Neural Model

• Neural network

• Parameters: , 

(and maybe) 

• Policy: a (multivariate) Normal  
with mean and variance , i.e. 
	

• Sampling: 

gθ : S × [H] ↦ ℝk

θ ∈ Rd

σ ∈ R+

gθ(s) σ2I
πθ,σ(⋅ |s, h) = 𝒩(gθ(s, h), σ2I)

a = gθ(s, h) + η, where η ∼ 𝒩(0,σ2I)

Today

31

• Feedback from last lecture

• Recap+

• Gradient Descent (ok this is also sort of recap)

• Policy Gradient

• Likelihood ratio method

The Likelihood Ratio Method

• Suppose , and our objective is .

• Computing exactly may be difficult (due to the sum over =trajectories)

• So GD not an option—what about SGD?

• In supervised learning, stochastic gradient was just gradient on one sample—will that work here?

• Won’t work: -dependence is inside the distribution, not inside the expectation

• So how can we unbiasedly estimate ?

• Suppose we can compute , , and , and we can sample

• We have that:  

J(θ) = 𝔼x∼Pθ [f(x)] = ∑
x

Pθ(x)f(x) max
θ

J(θ)

∇θJ(θ) x

θ
∇θJ(θ)

f(x) Pθ(x) ∇Pθ(x) x ∼ Pθ

∇θJ(θ) = 𝔼x∼Pθ(x) [∇θlog Pθ(x) f(x)] Proof:

∇θJ(θ) = ∑
x

∇θPθ(x)f(x)

= ∑
x

Pθ(x)
∇θPθ(x)

Pθ(x)
f(x)

= ∑
x

Pθ(x)∇θlog Pθ(x)f(x)

The Likelihood Ratio Method, continued
• We have:  

	  

• An unbiased estimate is given by: 
, where  

• We can lower variance by drawing i.i.d. samples from and averaging:

∇θJ(θ) = 𝔼x∼Pθ(x) [∇θlog Pθ(x) f(x)]

̂∇ θJ(θ) = ∇θlog Pθ(x) ⋅ f(x) x ∼ Pθ

N Pθ

̂∇ θJ(θ) =
1
N

N

∑
i=1

∇θlog Pθ(xi) f(xi)

Today

34

• Feedback from last lecture

• Recap+

• Gradient Descent (ok this is also sort of recap)

• Policy Gradient

• Likelihood ratio method

Summary:

Feedback:

bit.ly/3RHtlxy

35

Attendance: 
bit.ly/3RcTC9T

•Q-learning and TD(0) are online variants of fitted DP that use SGD

•PG approach: let’s directly try to optimize the objective function of interest!

http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

