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To approximate  from data, can use Empirical Risk Minimization (ERM): 𝔼[y |x]
̂f(x) = arg min

f∈ℱ

1
n

n

∑
i=1

(yi − f(xi))2

Optimize via gradient descent (GD) or stochastic gradient descent (SGD)

Linear regression parameterizes  as  and can work well when  
very smooth, high-dimensional (penalties like ridge/lasso help here), and/or 

there is a good featurization 

f(x) x⊤θ 𝔼[y |x]

ϕ(x)
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2. Nonlinear transformation , e.g., ReLU , applied element-wiseσ σ(a) = max(a,0)

Simplest nontrivial NN is . Can think of as:f(x) = W2σ(W1x+b1)+b2

1. Start with input ,x ∈ ℝd

2. Linearly transform with  and  to get W1 ∈ ℝm×d b1 ∈ ℝm W1x+b1 ∈ ℝm

3. Apply (element-wise) the nonlinearity  to get σ σ(W1x+b1) ∈ ℝm

4. Linearly transform with  and  to get W2 ∈ ℝ1×m b2 ∈ ℝ W2σ(W1x+b1)+b2 ∈ ℝ
With  layers: p f(x) = Wpσ(Wp−1σ( ⋯ σ(W1x+b1) ⋯ )+bp−1)+bp
Parameter vector  concatenates all ’s and ’s;  scales as width   depthθ W b dim(θ) 2 ×
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Computing gradients, even stochastic gradients , is daunting∇θLi(θ)

A trick called backpropagation allows such gradients to be computed efficiently

Too notationally cumbersome to cover here, but basically the hierarchical structure 
of neural networks plays very nicely with the chain rule for derivatives (see 

Wikipedia or many other sources on internet for more)

Unfortunately,  is non-convex, i.e., it will in general have many local optimaL(θ)

We hope that SGD finds a good one… in practice there are optimization tricks that 
are like SGD but perform better, e.g., one very popular one is called Adam
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1. Work well for all problems, breaking criterion 1 (approximation)
a) Actually, NNs need a lot of data, and are often worse than classical methods 

on smaller data sets
b) Many of the most famous / impressive NNs, such as CNNs for vision or 

AlphaFold for protein structure, heavily incorporate problem-specific 
structure into their models

2. Work better when larger / more complex, breaking criterion 2 (complexity)
a) This is true, though larger / more complex NNs also need more data to train
b) The number of NN parameters is not a good measure of its “complexity”

3. Are highly non-convex, breaking criterion 3 (optimization)
a) The optimizers used for NNs don’t find arbitrary solutions, they actually find 

“low-complexity” solutions!
Practical Neural Networks are very far from “just” ERM
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1. Initialization: ,  

2. For   

, 


3. Return: 

      

V0(s) = 0 ∀s
t = 0,…T − 1

Vt+1(s) = max
a {r(s, a) + γ∑

s′ ∈S

P(s′ |s, a)Vt(s′ )} ∀s

VT(s)
π(s) = arg max

a {r(s, a) + γ𝔼s′ ∼P(⋅|s,a)VT(s′ )}

And the VI algorithm is a fixed-point algorithm to find :V⋆
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h = H − 1,…0
V⋆

h (s) = max
a [r(s, a) + 𝔼s′ ∼P(⋅|s,a) [V⋆

h+1(s′ )]] ∀s ∈ S

π⋆
h (s) = arg max

a [r(s, a) + 𝔼s′ ∼P(⋅|s,a) [V⋆
h+1(s′ )]] ∀s ∈ S

Notation: Now relabel  (just move subscript to an explicit argument)Vh(s) =: V(s, h)
The above DP algorithm can just be seen as solving  (Bellman) equations for the 

 different values of , but doing so in an exact, efficient way via DP
SH

SH V(s, h)
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Recall from HW1 the Bellman equations for :Q⋆

Q⋆
h (s, a) = r(s, a) + 𝔼s′ ∼P(⋅|s,a) [max

a′ 

Q⋆
h+1(s′ , a′ )]

1. Initialization:  

2. Solve (via dynamic programming): 




3. Return: 


Q(s, a, H) = 0 ∀s, a

Q(s, a, h) = r(s, a) + 𝔼s′ ∼P(s,a) [max
a′ ∈A

Q(s′ , a′ , h + 1)] ∀s, a, h

πh(s) = arg max
a {Q(s, a, h)}

Analogous Q-value DP, with same notational change as previous slide:  as argumenth
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If  and/or  are very large, computing expectations could be very expensiveS A

Since we’re trying to approximate conditional expectations, seems like it kind of fits 
into supervised learning—can we use an approach like that? Yes!

Suppose:

• We have  trajectories 


Each trajectory is of the form 
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Q(s, a, h) ≈ r(s, a) + 𝔼s′ ∼P(s,a) [max
a′ ∈A

Q(s′ , a′ , h + 1)] ∀s, a, h

Note that the RHS can also be written as 

𝔼 [r(sh, ah) + max
a′ 

Q(sh+1, a′ , h + 1) sh, ah, h]
This suggests that  and  y = r(sh, ah) + max

a′ 

Q(sh+1, a′ , h + 1) x = (sh, ah, h)
Then we’d be happy if we found a 

Q(sh, ah, h) = f(x) = 𝔼[y |x] = 𝔼 [r(sh, ah) + max
a′ 

Q(sh+1, a′ , h + 1) sh, ah, h]
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squares objective function: ̂f(x) = arg min
f∈ℱ

NH

∑
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(yi − f(xi))2
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To address the circularity problem of not knowing  for computing the , we have 
an algorithmic tool… what is it?

Q y

Hint: we used it for another VI algorithm before…

Fixed point iteration! Initialize, then at each step, pretend  is known by plugging in 
the previous time step’s  to compute the ’s, and then use that to get next 

Q
Q y Q
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Q-Learning is an online version, i.e., draw new trajectories at each  based on  as -functionk fk Q

To address the circularity problem of not knowing  for computing the , we have 
an algorithmic tool… what is it?

Q y

Hint: we used it for another VI algorithm before…

Fixed point iteration! Initialize, then at each step, pretend  is known by plugging in 
the previous time step’s  to compute the ’s, and then use that to get next 

Q
Q y Q
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• Feedback from last lecture


• Recap


• Neural networks


• Fitted value iteration


• Fitted policy iteration



Recall: Policy Iteration (PI)
• Initialization: choose a policy 

• For 


1. Policy Evaluation: Solve (via dynamic programming): 



2. Policy Improvement: set 

π0 : S ↦ A
k = 0,1,…

Qπk(s, a, h) = r(s, a) + 𝔼s′ ∼P(⋅|s,a) [Qπk(s′ , πk(s), h + 1)] ∀s, a, h

πk+1
h (s) := arg max

a
Qπk(s, a, h)
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Again: what if we’re in full RL setting where we can’t just evaluate expectations?

This breaks the Policy Evaluation step, so can we do a fitted version?

Yes! RHS can be written as  𝔼 [r(sh, ah) + Qπk(sh+1, πk(sh), h + 1) sh, ah, h]
Spot the difference!



Fitted Policy Evaluation
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Use exact same strategy as before: fixed point iteration



Fitted Policy Evaluation

Input: policy , dataset 

1. Initialize fitted  function at  

2. For  :





3. Return the function  as an estimate of 

π τ1, …τN ∼ ρπ
Qπ f0

k = 1,…, K

fk = arg min
f∈ℱ

N

∑
i=1

H−1

∑
h=1

(f(si
h, ai

h, h) − (r(si
h, ai

h) + fk−1(si
h+1, π(si

h), h + 1)))2

fK Qπ

20

Use exact same strategy as before: fixed point iteration



Fitted Policy Iteration: 
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• Initialization: choose a policy  and a sample size 

• For 


1. Fitted Policy Evaluation: Using  sampled trajectories 
, obtain approximation 


2. Policy Improvement: set 

π0 : S ↦ A N
k = 0,1,…

N
τ1, …τN ∼ ρπk Q̂πk ≈ Qπk

πk+1
h (s) := arg max

a
Q̂πk(s, a, h)
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Using the definition of the  function, can do a non-iterative fitted policy evaluation Q

Qπ(s, a, h) = 𝔼 [
H−1

∑
t=h

r(st, at) sh, ah, h]



(Another) Fitted Policy Evaluation option

Input: policy , dataset 

Return:


π τ1, …τN ∼ ρπ

Q̂π = arg min
f∈ℱ

N

∑
i=1

H−1

∑
h=1

(f(si
h, ai

h, h) −
H−1

∑
t=h

r(si
t , ai

t))2
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Using the definition of the  function, can do a non-iterative fitted policy evaluation Q

Qπ(s, a, h) = 𝔼 [
H−1

∑
t=h

r(st, at) sh, ah, h]
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• Feedback from last lecture


• Recap


• Neural networks


• Fitted value iteration


• Fitted policy iteration



Summary:

Feedback: 

bit.ly/3RHtlxy
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Attendance: 
bit.ly/3RcTC9T

•Neural Networks work well for complex function approximation with big data

• Incorporating supervised learning into PI and VI makes them RL algorithms!

http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

