
 
Bandits: Thompson Sampling

and Contextual Bandits
 

Lucas Janson 
CS/Stat 184(0): Introduction to Reinforcement Learning  

Fall 2024
1

Today

2

• Feedback from last lecture

• Recap

• Thompson sampling

• Contextual bandits

Feedback from feedback forms

3

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

3

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!
2. Green can be hard to see

3

Today

4

• Feedback from last lecture

• Recap

• Thompson sampling

• Contextual bandits

Bayesian bandit

5

Bayesian bandit
A Bayesian bandit augments the bandit environment we’ve been working in so far
with a prior distribution on the unknown reward distributions: π(ν(1), …, ν(K))

5

Bayesian bandit
A Bayesian bandit augments the bandit environment we’ve been working in so far
with a prior distribution on the unknown reward distributions: π(ν(1), …, ν(K))

E.g., in a Bernoulli bandit, each is entirely characterized by its mean
, so a prior on the is equivalent to a prior on the

ν(k)

μ(k) = ℙr∼ν(k)(r = 1) ν(k) μ(k)

5

Bayesian bandit
A Bayesian bandit augments the bandit environment we’ve been working in so far
with a prior distribution on the unknown reward distributions: π(ν(1), …, ν(K))

E.g., in a Bernoulli bandit, each is entirely characterized by its mean
, so a prior on the is equivalent to a prior on the

ν(k)

μ(k) = ℙr∼ν(k)(r = 1) ν(k) μ(k)

One such prior, since all the are bounded between and ,

is the prior that is Uniform on the unit hypercube, i.e.,

μ(k) 0 1

(μ(1), …, μ(K)) =: μ ∼ Uniform([0,1]K)

5

Bayesian bandit
A Bayesian bandit augments the bandit environment we’ve been working in so far
with a prior distribution on the unknown reward distributions: π(ν(1), …, ν(K))

E.g., in a Bernoulli bandit, each is entirely characterized by its mean
, so a prior on the is equivalent to a prior on the

ν(k)

μ(k) = ℙr∼ν(k)(r = 1) ν(k) μ(k)

One such prior, since all the are bounded between and ,

is the prior that is Uniform on the unit hypercube, i.e.,

μ(k) 0 1

(μ(1), …, μ(K)) =: μ ∼ Uniform([0,1]K)
Note that the Bernoulli bandit reduced everything unknown about the bandit system

to a -dimensional vector K μ

5

Bayesian bandit
A Bayesian bandit augments the bandit environment we’ve been working in so far
with a prior distribution on the unknown reward distributions: π(ν(1), …, ν(K))

E.g., in a Bernoulli bandit, each is entirely characterized by its mean
, so a prior on the is equivalent to a prior on the

ν(k)

μ(k) = ℙr∼ν(k)(r = 1) ν(k) μ(k)

One such prior, since all the are bounded between and ,

is the prior that is Uniform on the unit hypercube, i.e.,

μ(k) 0 1

(μ(1), …, μ(K)) =: μ ∼ Uniform([0,1]K)
Note that the Bernoulli bandit reduced everything unknown about the bandit system

to a -dimensional vector K μ

5

Without the Bernoulli assumption, we may need many more dimensions to describe
the possible distributions, and hence have to define a much higher-dimensional prior

Bayesian bandit summary
A Bayesian bandit augments the bandit environment we’ve been working in so far
with a prior distribution on the unknown reward distributions; for Bernoulli bandits,
the reward distributions are entirely characterized by , so prior is: μ π(μ)

6

Bayesian bandit summary
A Bayesian bandit augments the bandit environment we’ve been working in so far
with a prior distribution on the unknown reward distributions; for Bernoulli bandits,
the reward distributions are entirely characterized by , so prior is: μ π(μ)

6

Bayes rule at time step gives us a distribution (called the posterior distribution)

that exactly characterizes our uncertainty about

t
ℙ(μ ∣ r0, a0, r1, a1, …, rt−1, at−1)

μ

Bayesian bandit summary
A Bayesian bandit augments the bandit environment we’ve been working in so far
with a prior distribution on the unknown reward distributions; for Bernoulli bandits,
the reward distributions are entirely characterized by , so prior is: μ π(μ)

6

Bayes rule at time step gives us a distribution (called the posterior distribution)

that exactly characterizes our uncertainty about

t
ℙ(μ ∣ r0, a0, r1, a1, …, rt−1, at−1)

μ
Bernoulli bandit’s posterior is Beta-distributed with simple parameter updates

Bayesian bandit summary
A Bayesian bandit augments the bandit environment we’ve been working in so far
with a prior distribution on the unknown reward distributions; for Bernoulli bandits,
the reward distributions are entirely characterized by , so prior is: μ π(μ)

6

Bayes rule at time step gives us a distribution (called the posterior distribution)

that exactly characterizes our uncertainty about

t
ℙ(μ ∣ r0, a0, r1, a1, …, rt−1, at−1)

μ

Note that although we are now treating as random, we still assume its value is
only drawn once (from the prior) and then stays the same throughout

μ
t

Bernoulli bandit’s posterior is Beta-distributed with simple parameter updates

Bayesian bandit summary
A Bayesian bandit augments the bandit environment we’ve been working in so far
with a prior distribution on the unknown reward distributions; for Bernoulli bandits,
the reward distributions are entirely characterized by , so prior is: μ π(μ)

6

Bayes rule at time step gives us a distribution (called the posterior distribution)

that exactly characterizes our uncertainty about

t
ℙ(μ ∣ r0, a0, r1, a1, …, rt−1, at−1)

μ

Note that although we are now treating as random, we still assume its value is
only drawn once (from the prior) and then stays the same throughout

μ
t

What changes with is our information about , i.e., the posterior distribution, as
we collect more and more data by pulling arms via a bandit algorithm

t μ

Bernoulli bandit’s posterior is Beta-distributed with simple parameter updates

Today

7

• Feedback from last lecture

• Recap

• Thompson sampling

• Contextual bandits

Thompson sampling
Bayesian bandit environment means that at every time step, we know the distribution

of the arm reward distributions conditioned on everything we’ve seen so far

8

Thompson sampling
Bayesian bandit environment means that at every time step, we know the distribution

of the arm reward distributions conditioned on everything we’ve seen so far
In particular, we know the exact probability, given everything we’ve seen so far,

that each arm is the true optimal arm, i.e.,

∀k, we know ℙ(k = k⋆ ∣ r0, a0, …, rt−1, at−1)

8

Thompson sampling
Bayesian bandit environment means that at every time step, we know the distribution

of the arm reward distributions conditioned on everything we’ve seen so far
In particular, we know the exact probability, given everything we’ve seen so far,

that each arm is the true optimal arm, i.e.,

∀k, we know ℙ(k = k⋆ ∣ r0, a0, …, rt−1, at−1)

Thompson sampling: sample from this distribution to determine next arm to pull

8

Thompson sampling
Bayesian bandit environment means that at every time step, we know the distribution

of the arm reward distributions conditioned on everything we’ve seen so far
In particular, we know the exact probability, given everything we’ve seen so far,

that each arm is the true optimal arm, i.e.,

∀k, we know ℙ(k = k⋆ ∣ r0, a0, …, rt−1, at−1)

Thompson sampling: sample from this distribution to determine next arm to pull
For t = 0,…, T − 1 :

at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

8

Thompson sampling
Bayesian bandit environment means that at every time step, we know the distribution

of the arm reward distributions conditioned on everything we’ve seen so far
In particular, we know the exact probability, given everything we’ve seen so far,

that each arm is the true optimal arm, i.e.,

∀k, we know ℙ(k = k⋆ ∣ r0, a0, …, rt−1, at−1)

Thompson sampling: sample from this distribution to determine next arm to pull
For t = 0,…, T − 1 :

at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

8

How can we sample from this distribution?

Thompson sampling
Bayesian bandit environment means that at every time step, we know the distribution

of the arm reward distributions conditioned on everything we’ve seen so far
In particular, we know the exact probability, given everything we’ve seen so far,

that each arm is the true optimal arm, i.e.,

∀k, we know ℙ(k = k⋆ ∣ r0, a0, …, rt−1, at−1)

Thompson sampling: sample from this distribution to determine next arm to pull
For t = 0,…, T − 1 :

at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

 Draw a sample and
then compute , which is the same thing as

μt ∼ distribution of μ ∣ r0, a0, …, rt−1, at−1
at = arg max

k
μ(k)

t at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

8

How can we sample from this distribution?

Thompson sampling
Bayesian bandit environment means that at every time step, we know the distribution

of the arm reward distributions conditioned on everything we’ve seen so far
In particular, we know the exact probability, given everything we’ve seen so far,

that each arm is the true optimal arm, i.e.,

∀k, we know ℙ(k = k⋆ ∣ r0, a0, …, rt−1, at−1)

Thompson sampling: sample from this distribution to determine next arm to pull
For t = 0,…, T − 1 :

at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

That’s it! Statistically, this is a super simple and elegant algorithm

 Draw a sample and
then compute , which is the same thing as

μt ∼ distribution of μ ∣ r0, a0, …, rt−1, at−1
at = arg max

k
μ(k)

t at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

8

How can we sample from this distribution?

Thompson sampling
Bayesian bandit environment means that at every time step, we know the distribution

of the arm reward distributions conditioned on everything we’ve seen so far
In particular, we know the exact probability, given everything we’ve seen so far,

that each arm is the true optimal arm, i.e.,

∀k, we know ℙ(k = k⋆ ∣ r0, a0, …, rt−1, at−1)

Thompson sampling: sample from this distribution to determine next arm to pull
For t = 0,…, T − 1 :

at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

That’s it! Statistically, this is a super simple and elegant algorithm
(though computationally, it may not be easy to update the posterior at each time step)

 Draw a sample and
then compute , which is the same thing as

μt ∼ distribution of μ ∣ r0, a0, …, rt−1, at−1
at = arg max

k
μ(k)

t at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

8

How can we sample from this distribution?

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

9

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

9

Why is this a good idea?

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

9

Why is this a good idea?
A good tradeoff of exploration vs exploitation should:

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

9

Why is this a good idea?
A good tradeoff of exploration vs exploitation should:

a) Sample the optimal arm as much as possible (duh)

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

9

Why is this a good idea?
A good tradeoff of exploration vs exploitation should:

a) Sample the optimal arm as much as possible (duh)
b) Ensure arms that might still be optimal aren’t overlooked

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

9

Why is this a good idea?
A good tradeoff of exploration vs exploitation should:

a) Sample the optimal arm as much as possible (duh)
b) Ensure arms that might still be optimal aren’t overlooked
c) Not waste undue time on less promising arms

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

9

Why is this a good idea?
A good tradeoff of exploration vs exploitation should:

a) Sample the optimal arm as much as possible (duh)
b) Ensure arms that might still be optimal aren’t overlooked
c) Not waste undue time on less promising arms

Intuitively: want to sample arms proportionally to how promising they are

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

9

Why is this a good idea?
A good tradeoff of exploration vs exploitation should:

a) Sample the optimal arm as much as possible (duh)
b) Ensure arms that might still be optimal aren’t overlooked
c) Not waste undue time on less promising arms

Intuitively: want to sample arms proportionally to how promising they are
This is exactly what Thompson sampling does, where “promising” is encoded very

naturally as: “the probability that the arm is the optimal arm, given all the data so far”

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

9

Why is this a good idea?
A good tradeoff of exploration vs exploitation should:

a) Sample the optimal arm as much as possible (duh)
b) Ensure arms that might still be optimal aren’t overlooked
c) Not waste undue time on less promising arms

Intuitively: want to sample arms proportionally to how promising they are
This is exactly what Thompson sampling does, where “promising” is encoded very

naturally as: “the probability that the arm is the optimal arm, given all the data so far”

No arbitrary tuning parameter, but do have to choose prior δ π

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

9

Why is this a good idea?
A good tradeoff of exploration vs exploitation should:

a) Sample the optimal arm as much as possible (duh)
b) Ensure arms that might still be optimal aren’t overlooked
c) Not waste undue time on less promising arms

Intuitively: want to sample arms proportionally to how promising they are
This is exactly what Thompson sampling does, where “promising” is encoded very

naturally as: “the probability that the arm is the optimal arm, given all the data so far”

No arbitrary tuning parameter, but do have to choose prior δ π
 can often be chosen “uninformatively” to a default prior such as the uniform, or
can encode nuanced prior information/belief about the arms’ reward distributions
π

Thompson sampling vs other algorithms

10

Thompson sampling samples arms proportionally to how promising they are

Thompson sampling vs other algorithms

10

Thompson sampling samples arms proportionally to how promising they are
Note this sampling is much more sophisticated than, say, -greedy, which really just

samples according to 2 categories: “most promising” and “other”
ε

Thompson sampling vs other algorithms

10

Thompson sampling samples arms proportionally to how promising they are
Note this sampling is much more sophisticated than, say, -greedy, which really just

samples according to 2 categories: “most promising” and “other”
ε

But it’s also quite different from UCB, whose OFU approach doesn’t really involve
“sampling” at all, i.e., every for UCB is a deterministic function of the previous dataat

Thompson sampling vs other algorithms

10

Thompson sampling samples arms proportionally to how promising they are
Note this sampling is much more sophisticated than, say, -greedy, which really just

samples according to 2 categories: “most promising” and “other”
ε

But it’s also quite different from UCB, whose OFU approach doesn’t really involve
“sampling” at all, i.e., every for UCB is a deterministic function of the previous dataat

My interpretation: OFU provides a simple heuristic to accomplish what Thompson
sampling does by design, namely, sample arms according to how promising they are

Thompson sampling vs other algorithms

10

Thompson sampling can do this because of the Bayesian bandit: assuming a prior on
the reward distributions makes the arm means random, otherwise it wouldn’t even

make sense to talk about “the probability that an arm is the best arm”

Thompson sampling samples arms proportionally to how promising they are
Note this sampling is much more sophisticated than, say, -greedy, which really just

samples according to 2 categories: “most promising” and “other”
ε

But it’s also quite different from UCB, whose OFU approach doesn’t really involve
“sampling” at all, i.e., every for UCB is a deterministic function of the previous dataat

My interpretation: OFU provides a simple heuristic to accomplish what Thompson
sampling does by design, namely, sample arms according to how promising they are

Thompson sampling vs other algorithms

10

Thompson sampling can do this because of the Bayesian bandit: assuming a prior on
the reward distributions makes the arm means random, otherwise it wouldn’t even

make sense to talk about “the probability that an arm is the best arm”

Thompson sampling samples arms proportionally to how promising they are
Note this sampling is much more sophisticated than, say, -greedy, which really just

samples according to 2 categories: “most promising” and “other”
ε

But it’s also quite different from UCB, whose OFU approach doesn’t really involve
“sampling” at all, i.e., every for UCB is a deterministic function of the previous dataat

My interpretation: OFU provides a simple heuristic to accomplish what Thompson
sampling does by design, namely, sample arms according to how promising they are

Although derived from the Bayesian bandit, Thompson sampling has excellent
practical performance across bandit problems, whether or not they are Bayesian!

Thompson sampling in practice

11

Thompson sampling in practice

11

Thompson sampling has excellent performance in practice, but is still just a heuristic

Thompson sampling in practice

11

Thompson sampling has excellent performance in practice, but is still just a heuristic
However, asymptotically, i.e., as , it actually is optimal in a certain senseT → ∞

Thompson sampling in practice

11

Thompson sampling has excellent performance in practice, but is still just a heuristic
However, asymptotically, i.e., as , it actually is optimal in a certain senseT → ∞
There is an instance-dependent lower-bound result that says that for any bandit

algorithm:

,

where is a distance between distributions called the Kullback—Leibler divergence

lim inf
T→∞

)[N(k)
T]

ln(T) ≥ 1
d(ν(k⋆), ν(k))

d

Thompson sampling in practice

11

Thompson sampling has excellent performance in practice, but is still just a heuristic
However, asymptotically, i.e., as , it actually is optimal in a certain senseT → ∞
There is an instance-dependent lower-bound result that says that for any bandit

algorithm:

,

where is a distance between distributions called the Kullback—Leibler divergence

lim inf
T→∞

)[N(k)
T]

ln(T) ≥ 1
d(ν(k⋆), ν(k))

d

It turns out that Thompson sampling satisfies this lower-bound with equality!

Thompson sampling in practice

11

Thompson sampling has excellent performance in practice, but is still just a heuristic
However, asymptotically, i.e., as , it actually is optimal in a certain senseT → ∞
There is an instance-dependent lower-bound result that says that for any bandit

algorithm:

,

where is a distance between distributions called the Kullback—Leibler divergence

lim inf
T→∞

)[N(k)
T]

ln(T) ≥ 1
d(ν(k⋆), ν(k))

d

It turns out that Thompson sampling satisfies this lower-bound with equality!
So it is asymptotically optimal, not just in its rate, but its constant too!

Thompson sampling in practice

11

Thompson sampling has excellent performance in practice, but is still just a heuristic
However, asymptotically, i.e., as , it actually is optimal in a certain senseT → ∞
There is an instance-dependent lower-bound result that says that for any bandit

algorithm:

,

where is a distance between distributions called the Kullback—Leibler divergence

lim inf
T→∞

)[N(k)
T]

ln(T) ≥ 1
d(ν(k⋆), ν(k))

d

It turns out that Thompson sampling satisfies this lower-bound with equality!
So it is asymptotically optimal, not just in its rate, but its constant too!

(UCB is not, but there are more complicated versions of it that are)

Thompson sampling in practice (cont’d)

12

So Thompson sampling is basically exactly optimal for large T

Thompson sampling in practice (cont’d)

12

So Thompson sampling is basically exactly optimal for large T
What could go wrong for smaller ? Suppose and , and:T K = 2 T = 3

Thompson sampling in practice (cont’d)

12

So Thompson sampling is basically exactly optimal for large T
What could go wrong for smaller ? Suppose and , and:T K = 2 T = 3
• : , t = 0 a0 = 1 r0 = 1

Thompson sampling in practice (cont’d)

12

So Thompson sampling is basically exactly optimal for large T
What could go wrong for smaller ? Suppose and , and:T K = 2 T = 3
• : , t = 0 a0 = 1 r0 = 1
• : , t = 1 a1 = 2 r1 = 0

Thompson sampling in practice (cont’d)

12

So Thompson sampling is basically exactly optimal for large T
What could go wrong for smaller ? Suppose and , and:T K = 2 T = 3
• : , t = 0 a0 = 1 r0 = 1
• : , t = 1 a1 = 2 r1 = 0
• (last time step, with and): ?t = 2 ̂μ(1)

2 = 1 ̂μ(2)
2 = 0 a2 =

Thompson sampling in practice (cont’d)

12

So Thompson sampling is basically exactly optimal for large T
What could go wrong for smaller ? Suppose and , and:T K = 2 T = 3
• : , t = 0 a0 = 1 r0 = 1
• : , t = 1 a1 = 2 r1 = 0
• (last time step, with and): ?t = 2 ̂μ(1)

2 = 1 ̂μ(2)
2 = 0 a2 =

Thompson sampling has a decent probability of choosing , since with just
one sample from each arm, Thompson sampling isn’t sure which arm is best.

a2 = 2

Thompson sampling in practice (cont’d)

12

So Thompson sampling is basically exactly optimal for large T
What could go wrong for smaller ? Suppose and , and:T K = 2 T = 3
• : , t = 0 a0 = 1 r0 = 1
• : , t = 1 a1 = 2 r1 = 0
• (last time step, with and): ?t = 2 ̂μ(1)

2 = 1 ̂μ(2)
2 = 0 a2 =

Thompson sampling has a decent probability of choosing , since with just
one sample from each arm, Thompson sampling isn’t sure which arm is best.

a2 = 2

But is clear right choice here: there is no future value to learning more, i.e.,
no reason to explore rather than exploit.

a2 = 1

Thompson sampling in practice (cont’d)

12

So Thompson sampling is basically exactly optimal for large T
What could go wrong for smaller ? Suppose and , and:T K = 2 T = 3
• : , t = 0 a0 = 1 r0 = 1
• : , t = 1 a1 = 2 r1 = 0
• (last time step, with and): ?t = 2 ̂μ(1)

2 = 1 ̂μ(2)
2 = 0 a2 =

Thompson sampling has a decent probability of choosing , since with just
one sample from each arm, Thompson sampling isn’t sure which arm is best.

a2 = 2

But is clear right choice here: there is no future value to learning more, i.e.,
no reason to explore rather than exploit.

a2 = 1

Thompson sampling doesn’t know this, and neither does UCB (although UCB
wouldn’t happen to make the same mistake in this case).

Thompson sampling in practice (cont’d)

13

For small , Thompson sampling is not greedy enoughT

Thompson sampling in practice (cont’d)

13

For small , Thompson sampling is not greedy enoughT

Fix: add a tuning parameter to make it more greedy. Some possibilities:

Thompson sampling in practice (cont’d)

13

For small , Thompson sampling is not greedy enoughT

Fix: add a tuning parameter to make it more greedy. Some possibilities:
• Update the Beta parameters by instead of just 1 each time1+ϵ

Thompson sampling in practice (cont’d)

13

For small , Thompson sampling is not greedy enoughT

Fix: add a tuning parameter to make it more greedy. Some possibilities:
• Update the Beta parameters by instead of just 1 each time1+ϵ
• Instead of just taking one sample of and computing the greedy action with

respect to it, take samples, compute the greedy action with respect to each,
and pick the mode of those greedy actions

μ
n

Thompson sampling in practice (cont’d)

13

For small , Thompson sampling is not greedy enoughT

Fix: add a tuning parameter to make it more greedy. Some possibilities:
• Update the Beta parameters by instead of just 1 each time1+ϵ
• Instead of just taking one sample of and computing the greedy action with

respect to it, take samples, compute the greedy action with respect to each,
and pick the mode of those greedy actions

μ
n

All of these favor arms that the algorithm has more confidence are good (i.e., arms
that have worked well so far), as opposed to arms that may be good

Thompson sampling in practice (cont’d)

13

For small , Thompson sampling is not greedy enoughT

Fix: add a tuning parameter to make it more greedy. Some possibilities:
• Update the Beta parameters by instead of just 1 each time1+ϵ
• Instead of just taking one sample of and computing the greedy action with

respect to it, take samples, compute the greedy action with respect to each,
and pick the mode of those greedy actions

μ
n

All of these favor arms that the algorithm has more confidence are good (i.e., arms
that have worked well so far), as opposed to arms that may be good

Such tuning can improve Thompson sampling’s performance even for reasonably
large (the asymptotic optimality of vanilla TS is very asymptotic)T

Exactly optimality in Bayesian Bernoulli bandit

14

Exactly optimality in Bayesian Bernoulli bandit

14

For infinite time horizon with discount factor , can exactly optimize γ) [
∞

∑
t=0

γtrt]

Exactly optimality in Bayesian Bernoulli bandit

14

For infinite time horizon with discount factor , can exactly optimize γ) [
∞

∑
t=0

γtrt]
Gittins index is both the name of a quantity that can be computed for each arm at

any given time, and often also used to refer to the algorithm that chooses the argmax
of the Gittins index at each time point

Exactly optimality in Bayesian Bernoulli bandit

14

For infinite time horizon with discount factor , can exactly optimize γ) [
∞

∑
t=0

γtrt]
Gittins index is both the name of a quantity that can be computed for each arm at

any given time, and often also used to refer to the algorithm that chooses the argmax
of the Gittins index at each time point

Algorithm/proof beyond scope of this class, but rely on an efficient approximation to
the Gittins index via dynamic programming that updates when an arm is pulled

Exactly optimality in Bayesian Bernoulli bandit

14

For infinite time horizon with discount factor , can exactly optimize γ) [
∞

∑
t=0

γtrt]
Gittins index is both the name of a quantity that can be computed for each arm at

any given time, and often also used to refer to the algorithm that chooses the argmax
of the Gittins index at each time point

Algorithm/proof beyond scope of this class, but rely on an efficient approximation to
the Gittins index via dynamic programming that updates when an arm is pulled

Performance is great, even if prior is wrong, but algorithmic principle behind it brittle:
doesn’t easily extend to exact optimality in even slightly more complex settings

Today

15

• Feedback from last lecture

• Recap

• Thompson sampling

• Contextual banditsNo

Beyond simple bandits

16

Beyond simple bandits

16

In a bandit, we are presented with the same decision at every time

Beyond simple bandits

16

In a bandit, we are presented with the same decision at every time
In practice, often decisions are not the same every time

Beyond simple bandits

16

E.g., in online advertising there may not be a single best ad to show all users
on all websites:

In a bandit, we are presented with the same decision at every time
In practice, often decisions are not the same every time

Beyond simple bandits

16

E.g., in online advertising there may not be a single best ad to show all users
on all websites:
• maybe some types of users prefer one ad while others prefer another, or

In a bandit, we are presented with the same decision at every time
In practice, often decisions are not the same every time

Beyond simple bandits

16

E.g., in online advertising there may not be a single best ad to show all users
on all websites:
• maybe some types of users prefer one ad while others prefer another, or
• maybe one type of ad works better on certain websites while another

works better on other websites

In a bandit, we are presented with the same decision at every time
In practice, often decisions are not the same every time

Beyond simple bandits

16

E.g., in online advertising there may not be a single best ad to show all users
on all websites:
• maybe some types of users prefer one ad while others prefer another, or
• maybe one type of ad works better on certain websites while another

works better on other websites
Which user comes in next is random, but we have some context to tell
situations apart and hence learn different optimal actions

In a bandit, we are presented with the same decision at every time
In practice, often decisions are not the same every time

Contextual bandit environment

17

Contextual bandit environment

17

Context at time encoded into a variable that we see before choosing our actiont xt

Contextual bandit environment

17

Context at time encoded into a variable that we see before choosing our actiont xt

 is drawn i.i.d. at each time point from a distribution on sample space xt νx ,

Contextual bandit environment

17

Context at time encoded into a variable that we see before choosing our actiont xt

 then affects the reward distributions of each arm, i.e., if we choose arm , we get a
reward that is drawn from a distribution that depends on , namely,

xt k
xt ν(k)(xt)

 is drawn i.i.d. at each time point from a distribution on sample space xt νx ,

Contextual bandit environment

17

Context at time encoded into a variable that we see before choosing our actiont xt

Accordingly, we should also choose our action in a way that depends on , i.e.,
our action should be chosen by a function of (a policy), namely,

at xt
xt πt(xt)

 then affects the reward distributions of each arm, i.e., if we choose arm , we get a
reward that is drawn from a distribution that depends on , namely,

xt k
xt ν(k)(xt)

 is drawn i.i.d. at each time point from a distribution on sample space xt νx ,

Contextual bandit environment

17

Context at time encoded into a variable that we see before choosing our actiont xt

Accordingly, we should also choose our action in a way that depends on , i.e.,
our action should be chosen by a function of (a policy), namely,

at xt
xt πt(xt)

If we knew everything about the environment, we’d want to use the optimal policy

π⋆(xt) := arg max

k∈{1,…,K}
μ(k)(xt), where μ(k)(x) :=)r∼ν(k)(x)[r]

 then affects the reward distributions of each arm, i.e., if we choose arm , we get a
reward that is drawn from a distribution that depends on , namely,

xt k
xt ν(k)(xt)

 is drawn i.i.d. at each time point from a distribution on sample space xt νx ,

Contextual bandit environment

17

Context at time encoded into a variable that we see before choosing our actiont xt

Accordingly, we should also choose our action in a way that depends on , i.e.,
our action should be chosen by a function of (a policy), namely,

at xt
xt πt(xt)

If we knew everything about the environment, we’d want to use the optimal policy

π⋆(xt) := arg max

k∈{1,…,K}
μ(k)(xt), where μ(k)(x) :=)r∼ν(k)(x)[r]

 then affects the reward distributions of each arm, i.e., if we choose arm , we get a
reward that is drawn from a distribution that depends on , namely,

xt k
xt ν(k)(xt)

 is drawn i.i.d. at each time point from a distribution on sample space xt νx ,

 is the policy we compare to in computing regretπ⋆

Contextual bandit environment (cont’d)

18

Formally, a contextual bandit is the following interactive learning process:

Contextual bandit environment (cont’d)

18

Formally, a contextual bandit is the following interactive learning process:
For t = 0 → T − 1

Contextual bandit environment (cont’d)

18

Formally, a contextual bandit is the following interactive learning process:
For t = 0 → T − 1

1. Learner sees context xt ∼ νx

Contextual bandit environment (cont’d)

18

Formally, a contextual bandit is the following interactive learning process:
For t = 0 → T − 1

1. Learner sees context xt ∼ νx Independent of any previous data

Contextual bandit environment (cont’d)

18

Formally, a contextual bandit is the following interactive learning process:
For t = 0 → T − 1

2. Learner pulls arm at = πt(xt) ∈ {1,…, K}
1. Learner sees context xt ∼ νx Independent of any previous data

Contextual bandit environment (cont’d)

18

Formally, a contextual bandit is the following interactive learning process:
For t = 0 → T − 1

2. Learner pulls arm at = πt(xt) ∈ {1,…, K}
1. Learner sees context xt ∼ νx

 policy learned from

all data seen so far

πt

Independent of any previous data

Contextual bandit environment (cont’d)

18

Formally, a contextual bandit is the following interactive learning process:
For t = 0 → T − 1

2. Learner pulls arm at = πt(xt) ∈ {1,…, K}
3. Learner observes reward from arm in context rt ∼ ν(at)(xt) at xt

1. Learner sees context xt ∼ νx
 policy learned from

all data seen so far

πt

Independent of any previous data

Contextual bandit environment (cont’d)

18

Formally, a contextual bandit is the following interactive learning process:
For t = 0 → T − 1

2. Learner pulls arm at = πt(xt) ∈ {1,…, K}
3. Learner observes reward from arm in context rt ∼ ν(at)(xt) at xt

1. Learner sees context xt ∼ νx
 policy learned from

all data seen so far

πt

Note that if the context distribution always returns the same value (e.g., 0), then
the contextual bandit reduces to the original multi-armed bandit

νx

Independent of any previous data

Contextual bandit environment (cont’d)

18

Formally, a contextual bandit is the following interactive learning process:
For t = 0 → T − 1

2. Learner pulls arm at = πt(xt) ∈ {1,…, K}
3. Learner observes reward from arm in context rt ∼ ν(at)(xt) at xt

1. Learner sees context xt ∼ νx
 policy learned from

all data seen so far

πt

Note that if the context distribution always returns the same value (e.g., 0), then
the contextual bandit reduces to the original multi-armed bandit

νx

 might seem unfamiliar since we haven’t talked about a policy in bandits before, but
actually we’ve always had it, it’s just that without context, we didn’t need a name or

notation for it because it was so simple!

πt

Independent of any previous data

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

19

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

πt = arg max
k

UCB(k)
t

19

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

πt = arg max
k

UCB(k)
t

For Thompson sampling?

19

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

πt = arg max
k

UCB(k)
t

For Thompson sampling?
 was a randomized policy that sampled from the posterior distribution of πt k⋆

19

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

πt = arg max
k

UCB(k)
t

For Thompson sampling?
 was a randomized policy that sampled from the posterior distribution of πt k⋆

Now what about contextual versions?

19

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

πt = arg max
k

UCB(k)
t

For Thompson sampling?
 was a randomized policy that sampled from the posterior distribution of πt k⋆

Now what about contextual versions?
Thompson sampling with contexts is conceptually identical!

19

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

πt = arg max
k

UCB(k)
t

For Thompson sampling?
 was a randomized policy that sampled from the posterior distribution of πt k⋆

Now what about contextual versions?
Thompson sampling with contexts is conceptually identical!

Still start from a prior on , {ν(k)(x)}k∈{1,…,K},x∈,

19

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

πt = arg max
k

UCB(k)
t

For Thompson sampling?
 was a randomized policy that sampled from the posterior distribution of πt k⋆

Now what about contextual versions?
Thompson sampling with contexts is conceptually identical!

but now this is (usually) distributions, so need more complicated priorK |,| ≫ K
Still start from a prior on , {ν(k)(x)}k∈{1,…,K},x∈,

19

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

πt = arg max
k

UCB(k)
t

For Thompson sampling?
 was a randomized policy that sampled from the posterior distribution of πt k⋆

Now what about contextual versions?
Thompson sampling with contexts is conceptually identical!

but now this is (usually) distributions, so need more complicated priorK |"| ≫ K
Still can update distribution on after each reward {ν(k)(x)}k∈{1,…,K},x∈" rt ∼ ν(at)(xt)

Still start from a prior on , {ν(k)(x)}k∈{1,…,K},x∈"

19

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

πt = arg max
k

UCB(k)
t

For Thompson sampling?
 was a randomized policy that sampled from the posterior distribution of πt k⋆

Now what about contextual versions?
Thompson sampling with contexts is conceptually identical!

but now this is (usually) distributions, so need more complicated priorK |"| ≫ K
Still can update distribution on after each reward {ν(k)(x)}k∈{1,…,K},x∈" rt ∼ ν(at)(xt)

Still start from a prior on , {ν(k)(x)}k∈{1,…,K},x∈"

Still know posterior over that can draw from to choose ; this is k⋆(xt) at πt(xt)
19

UCB for contextual bandits

20

UCB for contextual bandits

20

UCB algorithm also conceptually identical as long as finite:
|"|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |"| /δ)/2N(k)

t (xt)

UCB for contextual bandits

20

UCB algorithm also conceptually identical as long as finite:
|"|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |"| /δ)/2N(k)

t (xt)

• Added argument to and since we now keep track of the sample
mean and number of arm pulls separately for each value of the context

xt ̂μ(k)
t N(k)

t

UCB for contextual bandits

20

UCB algorithm also conceptually identical as long as finite:
|"|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |"| /δ)/2N(k)

t (xt)

• Added argument to and since we now keep track of the sample
mean and number of arm pulls separately for each value of the context

xt ̂μ(k)
t N(k)

t

• Added inside the log because our union bound argument is now over
all arm mean estimates , of which there are instead of just

|"|
̂μ(k)
t (x) K |"| K

UCB for contextual bandits

20

UCB algorithm also conceptually identical as long as finite:
|"|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |"| /δ)/2N(k)

t (xt)

• Added argument to and since we now keep track of the sample
mean and number of arm pulls separately for each value of the context

xt ̂μ(k)
t N(k)

t

• Added inside the log because our union bound argument is now over
all arm mean estimates , of which there are instead of just

|"|
̂μ(k)
t (x) K |"| K

But when is really big (or even infinite), this will be really bad!|"|

UCB for contextual bandits

20

UCB algorithm also conceptually identical as long as finite:
|"|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |"| /δ)/2N(k)

t (xt)

• Added argument to and since we now keep track of the sample
mean and number of arm pulls separately for each value of the context

xt ̂μ(k)
t N(k)

t

• Added inside the log because our union bound argument is now over
all arm mean estimates , of which there are instead of just

|"|
̂μ(k)
t (x) K |"| K

But when is really big (or even infinite), this will be really bad!|"|
Solution: share information across contexts , i.e., don’t treat and as

completely different distributions which have nothing to do with one another
xt ν(k)(x) ν(k)(x′)

UCB for contextual bandits

20

UCB algorithm also conceptually identical as long as finite:
|"|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |"| /δ)/2N(k)

t (xt)

• Added argument to and since we now keep track of the sample
mean and number of arm pulls separately for each value of the context

xt ̂μ(k)
t N(k)

t

• Added inside the log because our union bound argument is now over
all arm mean estimates , of which there are instead of just

|"|
̂μ(k)
t (x) K |"| K

But when is really big (or even infinite), this will be really bad!|"|
Solution: share information across contexts , i.e., don’t treat and as

completely different distributions which have nothing to do with one another
xt ν(k)(x) ν(k)(x′)

Example: showing an ad on a NYT article on politics vs a NYT article on sports:

UCB for contextual bandits

20

UCB algorithm also conceptually identical as long as finite:
|"|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |"| /δ)/2N(k)

t (xt)

• Added argument to and since we now keep track of the sample
mean and number of arm pulls separately for each value of the context

xt ̂μ(k)
t N(k)

t

• Added inside the log because our union bound argument is now over
all arm mean estimates , of which there are instead of just

|"|
̂μ(k)
t (x) K |"| K

But when is really big (or even infinite), this will be really bad!|"|
Solution: share information across contexts , i.e., don’t treat and as

completely different distributions which have nothing to do with one another
xt ν(k)(x) ν(k)(x′)

Example: showing an ad on a NYT article on politics vs a NYT article on sports:
Not identical readership, but still both on NYT, so probably still similar readership!

Modeling in contextual bandits

21

Modeling in contextual bandits

21

Need a model for , e.g., a linear model: μ(k)(x) μ(k)(x) = θ⊤
k x

Modeling in contextual bandits

21

Need a model for , e.g., a linear model: μ(k)(x) μ(k)(x) = θ⊤
k x

E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of), for articles
on politics or sports (encoded as 0 or 1 in the second entry of)

x
x ⇒ x ∈ {0,1}2

Modeling in contextual bandits

21

Need a model for , e.g., a linear model: μ(k)(x) μ(k)(x) = θ⊤
k x

 w/o linear model, need to learn 4 different values for each arm |"| = 4 ⇒ μ(k)(x) k

E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of), for articles
on politics or sports (encoded as 0 or 1 in the second entry of)

x
x ⇒ x ∈ {0,1}2

Modeling in contextual bandits

21

Need a model for , e.g., a linear model: μ(k)(x) μ(k)(x) = θ⊤
k x

 w/o linear model, need to learn 4 different values for each arm |"| = 4 ⇒ μ(k)(x) k

E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of), for articles
on politics or sports (encoded as 0 or 1 in the second entry of)

x
x ⇒ x ∈ {0,1}2

With linear model there are just 2 parameters: the two entries of θk ∈ ℝ2

Modeling in contextual bandits

21

Need a model for , e.g., a linear model: μ(k)(x) μ(k)(x) = θ⊤
k x

 w/o linear model, need to learn 4 different values for each arm |"| = 4 ⇒ μ(k)(x) k

E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of), for articles
on politics or sports (encoded as 0 or 1 in the second entry of)

x
x ⇒ x ∈ {0,1}2

With linear model there are just 2 parameters: the two entries of θk ∈ ℝ2

Lower dimension makes learning easier, but model could be wrong/biased

Modeling in contextual bandits

21

Need a model for , e.g., a linear model: μ(k)(x) μ(k)(x) = θ⊤
k x

 w/o linear model, need to learn 4 different values for each arm |"| = 4 ⇒ μ(k)(x) k

E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of), for articles
on politics or sports (encoded as 0 or 1 in the second entry of)

x
x ⇒ x ∈ {0,1}2

With linear model there are just 2 parameters: the two entries of θk ∈ ℝ2

Lower dimension makes learning easier, but model could be wrong/biased

Choosing the best model, fitting it, and quantifying uncertainty are

 really questions of supervised learning

Today

22

• Feedback from last lecture

• Recap

• Thompson sampling

• Contextual bandits

Summary:

Feedback:

bit.ly/3RHtlxy

23

Attendance: 
bit.ly/3RcTC9T

•Thompson sampling samples optimal arm from its (posterior) distribution

•Thompson sampling achieves excellent performance in practice

•Contextual bandits adds state to bandit problem, but algorithms extend

•For better performance, need modeling via supervised learning

