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Bayesian bandit summary
A Bayesian bandit augments the bandit environment we’ve been working in so far 
with a prior distribution on the unknown reward distributions; for Bernoulli bandits, 
the reward distributions are entirely characterized by , so prior is: μ π(μ)

6



Bayesian bandit summary
A Bayesian bandit augments the bandit environment we’ve been working in so far 
with a prior distribution on the unknown reward distributions; for Bernoulli bandits, 
the reward distributions are entirely characterized by , so prior is: μ π(μ)

6

Bayes rule at time step  gives us a distribution (called the posterior distribution)



that exactly characterizes our uncertainty about 

t
ℙ(μ ∣ r0, a0, r1, a1, …, rt−1, at−1)

μ



Bayesian bandit summary
A Bayesian bandit augments the bandit environment we’ve been working in so far 
with a prior distribution on the unknown reward distributions; for Bernoulli bandits, 
the reward distributions are entirely characterized by , so prior is: μ π(μ)

6

Bayes rule at time step  gives us a distribution (called the posterior distribution)



that exactly characterizes our uncertainty about 

t
ℙ(μ ∣ r0, a0, r1, a1, …, rt−1, at−1)

μ
Bernoulli bandit’s posterior is Beta-distributed with simple parameter updates



Bayesian bandit summary
A Bayesian bandit augments the bandit environment we’ve been working in so far 
with a prior distribution on the unknown reward distributions; for Bernoulli bandits, 
the reward distributions are entirely characterized by , so prior is: μ π(μ)

6

Bayes rule at time step  gives us a distribution (called the posterior distribution)



that exactly characterizes our uncertainty about 

t
ℙ(μ ∣ r0, a0, r1, a1, …, rt−1, at−1)

μ

Note that although we are now treating  as random, we still assume its value is 
only drawn once (from the prior) and then stays the same throughout 

μ
t

Bernoulli bandit’s posterior is Beta-distributed with simple parameter updates



Bayesian bandit summary
A Bayesian bandit augments the bandit environment we’ve been working in so far 
with a prior distribution on the unknown reward distributions; for Bernoulli bandits, 
the reward distributions are entirely characterized by , so prior is: μ π(μ)

6

Bayes rule at time step  gives us a distribution (called the posterior distribution)



that exactly characterizes our uncertainty about 

t
ℙ(μ ∣ r0, a0, r1, a1, …, rt−1, at−1)

μ

Note that although we are now treating  as random, we still assume its value is 
only drawn once (from the prior) and then stays the same throughout 

μ
t

What changes with  is our information about , i.e., the posterior distribution, as 
we collect more and more data by pulling arms via a bandit algorithm

t μ

Bernoulli bandit’s posterior is Beta-distributed with simple parameter updates
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Thompson sampling: sample from this distribution to determine next arm to pull
For t = 0,…, T − 1 :

at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

That’s it! Statistically, this is a super simple and elegant algorithm
(though computationally, it may not be easy to update the posterior at each time step)

                                                                      Draw a sample  and 
then compute , which is the same thing as 
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Why is this a good idea?
A good tradeoff of exploration vs exploitation should:

a) Sample the optimal arm as much as possible (duh)
b) Ensure arms that might still be optimal aren’t overlooked
c) Not waste undue time on less promising arms

Intuitively: want to sample arms proportionally to how promising they are
This is exactly what Thompson sampling does, where “promising” is encoded very 

naturally as: “the probability that the arm is the optimal arm, given all the data so far”

No arbitrary  tuning parameter, but do have to choose prior δ π
  can often be chosen “uninformatively” to a default prior such as the uniform, or 
can encode nuanced prior information/belief about the arms’ reward distributions
π
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Thompson sampling can do this because of the Bayesian bandit: assuming a prior on 
the reward distributions makes the arm means random, otherwise it wouldn’t even 

make sense to talk about “the probability that an arm is the best arm”

Thompson sampling samples arms proportionally to how promising they are
Note this sampling is much more sophisticated than, say, -greedy, which really just 

samples according to 2 categories: “most promising” and “other”
ε

But it’s also quite different from UCB, whose OFU approach doesn’t really involve 
“sampling” at all, i.e., every  for UCB is a deterministic function of the previous dataat

My interpretation: OFU provides a simple heuristic to accomplish what Thompson 
sampling does by design, namely, sample arms according to how promising they are

Although derived from the Bayesian bandit, Thompson sampling has excellent 
practical performance across bandit problems, whether or not they are Bayesian!
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However, asymptotically, i.e., as , it actually is optimal in a certain senseT → ∞
There is an instance-dependent lower-bound result that says that for any bandit 

algorithm: 
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where  is a distance between distributions called the Kullback—Leibler divergence

lim inf
T→∞

)[N(k)
T ]

ln(T) ≥ 1
d(ν(k⋆), ν(k))

d

It turns out that Thompson sampling satisfies this lower-bound with equality!
So it is asymptotically optimal, not just in its rate, but its constant too!

(UCB is not, but there are more complicated versions of it that are)
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What could go wrong for smaller ? Suppose  and , and:T K = 2 T = 3
• : , t = 0 a0 = 1 r0 = 1
• : , t = 1 a1 = 2 r1 = 0
•  (last time step, with  and ): ?t = 2 ̂μ(1)

2 = 1 ̂μ(2)
2 = 0 a2 =

Thompson sampling has a decent probability of choosing , since with just 
one sample from each arm, Thompson sampling isn’t sure which arm is best.

a2 = 2

But  is clear right choice here: there is no future value to learning more, i.e., 
no reason to explore rather than exploit.

a2 = 1

Thompson sampling doesn’t know this, and neither does UCB (although UCB 
wouldn’t happen to make the same mistake in this case). 
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For small , Thompson sampling is not greedy enoughT

Fix: add a tuning parameter to make it more greedy. Some possibilities:
• Update the Beta parameters by  instead of just 1 each time1+ϵ
• Instead of just taking one sample of  and computing the greedy action with 

respect to it, take  samples, compute the greedy action with respect to each, 
and pick the mode of those greedy actions

μ
n

All of these favor arms that the algorithm has more confidence are good (i.e., arms 
that have worked well so far), as opposed to arms that may be good

Such tuning can improve Thompson sampling’s performance even for reasonably 
large  (the asymptotic optimality of vanilla TS is very asymptotic)T
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For infinite time horizon with discount factor , can exactly optimize γ ) [
∞

∑
t=0

γtrt]
Gittins index is both the name of a quantity that can be computed for each arm at 

any given time, and often also used to refer to the algorithm that chooses the argmax 
of the Gittins index at each time point

Algorithm/proof beyond scope of this class, but rely on an efficient approximation to 
the Gittins index via dynamic programming that updates when an arm is pulled

Performance is great, even if prior is wrong, but algorithmic principle behind it brittle: 
doesn’t easily extend to exact optimality in even slightly more complex settings
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E.g., in online advertising there may not be a single best ad to show all users 
on all websites:
• maybe some types of users prefer one ad while others prefer another, or 
• maybe one type of ad works better on certain websites while another 

works better on other websites
Which user comes in next is random, but we have some context to tell 
situations apart and hence learn different optimal actions

In a bandit, we are presented with the same decision at every time
In practice, often decisions are not the same every time
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Context at time  encoded into a variable  that we see before choosing our actiont xt

Accordingly, we should also choose our action  in a way that depends on , i.e., 
our action should be chosen by a function of  (a policy), namely, 

at xt
xt πt(xt)

If we knew everything about the environment, we’d want to use the optimal policy

π⋆(xt) := arg max

k∈{1,…,K}
μ(k)(xt), where μ(k)(x) := )r∼ν(k)(x)[r]

 then affects the reward distributions of each arm, i.e., if we choose arm , we get a 
reward that is drawn from a distribution that depends on , namely, 

xt k
xt ν(k)(xt)

 is drawn i.i.d. at each time point from a distribution  on sample space xt νx ,

 is the policy we compare to in computing regretπ⋆



Contextual bandit environment (cont’d)

18

Formally, a contextual bandit is the following interactive learning process:



Contextual bandit environment (cont’d)

18

Formally, a contextual bandit is the following interactive learning process:
For t = 0 → T − 1



Contextual bandit environment (cont’d)

18

Formally, a contextual bandit is the following interactive learning process:
For t = 0 → T − 1

1. Learner sees context xt ∼ νx



Contextual bandit environment (cont’d)

18

Formally, a contextual bandit is the following interactive learning process:
For t = 0 → T − 1

1. Learner sees context xt ∼ νx Independent of any previous data



Contextual bandit environment (cont’d)

18

Formally, a contextual bandit is the following interactive learning process:
For t = 0 → T − 1

2. Learner pulls arm at = πt(xt) ∈ {1,…, K}
1. Learner sees context xt ∼ νx Independent of any previous data



Contextual bandit environment (cont’d)

18

Formally, a contextual bandit is the following interactive learning process:
For t = 0 → T − 1

2. Learner pulls arm at = πt(xt) ∈ {1,…, K}
1. Learner sees context xt ∼ νx

 policy learned from 

all data seen so far

πt

Independent of any previous data



Contextual bandit environment (cont’d)

18

Formally, a contextual bandit is the following interactive learning process:
For t = 0 → T − 1

2. Learner pulls arm at = πt(xt) ∈ {1,…, K}
3. Learner observes reward  from arm  in context rt ∼ ν(at)(xt) at xt

1. Learner sees context xt ∼ νx
 policy learned from 

all data seen so far

πt

Independent of any previous data



Contextual bandit environment (cont’d)

18

Formally, a contextual bandit is the following interactive learning process:
For t = 0 → T − 1

2. Learner pulls arm at = πt(xt) ∈ {1,…, K}
3. Learner observes reward  from arm  in context rt ∼ ν(at)(xt) at xt

1. Learner sees context xt ∼ νx
 policy learned from 

all data seen so far

πt

Note that if the context distribution  always returns the same value (e.g., 0), then 
the contextual bandit reduces to the original multi-armed bandit

νx

Independent of any previous data



Contextual bandit environment (cont’d)

18

Formally, a contextual bandit is the following interactive learning process:
For t = 0 → T − 1

2. Learner pulls arm at = πt(xt) ∈ {1,…, K}
3. Learner observes reward  from arm  in context rt ∼ ν(at)(xt) at xt

1. Learner sees context xt ∼ νx
 policy learned from 

all data seen so far

πt

Note that if the context distribution  always returns the same value (e.g., 0), then 
the contextual bandit reduces to the original multi-armed bandit

νx

 might seem unfamiliar since we haven’t talked about a policy in bandits before, but 
actually we’ve always had it, it’s just that without context, we didn’t need a name or 

notation for it because it was so simple!

πt

Independent of any previous data
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What was  for UCB? (  has no argument because there was no context)πt πt

πt = arg max
k
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t

For Thompson sampling?
 was a randomized policy that sampled from the posterior distribution of πt k⋆

Now what about contextual versions?
Thompson sampling with contexts is conceptually identical!

but now this is  (usually  ) distributions, so need more complicated priorK |"| ≫ K
Still can update distribution on  after each reward {ν(k)(x)}k∈{1,…,K},x∈" rt ∼ ν(at)(xt)

Still start from a prior on , {ν(k)(x)}k∈{1,…,K},x∈"

Still know posterior over  that can draw from to choose ; this is k⋆(xt) at πt(xt)
19
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UCB algorithm also conceptually identical as long as  finite:
|"|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |"| /δ)/2N(k)

t (xt)

• Added  argument to  and  since we now keep track of the sample 
mean and number of arm pulls separately for each value of the context

xt ̂μ(k)
t N(k)

t

• Added  inside the log because our union bound argument is now over 
all arm mean estimates , of which there are  instead of just 

|"|
̂μ(k)
t (x) K |"| K

But when  is really big (or even infinite), this will be really bad!|"|
Solution: share information across contexts , i.e., don’t treat  and  as 

completely different distributions which have nothing to do with one another
xt ν(k)(x) ν(k)(x′ )

Example: showing an ad on a NYT article on politics vs a NYT article on sports: 
Not identical readership, but still both on NYT, so probably still similar readership!
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Need a model for , e.g., a linear model: μ(k)(x) μ(k)(x) = θ⊤
k x

   w/o linear model, need to learn 4 different  values for each arm |"| = 4 ⇒ μ(k)(x) k

E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of ), for articles 
on politics or sports (encoded as 0 or 1 in the second entry of ) 

x
x ⇒ x ∈ {0,1}2

With linear model there are just 2 parameters: the two entries of θk ∈ ℝ2

Lower dimension makes learning easier, but model could be wrong/biased

Choosing the best model, fitting it, and quantifying uncertainty are

 really questions of supervised learning
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• Feedback from last lecture

• Recap

• Thompson sampling

• Contextual bandits



Summary:

Feedback: 

bit.ly/3RHtlxy
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Attendance: 
bit.ly/3RcTC9T

•Thompson sampling samples optimal arm from its (posterior) distribution

•Thompson sampling achieves excellent performance in practice

•Contextual bandits adds state to bandit problem, but algorithms extend

•For better performance, need modeling via supervised learning


