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Abstract
In many sequential decision-making problems one is interested in minimizing an expected cumula-
tive cost while taking into account risk, i.e., increased awareness of events of small probability and
high consequences. Accordingly, the objective of this paper is to present efficient reinforcement
learning algorithms for risk-constrained Markov decision processes (MDPs), where risk is repre-
sented via a chance constraint or a constraint on the conditional value-at-risk (CVaR) of the cumula-
tive cost. We collectively refer to such problems as percentile risk-constrained MDPs. Specifically,
we first derive a formula for computing the gradient of the Lagrangian function for percentile risk-
constrained MDPs. Then, we devise policy gradient and actor-critic algorithms that (1) estimate
such gradient, (2) update the policy in the descent direction, and (3) update the Lagrange multiplier
in the ascent direction. For these algorithms we prove convergence to locally optimal policies. Fi-
nally, we demonstrate the effectiveness of our algorithms in an optimal stopping problem and an
online marketing application.
Keywords: Markov Decision Process, Reinforcement Learning, Conditional Value-at-Risk, Chance-
Constrained Optimization, Policy Gradient Algorithms, Actor-Critic Algorithms

1. Introduction

The most widely-adopted optimization criterion for Markov decision processes (MDPs) is repre-
sented by the risk-neutral expectation of a cumulative cost. However, in many applications one is
interested in taking into account risk, i.e., increased awareness of events of small probability and
high consequences. Accordingly, in risk-sensitive MDPs the objective is to minimize a risk-sensitive
criterion such as the expected exponential utility, a variance-related measure, or percentile perfor-
mance. There are several risk metrics available in the literature, and constructing a “good” risk
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criterion in a manner that is both conceptually meaningful and computationally tractable remains a
topic of current research.

Risk-Sensitive MDPs: One of the earliest risk metrics used for risk-sensitive MDPs is the ex-
ponential risk metric (1/γ)E

[
exp(γZ)

]
, where Z represents the cumulative cost for a sequence of

decisions (Howard and Matheson, 1972). In this setting, the degree of risk-aversion is controlled by
the parameter γ, whose selection, however, is often challenging. This motivated the study of sev-
eral different approaches. In Collins (1997), the authors considered the maximization of a strictly
concave functional of the distribution of the terminal state. In Wu and Lin (1999); Boda et al.
(2004); Filar et al. (1995), risk-sensitive MDPs are cast as the problem of maximizing percentile
performance. Variance-related risk metrics are considered, e.g., in Sobel (1982); Filar et al. (1989).
Other mean, variance, and probabilistic criteria for risk-sensitive MDPs are discussed in the survey
(White, 1988).

Numerous alternative risk metrics have recently been proposed in the literature, usually with the
goal of providing an “intuitive” notion of risk and/or to ensure computational tractability. Value-at-
risk (VaR) and conditional value-at-risk (CVaR) represent two promising such alternatives. They
both aim at quantifying costs that might be encountered in the tail of a cost distribution, but in
different ways. Specifically, for continuous cost distributions, VaRα measures risk as the maximum
cost that might be incurred with respect to a given confidence level α. This risk metric is particularly
useful when there is a well-defined failure state, e.g., a state that leads a robot to collide with an
obstacle. A VaRα constraint is often referred to as a chance (probability) constraint, especially
in the engineering literature, and we will use this terminology in the remainder of the paper. In
contrast, CVaRα measures risk as the expected cost given that such cost is greater than or equal
to VaRα, and provides a number of theoretical and computational advantages. CVaR optimization
was first developed by Rockafellar and Uryasev (Rockafellar and Uryasev, 2002, 2000) and its
numerical effectiveness has been demonstrated in several portfolio optimization and option hedging
problems. Risk-sensitive MDPs with a conditional value at risk metric were considered in Boda
and Filar (2006); Ott (2010); Bäuerle and Ott (2011), and a mean-average-value-at-risk problem
has been solved in Bäuerle and Mundt (2009) for minimizing risk in financial markets.

The aforementioned works focus on the derivation of exact solutions, and the ensuing algorithms
are only applicable to relatively small problems. This has recently motivated the application of
reinforcement learning (RL) methods to risk-sensitive MDPs. We will refer to such problems as
risk-sensitive RL.

Risk-Sensitive RL: To address large-scale problems, it is natural to apply reinforcement learn-
ing (RL) techniques to risk-sensitive MDPs. Reinforcement learning (Bertsekas and Tsitsiklis,
1996; Sutton and Barto, 1998) can be viewed as a class of sampling-based methods for solving
MDPs. Popular reinforcement learning techniques include policy gradient (Williams, 1992; Mar-
bach, 1998; Baxter and Bartlett, 2001) and actor-critic methods (Sutton et al., 2000; Konda and
Tsitsiklis, 2000; Peters et al., 2005; Borkar, 2005; Bhatnagar et al., 2009; Bhatnagar and Laksh-
manan, 2012), whereby policies are parameterized in terms of a parameter vector and policy search
is performed via gradient flow approaches. One effective way to estimate gradients in RL problems
is by simultaneous perturbation stochastic approximation (SPSA) (Spall, 1992). Risk-sensitive RL
with expected exponential utility has been considered in Borkar (2001, 2002). More recently, the
works in Tamar et al. (2012); Prashanth and Ghavamzadeh (2013) present RL algorithms for several
variance-related risk measures, the works in Morimura et al. (2010); Tamar et al. (2015); Petrik and
Subramanian (2012) consider CVaR-based formulations, and the works in Tallec (2007); Shapiro
et al. (2013) consider nested CVaR-based formulations.
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Risk-Constrained RL and Paper Contributions: Despite the rather large literature on risk-sensitive
MDPs and RL, risk-constrained formulations have largely gone unaddressed, with only a few ex-
ceptions, e.g., Chow and Pavone (2013); Borkar and Jain (2014). Yet constrained formulations
naturally arise in several domains, including engineering, finance, and logistics, and provide a prin-
cipled approach to address multi-objective problems. The objective of this paper is to fill this gap,
by devising policy gradient and actor-critic algorithms for risk-constrained MDPs where risk is rep-
resented via a constraint on the conditional value-at-risk (CVaR) of the cumulative cost, or as a
chance constraint. Specifically, the contribution of this paper is fourfold.

1. We formulate two risk-constrained MDP problems. The first one involves a CVaR constraint
and the second one involves a chance constraint. For the CVaR-constrained optimization
problem, we consider both discrete and continuous cost distributions. By re-writing the prob-
lems using a Lagrangian formulation, we derive for both problems a Bellman optimality con-
dition with respect to an augmented MDP.

2. We devise a trajectory-based policy gradient algorithm for both CVaR-constrained and chance-
constrained MDPs. The key novelty of this algorithm lies in an unbiased gradient estimation
procedure under Monte Carlo sampling. Using an ordinary differential equation (ODE) ap-
proach, we establish convergence of the algorithm to locally optimal policies.

3. Using the aforementioned Bellman optimality condition, we derive several actor-critic algo-
rithms to optimize policy and value function approximation parameters in an online fashion.
As for the trajectory-based policy gradient algorithm, we show that the proposed actor-critic
algorithms converge to locally optimal solutions.

4. We demonstrate the effectiveness of our algorithms in an optimal stopping problem as well
as in a realistic personalized ad recommendation problem (see Derfer et al. 2007 for more de-
tails). For the latter problem, we empirically show that our CVaR-constrained RL algorithms
successfully guarantee that the worst-case revenue is lower-bounded by the pre-specified com-
pany yearly target.

The rest of the paper is structured as follows. In Section 2 we introduce our notation and
rigorously state the problem we wish to address, namely risk-constrained RL. The next two sec-
tions provide various RL methods to approximately compute (locally) optimal policies for CVaR
constrained MDPs. A trajectory-based policy gradient algorithm is presented in Section 3 and its
convergence analysis is provided in Appendix A (Appendix A.1 provides the gradient estimates of
the CVaR parameter, the policy parameter, and the Lagrange multiplier, and Appendix A.2 gives
their convergence proofs). Actor-critic algorithms are presented in Section 4 and their convergence
analysis is provided in Appendix B (Appendix B.1 derives the gradient of the Lagrange multiplier as
a function of the state-action value function, Appendix B.2.1 analyzes the convergence of the critic,
and Appendix B.2.2 provides the multi-timescale convergence results of the CVaR parameter, the
policy parameter, and the Lagrange multiplier). Section 5 generalizes the above policy gradient and
actor-critic methods to the chance-constrained case. Empirical evaluation of our algorithms is the
subject of Section 6. Finally, we conclude the paper in Section 7, where we also provide directions
for future work.

This paper generalizes earlier results by the authors presented in Chow and Ghavamzadeh
(2014).

3



2. Preliminaries

We begin by defining some notation that is used throughout the paper, as well as defining the prob-
lem addressed herein and stating some basic assumptions.

2.1 Notation

We consider decision-making problems modeled as a finite MDP (an MDP with finite state and
action spaces). A finite MDP is a tuple (X ,A, C,D, P, P0) where X = {1, . . . , n, xTar} and A =
{1, . . . ,m} are the state and action spaces, xTar is a recurrent target state, and for a state x and an
action a, C(x, a) is a cost function with |C(x, a)| ≤ Cmax, D(x, a) is a constraint cost function
with |D(x, a)| ≤ Dmax

1, P (·|x, a) is the transition probability distribution, and P0(·) is the initial
state distribution. For simplicity, in this paper we assume P0 = 1{x = x0} for some given initial
state x0 ∈ {1, . . . , n}. Generalizations to non-atomic initial state distributions are straightforward,
for which the details are omitted for the sake of brevity. A stationary policy µ(·|x) for an MDP is
a probability distribution over actions, conditioned on the current state. In policy gradient methods,
such policies are parameterized by a κ-dimensional vector θ, so the space of policies can be written
as
{
µ(·|x; θ), x ∈ X , θ ∈ Θ ⊆ Rκ

}
. Since in this setting a policy µ is uniquely defined by its

parameter vector θ, policy-dependent functions can be written as a function of µ or θ, and we use µ
and θ interchangeably in the paper.

Given a fixed γ ∈ (0, 1), we denote by dµγ(x|x0) = (1−γ)
∑∞

k=0 γ
kP(xk = x|x0 = x0;µ) and

πµγ (x, a|x0) = dµγ(x|x0)µ(a|x), the γ-discounted occupation measure of state x and state-action
pair (x, a) under policy µ, respectively. This occupation measure is a γ-discounted probability
distribution for visiting each state and action pair, and it plays an important role in sampling states
and actions from the real system in policy gradient and actor-critic algorithms, and in guaranteeing
their convergence. Because the state and action spaces are finite, Theorem 3.1 in Altman (1999)
shows that the occupation measure dµγ(x|x0) is a well-defined probability distribution. On the other
hand, when γ = 1 the occupation measure of state x and state-action pair (x, a) under policy µ are
respectively defined by dµ(x|x0) =

∑∞
t=0 P(xt = x|x0;µ) and πµ(x, a|x0) = dµ(x|x0)µ(a|x).

In this case the occupation measures characterize the total sums of visiting probabilities (although
they are not in general probability distributions themselves) of state x and state-action pair (x, a).
To study the well-posedness of the occupation measure, we define the following notion of a transient
MDP.

Definition 1 Define X ′ = X \ {xTar} = {1, . . . , n} as a state space of transient states. An MDP is
said to be transient if,

1.
∑∞

k=0 P(xk = x|x0, µ) <∞ for every x ∈ X ′ and every stationary policy µ,

2. P (xTar|xTar, a) = 1 for every admissible control action a ∈ A.

Furthermore let Tµ,x be the first-hitting time of the target state xTar from an arbitrary initial state
x ∈ X in the Markov chain induced by transition probability P (·|x, a) and policy µ. Although
transience implies the first-hitting time is square integrable and finite almost surely, we will make
the stronger assumption (which implies transience) on the uniform boundedness of the first-hitting
time.

1. Without loss of generality, we set the cost function C(x, a) and constraint cost function D(x, a) to zero when
x = xTar.
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Assumption 2 The first-hitting time Tµ,x is bounded almost surely over all stationary policies µ
and all initial states x ∈ X . We will refer to this upper bound as T , i.e., Tµ,x ≤ T almost surely.

The above assumption can be justified by the fact that sample trajectories collected in most rein-
forcement learning algorithms (including policy gradient and actor-critic methods) consist of a finite
stopping time (also known as a time-out). If nothing else, such a bound ensures that the computation
time is not unbounded. Note that although a bounded stopping time would seem to conflict with the
time-stationarity of the transition probabilities, this can be resolved by augmenting the state space
with a time-counter state, analogous to the arguments given in Section 4.7 in Bertsekas (1995).

Finally, we define the constraint and cost functions. Let Z be a finite-mean (E[|Z|] < ∞)
random variable representing cost, with the cumulative distribution function FZ(z) = P(Z ≤ z)
(e.g., one may think of Z as the total cost of an investment strategy µ). We define the value-at-risk
at confidence level α ∈ (0, 1) as

VaRα(Z) = min
{
z | FZ(z) ≥ α

}
.

Here the minimum is attained because FZ is non-decreasing and right-continuous in z. When FZ is
continuous and strictly increasing, VaRα(Z) is the unique z satisfying FZ(z) = α. As mentioned,
we refer to a constraint on the VaR as a chance constraint.

Although VaR is a popular risk measure, it is not a coherent risk measure (Artzner et al., 1999)
and does not quantify the costs that might be suffered beyond its value in the α-tail of the distri-
bution (Rockafellar and Uryasev, 2000), Rockafellar and Uryasev (2002). In many financial appli-
cations such as portfolio optimization where the probability of undesirable events could be small
but the cost incurred could still be significant, besides describing risk as the probability of incurring
costs, it will be more interesting to study the cost in the tail of the risk distribution. In this case, an
alternative measure that addresses most of the VaR’s shortcomings is the conditional value-at-risk,
defined as (Rockafellar and Uryasev, 2000)

CVaRα(Z) := min
ν∈R

{
ν +

1

1− α
E
[
(Z − ν)+

]}
, (1)

where (x)+ = max(x, 0) represents the positive part of x. Although this definition is somewhat
opaque, CVaR can be thought of as the average of the worst-case α-fraction of losses. Define
Hα(Z, ν) := ν + 1

1−αE
[
(Z − ν)+

]
, so that CVaRα(Z) = minν∈R Hα(Z, ν).

We define the parameter γ ∈ (0, 1] as the discounting factor for the cost and constraint cost
functions. When γ < 1, we are aiming to solve the MDP problem with more focus on optimizing
current costs over future costs. For a policy µ, we define the cost of a state x (state-action pair
(x, a)) as the sum of (discounted) costs encountered by the decision-maker when it starts at state x
(state-action pair (x, a)) and then follows policy µ, i.e.,

Cθ(x) =

T−1∑
k=0

γkC(xk, ak) | x0 = x, µ(·|·, θ), Dθ(x) =

T−1∑
k=0

γkD(xk, ak) | x0 = x, µ(·|·, θ),

and

Cθ(x, a) =

T−1∑
k=0

γkC(xk, ak) | x0 = x, a0 = a, µ(·|·, θ),

Dθ(x, a) =

T−1∑
k=0

γkD(xk, ak) | x0 = x, a0 = a, µ(·|·, θ).
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The expected values of the random variables Cθ(x) and Cθ(x, a) are known as the value and action-
value functions of policy µ, and are denoted by

V θ(x) = E
[
Cθ(x)

]
, Qθ(x, a) = E

[
Cθ(x, a)

]
.

2.2 Problem Statement

The goal for standard discounted MDPs is to find an optimal policy that solves

θ∗ = argmin
θ

V θ(x0).

For CVaR-constrained optimization in MDPs, we consider the discounted cost optimization
problem with γ ∈ (0, 1), i.e., for a given confidence level α ∈ (0, 1) and cost tolerance β ∈ R,

min
θ
V θ(x0) subject to CVaRα

(
Dθ(x0)

)
≤ β. (2)

Using the definition of Hα(Z, ν), one can reformulate (2) as:

min
θ,ν

V θ(x0) subject to Hα

(
Dθ(x0), ν

)
≤ β. (3)

It is shown in Rockafellar and Uryasev (2000) and Rockafellar and Uryasev (2002) that the optimal
ν actually equals VaRα, so we refer to this parameter as the VaR parameter. Here we choose to ana-
lyze the discounted-cost CVaR-constrained optimization problem, i.e., with γ ∈ (0, 1), as in many
financial and marketing applications where CVaR constraints are used, it is more intuitive to put
more emphasis on current costs rather than on future costs. The analysis can be easily generalized
for the case where γ = 1.

For chance-constrained optimization in MDPs, we consider the stopping cost optimization prob-
lem with γ = 1, i.e., for a given confidence level β ∈ (0, 1) and cost tolerance α ∈ R,

min
θ
V θ(x0) subject to P

(
Dθ(x0) ≥ α

)
≤ β. (4)

Here we choose γ = 1 because in many engineering applications, where chance constraints are used
to ensure overall safety, there is no notion of discounting since future threats are often as important
as the current one. Similarly, the analysis can be easily extended to the case where γ ∈ (0, 1).

There are a number of mild technical and notational assumptions which we will make through-
out the paper, so we state them here:

Assumption 3 (Differentiability) For any state-action pair (x, a), µ(a|x; θ) is continuously differ-
entiable in θ and ∇θµ(a|x; θ) is a Lipschitz function in θ for every a ∈ A and x ∈ X .2

Assumption 4 (Strict Feasibility) There exists a transient policy µ(·|x; θ) such thatHα

(
Dθ(x0), ν

)
<

β in the CVaR-constrained optimization problem, and P
(
Dθ(x0) ≥ α

)
< β in the chance-

constrained problem.

2. In actor-critic algorithms, the assumption on continuous differentiability holds for the augmented state Markovian
policies µ(a|x, s; θ).
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Note that Assumption 3 imposes smoothness on the optimal policy. Assumption 4 guarantees the
existence of a locally optimal policy for the CVaR-constrained optimization problem via the La-
grangian analysis introduced in the next subsection.

In the remainder of the paper we first focus on studying stochastic approximation algorithms
for the CVaR-constrained optimization problem (Sections 3 and 4) and then adapt the results to
the chance-constrained optimization problem in Section 5. Our solution approach relies on a La-
grangian relaxation procedure, which is discussed next.

2.3 Lagrangian Approach and Reformulation

To solve (3), we employ a Lagrangian relaxation procedure (Bertsekas, 1999), which leads to the
unconstrained problem:

max
λ≥0

min
θ,ν

(
L(ν, θ, λ) := V θ(x0) + λ

(
Hα

(
Dθ(x0), ν

)
− β

))
, (5)

where λ is the Lagrange multiplier. Notice thatL(ν, θ, λ) is a linear function in λ andHα

(
Dθ(x0), ν

)
is a continuous function in ν. Corollary 4 in (Vilkov, 1986) implies the existence of a locally optimal
policy θ∗ for the CVaR-constrained optimization problem, which corresponds to the existence of the
local saddle point (ν∗, θ∗, λ∗) for the minimax optimization problem maxλ≥0 minθ,ν L(ν, θ, λ), de-
fined as follows.

Definition 5 A local saddle point of L(ν, θ, λ) is a point (ν∗, θ∗, λ∗) such that for some r > 0,
∀(θ, ν) ∈ Θ×

[
−Dmax

1−γ ,
Dmax
1−γ

]
∩ B(θ∗,ν∗)(r) and ∀λ ≥ 0, we have

L(ν, θ, λ∗) ≥ L(ν∗, θ∗, λ∗) ≥ L(ν∗, θ∗, λ), (6)

where B(θ∗,ν∗)(r) is a hyper-dimensional ball centered at (θ∗, ν∗) with radius r > 0.

In (Ott, 2010; Bäuerle and Ott, 2011) it is shown that there exists a deterministic history-
dependent optimal policy for CVaR-constrained optimization. The important point is that this policy
does not depend on the complete history, but only on the current time step k, current state of the
system xk, and accumulated discounted constraint cost

∑k
i=0 γ

iD(xi, ai).
In the following two sections, we present a policy gradient (PG) algorithm (Section 3) and

several actor-critic (AC) algorithms (Section 4) to optimize (5) (and hence find a locally optimal
solution to problem (3)). While the PG algorithm updates its parameters after observing several
trajectories, the AC algorithms are incremental and update their parameters at each time-step.

3. A Trajectory-based Policy Gradient Algorithm

In this section, we present a policy gradient algorithm to solve the optimization problem (5). The
idea of the algorithm is to descend in (θ, ν) and ascend in λ using the gradients of L(ν, θ, λ) w.r.t. θ,
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ν, and λ, i.e.,3

∇θL(ν, θ, λ) = ∇θV θ(x0) +
λ

(1− α)
∇θE

[(
Dθ(x0)− ν

)+]
, (7)

∂νL(ν, θ, λ) = λ

(
1 +

1

(1− α)
∂νE

[(
Dθ(x0)− ν

)+]) 3 λ(1− 1

(1− α)
P
(
Dθ(x0) ≥ ν

))
,

(8)

∇λL(ν, θ, λ) = ν +
1

(1− α)
E
[(
Dθ(x0)− ν

)+]− β. (9)

The unit of observation in this algorithm is a system trajectory generated by following the cur-
rent policy. At each iteration, the algorithm generatesN trajectories by following the current policy,
uses them to estimate the gradients in (7)–(9), and then uses these estimates to update the parameters
ν, θ, λ.

Let ξ = {x0, a0, c0, x1, a1, c1, . . . , xT−1, aT−1, cT−1, xT } be a trajectory generated by follow-
ing the policy θ, where xT = xTar is the target state of the system. The cost, constraint cost,
and probability of ξ are defined as C(ξ) =

∑T−1
k=0 γ

kC(xk, ak), D(ξ) =
∑T−1

k=0 γ
kD(xk, ak), and

Pθ(ξ) = P0(x0)
∏T−1
k=0 µ(ak|xk; θ)P (xk+1|xk, ak), respectively. Based on the definition of Pθ(ξ),

one obtains∇θ logPθ(ξ) =
∑T−1

k=0 ∇θ logµ(ak|xk; θ).
Algorithm 1 contains the pseudo-code of our proposed policy gradient algorithm. What appears

inside the parentheses on the right-hand-side of the update equations are the estimates of the gradi-
ents of L(ν, θ, λ) w.r.t. θ, ν, λ (estimates of (7)–(9)). Gradient estimates of the Lagrangian function
can be found in Appendix A.1. In the algorithm, ΓΘ is an operator that projects a vector θ ∈ Rκ to
the closest point in a compact and convex set Θ ⊂ Rκ, i.e., ΓΘ(θ) = arg minθ̂∈Θ ‖θ − θ̂‖

2
2, ΓN is

a projection operator to [−Dmax
1−γ ,

Dmax
1−γ ], i.e., ΓN (ν) = arg minν̂∈[−Dmax

1−γ ,Dmax
1−γ ] ‖ν − ν̂‖

2
2, and ΓΛ

is a projection operator to [0, λmax], i.e., ΓΛ(λ) = arg minλ̂∈[0,λmax] ‖λ − λ̂‖
2
2. These projection

operators are necessary to ensure the convergence of the algorithm. Next we introduce the following
assumptions for the step-sizes of the policy gradient method in Algorithm 1.

Assumption 6 (Step Sizes for Policy Gradient) The step size schedules {ζ1(k)}, {ζ2(k)}, and
{ζ3(k)} satisfy ∑

k

ζ1(k) =
∑
k

ζ2(k) =
∑
k

ζ3(k) =∞, (10)∑
k

ζ1(k)2,
∑
k

ζ2(k)2,
∑
k

ζ3(k)2 <∞, (11)

ζ1(k) = o
(
ζ2(k)

)
, ζ2(i) = o

(
ζ3(k)

)
. (12)

These step-size schedules satisfy the standard conditions for stochastic approximation algo-
rithms, and ensure that the ν update is on the fastest time-scale

{
ζ3(k)

}
, the policy θ update is

on the intermediate time-scale
{
ζ2(k)

}
, and the Lagrange multiplier λ update is on the slowest

time-scale
{
ζ1(k)

}
. This results in a three time-scale stochastic approximation algorithm.

In the following theorem, we prove that our policy gradient algorithm converges to a locally
optimal policy for the CVaR-constrained optimization problem.

3. The notation 3 in (8) means that the right-most term is a member of the sub-gradient set ∂νL(ν, θ, λ).
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Theorem 7 Under Assumptions 2–6, the sequence of policy updates in Algorithm 1 converges al-
most surely to a locally optimal policy θ∗ for the CVaR-constrained optimization problem.

While we refer the reader to Appendix A.2 for the technical details of this proof, a high level
overview of the proof technique is given as follows.

1. First we show that each update of the multi-time scale discrete stochastic approximation al-
gorithm (νi, θi, λi) converges almost surely, but at different speeds, to the stationary point
(ν∗, θ∗, λ∗) of the corresponding continuous time system.

2. Then by using Lyapunov analysis, we show that the continuous time system is locally asymp-
totically stable at the stationary point (ν∗, θ∗, λ∗).

3. Since the Lyapunov function used in the above analysis is the Lagrangian function L(ν, θ, λ),
we finally conclude that the stationary point (ν∗, θ∗, λ∗) is also a local saddle point, which
implies θ∗ is the locally optimal policy for the CVaR-constrained optimization problem.

This convergence proof procedure is rather standard for stochastic approximation algorithms, see (Bhat-
nagar et al., 2009; Bhatnagar and Lakshmanan, 2012; Prashanth and Ghavamzadeh, 2013) for more
details, and represents the structural backbone for the convergence analysis of the other policy gra-
dient and actor-critic methods provided in this paper.

Notice that the difference in convergence speeds between θi, νi, and λi is due to the step-size
schedules. Here ν converges faster than θ and θ converges faster than λ. This multi-time scale
convergence property allows us to simplify the convergence analysis by assuming that θ and λ
are fixed in ν’s convergence analysis, assuming that ν converges to ν∗(θ) and λ is fixed in θ’s
convergence analysis, and finally assuming that ν and θ have already converged to ν∗(λ) and θ∗(λ)
in λ’s convergence analysis. To illustrate this idea, consider the following two-time scale stochastic
approximation algorithm for updating (xi, yi) ∈ X×Y:

xi+1 = xi + ζ1(i)
(
f(xi, yi) +Mi+1

)
, (13)

yi+1 = yi + ζ2(i)
(
g(xi, yi) +Ni+1

)
, (14)

where f(xi, yi) and g(xi, yi) are Lipschitz continuous functions, Mi+1, Ni+1 are square integrable
Martingale differences w.r.t. the σ-fields σ(xk, yk,Mk, k ≤ i) and σ(xk, yk, Nk, k ≤ i), and ζ1(i)
and ζ2(i) are non-summable, square summable step sizes. If ζ2(i) converges to zero faster than
ζ1(i), then (13) is a faster recursion than (14) after some iteration i0 (i.e., for i ≥ i0), which
means (13) has uniformly larger increments than (14). Since (14) can be written as

yi+1 = yi + ζ1(i)
(ζ2(i)

ζ1(i)

(
g(xi, yi) +Ni+1

))
,

and by the fact that ζ2(i) converges to zero faster than ζ1(i), (13) and (14) can be viewed as noisy
Euler discretizations of the ODEs ẋ = f(x, y) and ẏ = 0. Note that one can consider the ODE
ẋ = f(x, y0) in place of ẋ = f(x, y), where y0 is constant, because ẏ = 0. One can then show
(see e.g., Theorem 6.2 of Borkar 2008) the main two-timescale convergence result, i.e., under the
above assumptions associated with (14), the sequence (xi, yi) converges to

(
µ(y?), y?

)
as i → ∞,

with probability one, where µ(y0) is a globally asymptotically stable equilibrium of the ODE ẋ =
f(x, y0), µ is a Lipschitz continuous function, and y? is a globally asymptotically stable equilibrium
of the ODE ẏ = g

(
µ(y), y

)
.
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Algorithm 1 Trajectory-based Policy Gradient Algorithm for CVaR Optimization
Input: parameterized policy µ(·|·; θ), confidence level α, and cost tolerance β
Initialization: policy θ = θ0, VaR parameter ν = ν0, and the Lagrangian parameter λ = λ0

while TRUE do
for i = 0, 1, 2, . . . do

for j = 1, 2, . . . do
Generate N trajectories {ξj,i}Nj=1 by starting at x0 = x0 and following the current policy
θi.

end for

ν Update: νi+1 = ΓN

[
νi − ζ3(i)

(
λi −

λi
(1− α)N

N∑
j=1

1
{
D(ξj,i) ≥ νi

})]

θ Update: θi+1 = ΓΘ

[
θi − ζ2(i)

(
1

N

N∑
j=1

∇θ logPθ(ξj,i)|θ=θiC(ξj,i)

+
λi

(1− α)N

N∑
j=1

∇θ logPθ(ξj,i)|θ=θi
(
D(ξj,i)− νi

)
1
{
D(ξj,i) ≥ νi

})]

λ Update: λi+1 = ΓΛ

[
λi + ζ1(i)

(
νi − β +

1

(1− α)N

N∑
j=1

(
D(ξj,i)− νi

)
1
{
D(ξj,i) ≥ νi

})]
end for
if {λi} converges to λmax, i.e., |λi∗ − λmax| ≤ ε for some tolerance parameter ε > 0 then

Set λmax ← 2λmax.
else

return parameters ν, θ, λ and break
end if

end while

4. Actor-Critic Algorithms

As mentioned in Section 3, the unit of observation in our policy gradient algorithm (Algorithm 1)
is a system trajectory. This may result in high variance for the gradient estimates, especially when
the length of the trajectories is long. To address this issue, in this section, we propose two actor-
critic algorithms that approximate some quantities in the gradient estimates by linear combinations
of basis functions and update the parameters (linear coefficients) incrementally (after each state-
action transition). We present two actor-critic algorithms for optimizing (5). These algorithms are
based on the gradient estimates of Sections 4.1-4.3. While the first algorithm (SPSA-based) is fully
incremental and updates all the parameters θ, ν, λ at each time-step, the second one updates θ at
each time-step and updates ν and λ only at the end of each trajectory, thus is regarded as a semi-
trajectory-based method. Algorithm 2 contains the pseudo-code of these algorithms. The projection
operators ΓΘ, ΓN , and ΓΛ are defined as in Section 3 and are necessary to ensure the convergence
of the algorithms. Next, we introduce the following assumptions for the step-sizes of the actor-critic
method in Algorithm 2.
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Assumption 8 (Step Sizes) The step size schedules {ζ1(k)}, {ζ2(k)}, {ζ3(k)}, and {ζ4(k)} satisfy∑
k

ζ1(k) =
∑
k

ζ2(k) =
∑
k

ζ3(k) =
∑
k

ζ4(k) =∞, (15)∑
k

ζ1(k)2,
∑
k

ζ2(k)2,
∑
k

ζ3(k)2,
∑
k

ζ4(k)2 <∞, (16)

ζ1(k) = o
(
ζ2(k)

)
, ζ2(i) = o

(
ζ3(k)

)
, ζ3(k) = o

(
ζ4(k)

)
. (17)

Furthermore, the SPSA step size {∆k} in the actor-critic algorithm satisfies ∆k → 0 as k → ∞
and

∑
k(ζ2(k)/∆k)

2 <∞.

These step-size schedules satisfy the standard conditions for stochastic approximation algo-
rithms, and ensure that the critic update is on the fastest time-scale

{
ζ4(k)

}
, the policy and VaR pa-

rameter updates are on the intermediate time-scale, with the ν-update
{
ζ3(k)

}
being faster than the

θ-update
{
ζ2(k)

}
, and finally the Lagrange multiplier update is on the slowest time-scale

{
ζ1(k)

}
.

This results in four time-scale stochastic approximation algorithms.

4.1 Gradient w.r.t. the Policy Parameters θ

The gradient of the objective function w.r.t. the policy θ in (7) may be rewritten as

∇θL(ν, θ, λ) = ∇θ
(
E
[
Cθ(x0)

]
+

λ

(1− α)
E
[(
Dθ(x0)− ν

)+])
. (24)

Given the original MDPM = (X ,A, C,D, P, P0) and the parameter λ, we define the augmented
MDP M̄ = (X̄ , Ā, C̄λ, P̄ , P̄0) as X̄ = X × S, Ā = A, P̄0(x, s) = P0(x)1{s0 = s}, and

C̄λ(x, s, a) =

{
λ(−s)+/(1− α) if x = xTar,

C(x, a) otherwise,

P̄ (x′, s′|x, s, a) =

{
P (x′|x, a)1{s′ =

(
s−D(x, a)

)
/γ} if x ∈ X ′,

1{x′ = xTar, s
′ = 0} if x = xTar,

where S is the finite state space of the augmented state s, s0 is the initial state of the augmented
MDP, xTar is the target state of the original MDPM and sTar is the s part of the state when a policy
θ reaches a target state xTar, which we assume occurs before an upper-bound T number of steps ,
i.e., sTar = 1

γT

(
ν −

∑T−1
k=0 γ

kD(xk, ak)
)

, such that the initial state is given by s0 = ν. We will

now use n to indicate the size of the augmented state space X̄ instead of the size of the original
state space X . It can be later seen that the augmented state s in the MDP M̄ keeps track of the
cumulative CVaR constraint cost, and allows one to reformulate the CVaR Lagrangian problem as
an MDP (with respect to M̄).

We define a class of parameterized stochastic policies
{
µ(·|x, s; θ), (x, s) ∈ X̄ , θ ∈ Θ ⊆ Rκ1

}
for this augmented MDP. Recall that Cθ(x) is the discounted cumulative cost and Dθ(x) is the
discounted cumulative constraint cost. Therefore, the total (discounted) cost of a trajectory can be
written as

T∑
k=0

γkC̄λ(xk, sk, ak) | x0 = x, s0 = s, µ = Cθ(x) +
λ

(1− α)

(
Dθ(x)− s

)+
. (25)
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Algorithm 2 Actor-Critic Algorithms for CVaR Optimization
Input: Parameterized policy µ(·|·; θ) and value function feature vector φ(·) (both over the augmented
MDP M̄), confidence level α, and cost tolerance β
Initialization: policy θ = θ0; VaR parameter ν = ν0; Lagrangian parameter λ = λ0; value function
weight vector v = v0 ; initial condition (x0, s0) = (x0, ν)
while TRUE do

// (1) SPSA-based Algorithm:
for k = 0, 1, 2, . . . do

Draw action ak ∼ µ(·|xk, sk; θk); Observe cost C̄λk
(xk, sk, ak);

Observe next state (xk+1, sk+1) ∼ P̄ (·|xk, sk, ak); // note that sk+1 = (sk −D
(
xk, ak)

)
/γ

// AC Algorithm:
TD Error: δk(vk) = C̄λk

(xk, sk, ak) + γv>k φ(xk+1, sk+1)− v>k φ(xk, sk) (18)
Critic Update: vk+1 = vk + ζ4(k)δk(vk)φ(xk, sk) (19)

ν Update: νk+1 = ΓN

(
νk−ζ3(k)

(
λk+

v>k
[
φ
(
x0, νk + ∆k

)
− φ(x0, νk −∆k)

]
2∆k

))
(20)

θ Update: θk+1 = ΓΘ

(
θk −

ζ2(k)

1− γ
∇θ logµ(ak|xk, sk; θ) · δk(vk)

)
(21)

λ Update: λk+1 = ΓΛ

(
λk + ζ1(k)

(
νk−β +

1

(1− α)(1− γ)
1{xk = xTar}(−sk)+

))
(22)

if xk = xTar (reach a target state), then set (xk+1, sk+1) = (x0, νk+1)
end for
// (2) Semi Trajectory-based Algorithm:
Initialize t = 0
for k = 0, 1, 2, . . . do

Draw action ak ∼ µ(·|xk, sk; θk), observe cost C̄λk
(xk, sk, ak), and next state (xk+1, sk+1) ∼

P̄ (·|xk, sk, ak); Update (δk, vk, θk, λk) using Eqs. 18, 19, 21, and 22
if xk = xTar then

Update ν as

ν Update: νk+1 = ΓN

(
νk − ζ3(k)

(
λk −

λk
1− α

1
{
xk = xTar, sk ≤ 0

}))
(23)

Set (xk+1, sk+1) = (x0, νk+1) and t = 0
else
t← t+ 1

end if
end for
if {λi} converges to λmax, i.e., |λi∗ − λmax| ≤ ε for some tolerance parameter ε > 0 then

Set λmax ← 2λmax.
else

return parameters v, w, ν, θ, λ, and break
end if

end while
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From (25), it is clear that the quantity in the parenthesis of (24) is the value function of the policy θ
at state (x0, ν) in the augmented MDP M̄, i.e., V θ(x0, ν). Thus, it is easy to show that4

∇θL(ν, θ, λ) = ∇θV θ(x0, ν) =
1

1− γ
∑
x,s,a

πθγ(x, s, a|x0, ν) ∇ logµ(a|x, s; θ) Qθ(x, s, a), 5

(26)
where πθγ is the discounted occupation measure (defined in Section 2) and Qθ is the action-value
function of policy θ in the augmented MDP M̄. We can show that 1

1−γ∇ logµ(ak|xk, sk; θ) · δk is
an unbiased estimate of∇θL(ν, θ, λ), where

δk = C̄λ(xk, sk, ak) + γV̂ (xk+1, sk+1)− V̂ (xk, sk)

is the temporal-difference (TD) error in the MDP M̄ from (18), and V̂ is an unbiased estimator of
V θ (see e.g., Bhatnagar et al. 2009). In our actor-critic algorithms, the critic uses linear approxi-
mation for the value function V θ(x, s) ≈ v>φ(x, s) = Ṽ θ,v(x, s), where the feature vector φ(·)
belongs to a low-dimensional space Rκ1 with dimension κ1. The linear approximation Ṽ θ,v belongs
to a low-dimensional subspace SV = {Φv|v ∈ Rκ1}, where Φ is the n× κ1 matrix whose rows are
the transposed feature vectors φ>(·). To ensure that the set of feature vectors forms a well-posed lin-
ear approximation to the value function, we impose the following assumption to the basis functions.

Assumption 9 (Independent Basis Functions) The basis functions
{
φ(i)
}κ1
i=1

are linearly inde-
pendent. In particular, κ1 ≤ n and Φ is full column rank. Moreover, for every v ∈ Rκ1 , Φv 6= e,
where e is the n-dimensional vector with all entries equal to one.

The following theorem shows that the critic update vk converges almost surely to v∗, the mini-
mizer of the Bellman residual. Details of the proof can be found in Appendix B.2.

Theorem 10 Define v∗ ∈ arg minv ‖Bθ[Φv] − Φv‖2
dθγ

as the minimizer to the Bellman residual,
where the Bellman operator is given by

Bθ[V ](x, s) =
∑
a

µ(a|x, s; θ)

C̄λ(x, s, a) +
∑
x′,s′

γP̄ (x′, s′|x, s, a)V (x′, s′)


and Ṽ ∗(x, s) = (v∗)>φ(x, s) is the projected Bellman fixed point of V θ(x, s), i.e., Ṽ ∗(x, s) =
ΠBθ[Ṽ

∗](x, s). Suppose the γ-occupation measure πθγ is used to generate samples of (xk, sk, ak)
for any k ∈ {0, 1, . . . , }. Then under Assumptions 8–9, the v-update in the actor-critic algorithm
converges to v∗ almost surely.

4. Note that the second equality in Equation (26) is the result of the policy gradient theorem (Sutton et al., 2000; Peters
et al., 2005).

5. Notice that the state and action spaces of the original MDP are finite, and there is only a finite number of outcomes
in the transition of s (due to the assumption of a bounded first hitting time). Therefore the augmented state s belongs
to a finite state space as well.
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4.2 Gradient w.r.t. the Lagrangian Parameter λ

We may rewrite the gradient of the objective function w.r.t. the Lagrangian parameters λ in (9) as

∇λL(ν, θ, λ) = ν−β+∇λ
(
E
[
Cθ(x0)

]
+

λ

(1− α)
E
[(
Dθ(x0)− ν

)+]) (a)
= ν−β+∇λV θ(x0, ν).

(27)
Similar to Section 4.1, equality (a) comes from the fact that the quantity in parenthesis in (27) is
V θ(x0, ν), the value function of the policy θ at state (x0, ν) in the augmented MDP M̄. Note that
the dependence of V θ(x0, ν) on λ comes from the definition of the cost function C̄λ in M̄. We now
derive an expression for∇λV θ(x0, ν), which in turn will give us an expression for∇λL(ν, θ, λ).

Lemma 11 The gradient of V θ(x0, ν) w.r.t. the Lagrangian parameter λ may be written as

∇λV θ(x0, ν) =
1

1− γ
∑
x,s,a

πθγ(x, s, a|x0, ν)
1

(1− α)
1{x = xTar}(−s)+. (28)

Proof. See Appendix B.1. �
From Lemma 11 and (27), it is easy to see that ν − β + 1

(1−γ)(1−α)1{x = xTar}(−s)+ is an
unbiased estimate of ∇λL(ν, θ, λ). An issue with this estimator is that its value is fixed to νk − β
all along a system trajectory, and only changes at the end to νk − β + 1

(1−γ)(1−α)(−sTar)
+. This

may affect the incremental nature of our actor-critic algorithm. To address this issue, Chow and
Ghavamzadeh (2014) previously proposed a different approach to estimate the gradients w.r.t. θ and
λ which involves another value function approximation to the constraint. However this approach is
less desirable in many practical applications as it increases the approximation error and impedes the
speed of convergence.

Another important issue is that the above estimator is unbiased only if the samples are gener-
ated from the distribution πθγ(·|x0, ν). If we just follow the policy θ, then we may use νk − β +
γk

(1−α)1{xk = xTar}(−sk)+ as an estimate for ∇λL(ν, θ, λ). Note that this is an issue for all dis-
counted actor-critic algorithms: their (likelihood ratio based) estimate for the gradient is unbiased
only if the samples are generated from πθγ , and not when we simply follow the policy. This might
also be the reason why, to the best of our knowledge, no rigorous convergence analysis can be found
in the literature for (likelihood ratio based) discounted actor-critic algorithms under the sampling
distribution.6

4.3 Sub-Gradient w.r.t. the VaR Parameter ν
We may rewrite the sub-gradient of our objective function w.r.t. the VaR parameter ν in (8) as

∂νL(ν, θ, λ) 3 λ
(

1− 1

(1− α)
P
( ∞∑
k=0

γkD(xk, ak) ≥ ν | x0 = x0; θ
))

. (29)

From the definition of the augmented MDP M̄, the probability in (29) may be written as P(sTar ≤
0 | x0 = x0, s0 = ν; θ), where sTar is the s part of the state in M̄ when we reach a target state,
i.e., x = xTar (see Section 4.1). Thus, we may rewrite (29) as

∂νL(ν, θ, λ) 3 λ
(

1− 1

(1− α)
P
(
sTar ≤ 0 | x0 = x0, s0 = ν; θ

))
. (30)

6. Note that the discounted actor-critic algorithm with convergence proof in (Bhatnagar, 2010) is based on SPSA.
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From (30), it is easy to see that λ−λ1{sTar ≤ 0}/(1−α) is an unbiased estimate of the sub-gradient
of L(ν, θ, λ) w.r.t. ν. An issue with this (unbiased) estimator is that it can only be applied at the end
of a system trajectory (i.e., when we reach the target state xTar), and thus, using it prevents us from
having a fully incremental algorithm. In fact, this is the estimator that we use in our semi-trajectory-
based actor-critic algorithm.

One approach to estimate this sub-gradient incrementally is to use the simultaneous perturbation
stochastic approximation (SPSA) method (Bhatnagar et al., 2013). The idea of SPSA is to estimate
the sub-gradient g(ν) ∈ ∂νL(ν, θ, λ) using two values of g at ν− = ν −∆ and ν+ = ν + ∆, where
∆ > 0 is a positive perturbation (see Bhatnagar et al. 2013; Prashanth and Ghavamzadeh 2013 for
the detailed description of ∆).7 In order to see how SPSA can help us to estimate our sub-gradient
incrementally, note that

∂νL(ν, θ, λ) = λ+ ∂ν

(
E
[
Dθ(x0)

]
+

λ

(1− α)
E
[(
Dθ(x0)− ν

)+]) (a)
= λ+ ∂νV

θ(x0, ν). (31)

Similar to Sections 4.1–4.3, equality (a) comes from the fact that the quantity in parenthesis in (31)
is V θ(x0, ν), the value function of the policy θ at state (x0, ν) in the augmented MDP M̄. Since the
critic uses a linear approximation for the value function, i.e., V θ(x, s) ≈ v>φ(x, s), in our actor-
critic algorithms (see Section 4.1 and Algorithm 2), the SPSA estimate of the sub-gradient would
be of the form g(ν) ≈ λ+ v>

[
φ(x0, ν+)− φ(x0, ν−)

]
/2∆.

4.4 Convergence of Actor-Critic Methods

In this section, we will prove that the actor-critic algorithms converge to a locally optimal policy for
the CVaR-constrained optimization problem. Define

εθ(vk) = ‖Bθ[Φvk]− Φvk‖∞

as the residual of the value function approximation at step k, induced by policy µ(·|·, ·; θ). By
the triangle inequality and fixed point theorem Bθ[V

∗] = V ∗, it can be easily seen that ‖V ∗ −
Φvk‖∞ ≤ εθ(vk)+‖Bθ[Φvk]−Bθ[V ∗]‖∞ ≤ εθ(vk)+γ‖Φvk−V ∗‖∞. The last inequality follows
from the contraction property of the Bellman operator. Thus, one concludes that ‖V ∗ − Φvk‖∞ ≤
εθ(vk)/(1− γ). Now, we state the main theorem for the convergence of actor-critic methods.

Theorem 12 Suppose εθk(vk) → 0 and the γ-occupation measure πθγ is used to generate samples
of (xk, sk, ak) for any k ∈ {0, 1, . . .}. For the SPSA-based algorithms, suppose the feature vector
satisfies the technical Assumption 21 (provided in Appendix B.2.2) and suppose the SPSA step-size
satisfies the condition εθk(vk) = o(∆k), i.e., εθk(vk)/∆k → 0. Then under Assumptions 2–4 and
8–9, the sequence of policy updates in Algorithm 2 converges almost surely to a locally optimal
policy for the CVaR-constrained optimization problem.

Details of the proof can be found in Appendix B.2.

7. SPSA-based gradient estimate was first proposed in (Spall, 1992) and has been widely used in various settings,
especially those involving a high-dimensional parameter. The SPSA estimate described above is two-sided. It can also
be implemented single-sided, where we use the values of the function at ν and ν+. We refer the readers to (Bhatnagar
et al., 2013) for more details on SPSA and to (Prashanth and Ghavamzadeh, 2013) for its application to learning in
mean-variance risk-sensitive MDPs.
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5. Extension to Chance-Constrained Optimization of MDPs

In many applications, in particular in engineering (see, for example, (Ono et al., 2015)), chance
constraints are imposed to ensure mission success with high probability. Accordingly, in this section
we extend the analysis of CVaR-constrained MDPs to chance-constrained MDPs (i.e., (4)). As
for CVaR-constrained MDPs, we employ a Lagrangian relaxation procedure (Bertsekas, 1999) to
convert a chance-constrained optimization problem into the following unconstrained problem:

max
λ

min
θ,α

(
L(θ, λ) := Cθ(x0) + λ

(
P
(
Dθ(x0) ≥ α

)
− β

))
, (32)

where λ is the Lagrange multiplier. Recall Assumption 4 which assumed strict feasibility, i.e., there
exists a transient policy µ(·|x; θ) such that P

(
Dθ(x0) ≥ α

)
< β. This is needed to guarantee the

existence of a local saddle point.

5.1 Policy Gradient Method

In this section we propose a policy gradient method for chance-constrained MDPs (similar to Algo-
rithm 1). Since we do not need to estimate the ν-parameter in chance-constrained optimization, the
corresponding policy gradient algorithm can be simplified and at each inner loop of Algorithm 1 we
only perform the following updates at the end of each trajectory:

θ Update: θi+1 = ΓΘ

[
θi −

ζ2(i)

N

( N∑
j=1

∇θ logP(ξj,i)C(ξj,i) + λi∇θ logP(ξj,i)1
{
D(ξj,i) ≥ α

})]

λ Update: λi+1 = ΓΛ

[
λi + ζ1(i)

(
− β +

1

N

N∑
j=1

1
{
D(ξj,i) ≥ α

})]
Considering the multi-time-scale step-size rules in Assumption 6, the θ update is on the fast time-
scale

{
ζ2(i)

}
and the Lagrange multiplier λ update is on the slow time-scale

{
ζ1(i)

}
. This results

in a two time-scale stochastic approximation algorithm. In the following theorem, we prove that our
policy gradient algorithm converges to a locally optimal policy for the chance-constrained problem.

Theorem 13 Under Assumptions 2–6, the sequence of policy updates in Algorithm 1 converges to
a locally optimal policy θ∗ for the chance-constrained optimization problem almost surely.

Proof. [Sketch] By taking the gradient of L(θ, λ) w.r.t. θ, we have

∇θL(θ, λ) = ∇θCθ(x0)+λ∇θP
(
Dθ(x0) ≥ α

)
=
∑
ξ

∇θPθ(ξ)C(ξ)+λ
∑
ξ

∇θPθ(ξ)1
{
D(ξ) ≥ α

}
.

On the other hand, the gradient of L(θ, λ) w.r.t. λ is given by

∇λL(θ, λ) = P
(
Dθ(x0) ≥ α

)
− β.

One can easily verify that the θ and λ updates are therefore unbiased estimates of ∇θL(θ, λ) and
∇λL(θ, λ), respectively. Then the rest of the proof follows analogously from the convergence proof
of Algorithm 1 in steps 2 and 3 of Theorem 7. �
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5.2 Actor-Critic Method

In this section, we present an actor-critic algorithm for the chance-constrained optimization. Given
the original MDP M = (X ,A, C,D, P, P0) and parameter λ, we define the augmented MDP
M̄ = (X̄ , Ā, C̄λ, P̄ , P̄0) as in the CVaR counterpart, except that P̄0(x, s) = P0(x)1{s = α} and

C̄λ(x, s, a) =

{
λ1{s ≤ 0} if x = xTar,
C(x, a) otherwise.

Thus, the total cost of a trajectory can be written as

T∑
k=0

C̄λ(xk, sk, ak) | x0 = x, s0 = β, µ = Cθ(x) + λP(Dθ(x) ≥ β). (33)

Unlike the actor-critic algorithms for CVaR-constrained optimization, here the value function ap-
proximation parameter v, policy θ, and Lagrange multiplier estimate λ are updated episodically,
i.e., after each episode ends by time T when (xk, sk) = (xTar, sTar)

8, as follows:

Critic Update: vk+1 = vk + ζ3(k)
T∑
h=0

φ(xh, sh)δh(vk) (34)

Actor Updates: θk+1 = ΓΘ

(
θk − ζ2(k)

T∑
h=0

∇θ logµ(ah|xh, sh; θ)|θ=θk · δh(vk)
)

(35)

λk+1 = ΓΛ

(
λk + ζ1(k)

(
− β + 1{sTar ≤ 0}

))
(36)

From analogous analysis as for the CVaR actor-critic method, the following theorem shows that the
critic update vk converges almost surely to v∗.

Theorem 14 Let v∗ ∈ arg minv ‖Bθ[Φv] − Φv‖2
dθ

be a minimizer of the Bellman residual, where
the undiscounted Bellman operator at every (x, s) ∈ X̄ ′ is given by

Bθ[V ](x, s) =
∑
a∈A

µ(a|x, s; θ)
{
C̄λ(x, s, a) +

∑
(x′,s′)∈X̄ ′

P̄ (x′, s′|x, s, a)V (x′, s′)
}

and Ṽ ∗(x, s) = φ>(x, s)v∗ is the projected Bellman fixed point of V θ(x, s), i.e., Ṽ ∗(x, s) =
ΠBθ[Ṽ

∗](x, s) for (x, s) ∈ X̄ ′. Then under Assumptions 8–9, the v-update in the actor-critic
algorithm converges to v∗ almost surely.

Proof. [Sketch] The proof of this theorem follows the same steps as those in the proof of The-
orem 10, except replacing the γ-occupation measure dθγ with the occupation measure dθ (the total
visiting probability). Similar analysis can also be found in the proof of Theorem 10 in Tamar and
Mannor (2013). Under Assumption 2, the occupation measure of any transient states x ∈ X ′ (start-
ing at an arbitrary initial transient state x0 ∈ X ′) can be written as dµ(x|x0) =

∑Tµ,x
t=0 P(xt =

x|x0;µ) when γ = 1. This further implies the total visiting probabilities are bounded as follows:
dµ(x|x0) ≤ Tµ,x and πµ(x, a|x0) ≤ Tµ,x for any x, x0 ∈ X ′. Therefore, when the sequence of

8. Note that sTar is the state of st when xt hits the (recurrent) target state xTar.
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states {(xh, sh)}Th=0 is sampled by the h-step transition distribution P(xh, sh | x0, s0, θ), ∀h ≤ T ,
the unbiased estimators of

A :=
∑

(y,s′)∈X̄ ′,a′∈A

πθ(y, s′, a′|x, s)φ(y, s′)
(
φ>(y, s′)−

∑
(z,s′′)∈X̄ ′

P̄ (z, s′′|y, s′, a)φ>(z, s′′)
)

and
b :=

∑
(y,s′)∈X̄ ′,a′∈A

πθ(y, s′, a′|x, s)φ(y, s′)C̄λ(y, s′, a′)

are given by
∑T

h=0 φ(xh, sh)(φ>(xh, sh) − φ>(xh+1, sh+1)) and
∑T

h=0 φ(xh, sh)C̄λ(xh, sh, ah),
respectively. Note that in this theorem, we directly use the results from Theorem 7.1 in (Bertsekas,
1995) to show that every eigenvalue of matrixA has positive real part, instead of using the technical
result in Lemma 20. �

Recall that εθ(vk) = ‖Bθ[Φvk]− Φvk‖∞ is the residual of the value function approximation at
step k induced by policy µ(·|·, ·; θ). By the triangle inequality and fixed-point theorem of stochastic
stopping problems, i.e., Bθ[V ∗] = V ∗ from Theorem 3.1 in (Bertsekas, 1995), it can be easily seen
that ‖V ∗ − Φvk‖∞ ≤ εθ(vk) + ‖Bθ[Φvk]−Bθ[V ∗]‖∞ ≤ εθ(vk) + κ‖Φvk − V ∗‖∞ for some κ ∈
(0, 1). Similar to the actor-critic algorithm for CVaR-constrained optimization, the last inequality
also follows from the contraction mapping property of Bθ from Theorem 3.2 in (Bertsekas, 1995).
Now, we state the main theorem for the convergence of the actor-critic method.

Theorem 15 Under Assumptions 2–9, if εθk(vk) → 0, then the sequence of policy updates con-
verges almost surely to a locally optimal policy θ∗ for the chance-constrained optimization problem.

Proof. [Sketch ] From Theorem 14, the critic update converges to the minimizer of the Bellman
residual. Since the critic update converges on the fastest scale, as in the proof of Theorem 12, one
can replace vk by v∗(θk) in the convergence proof of the actor update. Furthermore, by sampling
the sequence of states {(xh, sh)}Th=0 with the h-step transition distribution P(xh, sh | x0, s0, θ),
∀h ≤ T , the unbiased estimator of the gradient of the linear approximation to the Lagrangian
function is given by

∇θL̃v(θ, λ) :=
∑

(x,s)∈X̄ ′,a∈A

πθ(x, s, a|x0 = x0, s0 = ν)∇θ logµ(a|x, s; θ)Ãθ,v(x, s, a),

where Q̃θ,v(x, s, a) − v>φ(x, s) is given by
∑T

h=0∇θ logµ(ah|xh, sh; θ)|θ=θk · δh(v∗) and the
unbiased estimator of ∇λL(θ, λ) = −β + P(sTar ≤ 0) is given by −β + 1{sTar ≤ 0}. Analogous
to equation (75) in the proof of Theorem 24, by convexity of quadratic functions, we have for any
value function approximation v,∑

(y,s′)∈X̄ ′,a′∈A

πθ(y, s′, a′|x, s)(Aθ(y, s′, a′)− Ãvθ(y, s′, a′)) ≤ 2T
εθ(v)

1− κ
,

which further implies that ∇θL(θ, λ)−∇θL̃v(θ, λ) → 0 when εθ(v) → 0 at v = v∗(θk). The rest
of the proof follows identical arguments as in steps 3 to 5 of the proof of Theorem 12. �

6. Examples

In this section we illustrate the effectiveness of our risk-constrained policy gradient and actor-critic
algorithms by testing them on an American option stopping problem and on a long-term personal-
ized advertisement-recommendation (ad-recommendation) problem.
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6.1 The Optimal Stopping Problem

We consider an optimal stopping problem in which the state at each time step k ≤ T consists of
the cost ck and time k, i.e., x = (ck, k), where T is the stopping time. The agent (buyer) should
decide either to accept the present cost (uk = 1) or wait (uk = 0). If he/she accepts or when k = T ,
the system reaches a terminal state and the cost max(K, ck) is received (K is the maximum cost
threshold), otherwise, she receives a holding cost ph and the new state is (ck+1, k + 1), where ck+1

is fuck w.p. p and fdck w.p. 1− p (fu > 1 and fd < 1 are constants). Moreover, there is a discount
factor γ ∈ (0, 1) to account for the increase in the buyer’s affordability. Note that if we change cost
to reward and minimization to maximization, this is exactly the American option pricing problem,
a standard testbed to evaluate risk-sensitive algorithms (e.g., see Tamar et al. 2012). Since the state
space size n is exponential in T , finding an exact solution via dynamic programming (DP) quickly
becomes infeasible, and thus the problem requires approximation and sampling techniques.

The optimal stopping problem can be reformulated as follows

min
θ

E
[
Cθ(x0)

]
subject to CVaRα

(
Cθ(x0)

)
≤ β or P

(
Cθ(x0) ≥ α

)
≤ β, (37)

where the discounted cost and constraint cost functions are identical (Cθ(x) = Dθ(x)) and are both
given by Cθ(x) =

∑T
k=0 γ

k (1{uk = 1}max(K, ck) + 1{uk = 0}ph) | x0 = x, µ. We set the
parameters of the MDP as follows: x0 = [1; 0], ph = 0.1, T = 20, K = 5, γ = 0.95, fu = 2,
fd = 0.5, and p = 0.65. The confidence interval and constraint threshold are given by α = 0.95
and β = 3. The number of sample trajectories N is set to 500, 000 and the parameter bounds are
λmax = 5, 000 and Θ = [−20, 20]κ1 , where the dimension of the basis functions is κ1 = 1024. We
implement radial basis functions (RBFs) as feature functions and search over the class of Boltzmann

policies
{
θ : θ = {θx,a}x∈X ,a∈A, µθ(a|x) =

exp(θ>x,ax)∑
a∈A exp(θ>x,ax)

}
.

We consider the following trajectory-based algorithms:

1. PG: This is a policy gradient algorithm that minimizes the expected discounted cost function
without considering any risk criteria.

2. PG-CVaR/PG-CC: These are the CVaR/chance-constrained simulated trajectory-based pol-
icy gradient algorithms given in Section 3.

The experiments for each algorithm comprise the following two phases:

1. Tuning phase: We run the algorithm and update the policy until (ν, θ, λ) converges.

2. Converged run: Having obtained a converged policy θ∗ in the tuning phase, in the converged
run phase, we perform a Monte Carlo simulation of 10, 000 trajectories and report the results
as averages over these trials.

We also consider the following incremental algorithms:

1. AC: This is an actor-critic algorithm that minimizes the expected discounted cost function
without considering any risk criteria. This is similar to Algorithm 1 in (Bhatnagar, 2010).

2. AC-CVaR/AC-VaR: These are the CVaR/chance-constrained semi-trajectory actor-critic al-
gorithms given in Section 4.
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3. AC-CVaR-SPSA: This is the CVaR-constrained SPSA actor-critic algorithm given in Section
4.

Similar to the trajectory-based algorithms, we use RBF features for [x; s] and consider the family
of augmented state Boltzmann policies. Similarly, the experiments comprise two phases: 1) the
tuning phase, where the set of parameters (v, ν, θ, λ) is obtained after the algorithm converges, and
2) the converged run, where the policy is simulated with 10, 000 trajectories.

We compare the performance of PG-CVaR and PG-CC (given in Algorithm 1), and AC-CVaR-
SPSA, AC-CVaR, and AC-VaR (given in Algorithm 2), with PG and AC, their risk-neutral counter-
parts. Figures 1 and 2 show the distribution of the discounted cumulative cost Cθ(x0) for the policy
θ learned by each of these algorithms. The results indicate that the risk-constrained algorithms
yield a higher expected cost, but less worst-case variability, compared to the risk-neutral methods.
More precisely, the cost distributions of the risk-constrained algorithms have lower right-tail (worst-
case) distribution than their risk-neutral counterparts. Table 1 summarizes the performance of these
algorithms. The numbers reiterate what we concluded from Figures 1 and 2.

Notice that while the risk averse policy satisfies the CVaR constraint, it is not tight (i.e., the
constraint is not matched). In fact this is a problem of local optimality, and other experiments in
the literature (for example see the numerical results in Prashanth and Ghavamzadeh (2013) and
in Bhatnagar and Lakshmanan (2012)) have the same problem of producing solutions which obey
the constraints but not tightly. However, since both the expectation and CVaR risk metrics are
sub-additive and convex, one can always construct a policy that is a linear combination of the risk
neutral optimal policy and the risk averse policy, such that it matches the constraint threshold and
has a lower cost compared to the risk averse policy.
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Figure 1: Cost distributions for the policies learned by the CVaR-constrained and risk-neutral policy
gradient and actor-critic algorithms. The left figure corresponds to the PG methods and
the right figure corresponds to the AC algorithms.

6.2 A Personalized Ad-Recommendation System

Many companies such as banks and retailers use user-specific targeting of advertisements to attract
more customers and increase their revenue. When a user requests a webpage that contains a box for
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Figure 2: Cost distributions for the policies learned by the chance-constrained and risk-neutral pol-
icy gradient and actor-critic algorithms. The left figure corresponds to the PG methods
and the right figure corresponds to the AC algorithms.

E
(
Cθ(x0)

)
σ
(
Cθ(x0)

)
CVaR

(
Cθ(x0)

)
VaR

(
Cθ(x0)

)
PG 1.177 1.065 4.464 4.005

PG-CVaR 1.997 0.060 2.000 2.000
PG-CC 1.994 0.121 2.058 2.000

AC 1.113 0.607 3.331 3.220
AC-CVaR-SPSA 1.326 0.322 2.145 1.283

AC-CVaR 1.343 0.346 2.208 1.290
AC-VaR 1.817 0.753 4.006 2.300

Table 1: Performance comparison of the policies learned by the risk-constrained and risk-neutral algorithms.
In this table σ

(
Cθ(x0)

)
stands for the standard deviation of the total cost.

an advertisement, the system should decide which advertisement (among those in the current cam-
paign) to show to this particular user based on a vector containing all her features, often collected by
a cookie. Our goal here is to generate a strategy that for each user of the website selects an ad that
when it is presented to her has the highest probability to be clicked on. These days, almost all the
industrial personalized ad recommendation systems use supervised learning or contextual bandits
algorithms. These methods are based on the i.i.d. assumption of the visits (to the website) and do
not discriminate between a visit and a visitor, i.e., each visit is considered as a new visitor that has
been sampled i.i.d. from the population of the visitors. As a result, these algorithms are myopic and
do not try to optimize for the long-term performance. Despite their success, these methods seem
to be insufficient as users establish longer-term relationship with the websites they visit, i.e., the ad
recommendation systems should deal with more and more returning visitors. The increase in re-
turning visitors violates (more) the main assumption underlying the supervised learning and bandit
algorithms, i.e., there is no difference between a visit and a visitor, and thus, shows the need for a
new class of solutions.
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The reinforcement learning (RL) algorithms that have been designed to optimize the long-term
performance of the system (expected sum of rewards/costs) seem to be suitable candidates for ad
recommendation systems (Shani et al., 2002). The nature of these algorithms allows them to take
into account all the available knowledge about the user at the current visit, and then selects an offer
to maximize the total number of times she will click over multiple visits, also known as the user’s
life-time value (LTV). Unlike myopic approaches, RL algorithms differentiate between a visit and a
visitor, and consider all the visits of a user (in chronological order) as a system trajectory generated
by her. In this approach, while the visitors are i.i.d. samples from the population of the users,
their visits are not. This long-term approach to the ad recommendation problem allows us to make
decisions that are not usually possible with myopic techniques, such as to propose an offer to a user
that might be a loss to the company in the short term, but has the effect that makes the user engaged
with the website/company and brings her back to spend more money in the future.

For our second case study, we use an Adobe personalized ad-recommendation (Theocharous
and Hallak, 2013) simulator that has been trained based on real data captured with permission from
the website of a Fortune 50 company that receives hundreds of visitors per day. The simulator
produces a vector of 31 real-valued features that provide a compressed representation of all of the
available information about a user. The advertisements are clustered into four high-level classes
that the agent must select between. After the agent selects an advertisement, the user either clicks
(reward of +1) or does not click (reward of 0) and the feature vector describing the user is updated.
In this case, we test our algorithm by maximizing the customers’ life-time value in 15 time steps
subject to a bounded tail risk.

Instead of using the cost-minimization framework from the main paper, by defining the return
random variable (under a fixed policy θ) Rθ(x0) as the (discounted) total number of clicks along
a user’s trajectory, here we formulate the personalized ad-recommendation problem as a return
maximization problem where the tail risk corresponds to the worst case return distribution:

max
θ

E
[
Rθ(x0)

]
subject to CVaR1−α

(
−Rθ(x0)

)
≤ β. (38)

We set the parameters of the MDP as T = 15 and γ = 0.98, the confidence interval and constraint
threshold as α = 0.05 and β = 0.12, the number of sample trajectoriesN to 1, 000, 000, and the pa-
rameter bounds as λmax = 5, 000 and Θ = [−60, 60]κ1 , where the dimension of the basis functions
is κ1 = 4096. Similar to the optimal stopping problem, we implement both the trajectory based
algorithm (PG, PG-CVaR) and the actor-critic algorithms (AC, AC-CVaR) for risk-neutral and risk
sensitive optimal control. Here we used the 3rd order Fourier basis with cross-products in (Konidaris
et al., 2011) as features and search over the family of Boltzmann policies. We compared the perfor-
mance of PG-CVaR and AC-CVaR, our risk-constrained policy gradient (Algorithm 1) and actor-
critic (Algorithms 2) algorithms, with their risk-neutral counterparts (PG and AC). Figure 3 shows
the distribution of the discounted cumulative returnRθ(x0) for the policy θ learned by each of these
algorithms. The results indicate that the risk-constrained algorithms yield a lower expected reward,
but have higher left tail (worst-case) reward distributions. Table 2 summarizes the findings of this
experiment.

7. Conclusions and Future Work

We proposed novel policy gradient and actor-critic algorithms for CVaR-constrained and chance-
constrained optimization in MDPs, and proved their convergence. Using an optimal stopping prob-
lem and a personalized ad-recommendation problem, we showed that our algorithms resulted in
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Figure 3: Reward distributions for the policies learned by the CVaR-constrained and risk-neutral
policy gradient and actor-critic algorithms. The left figure corresponds to the PG methods
and the right figure corresponds to the AC algorithms.

E
(
Rθ(x0)

)
σ
(
Rθ(x0)

)
CVaR

(
Rθ(x0)

)
VaR

(
Rθ(x0)

)
PG 0.396 1.898 0.037 1.000

PG-CVaR 0.287 0.914 0.126 1.795
AC 0.581 2.778 0 0

AC-CVaR 0.253 0.634 0.137 1.890

Table 2: Performance comparison of the policies learned by the CVaR-constrained and risk-neutral algo-
rithms. In this table σ

(
Rθ(x0)

)
stands for the standard deviation of the total reward.

policies whose cost distributions have lower right-tail compared to their risk-neutral counterparts.
This is important for a risk-averse decision-maker, especially if the right-tail contains catastrophic
costs. Future work includes: 1) Providing convergence proofs for our AC algorithms when the
samples are generated by following the policy and not from its discounted occupation measure, 2)
Using importance sampling methods (Bardou et al., 2009; Tamar et al., 2015) to improve gradient
estimates in the right-tail of the cost distribution (worst-case events that are observed with low prob-
ability), and 3) Applying the algorithms presented in this paper to a variety of applications ranging
from operations research to robotics and finance.
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Appendix A. Convergence of Policy Gradient Methods

A.1 Computing the Gradients

i) ∇θL(ν, θ, λ): Gradient of L(ν, θ, λ) w.r.t. θ By expanding the expectations in the definition of
the objective function L(ν, θ, λ) in (5), we obtain

L(ν, θ, λ) =
∑
ξ

Pθ(ξ)C(ξ) + λν +
λ

1− α
∑
ξ

Pθ(ξ)
(
D(ξ)− ν

)+ − λβ.
By taking the gradient with respect to θ, we have

∇θL(ν, θ, λ) =
∑
ξ

∇θPθ(ξ)C(ξ) +
λ

1− α
∑
ξ

∇θPθ(ξ)
(
D(ξ)− ν

)+
.

This gradient can be rewritten as

∇θL(ν, θ, λ) =
∑

ξ:Pθ(ξ) 6=0

Pθ(ξ) · ∇θ logPθ(ξ)
(
C(ξ) +

λ

1− α
(
D(ξ)− ν

)
1
{
D(ξ) ≥ ν

})
, (39)

where in the case of Pθ(ξ) 6= 0, the term∇θ logPθ(ξ) is given by:

∇θ logPθ(ξ) =∇θ

{
T−1∑
k=0

logP (xk+1|xk, ak) + log µ(ak|xk; θ) + log 1{x0 = x0}

}

=

T−1∑
k=0

∇θ logµ(ak|xk; θ)

=
T−1∑
k=0

1

µ(ak|xk; θ)
∇θµ(ak|xk; θ).

ii) ∂νL(ν, θ, λ): Sub-differential of L(ν, θ, λ) w.r.t. ν From the definition of L(ν, θ, λ), we can
easily see that L(ν, θ, λ) is a convex function in ν for any fixed θ ∈ Θ. Note that for every fixed ν
and any ν ′, we have (

D(ξ)− ν ′
)+ − (D(ξ)− ν

)+ ≥ g · (ν ′ − ν),

where g is any element in the set of sub-derivatives:

g ∈ ∂ν
(
D(ξ)− ν

)+
:=


−1 if ν < D(ξ),

−q : q ∈ [0, 1] if ν = D(ξ),

0 otherwise.

Since L(ν, θ, λ) is finite-valued for any ν ∈ R, by the additive rule of sub-derivatives, we have

∂νL(ν, θ, λ) =

− λ

1− α
∑
ξ

Pθ(ξ)1
{
D(ξ) > ν

}
− λq

1− α
∑
ξ

Pθ(ξ)1
{
D(ξ) = ν

}
+ λ | q ∈ [0, 1]

 .

(40)
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In particular for q = 1, we may write the sub-gradient of L(ν, θ, λ) w.r.t. ν as

∂νL(ν, θ, λ)|q=0 = λ− λ

1− α
∑
ξ

Pθ(ξ) · 1
{
D(ξ) ≥ ν

}
or

λ− λ

1− α
∑
ξ

Pθ(ξ) · 1
{
D(ξ) ≥ ν

}
∈ ∂νL(ν, θ, λ).

iii) ∇λL(ν, θ, λ): Gradient of L(ν, θ, λ) w.r.t. λ Since L(ν, θ, λ) is a linear function in λ, one can
express the gradient of L(ν, θ, λ) w.r.t. λ as follows:

∇λL(ν, θ, λ) = ν − β +
1

1− α
∑
ξ

Pθ(ξ) ·
(
D(ξ)− ν

)
1
{
D(ξ) ≥ ν

}
. (41)

A.2 Proof of Convergence of the Policy Gradient Algorithm

In this section, we prove the convergence of the policy gradient algorithm (Algorithm 1).
Since ν converges on the faster timescale than θ and λ, the ν-update can be rewritten by assum-

ing (θ, λ) as invariant quantities, i.e.,

νi+1 = ΓN

[
νi − ζ3(i)

(
λ− λ

(1− α)N

N∑
j=1

1
{
D(ξj,i) ≥ νi

})]
. (42)

Consider the continuous time dynamics of ν defined using differential inclusion

ν̇ ∈ Υν [−g(ν)] , ∀g(ν) ∈ ∂νL(ν, θ, λ), (43)

where

Υν [K(ν)] := lim
0<η→0

ΓN (ν + ηK(ν))− ΓN (ν)

η
.

Here Υν [K(ν)] is the left directional derivative of the function ΓN (ν) in the direction of K(ν).
By using the left directional derivative Υν [−g(ν)] in the sub-gradient descent algorithm for ν, the
gradient will point in the descent direction along the boundary of ν whenever the ν-update hits its
boundary.

Furthermore, since ν converges on a faster timescale than θ, and λ is on the slowest time-scale,
the θ-update can be rewritten using the converged ν∗(θ), assuming λ as an invariant quantity, i.e.,

θi+1 =ΓΘ

[
θi − ζ2(i)

(
1

N

N∑
j=1

∇θ logPθ(ξj,i)|θ=θiC(ξj,i)

+
λ

(1− α)N

N∑
j=1

∇θ logPθ(ξj,i)|θ=θi
(
D(ξj,i)− ν

)
1
{
D(ξj,i) ≥ ν∗(θi)

})]
.

Consider the continuous time dynamics of θ ∈ Θ:

θ̇ = Υθ [−∇θL(ν, θ, λ)] |ν=ν∗(θ), (44)
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where

Υθ[K(θ)] := lim
0<η→0

ΓΘ(θ + ηK(θ))− ΓΘ(θ)

η
.

Similar to the analysis of ν, Υθ[K(θ)] is the left directional derivative of the function ΓΘ(θ) in
the direction of K(θ). By using the left directional derivative Υθ [−∇θL(ν, θ, λ)] in the gradient
descent algorithm for θ, the gradient will point in the descent direction along the boundary of Θ
whenever the θ-update hits its boundary.

Finally, since the λ-update converges in the slowest time-scale, the λ-update can be rewritten
using the converged θ∗(λ) and ν∗(λ), i.e.,

λi+1 = ΓΛ

λi + ζ1(i)

(
ν∗(λi) +

1

1− α
1

N

N∑
j=1

(
D(ξj,i)− ν∗(λi)

)+ − β)
 . (45)

Consider the continuous time system

λ̇(t) = Υλ

[
∇λL(ν, θ, λ)

∣∣∣∣
θ=θ∗(λ),ν=ν∗(λ)

]
, λ(t) ≥ 0, (46)

where

Υλ[K(λ)] := lim
0<η→0

ΓΛ

(
λ+ ηK(λ)

)
− ΓΛ(λ)

η
.

Again, similar to the analysis of (ν, θ), Υλ[K(λ)] is the left directional derivative of the function
ΓΛ(λ) in the direction of K(λ). By using the left directional derivative Υλ [∇λL(ν, θ, λ)] in the
gradient ascent algorithm for λ, the gradient will point in the ascent direction along the boundary of
[0, λmax] whenever the λ-update hits its boundary.

Define

L∗(λ) = L(ν∗(λ), θ∗(λ), λ),

for λ ≥ 0 where (θ∗(λ), ν∗(λ)) ∈ Θ × [−Dmax
1−γ ,

Dmax
1−γ ] is a local minimum of L(ν, θ, λ) for fixed

λ ≥ 0, i.e., L(ν, θ, λ) ≥ L(ν∗(λ), θ∗(λ), λ) for any (θ, ν) ∈ Θ× [−Dmax
1−γ ,

Dmax
1−γ ]∩B(θ∗(λ),ν∗(λ))(r)

for some r > 0.
Next, we want to show that the ODE (46) is actually a gradient ascent of the Lagrangian function

using the envelope theorem from mathematical economics (Milgrom and Segal, 2002). The enve-
lope theorem describes sufficient conditions for the derivative of L∗ with respect to λ to equal the
partial derivative of the objective function L with respect to λ, holding (θ, ν) at its local optimum
(θ, ν) = (θ∗(λ), ν∗(λ)). We will show that ∇λL∗(λ) coincides with ∇λL(ν, θ, λ)|θ=θ∗(λ),ν=ν∗(λ)

as follows.

Theorem 16 The value function L∗ is absolutely continuous. Furthermore,

L∗(λ) = L∗(0) +

∫ λ

0
∇λ′L(ν, θ, λ′)

∣∣∣
θ=θ∗(s),ν=ν∗(s),λ′=s

ds, λ ≥ 0. (47)
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Proof. The proof follows from analogous arguments to Lemma 4.3 in (Borkar, 2005). From the
definition of L∗, observe that for any λ′, λ′′ ≥ 0 with λ′ < λ′′,

|L∗(λ′′)− L∗(λ′)| ≤ sup
θ∈Θ,ν∈[−Dmax

1−γ ,Dmax
1−γ ]

|L(ν, θ, λ′′)− L(ν, θ, λ′)|

= sup
θ∈Θ,ν∈[−Dmax

1−γ ,Dmax
1−γ ]

∣∣∣∣∣
∫ λ′′

λ′
∇λL(ν, θ, s)ds

∣∣∣∣∣
≤
∫ λ′′

λ′
sup

θ∈Θ,ν∈[−Dmax
1−γ ,Dmax

1−γ ]

|∇λL(ν, θ, s)| ds ≤ 3Dmax

(1− α)(1− γ)
(λ′′ − λ′).

This implies that L∗ is absolutely continuous. Therefore, L∗ is continuous everywhere and differ-
entiable almost everywhere.

By the Milgrom–Segal envelope theorem in mathematical economics (Theorem 1 of (Milgrom
and Segal, 2002)), one concludes that the derivative of L∗(λ) coincides with the derivative of
L(ν, θ, λ) at the point of differentiability λ and θ = θ∗(λ), ν = ν∗(λ). Also since L∗ is abso-
lutely continuous, the limit of (L∗(λ) − L∗(λ′))/(λ − λ′) at λ ↑ λ′ (or λ ↓ λ′) coincides with
the lower/upper directional derivatives if λ′ is a point of non-differentiability. Thus, there is only a
countable number of non-differentiable points in L∗ and the set of non-differentiable points of L∗

has measure zero. Therefore, expression (47) holds and one concludes that∇λL∗(λ) coincides with
∇λL(ν, θ, λ)|θ=θ∗(λ),ν=ν∗(λ). �

Before getting into the main result, we have the following technical proposition whose proof
directly follows from the definition of logPθ(ξ) and Assumption 3 that ∇θµ(ak|xk; θ) is Lipschitz
in θ.

Proposition 17 ∇θL(ν, θ, λ) is Lipschitz in θ.

Remark 18 The fact that∇θL(ν, θ, λ) is Lipschitz in θ implies that ‖∇θL(ν, θ, λ)‖2 ≤ 2(‖∇θL(ν, θ0, λ)‖+
‖θ0‖)2 + 2‖θ‖2 which further implies that

‖∇θL(ν, θ, λ)‖2 ≤ K1(1 + ‖θ‖2).

for K1 = 2 max(1, (‖∇θL(ν, θ0, λ)‖ + ‖θ0‖)2) > 0. Similarly, the fact that ∇θ logPθ(ξ) is Lips-
chitz implies that

‖∇θ logPθ(ξ)‖2 ≤ K2(ξ)(1 + ‖θ‖2)

for a positive random variable K2(ξ). Furthermore, since T <∞ w.p. 1, µ(ak|xk; θ) ∈ (0, 1] and
∇θµ(ak|xk; θ) is Lipschitz for any k < T , K2(ξ) <∞ w.p. 1.

Remark 19 For any given θ ∈ Θ, λ ≥ 0, and g(ν) ∈ ∂νL(ν, θ, λ), we have

|g(ν)| ≤ 3λ(1 + |ν|)/(1− α). (48)

To see this, recall that the set of g(ν) ∈ ∂νL(ν, θ, λ) can be parameterized by q ∈ [0, 1] as

g(ν; q) = − λ

(1− α)

∑
ξ

Pθ(ξ)1 {D(ξ) > ν} − λq

1− α
∑
ξ

Pθ(ξ)1 {D(ξ) = ν}+ λ.
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It is obvious that |1 {D(ξ) = ν}| , |1 {D(ξ) > ν}| ≤ 1 + |ν|. Thus,
∣∣∣∑ξ Pθ(ξ)1 {D(ξ) > ν}

∣∣∣ ≤
supξ |1 {D(ξ) > ν}| ≤ 1 + |ν|, and

∣∣∣∑ξ Pθ(ξ)1 {D(ξ) = ν}
∣∣∣ ≤ 1 + |ν|. Recalling that 0 <

(1− q), (1− α) < 1, these arguments imply the claim of (48).

We are now in a position to prove the convergence analysis of Theorem 7.

Proof. [Proof of Theorem 7] We split the proof into the following four steps:

Step 1 (Convergence of ν-update) Since ν converges on a faster time scale than θ and λ, one can
take both θ and λ as fixed quantities in the ν-update, i.e.,

νi+1 = ΓN

νi + ζ3(i)

 λ

(1− α)N

N∑
j=1

1
{
D(ξj,i) ≥ νi

}
− λ+ δνi+1

 , (49)

and the Martingale difference term with respect to ν is given by

δνi+1 =
λ

1− α

− 1

N

N∑
j=1

1
{
D(ξj,i) ≥ νi

}
+
∑
ξ

Pθ(ξ)1{D(ξ) ≥ νi}

 . (50)

First, one can show that δνi+1 is square integrable, i.e.,

E[‖δνi+1‖2 | Fν,i] ≤ 4

(
λmax

1− α

)2

where Fν,i = σ
(
νm, δνm, m ≤ i

)
is the filtration of νi generated by different independent trajec-

tories.
Second, since the history trajectories are generated based on the sampling probability mass

function Pθ(ξ), expression (40) implies that E [δνi+1 | Fν,i] = 0. Therefore, the ν-update is a
stochastic approximation of the ODE (43) with a Martingale difference error term, i.e.,

λ

1− α
∑
ξ

Pθ(ξ)1{D(ξ) ≥ νi} − λ ∈ −∂νL(ν, θ, λ)|ν=νi .

Then one can invoke Corollary 4 in Chapter 5 of Borkar (2008) (stochastic approximation theory for
non-differentiable systems) to show that the sequence {νi}, νi ∈ [−Dmax

1−γ ,
Dmax
1−γ ] converges almost

surely to a fixed point ν∗ ∈ [−Dmax
1−γ ,

Dmax
1−γ ] of the differential inclusion (43), where

ν∗ ∈ Nc :=

{
ν ∈

[
−Dmax

1− γ
,
Dmax

1− γ

]
: Υν [−g(ν)] = 0, g(ν) ∈ ∂νL(ν, θ, λ)

}
.

To justify the assumptions of this corollary, 1) from Remark 19, the Lipschitz property is satisfied,
i.e., supg(ν)∈∂νL(ν,θ,λ) |g(ν)| ≤ 3λ(1+ |ν|)/(1−α), 2) [−Dmax

1−γ ,
Dmax
1−γ ] and ∂νL(ν, θ, λ) are convex

compact sets by definition, which implies {(ν, g(ν)) | g(ν) ∈ ∂νL(ν, θ, λ)} is a closed set, and
further implies ∂νL(ν, θ, λ) is an upper semi-continuous set valued mapping, 3) the step-size rule
follows from Assumption 6, 4) the Martingale difference assumption follows from (50), and 5)
νi ∈ [−Dmax

1−γ ,
Dmax
1−γ ], ∀i implies that supi ‖νi‖ <∞ almost surely.
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Consider the ODE for ν ∈ R in (43), we define the set-valued derivative of L as follows:

DtL(ν, θ, λ) =
{
g(ν)Υν

[
− g(ν)

]
| ∀g(ν) ∈ ∂νL(ν, θ, λ)

}
.

One can conclude that

max
g(ν)

DtL(ν, θ, λ) = max
{
g(ν)Υν

[
− g(ν)

]
| g(ν) ∈ ∂νL(ν, θ, λ)

}
.

We now show that maxg(ν)DtL(ν, θ, λ) ≤ 0 and this quantity is non-zero if Υν

[
− g(ν)

]
6= 0 for

every g(ν) ∈ ∂νL(ν, θ, λ) by considering three cases. To distinguish the latter two cases, we need
to define,

G(ν) :=

{
g(ν) ∈ ∂Lν(ν, θ, λ)

∣∣∣ ∀η0 > 0, ∃η ∈ (0, η0] such that θ − ηg(ν) 6∈
[
−Dmax

1− γ
,
Dmax

1− γ

]}
.

Case 1: ν ∈ (−Dmax
1−γ ,

Dmax
1−γ ).

For every g(ν) ∈ ∂νL(ν, θ, λ), there exists a sufficiently small η0 > 0 such that ν − η0g(ν) ∈
[−Dmax

1−γ ,
Dmax
1−γ ] and

ΓN
(
θ − η0g(ν)

)
− θ = −η0g(ν).

Therefore, the definition of Υθ[−g(ν)] implies

max
g(ν)

DtL(ν, θ, λ) = max
{
− g2(ν) | g(ν) ∈ ∂νL(ν, θ, λ)

}
≤ 0. (51)

The maximum is attained because ∂νL(ν, θ, λ) is a convex compact set and g(ν)Υν

[
− g(ν)

]
is a continuous function. At the same time, we have maxg(ν)DtL(ν, θ, λ) < 0 whenever 0 6∈
∂νL(ν, θ, λ).
Case 2: ν ∈ {−Dmax

1−γ ,
Dmax
1−γ } and G(ν) is empty.

The condition ν − ηg(ν) ∈ [−Dmax
1−γ ,

Dmax
1−γ ] implies that

Υν

[
− g(ν)

]
= −g(ν).

Then we obtain

max
g(ν)

DtL(ν, θ, λ) = max
{
− g2(ν) | g(ν) ∈ ∂νL(ν, θ, λ)

}
≤ 0. (52)

Furthermore, we have maxg(ν)DtL(ν, θ, λ) < 0 whenever 0 6∈ ∂νL(ν, θ, λ).
Case 3: ν ∈ {−Dmax

1−γ ,
Dmax
1−γ } and G(ν) is nonempty.

First, consider any g(ν) ∈ G(ν). For any η > 0, define νη := ν − ηg(ν). The above condition
implies that when 0 < η → 0, ΓN

[
νη
]

is the projection of νη to the tangent space of [−Dmax
1−γ ,

Dmax
1−γ ].

For any element ν̂ ∈ [−Dmax
1−γ ,

Dmax
1−γ ], since the set {ν ∈ [−Dmax

1−γ ,
Dmax
1−γ ] : ‖ν − νη‖2 ≤ ‖ν̂ − νη‖2}

is compact, the projection of νη on [−Dmax
1−γ ,

Dmax
1−γ ] exists. Furthermore, since f(ν) := 1

2(ν−νη)2 is
a strongly convex function and∇f(ν) = ν−νη, by the first order optimality condition, one obtains

∇f(ν∗η)(ν − ν∗η) = (ν∗η − νη)(ν − ν∗η) ≥ 0, ∀ν ∈
[
−Dmax

1− γ
,
Dmax

1− γ

]
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where ν∗η is the unique projection of νη (the projection is unique because f(ν) is strongly convex
and [−Dmax

1−γ ,
Dmax
1−γ ] is a convex compact set). Since the projection (minimizer) is unique, the above

equality holds if and only if ν = ν∗η .
Therefore, for any ν ∈ [−Dmax

1−γ ,
Dmax
1−γ ] and η > 0,

g(ν)Υν

[
− g(ν)

]
= g(ν)

(
lim

0<η→0

ν∗η − ν
η

)
=

(
lim

0<η→0

ν − νη
η

)(
lim

0<η→0

ν∗η − ν
η

)
= lim

0<η→0

−‖ν∗η − ν‖2

η2
+ lim

0<η→0

(
ν∗η − νη

)(ν∗η − ν
η2

)
≤ 0.

Second, for any g(ν) ∈ ∂νL(ν, θ, λ) ∩ G(ν)c, one obtains ν − ηg(ν) ∈ [−Dmax
1−γ ,

Dmax
1−γ ], for any

η ∈ (0, η0] and some η0 > 0. In this case, the arguments follow from case 2 and the following
expression holds: Υν

[
− g(ν)

]
= −g(ν).

Combining these arguments, one concludes that

max
g(ν)

DtL(ν, θ, λ)

≤max
{

max
{
g(ν) Υν

[
− g(ν)

]
| g(ν) ∈ G(ν)

}
,max

{
− g2(ν) | g(ν) ∈ ∂νL(ν, θ, λ) ∩ G(ν)c

}}
≤ 0.

(53)

This quantity is non-zero whenever 0 6∈ {g(ν) Υν

[
−g(ν)

]
| ∀g(ν) ∈ ∂νL(ν, θ, λ)} (this is because,

for any g(ν) ∈ ∂νL(ν, θ, λ) ∩ G(ν)c, one obtains g(ν) Υν

[
− g(ν)

]
= −g(ν)2). Thus, by similar

arguments one may conclude that maxg(ν)DtL(ν, θ, λ) ≤ 0 and it is non-zero if Υν

[
− g(ν)

]
6= 0

for every g(ν) ∈ ∂νL(ν, θ, λ).
Now for any given θ and λ, define the following Lyapunov function

Lθ,λ(ν) = L(ν, θ, λ)− L(ν∗, θ, λ)

where ν∗ is a minimum point (for any given (θ, λ), L is a convex function in ν). Then Lθ,λ(ν) is
a positive definite function, i.e., Lθ,λ(ν) ≥ 0. On the other hand, by the definition of a minimum
point, one easily obtains 0 ∈ {g(ν∗) Υν

[
− g(ν∗)

]
|ν=ν∗ | ∀g(ν∗) ∈ ∂νL(ν, θ, λ)|ν=ν∗} which

means that ν∗ is also a stationary point, i.e., ν∗ ∈ Nc.
Note that maxg(ν)DtLθ,λ(ν) = maxg(ν)DtL(ν, θ, λ) ≤ 0 and this quantity is non-zero if

Υν

[
− g(ν)

]
6= 0 for every g(ν) ∈ ∂νL(ν, θ, λ). Therefore, by the Lyapunov theory for asymptot-

ically stable differential inclusions (see Theorem 3.10 and Corollary 3.11 in Benaim et al. (2006),
where the Lyapunov function Lθ,λ(ν) satisfies Hypothesis 3.1 and the property in (53) is equivalent
to Hypothesis 3.9 in the reference), the above arguments imply that with any initial condition ν(0),
the state trajectory ν(t) of (43) converges to ν∗, i.e., L(ν∗, θ, λ) ≤ L(ν(t), θ, λ) ≤ L(ν(0), θ, λ)
for any t ≥ 0.

As stated earlier, the sequence {νi}, νi ∈ [−Dmax
1−γ ,

Dmax
1−γ ] constitutes a stochastic approximation

to the differential inclusion (43), and thus converges almost surely its solution (Borkar, 2008), which
further converges almost surely to ν∗ ∈ Nc. Also, it can be easily seen that Nc is a closed subset of
the compact set [−Dmax

1−γ ,
Dmax
1−γ ], and therefore a compact set itself.

Step 2 (Convergence of θ-update) Since θ converges on a faster time scale than λ and ν con-
verges faster than θ, one can take λ as a fixed quantity and ν as a converged quantity ν∗(θ) in the
θ-update. The θ-update can be rewritten as a stochastic approximation, i.e.,

θi+1 = ΓΘ

(
θi + ζ2(i)

(
−∇θL(ν, θ, λ)|θ=θi,ν=ν∗(θi) + δθi+1

))
, (54)
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where

δθi+1 =∇θL(ν, θ, λ)|θ=θi,ν=ν∗(θi)−
1

N

N∑
j=1

∇θ logPθ(ξj,i) |θ=θi C(ξj,i)

− λ

(1− α)N

N∑
j=1

∇θ logPθ(ξj,i)|θ=θi
(
D(ξj,i)− ν∗(θi)

)
1
{
D(ξj,i) ≥ ν∗(θi)

}
.

(55)

First, one can show that δθi+1 is square integrable, i.e., E[‖δθi+1‖2 | Fθ,i] ≤ Ki(1 + ‖θi‖2)
for some Ki > 0, where Fθ,i = σ

(
θm, δθm, m ≤ i

)
is the filtration of θi generated by different

independent trajectories. To see this, notice that

‖δθi+1‖2

≤2
(
∇θL(ν, θ, λ)|θ=θi,ν=ν∗(θi)

)2
+

2

N2

(
Cmax

1− γ
+

2λDmax

(1− α)(1− γ)

)2
 N∑
j=1

∇θ logPθ(ξj,i) |θ=θi

2

≤2K1,i(1 + ‖θi‖2) +
2N

N2

(
Cmax

1− γ
+

2λmaxDmax

(1− α)(1− γ)

)2
 N∑
j=1

‖∇θ logPθ(ξj,i) |θ=θi‖
2


≤2K1,i(1 + ‖θi‖2) +

2N

N2

(
Cmax

1− γ
+

2λmaxDmax

(1− α)(1− γ)

)2
 N∑
j=1

K2(ξj,i)(1 + ‖θi‖2)


≤2

(
K1,i+

2N−1

N

(
Cmax

1− γ
+

2λmaxDmax

(1− α)(1− γ)

)2

max
1≤j≤N

K2(ξj,i)

)
(1+‖θi‖2).

The Lipschitz upper bounds are due to the results in Remark 18. Since K2(ξj,i) <∞ w.p. 1, there
exists K2,i <∞ such that max1≤j≤N K2(ξj,i) ≤ K2,i. By combining these results, one concludes
that E[‖δθi+1‖2 | Fθ,i] ≤ Ki(1+‖θi‖2) where

Ki = 2

(
K1,i+

2N−1K2,i

N

(
Cmax

1− γ
+

2λmaxDmax

(1− α)(1− γ)

)2
)
<∞.

Second, since the history trajectories are generated based on the sampling probability mass
function Pθi(ξ), expression (39) implies that E [δθi+1 | Fθ,i] = 0. Therefore, the θ-update is a
stochastic approximation of the ODE (44) with a Martingale difference error term. In addition,
from the convergence analysis of the ν-update, ν∗(θ) is an asymptotically stable equilibrium point
for the sequence {νi}. From (40), ∂νL(ν, θ, λ) is a Lipschitz set-valued mapping in θ (since Pθ(ξ)
is Lipschitz in θ), and thus it can be easily seen that ν∗(θ) is a Lipschitz continuous mapping of θ.

Now consider the continuous time dynamics for θ ∈ Θ, given in (44). We may write

dL(ν, θ, λ)

dt

∣∣∣∣
ν=ν∗(θ)

=
(
∇θL(ν, θ, λ)|ν=ν∗(θ)

)>
Υθ

[
−∇θL(ν, θ, λ)|ν=ν∗(θ)

]
. (56)

By considering the following cases, we now show that dL(ν, θ, λ)/dt|ν=ν∗(θ) ≤ 0 and this quantity
is non-zero whenever

∥∥Υθ

[
−∇θL(ν, θ, λ)|ν=ν∗(θ)

]∥∥ 6= 0.
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Case 1: When θ ∈ Θ◦ = Θ \ ∂Θ.
Since Θ◦ is the interior of the set Θ and Θ is a convex compact set, there exists a sufficiently small
η0 > 0 such that θ − η0∇θL(ν, θ, λ)|ν=ν∗(θ) ∈ Θ and

ΓΘ

(
θ − η0∇θL(ν, θ, λ)|ν=ν∗(θ)

)
− θ = −η0∇θL(ν, θ, λ)|ν=ν∗(θ).

Therefore, the definition of Υθ

[
−∇θL(ν, θ, λ)|ν=ν∗(θ)

]
implies

dL(ν, θ, λ)

dt

∣∣∣∣
ν=ν∗(θ)

= −
∥∥∇θL(ν, θ, λ)|ν=ν∗(θ)

∥∥2 ≤ 0. (57)

At the same time, we have dL(ν, θ, λ)/dt|ν=ν∗(θ) < 0 whenever ‖∇θL(ν, θ, λ)|ν=ν∗(θ)‖ 6= 0.

Case 2: When θ ∈ ∂Θ and θ − η∇θL(ν, θ, λ)|ν=ν∗(θ) ∈ Θ for any η ∈ (0, η0] and some η0 > 0.
The condition θ − η∇θL(ν, θ, λ)|ν=ν∗(θ) ∈ Θ implies that

Υθ

[
−∇θL(ν, θ, λ)|ν=ν∗(θ)

]
= −∇θL(ν, θ, λ)|ν=ν∗(θ).

Then we obtain

dL(ν, θ, λ)

dt

∣∣∣∣
ν=ν∗(θ)

= −
∥∥∇θL(ν, θ, λ)|ν=ν∗(θ)

∥∥2 ≤ 0. (58)

Furthermore, dL(ν, θ, λ)/dt|ν=ν∗(θ) < 0 when ‖∇θL(ν, θ, λ)|ν=ν∗(θ)‖ 6= 0.

Case 3: When θ ∈ ∂Θ and θ − η∇θL(ν, θ, λ)|ν=ν∗(θ) 6∈ Θ for some η ∈ (0, η0] and any η0 > 0.
For any η > 0, define θη := θ − η∇θL(ν, θ, λ)|ν=ν∗(θ). The above condition implies that when
0 < η → 0, ΓΘ

[
θη
]

is the projection of θη to the tangent space of Θ. For any element θ̂ ∈ Θ, since
the set {θ ∈ Θ : ‖θ− θη‖2 ≤ ‖θ̂− θη‖2} is compact, the projection of θη on Θ exists. Furthermore,
since f(θ) := 1

2‖θ − θη‖
2
2 is a strongly convex function and ∇f(θ) = θ − θη, by the first order

optimality condition, one obtains

∇f(θ∗η)
>(θ − θ∗η) = (θ∗η − θη)>(θ − θ∗η) ≥ 0, ∀θ ∈ Θ,

where θ∗η is the unique projection of θη (the projection is unique because f(θ) is strongly convex
and Θ is a convex compact set). Since the projection (minimizer) is unique, the above equality holds
if and only if θ = θ∗η.

Therefore, for any θ ∈ Θ and η > 0,(
∇θL(ν, θ, λ)|ν=ν∗(θ)

)>
Υθ

[
−∇θL(ν, θ, λ)|ν=ν∗(θ)

]
=
(
∇θL(ν, θ, λ)|ν=ν∗(θ)

)>(
lim

0<η→0

θ∗η − θ
η

)
=

(
lim

0<η→0

θ − θη
η

)>(
lim

0<η→0

θ∗η − θ
η

)
= lim

0<η→0

−‖θ∗η − θ‖2

η2
+ lim

0<η→0

(
θ∗η − θη

)>(θ∗η − θ
η2

)
≤ 0.

By combining these arguments, one concludes that dL(ν, θ, λ)/dt|ν=ν∗(θ) ≤ 0 and this quantity is
non-zero whenever

∥∥Υθ

[
−∇θL(ν, θ, λ)|ν=ν∗(θ)

]∥∥ 6= 0.
Now, for any given λ, define the Lyapunov function

Lλ(θ) = L(ν∗(θ), θ, λ)− L(ν∗(θ∗), θ∗, λ),
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where θ∗ is a local minimum point. Then there exists a ball centered at θ∗ with radius r such that for
any θ ∈ Bθ∗(r), Lλ(θ) is a locally positive definite function, i.e., Lλ(θ) ≥ 0. On the other hand, by
the definition of a local minimum point, one obtains Υθ[−∇θL(θ∗, ν, λ)|ν=ν∗(θ∗)]|θ=θ∗ = 0 which
means that θ∗ is a stationary point, i.e., θ∗ ∈ Θc.

Note that dLλ(θ(t))/dt = dL(θ(t), ν∗(θ(t)), λ)/dt ≤ 0 and the time-derivative is non-zero
whenever

∥∥Υθ

[
−∇θL(ν, θ, λ)|ν=ν∗(θ)

]∥∥ 6= 0. Therefore, by the Lyapunov theory for asymptot-
ically stable systems (Khalil and Grizzle, 2002), the above arguments imply that with any initial
condition θ(0) ∈ Bθ∗(r), the state trajectory θ(t) of (44) converges to θ∗, i.e., L(θ∗, ν∗(θ∗), λ) ≤
L(θ(t), ν∗(θ(t)), λ) ≤ L(θ(0), ν∗(θ(0)), λ) for any t ≥ 0.

Based on the above properties and noting that 1) from Proposition 17, ∇θL(ν, θ, λ) is a Lips-
chitz function in θ, 2) the step-size rule follows from Assumption 6, 3) expression (60) implies that
δθi+1 is a square integrable Martingale difference, and 4) θi ∈ Θ, ∀i implies that supi ‖θi‖ < ∞
almost surely, one can invoke Theorem 2 in Chapter 6 of (Borkar, 2008) (multi-time scale stochas-
tic approximation theory) to show that the sequence {θi}, θi ∈ Θ converges almost surely to the
solution of the ODE (44), which further converges almost surely to θ∗ ∈ Θ.

Step 3 (Local Minimum) Now, we want to show that the sequence {θi, νi} converges to a local
minimum of L(ν, θ, λ) for any fixed λ. Recall that {θi, νi} converges to (θ∗, ν∗) := (θ∗, ν∗(θ∗)).
Previous arguments on the (ν, θ)-convergence imply that with any initial condition (θ(0), ν(0)), the
state trajectories θ(t) and ν(t) of (43) and (44) converge to the set of stationary points (θ∗, ν∗) in the
positive invariant set Θc × Nc and L(θ∗, ν∗, λ) ≤ L(θ(t), ν∗(θ(t)), λ) ≤ L(θ(0), ν∗(θ(0)), λ) ≤
L(θ(0), ν(t), λ) ≤ L(θ(0), ν(0), λ) for any t ≥ 0.

By contradiction, suppose (θ∗, ν∗) is not a local minimum. Then there exists (θ̄, ν̄) ∈ Θ ×
[−Dmax

1−γ ,
Dmax
1−γ ] ∩ B(θ∗,ν∗)(r) such that

L(θ̄, ν̄, λ) = min
(θ,ν)∈Θ×[−Dmax

1−γ ,Dmax
1−γ ]∩B(θ∗,ν∗)(r)

L(ν, θ, λ).

The minimum is attained by the Weierstrass extreme value theorem. By putting θ(0) = θ̄, the above
arguments imply that

L(θ̄, ν̄, λ) = min
(θ,ν)∈Θ×[−Dmax

1−γ ,Dmax
1−γ ]∩B(θ∗,ν∗)(r)

L(ν, θ, λ) < L(θ∗, ν∗, λ) ≤ L(θ̄, ν̄, λ)

which is a contradiction. Therefore, the stationary point (θ∗, ν∗) is a local minimum of L(ν, θ, λ)
as well.

Step 4 (Convergence of λ-update) Since the λ-update converges in the slowest time scale, it can
be rewritten using the converged θ∗(λ) = θ∗(ν∗(λ), λ) and ν∗(λ), i.e.,

λi+1 = ΓΛ

(
λi + ζ1(i)

(
∇λL(ν, θ, λ)

∣∣∣∣
θ=θ∗(λi),ν=ν∗(λi),λ=λi

+ δλi+1

))
(59)

where

δλi+1 = −∇λL(ν, θ, λ)

∣∣∣∣
θ=θ∗(λ),ν=ν∗(λ),λ=λi

+

(
ν∗(λi) +

1

1− α
1

N

N∑
j=1

(
D(ξj,i)− ν∗(λi)

)+ − β).
(60)
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From (41), we see that ∇λL(ν, θ, λ) is a constant function of λ. Similar to the θ-update, one can
easily show that δλi+1 is square integrable, i.e.,

E[‖δλi+1‖2 | Fλ,i] ≤ 2

(
β +

3Dmax

(1− γ)(1− α)

)2

,

where Fλ,i = σ
(
λm, δλm, m ≤ i

)
is the filtration of λ generated by different independent tra-

jectories. Furthermore, expression (41) implies that E [δλi+1 | Fλ,i] = 0. Therefore, the λ-update
is a stochastic approximation of the ODE (46) with a Martingale difference error term. In addi-
tion, from the convergence analysis of the (θ, ν)-update, (θ∗(λ), ν∗(λ)) is an asymptotically stable
equilibrium point for the sequence {θi, νi}. From (39), ∇θL(ν, θ, λ) is a linear mapping in λ, and
(θ∗(λ), ν∗(λ)) is a Lipschitz continuous mapping of λ.

Consider the ODE for λ ∈ [0, λmax] in (46). Analogous to the arguments for the θ-update, we
can write

d(−L(ν, θ, λ))

dt

∣∣∣∣
θ=θ∗(λ),ν=ν∗(λ)

= −∇λL(ν, θ, λ)

∣∣∣∣
θ=θ∗(λ),ν=ν∗(λ)

Υλ

[
∇λL(ν, θ, λ)

∣∣∣∣
θ=θ∗(λ),ν=ν∗(λ)

]
,

and show that −dL(ν, θ, λ)/dt|θ=θ∗(λ),ν=ν∗(λ) ≤ 0. This quantity is non-zero whenever∥∥Υλ

[
dL(ν, θ, λ)/dλ|θ=θ∗(λ),ν=ν∗(λ)

]∥∥ 6= 0.

Consider the Lyapunov function

L(λ) = −L(θ∗(λ), ν∗(λ), λ) + L(θ∗(λ∗), ν∗(λ∗), λ∗)

where λ∗ is a local maximum point. Then there exists a ball centered at λ∗ with radius r such that
for any λ ∈ Bλ∗(r), L(λ) is a locally positive definite function, i.e., L(λ) ≥ 0. On the other hand,
by the definition of a local maximum point, one obtains

Υλ

[
dL(ν, θ, λ)/dλ|θ=θ∗(λ),ν=ν∗(λ),λ=λ∗

]
|λ=λ∗ = 0

which means that λ∗ is also a stationary point, i.e., λ∗ ∈ Λc. Since

dL(λ(t))

dt
= −dL(θ∗(λ(t)), ν∗(λ(t)), λ(t))

dt
≤ 0

and the time-derivative is non-zero whenever
∥∥Υλ[∇λL(ν, θ, λ) |ν=ν∗(λ),θ=θ∗(λ)]

∥∥ 6= 0, the Lya-
punov theory for asymptotically stable systems implies that λ(t) converges to λ∗.

Given the above results and noting that the step size rule is selected according to Assump-
tion 6, one can apply the multi-time scale stochastic approximation theory (Theorem 2 in Chapter
6 of Borkar (2008)) to show that the sequence {λi} converges almost surely to the solution of the
ODE (46), which further converges almost surely to λ∗ ∈ [0, λmax]. Since [0, λmax] is a compact
set, following the same lines of arguments and recalling the envelope theorem (Theorem 16) for
local optima, one further concludes that λ∗ is a local maximum of L(θ∗(λ), ν∗(λ), λ) = L∗(λ).
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Step 5 (Local Optima) By letting θ∗ = θ∗
(
ν∗(λ∗), λ∗

)
and ν∗ = ν∗(λ∗), we will show that θ∗ is

a locally optimal policy for the CVaR-constrained optimization problem, which constitutes a (local)
saddle point (θ∗, ν∗, λ∗) of the Lagrangian function L(ν, θ, λ) if λ∗ ∈ [0, λmax).

Suppose the sequence {λi} generated from (59) converges to a stationary point λ∗ ∈ [0, λmax).
Since step 3 implies that (θ∗, ν∗) is a local minimum of L(ν, θ, λ∗) over the feasible set (θ, ν) ∈
Θ× [−Dmax

1−γ ,
Dmax
1−γ ], there exists a r > 0 such that

L(θ∗, ν∗, λ∗) ≤ L(ν, θ, λ∗), ∀(θ, ν) ∈ Θ×
[
−Dmax

1− γ
,
Dmax

1− γ

]
∩ B(θ∗,ν∗)(r).

In order to complete the proof, we must show

ν∗ +
1

1− α
E
[(
Dθ∗(x0)− ν∗

)+] ≤ β, (61)

and

λ∗
(
ν∗ +

1

1− α
E
[(
Dθ∗(x0)− ν∗

)+]− β) = 0. (62)

These two equations imply

L(θ∗, ν∗, λ∗) =V θ∗(x0)+λ∗
(
ν∗ +

1

1− α
E
[(
Dθ∗(x0)− ν∗

)+]− β)
=V θ∗(x0)

≥V θ∗(x0)+λ

(
ν∗ +

1

1− α
E
[(
Dθ∗(x0)− ν∗

)+]− β) = L(θ∗, ν∗, λ),

which further implies that (θ∗, ν∗, λ∗) is a saddle point of L(ν, θ, λ). We now show that (61)
and (62) hold.

Recall that
Υλ

[
∇λL(ν, θ, λ)|θ=θ∗(λ),ν=ν∗(λ),λ=λ∗

]
|λ=λ∗ = 0.

We show (61) by contradiction. Suppose

ν∗ +
1

1− α
E
[(
Dθ∗(x0)− ν∗

)+]
> β.

This implies that for λ∗ ∈ [0, λmax), we have

ΓΛ

(
λ∗ − η

(
β −

(
ν∗ +

1

1− α
E
[(
Dθ∗(x0)− ν∗

)+])))
= λ∗−η

(
β−
(
ν∗+

1

1− α
E
[(
Dθ∗(x0)−ν∗

)+]))
for any η ∈ (0, ηmax], for some sufficiently small ηmax > 0. Therefore,

Υλ

[
∇λL(ν, θ, λ)

∣∣∣∣
θ=θ∗(λ),ν=ν∗(λ),λ=λ∗

] ∣∣∣∣∣
λ=λ∗

= ν∗ +
1

1− α
E
[(
Dθ∗(x0)− ν∗

)+]− β > 0.

This is in contradiction with the fact that Υλ

[
∇λL(ν, θ, λ)|θ=θ∗(λ),ν=ν∗(λ),λ=λ∗

]
|λ=λ∗ = 0. There-

fore, (61) holds.

39



To show that (62) holds, we only need to show that λ∗ = 0 if

ν∗ +
1

1− α
E
[(
Dθ∗(x0)− ν∗

)+]
< β.

Suppose λ∗ ∈ (0, λmax), then there exists a sufficiently small η0 > 0 such that

1

η0

(
ΓΛ

(
λ∗ − η0

(
β −

(
ν∗ +

1

1− α
E
[(
Dθ∗(x0)− ν∗

)+])))− ΓΛ(λ∗)

)
= ν∗ +

1

1− α
E
[(
Dθ∗(x0)− ν∗

)+]− β < 0.

This again contradicts the assumption Υλ

[
∇λL(ν, θ, λ)|θ=θ∗(λ),ν=ν∗(λ),λ=λ∗

]
|λ=λ∗ = 0. There-

fore (62) holds.

When λ∗ = λmax and ν∗ + 1
1−αE

[(
Dθ∗(x0)− ν∗

)+]
> β,

ΓΛ

(
λ∗ − η

(
β −

(
ν∗ +

1

1− α
E
[(
Dθ∗(x0)− ν∗

)+])))
= λmax

for any η > 0 and

Υλ

[
∇λL(ν, θ, λ)|θ=θ∗(λ),ν=ν∗(λ),λ=λ∗

]
|λ=λ∗= 0.

In this case one cannot guarantee feasibility using the above analysis, and (θ∗, ν∗, λ∗) is not a local
saddle point. Such a λ∗ is referred to as a spurious fixed point (Kushner and Yin, 1997). Notice that
λ∗ is bounded (otherwise we can conclude that the problem is infeasible), so that by incrementally
increasing λmax in Algorithm 1, we can always prevent ourselves from obtaining a spurious fixed
point solution.

Combining the above arguments, we finally conclude that θ∗ is a locally optimal policy for the
CVaR-constrained optimization problem. �

Appendix B. Convergence of Actor-Critic Algorithms

Recall from Assumption 6 that the SPSA step size {∆k} satisfies ∆k → 0 as k → ∞ and∑
k(ζ2(k)/∆k)

2 <∞.
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B.1 Gradient with Respect to λ (Proof of Lemma 11)

By taking the gradient of V θ(x0, ν) w.r.t. λ (recall that both V and Q depend on λ through the cost
function C̄ of the augmented MDP M̄), we obtain

∇λV θ(x0, ν) =
∑
a∈Ā

µ(a|x0, ν; θ)∇λQθ(x0, ν, a)

=
∑
a∈Ā

µ(a|x0, ν; θ)∇λ
[
C̄(x0, ν, a) +

∑
(x′,s′)∈X̄

γP̄ (x′, s′|x0, ν, a)V θ(x′, s′)
]

=
∑
a

µ(a|x0, ν; θ)∇λC̄(x0, ν, a)︸ ︷︷ ︸
h(x0,ν)

+γ
∑
a,x′,s′

µ(a|x0, ν; θ)P̄ (x′, s′|x0, ν, a)∇λV θ(x′, s′)

= h(x0, ν) + γ
∑
a,x′,s′

µ(a|x0, ν; θ)P̄ (x′, s′|x0, ν, a)∇λV θ(x′, s′) (63)

= h(x0, ν) + γ
∑
a,x′,s′

µ(a|x0, ν; θ)P̄ (x′, s′|x0, ν, a)
[
h(x′, s′)

+ γ
∑

a′,x′′,s′′

µ(a′|x′, s′; θ)P̄ (x′′, s′′|x′, s′, a′)∇λV θ(x′′, s′′)
]
.

By unrolling the last equation using the definition of∇λV θ(x, s) from (63), we obtain

∇λV θ(x0, ν) =

∞∑
k=0

γk
∑
x,s

P(xk = x, sk = s | x0 = x0, s0 = ν; θ)h(x, s)

=
1

1− γ
∑
x,s

dθγ(x, s|x0, ν)h(x, s) =
1

1− γ
∑
x,s,a

dθγ(x, s|x0, ν)µ(a|x, s)∇λC̄(x, s, a)

=
1

1− γ
∑
x,s,a

πθγ(x, s, a|x0, ν)∇λC̄(x, s, a)

=
1

1− γ
∑
x,s,a

πθγ(x, s, a|x0, ν)
1

1− α
1{x = xTar}(−s)+.

This completes the proof.

B.2 Proof of Convergence of the Actor-Critic Algorithms

B.2.1 PROOF OF THEOREM 10: CRITIC UPDATE (v-UPDATE)

By the step size conditions, one notices that {vk} converges on a faster time scale than {νk}, {θk},
and {λk}. Thus, one can take (ν, θ, λ) in the v-update as fixed quantities. The critic update can be
re-written as follows:

vk+1 = vk + ζ4(k)φ(xk, sk)δk(vk), (64)

where the scalar

δk (vk) = −v>k φ(xk, sk) + γv>k φ (xk+1, sk+1) + C̄λ(xk, sk, ak)
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is the temporal difference (TD) from (18). Define

A :=
∑
y,a′,s′

πθγ(y, s′, a′|x, s)φ(y, s′)

φ>(y, s′)− γ
∑
z,s′′

P̄ (z, s′′|y, s′, a)φ>
(
z, s′′

) , (65)

and
b :=

∑
y,a′,s′

πθγ(y, s′, a′|x, s)φ(y, s′)C̄λ(y, s′, a′). (66)

It is easy to see that the critic update vk in (64) can be re-written as the following stochastic approx-
imation scheme:

vk+1 = vk + ζ4(k)(b−Avk + δAk+1), (67)

where the noise term δAk+1 is a square integrable Martingale difference, i.e., E[δAk+1 | Fk] = 0
if the γ-occupation measure πθγ is used to generate samples of (xk, sk, ak)—with Fk being the
filtration generated by different independent trajectories. By writing

δAk+1 = −(b−Avk) + φ(xk, sk)δk(vk)

and noting Eπθγ [φ(xk, sk)δk(vk) | Fk] = −Avk + b, one can easily verify that the stochastic ap-
proximation scheme in (67) is equivalent to the critic iterates in (64) and δAk+1 is a Martingale
difference, i.e., Eπθγ [δAk+1 | Fk] = 0. Let

h (v) := −Av + b.

Before getting into the convergence analysis, we present a technical lemma whose proof can be
found in (Bertsekas and Tsitsiklis, 1996, Lemma 6.10).

Lemma 20 Every eigenvalue of the matrix A has positive real part.

We now turn to the analysis of the critic iteration. Note that the following properties hold for
the critic update scheme in (64): 1) h (v) is Lipschitz, 2) the step size satisfies the properties in
Assumption 8, 3) the noise term δAk+1 is a square integrable Martingale difference, 4) the function
hc (v) := h (cv) /c, c ≥ 1 converges uniformly to a continuous function h∞ (v) for any v in a
compact set, i.e., hc (v) → h∞ (v) as c → ∞, and 5) the ordinary differential equation (ODE)
v̇ = h∞ (v) has the origin as its unique globally asymptotically stable equilibrium. The fourth
property can be easily verified from the fact that the magnitude of b is finite and h∞ (v) = −Av.
The fifth property follows directly from the facts that h∞ (v) = −Av and all eigenvalues of A have
positive real parts.

By Theorem 3.1 in (Borkar, 2008), these five properties imply:

The critic iterates {vk} are bounded almost surely, i.e., sup
k
‖vk‖ <∞ almost surely.

The convergence of the critic iterates in (64) can be related to the asymptotic behavior of the ODE

v̇ = h (v) = b−Av. (68)

Specifically, Theorem 2 in Chapter 2 of (Borkar, 2008) and the above conditions imply vk → v∗

with probability 1, where the limit v∗ depends on (ν, θ, λ) and is the unique solution satisfying
h (v∗) = 0, i.e., Av∗ = b. Therefore, the critic iterates converge to the unique fixed point v∗ almost
surely, as k →∞.
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B.2.2 PROOF OF THEOREM 12

Step 1 (Convergence of v-update) The proof of convergence for the critic parameter follows
directly from Theorem 10.

Step 2 (Convergence of SPSA based ν-update) In this section, we analyze the ν-update for the
incremental actor-critic method. This update is based on the SPSA perturbation method. The idea of
this method is to estimate the sub-gradient g(ν) ∈ ∂νL(ν, θ, λ) using two simulated value functions
corresponding to ν− = ν −∆ and ν+ = ν + ∆. Here ∆ ≥ 0 is a positive random perturbation that
vanishes asymptotically. The SPSA-based estimate for a sub-gradient g(ν) ∈ ∂νL(ν, θ, λ) is given
by

g(ν) ≈ λ+
1

2∆

(
φ>
(
x0, ν + ∆

)
− φ>

(
x0, ν −∆

))
v.

We turn to the convergence analysis of the sub-gradient estimation and ν-update. Since v con-
verges faster than ν, and ν converges faster than θ and λ, the ν-update in (20) can be rewritten using
the converged critic parameter v∗(ν), i.e.,

νk+1 = ΓN

(
νk − ζ3(k)

(
λ+

1

2∆k

(
φ>
(
x0, νk + ∆k

)
− φ>

(
x0, νk −∆k

))
v∗(νk)

))
, (69)

where (θ, λ) in this expression are viewed as constant quantities.
First, we consider the following assumption on the feature functions in order to prove that the

SPSA approximation is asymptotically unbiased.

Assumption 21 For any v ∈ Rκ1 , the feature functions satisfy the following conditions

|φ>V
(
x0, ν + ∆

)
v − φ>V

(
x0, ν −∆

)
v| ≤ K1(v)(1 + ∆).

Furthermore, the Lipschitz constants are uniformly bounded, i.e., supv∈Rκ1 K
2
1 (v) <∞.

This assumption is mild as the expected utility objective function implies that L(ν, θ, λ) is Lipschitz
in ν, and φ>V

(
x0, ν

)
v is just a linear function approximation of V θ(x0, ν).

Next, we establish the bias and convergence of the stochastic sub-gradient estimate. Let

g(νk) ∈ arg max {g : g ∈ ∂νL(ν, θ, λ)|ν=νk} ,

and

Λ1,k+1 =

((
φ>
(
x0, νk + ∆k

)
− φ>

(
x0, νk −∆k

))
v∗(νk)

2∆k
− EM (k)

)
,

Λ2,k =λk + ELM (k)− g(νk),

Λ3,k =EM (k)− ELM (k),

where

EM (k) :=E
[

1

2∆k

(
φ>
(
x0, νk + ∆k

)
− φ>

(
x0, νk −∆k

))
v∗(νk) | ∆k

]
,

ELM (k) :=E
[

1

2∆k

(
V θ
(
x0, νk + ∆k

)
− V θ

(
x0, νk −∆k

))
| ∆k

]
.
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Note that (69) is equivalent to

νk+1 = ΓN (νk − ζ3(k) (g(νk) + Λ1,k+1 + Λ2,k + Λ3,k)) . (70)

First, it is clear that Λ1,k+1 is a Martingale difference as E[Λ1,k+1 | Fk] = 0, which implies that

Mk+1 =

k∑
j=0

ζ3(j)Λ1,j+1

is a Martingale w.r.t. the filtration Fk. By the Martingale convergence theorem, we can show that
if supk≥0 E[M2

k ] < ∞, when k → ∞, Mk converges almost surely and ζ3(k)Λ1,k+1 → 0 almost
surely. To show that supk≥0 E[M2

k ] <∞, for any t ≥ 0 one observes that

E[M2
k+1] =

k∑
j=0

(ζ3(j))2 E[E[Λ2
1,j+1 | ∆j ]]

≤ 2
k∑
j=0

E
[(

ζ3(j)

2∆j

)2{
E
[((

φ>
(
x0, νj + ∆j

)
− φ>

(
x0, νj −∆j

) )
v∗(νj)

)2
| ∆j

]

+E
[(
φ>
(
x0, νj + ∆j

)
− φ>

(
x0, νj −∆j

) )
v∗(νj) | ∆j

]2
}]

.

Now based on Assumption 21, the above expression implies

E[M2
k+1] ≤2

k∑
j=0

E

[(
ζ3(j)

2∆j

)2

2K2
1 (1 + ∆j)

2

]
.

Combining the above results with the step size conditions, there exists K = 4K2
1 > 0 such that

sup
k≥0

E[M2
k+1] ≤ K

∞∑
j=0

E

[(
ζ3(j)

2∆j

)2
]

+ (ζ3(j))2 <∞.

Second, by the Min Common/Max Crossing theorem in (Bertsekas, 2009), one can show that
∂νL(ν, θ, λ)|ν=νk is a non-empty, convex, and compact set. Therefore, by duality of directional
directives and sub-differentials, i.e.,

max {g : g ∈ ∂νL(ν, θ, λ)|ν=νk} = lim
ξ↓0

L(νk + ξ, θ, λ)− L(νk − ξ, θ, λ)

2ξ
,

one concludes that for λk = λ (we can treat λk as a constant because it converges on a slower time
scale than νk),

λ+ ELM (k) = g(νk) +O(∆k),

almost surely. This further implies that

Λ2,k = O(∆k), i.e., Λ2,k → 0 as k →∞,

almost surely.
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Third, since dθγ(x0, ν|x0, ν) = 1, from the definition of εθ(v∗(νk)),

|Λ3,k| ≤ 2εθ(v
∗(νk))/∆k.

As t goes to infinity, εθ(v∗(νk))/∆k → 0 by assumption and Λ3,k → 0.
Finally, since ζ3(k)Λ1,k+1 → 0, Λ2,k → 0, and Λ3,k → 0 almost surely, the ν-update in (70) is

a noisy sub-gradient descent update with vanishing disturbance bias. Thus, the ν-update in (20) can
be viewed as an Euler discretization of an element of the following differential inclusion,

ν̇ ∈ Υν [−g(ν)] , ∀g(ν) ∈ ∂νL(ν, θ, λ), (71)

and the ν-convergence analysis is analogous to Step 1 of the proof of Theorem 7.

Step 2′ (Convergence of semi-trajectory ν-update) Since ν converges on a faster timescale than
θ and λ, the ν-update in (23) can be rewritten using a fixed pair (θ, λ), i.e.,

νk+1 = ΓN

(
νi − ζ3(k)

(
λ− λ

1− α
(
P
(
sTar ≤ 0 | x0 = x0, s0 = νk, µ

)
+ δνM,k+1

)))
, (72)

where
δνM,k+1 = −P

(
sTar ≤ 0 | x0 = x0, s0 = νi, µ

)
+ 1 {xk = xTar, sk ≤ 0} (73)

is a square integrable stochastic term, specifically,

E[(δνM,k+1)2 | Fν,k] ≤ 2,

where Fν,k = σ(νm, δνm, m ≤ k) is the filtration generated by ν. Since E [δνM,k+1 | Fν,k] = 0,
δνM,k+1 is a Martingale difference and the ν-update in (72) is a stochastic approximation of an
element of the differential inclusion

λ

1− α
P
(
sTar ≤ 0 | x0 = x0, s0 = νk, µ

)
− λ ∈ −∂νL(ν, θ, λ)|ν=νk .

Thus, the ν-update in (23) can be viewed as an Euler discretization of the differential inclusion
in (71), and the ν-convergence analysis is analogous to Step 1 of the proof of Theorem 7.

Step 3 (Convergence of θ-update) We first analyze the actor update (θ-update). Since θ con-
verges on a faster time scale than λ, one can take λ in the θ-update as a fixed quantity. Furthermore,
since v and ν converge on a faster scale than θ, one can also replace v and ν with their limits v∗(θ)
and ν∗(θ) in the convergence analysis. In the following analysis, we assume that the initial state
x0 ∈ X is given. Then the θ-update in (21) can be rewritten as follows:

θk+1 = ΓΘ

(
θk − ζ2(k)

(
∇θ logµ(ak|xk, sk; θ)|θ=θk

δk(v
∗(θk))

1− γ

))
. (74)

Consider the case in which the value function for a fixed policy µ is approximated by a learned
function approximator, φ>(x, s)v∗. If the approximation is sufficiently good, we might hope to
use it in place of V θ(x, s) and still point roughly in the direction of the true gradient. Recall the
temporal difference error (random variable) for a given pair (xk, sk) ∈ X × R:

δk (v) = −v>φ(xk, sk) + γv>φ (xk+1, sk+1) + C̄λ(xk, sk, ak).
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Define the v-dependent approximated advantage function

Ãθ,v(x, s, a) := Q̃θ,v(x, s, a)− v>φ(x, s),

where
Q̃θ,v(x, s, a) = γ

∑
x′,s′

P̄ (x′, s′|x, s, a)v>φ(x′, s′) + C̄λ(x, s, a).

The following lemma, whose proof follows from the proof of Lemma 3 in (Bhatnagar et al., 2009),
shows that δk(v) is an unbiased estimator of Ãθ,v.

Lemma 22 For any given policy µ and v ∈ Rκ1 , we have

Ãθ,v(x, s, a) = E[δk(v) | xk = x, sk = s, ak = a].

Define

∇θL̃v(ν, θ, λ) :=
1

1− γ
∑
x,a,s

πθγ(x, s, a|x0 = x0, s0 = ν)∇θ logµ(a|x, s; θ)Ãθ,v(x, s, a)

as the linear function approximation of ∇θL̃(ν, θ, λ). Similar to Proposition 17, we present the
following technical lemma on the Lipschitz property of∇θL̃v(ν, θ, λ).

Proposition 23 ∇θL̃v(ν, θ, λ) is a Lipschitz function in θ.

Proof. Consider the feature vector v. Recall that the feature vector satisfies the linear equation
Av = b, where A and b are given by (65) and (66), respectively. From Lemma 1 in (Bhatnagar
and Lakshmanan, 2012), by exploiting the inverse of A using Cramer’s rule, one may show that
v is continuously differentiable in θ. Now consider the γ-occupation measure πθγ . By applying
Theorem 2 in (Altman et al., 2004) (or Theorem 3.1 in Shardlow and Stuart 2000), it can be seen that
the occupation measure πθγ of the process (xk, sk) is continuously differentiable in θ. Recall from
Assumption 3 in Section 2.2 that ∇θµ(ak|xk, sk; θ) is a Lipschitz function in θ for any a ∈ A and
k ∈ {0, . . . , T − 1}, and µ(ak|xk, sk; θ) is differentiable in θ. By combining these arguments and
noting that the sum of products of Lipschitz functions is Lipschitz, one concludes that∇θL̃v(ν, θ, λ)
is Lipschitz in θ. �

We turn to the convergence proof of θ.

Theorem 24 The sequence of θ-updates in (21) converges almost surely to an equilibrium point
θ̂∗ that satisfies Υθ

[
−∇θL̃v∗(θ)(ν∗(θ), θ, λ)

]
= 0, for a given λ ∈ [0, λmax]. Furthermore, if

the function approximation error εθ(vk) vanishes as the feature vector vk converges to v∗, then
the sequence of θ-updates converges to θ∗ almost surely, where θ∗ is a local minimum point of
L(ν∗(θ), θ, λ) for a given λ ∈ [0, λmax].

Proof. We will mainly focus on proving the convergence of θk → θ∗ (second part of the theorem).
Since we just showed in Proposition 23 that∇θL̃v∗(θ)(ν∗(θ), θ, λ) is Lipschitz in θ, the convergence
proof of θk → θ̂∗ (first part of the theorem) follows from identical arguments.

Note that the θ-update in (74) can be rewritten as:

θk+1 = ΓΘ

(
θk + ζ2(k)

(
−∇θL(ν, θ, λ)|ν=ν∗(θ),θ=θk + δθk+1 + δθε

))
,
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where

δθk+1 =
∑
x′,a′,s′

πθkγ (x′, s′, a′|x0 = x0, s0 = ν∗(θk))∇θ logµ(a′|x′, s′; θ)|θ=θk
Ãθk,v

∗(θk)(x′, s′, a′)

1− γ

−∇θ logµ(ak|xk, sk; θ)|θ=θk
δk(v

∗(θk))

1− γ
.

and

δθε =
∑
x′,a′,s′

πθkγ (x′, s′, a′|x0 = x0, s0 = ν∗(θk))·

∇θ logµ(a′|x′, s′; θ)|θ=θk
1− γ

(Aθk(x′, s′, a′)− Ãθk,v∗(θk)(x′, s′, a′))

First, one can show that δθk+1 is square integrable, specifically,

E[‖δθk+1‖2 | Fθ,k]

≤ 2

1− γ
‖∇θ logµ(u|x, s; θ)|θ=θk 1 {µ(u|x, s; θk) > 0} ‖2∞

(
‖Ãθk,v∗(θk)(x, s, a)‖2∞ + |δk(v∗(θk))|2

)
≤ 2

1− γ
· ‖∇θµ(u|x, s; θ)|θ=θk‖2∞

min{µ(u|x, s; θk) | µ(u|x, s; θk) > 0}2
(
‖Ãθk,v∗(θk)(x, s, a)‖2∞ + |δk(v∗(θk))|2

)
≤ 64

K2‖θk‖2

1− γ

(
max
x,s,a
|C̄λ(x, s, a)|2 + 2 max

x,s
‖φ(x, s)‖2 sup

k
‖vk‖2

)
≤ 64

K2‖θk‖2

1− γ

(∣∣∣∣max

{
Cmax,

2λDmax

γT (1− α)(1− γ)

}∣∣∣∣2 + 2 max
x,s
‖φ(x, s)‖2 sup

k
‖vk‖2

)
,

for some Lipschitz constant K, where the indicator function in the second line can be explained by
the fact that πθkγ (x, s, u) = 0 whenever µ(u | x, s; θk) = 0 and because the expectation is taken with
respect to πθkγ . The third inequality uses Assumption 3 and the fact that µ takes on finitely-many
values (and thus its nonzero values are bounded away from zero). Finally, supk ‖vk‖ <∞ follows
from the Lyapunov analysis in the critic update.

Second, note that

δθε ≤
(1 + γ)‖ψθk‖∞

(1− γ)2
εθk(v∗(θk)), (75)

47



where ψθ(x, s, a) = ∇θ logµ(a|x, s; θ) is the “compatible feature.” The last inequality is due to the
fact that since πθγ is a probability measure, convexity of quadratic functions implies∑
x′,a′,s′

πθγ(x′, s′, a′|x0 = x0, s0 = ν∗(θ))(Aθ(x′, s′, a′)− Ãθ,v(x′, s′, a′))

≤
∑
x′,a′,s′

πθγ(x′, s′, a′|x0 = x0, s0 = ν∗(θ))(Qθ(x′, s′, a′)− Q̃θ,v(x′, s′, a′))

+
∑
x′,s′

dθγ(x′, s′|x0 = x0, s0 = ν∗(θ))(V θ(x′, s′)− Ṽ θ,v(x′, s′))

=γ
∑
x′,a′,s′

πθγ(x′, s′, a′|x0 = x0, s0 = ν∗(θ))
∑
x′′,s′′

P̄ (x′′, s′′|x′, s′, a′)(V θ(x′′, s′′)− φ>(x′′, s′′)v)

+

√∑
x′,s′

dθγ(x′, s′|x0 = x0, s0 = ν∗(θ))(V θ(x′, s′)− Ṽ θ,v(x′, s′))2

≤γ
√ ∑
x′,a′,s′

πθγ(x′, s′, a′|x0 = x0, s0 = ν∗(θ))
∑
x′′,s′′

P̄ (x′′, s′′|x′, s′, a′)(V θ(x′′, s′′)− φ>(x′′, s′′)v)2

+
εθ(v)

1− γ

≤
√∑
x′′,s′′

(
dθγ(x′′, s′′|x0, ν∗(θ))− (1− γ)1{x0 = x′′, ν = s′′}

)
(V θ(x′′, s′′)− φ>(x′′, s′′)v)2 +

εθ(v)

1− γ

≤
(

1 + γ

1− γ

)
εθ(v).

Then by Lemma 22, if the γ-occupation measure πθγ is used to generate samples (xk, sk, ak),
one obtains E [δθk+1 | Fθ,k] = 0, where Fθ,k = σ(θm, δθm, m ≤ k) is the filtration generated by
different independent trajectories. On the other hand, |δθε| → 0 as εθk(v∗(θk))→ 0. Therefore, the
θ-update in (74) is a stochastic approximation of the continuous system θ(t), described by the ODE

θ̇ = Υθ

[
−∇θL(ν, θ, λ)|ν=ν∗(θ)

]
,

with an error term that is a sum of a vanishing bias and a Martingale difference. Thus, the conver-
gence analysis of θ follows analogously from Step 2 in the proof of Theorem 7, i.e., the sequence of
θ-updates in (21) converges to θ∗ almost surely, where θ∗ is the equilibrium point of the continuous
system θ satisfying

Υθ

[
−∇θL(ν, θ, λ)|ν=ν∗(θ)

]
= 0. (76)

�

Step 4 (Local minimum) The proof that (θ∗, ν∗) is a local minimum follows directly from the
arguments in Step 3 in the proof of Theorem 7.

Step 5 (λ-update and convergence to saddle point) Note that the λ-update converges on the
slowest time scale, thus, (20) may be rewritten using the converged v∗(λ), θ∗(λ), and ν∗(λ) as

λk+1 = ΓΛ

(
λk + ζ1(k)

(
∇λL(ν, θ, λ)

∣∣∣∣
θ=θ∗(λ),ν=ν∗(λ),λ=λk

+ δλk+1

))
, (77)
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where

δλk+1 = −∇λL(ν, θ, λ)

∣∣∣∣
θ=θ∗(λ),ν=ν∗(λ),λ=λk

+

(
ν∗(λk) +

(−sk)+

(1− α)(1− γ)
1{xk = xTar} − β

)
.

(78)
From (41), ∇λL(ν, θ, λ) does not depend on λ. Similar to the θ-update, one can easily show that
δλk+1 is square integrable, specifically,

E[‖δλk+1‖2 | Fλ,k] ≤ 8

(
β2 +

(
Dmax

1− γ

)2

+

(
2Dmax

(1− γ)2(1− α)

)2
)
,

where Fλ,k = σ
(
λm, δλm, m ≤ k

)
is the filtration of λ generated by different independent trajec-

tories. Similar to the θ-update, using the γ-occupation measure πθγ , one obtains E [δλk+1 | Fλ,k] =
0. As above, the λ-update is a stochastic approximation for the continuous system λ(t) described
by the ODE

λ̇ = Υλ

[
∇λL(ν, θ, λ)

∣∣∣∣
θ=θ∗(λ),ν=ν∗(λ)

]
,

with an error term that is a Martingale difference. Then the λ-convergence and the analysis of local
optima follow from analogous arguments in Steps 4 and 5 in the proof of Theorem 7.
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