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Abstract

The theory of reinforcement learning currently suffers from a mismatch between its empirical
performance and the theoretical characterization of its performance, with consequences for, e.g.,
the understanding of sample efficiency, safety, and robustness. The linear quadratic regulator with
unknown dynamics is a fundamental reinforcement learning setting with significant structure in
its dynamics and cost function, yet even in this setting there is a gap between the best known
regret lower-bound of Ωp(

√
T ) and the best known upper-bound of Op(

√
T polylog(T )). The

contribution of this paper is to close that gap by establishing a novel regret upper-bound of
Op(

√
T ). Our proof is constructive in that it analyzes the regret of a concrete algorithm, and

simultaneously establishes an estimation error bound on the dynamics of Op(T
−1/4) which is also

the first to match the rate of a known lower-bound. The two keys to our improved proof technique
are (1) a more precise upper- and lower-bound on the system Gram matrix and (2) a self-bounding
argument for the expected estimation error of the optimal controller.

Keywords— reinforcement learning, linear quadratic regulator, rate-optimal, system identification

1 Introduction

We have witnessed great progress in reinforcement learning (RL) beating human professionals in
various challenging games like GO (Silver et al., 2016), Starcraft II (Vinyals et al., 2019) and Dota
2 (Berner et al., 2019). Successes in these highly complex simulation environments have led to an
increasing drive to apply RL in real world data-driven systems such as self driving cars (Kiran et al.,
2021) and automatic robots (Levine et al., 2016). Yet real-world deployment comes with increased
risks and costs, and as such has been hindered by the field’s limited understanding of the gap between
theoretical bounds and the empirical performance of RL. One line of attack for this problem is to
deepen our understanding of relatively simple yet fundamental systems such as the linear quadratic
regulator (LQR) with unknown dynamics.

1.1 Problem statement

In the LQR problem, the system obeys the following dynamics starting from t = 0:

xt+1 = Axt +But + εt, (1)

where xt ∈ Rn represents the state of the system at time t and starts at some initial state x0,

ut ∈ Rd represents the action or control applied at time t, εt
i.i.d.∼ N (0, σ2

εIn) is the system noise, and
A ∈ Rn×n and B ∈ Rn×d are matrices determining the system’s linear dynamics. The goal is to find
an algorithm U that, at each time t, outputs a control ut = U(Ht) that is computed using the entire
thus-far-observed history of the system Ht = {xt, ut−1, xt−1, . . . , u1, x1, u0} to maximize the system’s
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function while minimizing control effort. The cost of the LQR problem up to a given finite time T is
quadratic:

J (U, T ) =
T∑

t=1

(
x⊤
t Qxt + u⊤

t Rut

)
(2)

for some known positive definite matrices Q ∈ Rn×n and R ∈ Rd×d. When the system dynamics A
and B are also known and T → ∞, the cost-minimizing algorithm is known: u∗

t = U∗(Ht) = Kxt,
where K ∈ Rd×n is the efficiently-computable solution to a system of equations that only depend on
A, B, Q, and R. Like the Gaussian linear model in supervised learning, the aforementioned linear-
quadratic problem is foundational to control theory because it is conceptually simple yet it provides
a remarkably good description for some real-world systems. In fact, many systems are close to linear
over their normal range of operation, and linearity is an important factor in system design (Recht,
2019).

In this paper we consider the case when the system dynamics A and B are unknown. Intuitively,
one might hope that after enough time observing a system controlled by almost any algorithm, one
should be able to estimate A and B (and hence K) fairly well and thus be able to apply an algorithm
quite close to U∗. Indeed the key challenge in LQR with unknown dynamics, as in any reinforcement
learning problem, is to trade off exploration (actions that help estimate A and B) with exploitation
(actions that minimize cost). We will quantify the cost of an algorithm by its regret, which is the
difference in cost achieved by the algorithm and that achieved by the oracle optimal controller U∗:

R(U, T ) = J (U, T )− J (U∗, T ).

The best known upper-bound for the regret of LQR with unknown dynamics is Op(
√
T polylog(T )),

which contains a polylogarithmic factor of T that is not present in the best known lower-bound of
Ωp(
√
T ). This paper closes that rate gap by establishing a novel regret upper-bound of Op(

√
T ),

where the improvement comes from a more careful bound of the system Gram matrix combined with
a self-bounding argument for the expected estimation error. As part of our proof, we show that the
algorithm that achieves our optimal rate of regret also produces data that can be used for system

identification (estimation of A and B) at a rate of
∥∥∥Â−A

∥∥∥
2
=
∥∥∥B̂ −B

∥∥∥
2
= Op(T

−1/4), which is also

tighter than the best known bounds of Op(T
−1/4 polylog(T )) for data from an algorithm achieving

Op(
√
T polylog(T )) regret, where the tildes hide polylogarthmic terms in T .

1.2 Related works

Many works have studied optimal rates of regret in RL. In bandits, matching upper- and lower-bounds
have been found as Θp(log (T )) for the distribution-dependent regret (Lai and Robbins, 1985; Auer
et al., 2002; Magureanu et al., 2014; Agrawal and Goyal, 2013; Komiyama et al., 2015; Garivier et al.,
2018) and Θp(

√
T ) for the distribution-free regret (Agrawal and Goyal, 2013; Osband and Van Roy,

2016; Garivier et al., 2018; Li et al., 2019; Hajiesmaili et al., 2020).
For Markov decision processes (MDPs), most work has considered finite state and action spaces. In

this setting, a matching upper- and lower-bound of Θp(log (T )) is known for the distribution-dependent
regret (Burnetas and Katehakis, 1997; Tewari and Bartlett, 2007; Ok et al., 2018; Tirinzoni et al.,
2021; Xu et al., 2021), while the best known upper-bound of Op(

√
T polylog(T )) for the distribution-

free regret Jaksch et al. (2010); Azar et al. (2017); Agrawal and Jia (2017); Simchowitz and Jamieson
(2019); Xiong et al. (2021) has a polylogarithmic gap with the best-known lower-bound of Ωp(

√
T )

(Jaksch et al., 2010; Osband and Van Roy, 2016; Azar et al., 2017).
The LQR system is an MDP with continuous state and action spaces, and has received increasing

interest recently. For the LQR system with unknown dynamics, Simchowitz and Foster (2020) proved

a Ωp(
√
T ) lower-bound for the regret along with an upper-bound of Op(

√
T log( 1δ )) with probability

1− δ under the condition δ < 1/T , so that the upper-bound contains an implicit additional log1/2(T )
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term. Other Op(
√
T polylog(T )) regret upper-bounds for LQR with uknown dynamics have been

established elsewhere (Faradonbeh et al., 2018a,b; Mania et al., 2019; Abbasi-Yadkori and Szepesvári,
2011; Ibrahimi et al., 2012; Faradonbeh et al., 2017; Cohen et al., 2019; Ouyang et al., 2017; Faradonbeh
et al., 2018b; Abeille and Lazaric, 2018; Wang and Janson, 2020), but to the best of our knowledge,
no existing work has matched the Ωp(

√
T ) lower-bound until the present paper. Our proof borrows

many insightful results and ideas from a number of these prior works, especially Simchowitz et al.
(2018); Fazel et al. (2018); Simchowitz and Foster (2020); Wang and Janson (2020).

1.3 Algorithm and assumptions

Throughout the paper, we make only one assumption on the true system parameters:

Assumption 1 (Stability). Assume the system is stabilizable, i.e., there exists K0 such that the
spectral radius (maximum absolute eigenvalue) of A+BK0 is strictly less than 1.

Under Assumption 1, it is well known that there is a unique optimal controller ut = Kxt (Arnold and
Laub, 1984) which can be computed from A and B, where

K = −(R+B⊤PB)−1B⊤PA (3)

and P is the unique positive definite solution to the discrete algebraic Riccati equation (DARE):

P = A⊤PA−A⊤PB(R+B⊤PB)−1B⊤PA+Q. (4)

In this paper we will consider the same algorithm as in Wang and Janson (2020), reproduced here
as Algorithm 1, which is a noisy certainty equivalent control algorithm. In particular, at every round
t, we generate an estimate K̂t for K, and then apply control ut = K̂txt + ηt as a substitute of the
optimal unknown control ut = Kxt, where ηt ∼ N (0, t−1/2Id) is a noise term whose variance shrinks
at a carefully chosen rate in t so as to rate-optimally trade off exploration and exploitation. Note that
Algorithm 1 is step-wise and online, i.e., it does not rely on independent restarts or episodes of any
kind and does not depend on the time horizon T . The two things it does rely on, which are standard
in the literature (see, e.g., Dean et al. (2018)), are the knowledge of a stabilizing controller K0 and
an upper-bound CK on the spectral norm of the optimal controller K; Cx and ση are also inputs but
can take any positive numbers.

Algorithm 1 Stepwise Noisy Certainty Equivalent Control

Require: Initial state x0, stabilizing control matrix K0, scalars Cx > 0, CK > ∥K∥, ση > 0.

1: Let u0 = K0x0 + η0 and u1 = K0x1 + η1, with η0, η1
iid∼ N (0, σ2

ηId).
2: for t = 2, 3, . . . do
3: Compute

(Ât−1, B̂t−1) ∈ argmin
(A′,B′)

t−2∑
k=0

∥xk+1 −A′xk −B′uk∥
2

(5)

and if stabilizable, plug them into the DARE (Eqs. (3) and (4)) to compute K̂t, otherwise set
K̂t = K0.

4: If ∥xt∥ ≳ Cx log(t) or
∥∥∥K̂t

∥∥∥ ≳ CK , reset K̂t = K0.

5: Let
ut = K̂txt + ηt, ηt

iid∼ N (0, σ2
ηt

−1/2In) (6)

6: end for
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1.4 Notation

Throughout our proofs, we use X ≲ Y (resp. X ≳ Y ) as shorthand for the inequality X ≤ CY (resp.
X ≥ CY ) for some constant C. X ≂ Y means both X ≲ Y and X ≳ Y . We will almost always
establish such relations between quantities that (at least may) depend on T and show that they hold
with at least some stated probability 1− δ; in such cases, we will always make all dependence on both
T and δ explicit, i.e., the hidden constant(s) C will never depend on T or δ, though they may depend
on any other parameters of the system or algorithm, including A, B, Q, R, σ2

ϵ , σ
2
η, K0, Cx, CK .

1.5 Outline

In the remainder of this paper, we will present an outline of the proof of our improved regret upper-
bound in two parts. First, in Section 2, we will establish a novel Op

(
T−1/4

)
bound on the estimation

error of Ât, B̂t, and K̂t from Algorithm 1. Then, in Section 3, we will leverage this tighter estimation

error bound to establish our Op

(√
T
)
bound on the regret of Algorithm 1.

2 Bounding the estimation error by Op

(
T−1/4

)
Our bound on the estimation error starts with a key result from Simchowitz et al. (2018), which
relates the estimation error to the system Gram matrix via a lower- and upper-bound for it. The rest
of the proof is primarily comprised of two parts. In the first part, we prove a more precise upper- and
lower-bound on the system Gram matrix so that the two bounds are almost of the same order, which
is crucial in removing the polylog(T ) in the estimation error bound. In the second part, we take the
estimation error bound from plugging in the Gram matrix bounds from the first part and transform
it into a self-bounding argument for the expected estimation error of the estimated dynamics that
yields the Op(T

−1/4) final rate for the estimation error.

To streamline notation, define zt =

[
xt

ut

]
and Θ = [A,B], and correspondingly define Θ̂t = [Ât, B̂t].

Then by Theorem 2.4 of Simchowitz et al. (2018), given a fixed δ ∈ (0, 1), T ∈ N and 0 ⪯ Γ ⪯ Γ̄ ∈
R(n+d)×(n+d) such that P

(∑T−1
t=0 ztz

⊤
t ⪰ TΓ

)
≥ 1− δ and P[

∑T−1
t=0 ztz

⊤
t ⪯ T Γ̄] ≥ 1− δ, when

T ≳ log

(
1

δ

)
+ 1 + log det(Γ̄Γ−1), (7)

Θ̂T satisfies:

P

∥∥∥Θ̂T −Θ
∥∥∥ ≳

√
1 + log det Γ̄Γ−1 + log

(
1
δ

)
Tλmin(Γ)

 ≤ δ. (8)

Similar upper-bounds to those that already exist in the literature (which contain extra polylog(T )
terms compared to the best know lower-bound) can be achieved by taking Γ ≂ T−1/2In+d and Γ̄ ≂
log2(T )In+d, and we restate this result here (and prove it in Appendix A.1) for completeness.

Lemma 1 (Estimation error bound with polylog(T ) term). Algorithm 1 applied to a system described
by Eq. (1) under Assumption 1 satisfies, when 0 < δ < 1/2, for any T ≳ log(1/δ),

P

[∥∥∥Θ̂T −Θ
∥∥∥ ≳ T−1/4

√(
log T + log

(
1

δ

))]
≤ δ. (9)

In order to improve this Op

(
T−1/4 log1/2(T )

)
bound to the desired Op

(
T−1/4

)
, we need tighter

lower- and upper-bounds Γ and Γ̄ for
∑T−1

t=0 ztz
⊤
t . The following Lemma is one of the key steps in our

proof.
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Lemma 2. Algorithm 1 applied to a system described by Eq. (1) under Assumption 1 satisfies, for
any 0 < δ < 1/2 and T ≳ log3(1/δ), with probability at least 1− δ:

TΓ :=

[
In
K

]
T

[
In
K

]⊤
+

[
−K⊤

Id

]
T 1/2

[
−K⊤

Id

]⊤
≾

T−1∑
t=0

ztz
⊤
t ≾

(
1

δ

[
In
K

]
T

[
In
K

]⊤
+

[
−K⊤

Id

]
λmax

(
T−1∑
t=0

∆t∆
⊤
t

)[
−K⊤

Id

]⊤)
:= T Γ̄,

(10)

where ∆t := (K̂t −K)xt + ηt.

The complete proof of Lemma 2 can be found at Appendix A.2.

Proof. (sketch) GT :=
∑T−1

t=0 ztz
⊤
t can be represented as a summation of two parts:

GT =

T−1∑
t=0

ztz
⊤
t =

[
I
K

] T−1∑
t=0

xtx
⊤
t

[
I
K

]⊤
+

T−1∑
t=0

[
0n xt∆

⊤
t

∆tx
⊤
t ∆t∆

⊤
t +Kxt∆

⊤
t +∆tx

⊤
t K

⊤

]
. (11)

We consider the dominating part

[
I
K

]∑T−1
t=0 xtx

⊤
t

[
I
K

]⊤
(smallest eigenvalue scales with T ) and the

remainder part
∑T−1

t=0

[
0n xt∆

⊤
t

∆tx
⊤
t ∆t∆

⊤
t +Kxt∆

⊤
t +∆tx

⊤
t K

⊤

]
separately. We then prove in Lemma 7

that with probability at least 1− δ:[
I
K

]
T

[
I
K

]⊤
⪯
[
I
K

] T−1∑
t=0

xtx
⊤
t

[
I
K

]⊤
⪯ 1/δ

[
I
K

]
T

[
I
K

]⊤
(12)

These bounds reflect the intuition that xt should converge to a stationary distribution, making each
of the summands xtx

⊤
t of constant order.

Lower bound Eq. (12) provides a partial lower bound for GT : with probability at least 1− δ,

GT ⪰
[
I
K

] T−1∑
t=0

xtx
⊤
t

[
I
K

]⊤
≿

[
I
K

]
T

[
I
K

]⊤
. (13)

This part only covers the subspace spanned by

[
I
K

]
; we still need to consider a general bound for

the whole matrix GT . Lemma 34 of Wang and Janson (2020) gives a high probability lower-bound
GT ≿ T 1/2In+d. Combining this and Eq. (13), with high probability:

GT +GT ≿

[
In
K

]
T

[
In
K

]⊤
+ T 1/2In+d ≿

[
In
K

]
T

[
In
K

]⊤
+

[
−K⊤

Id

]
T 1/2

[
−K⊤

Id

]⊤
.

Upper bound The argument for our upper-bound divides Rn+d into two orthogonal subspaces

spanned by the columns of

[
In
K

]
and

[
−K⊤

Id

]
, and essentially bounds ξ⊤GT ξ separately by order T

and λmax

(∑T−1
t=0 ∆t∆

⊤
t

)
for the two subspaces, respectively. In particular, for any ξ1 in the span of[

In
K

]
and ξ2 in the span of

[
−K⊤

Id

]
,

(ξ1 + ξ2)
⊤GT (ξ1 + ξ2) ≤ 2ξ⊤1 GT ξ1 + 2ξ⊤2 GT ξ2
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(using Eq. (11), because ξ2 is orthogonal to

[
I
K

] T−1∑
t=0

xtx
⊤
t

[
I
K

]⊤
)

≲ 2ξ⊤1 GT ξ1 + 2 ∥ξ2∥2 λmax

(
T−1∑
t=0

∆t∆
⊤
t

)

(we show in Appendix A.8 that P
(
GT ≾

1

δ
TIn+d

)
≥ 1− δ.)

≲
1

δ
T ∥ξ1∥2 + ∥ξ2∥2 λmax

(
T−1∑
t=0

∆t∆
⊤
t

)
,

where the last inequality holds with high probability. This last expression can in turn be bounded by

(ξ1 + ξ2)
⊤

(
1

δ

[
In
K

]
T

[
In
K

]⊤
+

[
−K⊤

Id

]
λmax

(
T−1∑
t=0

∆t∆
⊤
t

)[
−K⊤

Id

]⊤)
(ξ1 + ξ2),

establishing the upper-bound from Eq. (10).

In Lemma 2, the upper bound Γ̄ and lower bound Γ have similar forms. Plugging them into Eq. (8)
gives that when T ≳ log3(1/δ),

P

∥∥∥Θ̂T −Θ
∥∥∥ ≳

√√√√1 + log
(
λmax

(∑T−1
t=0 ∆t∆⊤

t

)
T−1/2

)
+ log

(
1
δ

)
T 1/2

 ≤ δ. (14)

The following Lemmas 3 and 5 will connect the key term λmax

(∑T−1
t=0 ∆t∆

⊤
t

)
in the estimation

error bound of Eq. (14) with the estimation error itself, setting up the self-bounding argument that
is key to our main estimation error bound in Theorem 1.

Lemma 3. Algorithm 1 applied to a system described by Eq. (1) under Assumption 1 satisfies, for
any 0 < δ < 1/2, T ≳ log2(1/δ),

P

(
λmax

(
T−1∑
t=0

∆t∆
⊤
t

)
≳ 1/δ

(
T−1∑
t=1

E
(
t1/2

∥∥∥K̂t −K
∥∥∥4)+ log2(1/δ) + T 1/2

))
≤ 2δ.

A complete proof of Lemma 3 can be found at Appendix A.3.

Proof. (sketch) We first define a “stable” event Eδ, which holds with probability 1− δ, on which for
large enough T , the estimation errors are uniformly bounded by some small constant. Intuitively, Eδ

is the event on which the system remains well-behaved, in the sense that the system is always well
controlled after certain time, which makes our analysis much easier. Lemma 4 defines Eδ and proves
that it holds with high probability; its proof is deferred to Appendix A.9, but it basically follows from
a union bound applied to Eq. (9).

Lemma 4. Algorithm 1 applied to a system described by Eq. (1) under Assumption 1 satisfies, for
fixed ϵ0 ≲ 1 and any δ > 0,

Eδ :=
{∥∥∥Θ̂T −Θ

∥∥∥ ,∥∥∥K̂T −K
∥∥∥ ≤ ϵ0, for all T ≳ log2(1/δ)

}
,P (Eδ) ≥ 1− δ. (15)

Then starting with the inequality

∥∆t∥2 =
∥∥∥(K̂t −K)xt + ηt

∥∥∥2 ≲
∥∥∥K̂t −K

∥∥∥2 ∥xt∥2 + ∥ηt∥2 ,
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we can show that with probability 1− δ:

λmax

(
T−1∑
t=0

∆t∆
⊤
t 1Eδ

)
≲ 1/δ

(
T−1∑
t=1

E
(
t1/2

∥∥∥K̂t −K
∥∥∥4 + t−1/2 ∥xt∥4 1Eδ

)
+ T 1/2

)
.

We prove in Lemma 10 that for t ≳ log2(1/δ), E
(
∥xt∥4 1Eδ

)
≲ 1. For t ≲ log2(1/δ) we have the

bound E∥xt∥2 ≲ log2(t) from Eq. (104) of Wang and Janson (2020). We show the same proof applies
if we increase the exponent from 2 to 4:

E∥xt∥4 ≲ log4(t). (16)

Applying these bounds produces

λmax

(
T−1∑
t=0

∆t∆
⊤
t 1Eδ

)
≲ 1/δ

(
T−1∑
t=1

E
(
t1/2

∥∥∥K̂t −K
∥∥∥4)+ log2(1/δ) + T 1/2

)
,

and we finish the proof by removing 1Eδ
on the left hand side and decreasing the probability with

which the inequality holds from 1− δ to 1− 2δ.

Lemma 5. Algorithm 1 applied to a system described by Eq. (1) under Assumption 1 satisfies, for
any 0 < δ < 1/2 and T ≳ log3(1/δ),

P

[
T 1/2

∥∥∥Θ̂T −Θ
∥∥∥2 ≳ log

(
T−1/2

(
T−1∑
t=1

E
(
t1/2

∥∥∥K̂t −K
∥∥∥4))+ 1

)
+ log

(
1

δ

)]
≤ 3δ. (17)

A complete proof of Lemma 5 can be found at Appendix A.4.

Proof. (sketch) Combining Lemma 3 and Eq. (14),

P

[
T 1/2

∥∥∥Θ̂T −Θ
∥∥∥2 ≳ log

(
T−1/2

(
T−1∑
t=1

E
(
t1/2

∥∥∥K̂t −K
∥∥∥4)+ log2(1/δ)

)
+ 1

)
+ log

(
1

δ

)]
≤ 3δ.

Then we show that the log2(1/δ) can be moved outside and merged with the log(1/δ) term:

log

(
T−1/2

(
T−1∑
t=1

E
(
t1/2

∥∥∥K̂t −K
∥∥∥4)+ log2(1/δ)

)
+ 1

)
+ log

(
1

δ

)

≲ log

(
T−1/2

(
T−1∑
t=1

E
(
t1/2

∥∥∥K̂t −K
∥∥∥4))+ 1

)
+ log

(
1

δ

)
,

completing the proof.

We are now able to state the main result of this section:

Theorem 1. Algorithm 1 applied to a system described by Eq. (1) under Assumption 1 satisfies∥∥∥Θ̂T −Θ
∥∥∥ = Op(T

−1/4) and
∥∥∥K̂T −K

∥∥∥ = Op(T
−1/4). (18)

A complete proof of Theorem 1 can be found at Appendix A.5.
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Proof. By Proposition 4 of Simchowitz and Foster (2020),∥∥∥K̂T −K
∥∥∥ ≲

∥∥∥Θ̂T −Θ
∥∥∥ . (19)

as long as
∥∥∥Θ̂T −Θ

∥∥∥ ≤ ϵ0, where ϵ0 is some fixed constant determined by the system parameters. We

want to focus on cases where
∥∥∥Θ̂T −Θ

∥∥∥ ≤ ϵ0 to transfer T 1/2
∥∥∥Θ̂T −Θ

∥∥∥2 to T 1/2
∥∥∥K̂T −K

∥∥∥2 so that

Lemma 5 has only estimation error of K̂T .

We can estimate E
(
T
∥∥∥Θ̂T −Θ

∥∥∥4 1∥Θ̂T−Θ∥≤ϵ0

)
by calculating the integral using the tail bound

from Lemma 5 as long as T ≳ log3(1/δ). The further tails can be bounded by the constant ϵ0.

As a result, when T ≥ T0 (T0 is a large enough constant so that 3e−cT 1/3

Tϵ40 ≤ 1):

E
(
T
∥∥∥Θ̂T −Θ

∥∥∥4 1∥Θ̂T−Θ∥≤ϵ0

)

≲

(
log

(
T−1/2

(
T−1∑
t=1

t−1/2E
(
t
∥∥∥K̂t −K

∥∥∥4)))+ 1

)2

+ 3e−cT 1/3

Tϵ40

≲

(
log

(
T−1/2

(
T−1∑
t=1

t−1/2E
(
t
∥∥∥K̂t −K

∥∥∥4)))+ 1

)2

+ 1.

On the right-hand side, consider the maximum of E
(
t
∥∥∥K̂t −K

∥∥∥4) from T0 to Tmax ≥ T ,

E
(
T
∥∥∥Θ̂T −Θ

∥∥∥4 1∥Θ̂T−Θ∥≤ϵ0

)
(Algorithm 1 ensures

∥∥∥K̂t

∥∥∥ ≤ CK)

≲

(
log

(
T−1/2

(
T0∑
t=1

t−1/2(CK + ∥K∥)2
)

+ max
T0≤s≤Tmax

E
(
s
∥∥∥K̂s −K

∥∥∥4))+ 1

)2

+ 1

≲

(
log

(
T−1/2T

1/2
0 · 1 + max

T0≤s≤Tmax

E
(
s
∥∥∥K̂s −K

∥∥∥4))+ 1

)2

+ 1

≲

(
log

(
1 + max

T0≤s≤Tmax

E
(
s
∥∥∥K̂s −K

∥∥∥4))+ 1

)2

+ 1

By Eq. (19), we can transfer
∥∥∥Θ̂T −Θ

∥∥∥ on the left hand side to
∥∥∥K̂T −K

∥∥∥ as long as
∥∥∥Θ̂T −Θ

∥∥∥ ≤ ϵ0.

By Lemma 1, the probability δ that
∥∥∥Θ̂T −Θ

∥∥∥ ≤ ϵ0 does not hold can be solved from

T−1/4

√(
log T + log

(
1

δ

))
= ϵ0,

which gives

δ = Te−ϵ20T
1/2

.

As a result (all T ≥ T0 satisfies Te−ϵ20T
1/2

T (CK + ∥K∥)4 ≤ 1)

E
(
T
∥∥∥Θ̂T −Θ

∥∥∥4 1∥Θ̂T−Θ∥≤ϵ0

)
≳ E

(
T
∥∥∥K̂T −K

∥∥∥4 1∥Θ̂T−Θ∥≤ϵ0

)

8



≥ E
(
T
∥∥∥K̂T −K

∥∥∥4)− Te−ϵ20T
1/2

T (CK + ∥K∥)4

≥ E
(
T
∥∥∥K̂T −K

∥∥∥4)− 1.

Now we have

E
(
T
∥∥∥K̂T −K

∥∥∥4) ≲

(
log

(
1 + max

T0≤s≤Tmax

E
(
s
∥∥∥K̂s −K

∥∥∥4))+ 1.

)2

+ 1

The right hand side is constant. Taking the maximum over T from T0 to Tmax on the left hand side:

max
T0≤s≤Tmax

E
(
s
∥∥∥K̂s −K

∥∥∥4) ≲

(
log

(
1 + max

T0≤s≤Tmax

E
(
s
∥∥∥K̂s −K

∥∥∥4))+ 1

)2

+ 1

Thus

max
T0≤s≤Tmax

E
(
s
∥∥∥K̂s −K

∥∥∥4) ≲ 1.

The hidden constant only depends on T0, and hence the same inequality holds for any Tmax:

max
s≥T0

E
(
s
∥∥∥K̂s −K

∥∥∥4) ≲ 1.

Plugging this back to Eq. (17) gives that when T ≳ log3(1/δ),

P

[
T 1/2

∥∥∥Θ̂T −Θ
∥∥∥2 ≳ log

(
T−1/2

(
T0∑
t=1

t−1/2E
(
t
∥∥∥K̂t −K

∥∥∥4))+ 1

)
+ log

(
1

δ

)]
≤ 3δ.

Because
∥∥∥K̂t

∥∥∥ ≤ CK , the sum over the first T0 terms is of negligible order, so that the above equation

can be simplified to

P
[
T 1/2

∥∥∥Θ̂T −Θ
∥∥∥2 ≳ log

(
1

δ

)]
≤ 3δ.

Thus, ∥∥∥Θ̂T −Θ
∥∥∥ = Op(T

−1/4),

and
∥∥∥K̂T −K

∥∥∥ = Op(T
−1/4) is a direct corollary from Eq. (19).

3 Bounding the regret by Op

(√
T
)

We start this section by stating the main result of this paper, our regret upper-bound that exactly

rate-matches the regret lower-bound of Ω
(√

T
)
established in Simchowitz and Foster (2020).

Theorem 2. Algorithm 1 applied to a system described by Eq. (1) under Assumption 1 satisfies

R(U, T ) = Op

(√
T
)
. (20)

A complete proof of Theorem 2 can be found at Appendix B.

Proof. (sketch) Our first step is to show the following lemma bounding the cumulative costs J of the
system under Algorithm 1 and under the oracle optimal controller.
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Lemma 6. Algorithm 1 applied to a system described by Eq. (1) under Assumption 1 satisfies,

J (U, T ) =
T∑

t=1

ε̃⊤t P ε̃t +

T∑
t=1

η⊤t Rηt +Op

(
T 1/2

)
and

J (U∗, T ) =

T∑
t=1

ε⊤t Pεt +Op

(
T 1/2

)
,

where εt is the system noise and ηt is the exploration noise in Algorithm 1, and ε̃t = Bηt + εt.

Before sketching the proof of Lemma 6 (a complete proof can be found in Appendix B.1), we show
how to finish the proof of Theorem 2 with just a few more steps:

R(U, T ) = J (U, T )− J (U∗, T )

=

T∑
t=1

ε̃⊤t P ε̃t +

T∑
t=1

η⊤t Rηt −
T∑

t=1

ε⊤t Pεt +Op

(
T 1/2

)
= 2

T∑
t=1

ε⊤t P (Bηt) +

T∑
t=1

(Bηt)
⊤P (Bηt) +

T∑
t=1

η⊤t Rηt +Op

(
T 1/2

)
.

The final result follows by bounding the three summations in the last line by Op

(
T 1/2

)
: because

ηt = Op

(
t−1/4

)
, the quadratic summations

∑T
t=1(Bηt)

⊤P (Bηt) and
∑T

t=1 η
⊤
t Rηt are both of order

Op

(
T 1/2

)
and the cross term 2

∑T
t=1 ε

⊤
t P (Bηt) = op

(
T 1/2

)
.

Proof. (sketch for Lemma 6) We only prove the first equation because the second equation is a special
case of the first equation (with ηt = 0 and K̂t = K). The idea is to consider a new system with system
noise ε̃t = Bηt + εt and controller ũt = K̂txt. One can show that the new system shares the same
states xt as the original system and the cost in the new system is:

T∑
t=1

x⊤
t Qxt + ũ⊤

t Rũt =

T∑
t=1

ε̃⊤t P ε̃t +Op

(
T 1/2

)
. (21)

The difference between the original cost and transformed cost is

T∑
t=1

u⊤
t Rut − ũ⊤

t Rũt =

T∑
t=1

η⊤t Rηt + o
(
T 1/4 log

3
2 (T )

)
a.s. (22)

The result of the Lemma follows by summing Eqs. (21) and (22); we now briefly sketch the proofs of
each equation. Eqs. (21) and (22) are stated in the Appendix as Lemmas 11 and 12 in the Appendix
and their complete proofs are given in Appendices B.1.1 and B.1.2.

Eq. (21): After some substitutions to leverage an identity from Lemma 18 of Wang and Janson
(2020) and applying bounds to straightforward terms, the cost of the new system can be written as

T∑
t=1

x⊤
t Qxt + ũ⊤

t Rũt

=

T∑
t=1

[
x⊤
t (K̂t −K)⊤(R+B⊤PB)(K̂t −K)xt + 2ε̃⊤t P (A+BK̂t)xt + ε̃⊤t P ε̃t

]
+ Õp(1).
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By Theorem 1,
∥∥∥K̂t −K

∥∥∥ = Op

(
T−1/4

)
, and we can show essentially that xt is of constant order.

This gives that the first sum is of order
∑T

t=1 x
⊤
t (K̂t−K)⊤(R+B⊤PB)(K̂t−K)xt = Op

(
T 1/2

)
. By

noting that ε̃t ⊥⊥ P (A + BK̂t)xt and both ε̃t and P (A + BK̂t)xt are of constant order, we can use

standard properties of martingales to show
∑T

t=1 ε̃
⊤
t P (A + BK̂t)xt = Op

(
T 1/2

)
as well. Eq. (21) is

then just the third sum plus the combination of the aforementioned bounds.

Eq. (22): The difference is expressed as

T∑
t=1

u⊤
t Rut − ũ⊤

t Rũt =

T∑
t=1

(K̂txt + ηt)
⊤R(K̂txt + ηt)−

T∑
t=1

(K̂txt)
⊤R(K̂txt)

=2

T∑
t=1

(K̂txt)
⊤Rηt +

T∑
t=1

η⊤t Rηt,

and we simply bound the first term by Eq. (83) of Wang and Janson (2020),

T∑
t=1

(K̂txt)
⊤Rηt = o

(
T 1/4 log

3
2 (T )

)
a.s.,

which completes the proof.

4 Discussion

Before we can fully understand the practical performance of RL and deploy it in real-world, high-stakes
environments, we need to at least understand it well in the simplest, most structured problem settings.
This paper provides progress in that direction by, for the LQR problem with unknown dynamics,
proving the first regret upper-bound of Op(

√
T ), exactly matching the rate of the best-known lower-

bound of Ωp(
√
T ) established in Simchowitz and Foster (2020). There are related settings such as

non-linear LQR (Kakade et al., 2020) and non-stationary LQR (Luo et al., 2021) whose best known
regret upper-bounds are Op(

√
T polylog(T )), and we hope our work can shed light on removing the

polylog(T ) terms in these settings as well. Finally, for the practical deployment of RL algorithms, the
constant factor multiplying the regret rate really matters, so it is our hope that now that the LQR
rate is tightly characterized the field can move on to characterizing and tightening the constant in the
optimal regret, which we expect will lead to algorithmic innovation as well.
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A Proofs from Section 2

A.1 Proof of Lemma 1

Lemma (Bound with log term). Algorithm 1 applied to a system described by Eq. (1) under Assump-
tion 1 satisfies, when 0 < δ < 1/2, for any T ≳ log(1/δ),

P

[∥∥∥Θ̂T −Θ
∥∥∥ ≳ T−1/4

√(
log T + log

(
1

δ

))]
≤ δ.

As a direct corollary: ∥∥∥Θ̂T −Θ
∥∥∥ = Op

(
T−1/4 log1/2(T )

)
.

Proof. If we can tolerate the additional log terms, the way of upper bounding the Gram matrix is to
use the result from Eq. (104) of Wang and Janson (2020): E∥zt∥2 ≲ log2(t). Inspired by the equation
before Proposition 3.1 of Simchowitz et al. (2018), we have: for any random positive semi-definite
matrix M ∈ RdM×dM with E (M) ≻ 0,

P
(
M ⪯̸

dM
δ

E (M)

)
= P

(
λmax

(
(E (M))−1/2M(E (M))−1/2

)
≥ dM

δ

)
≤ E

(
λmax

(
(E (M))−1/2M(E (M))−1/2

))
/
dM
δ

≤ E
(
Tr
(
(E (M))−1/2M(E (M))−1/2

))
/
dM
δ

= Tr
(
(E (M))−1/2E (M) (E (M))−1/2

)
/
dM
δ

= Tr (IdM
) /

dM
δ

= δ,

which means

P
(
M ⪯ dM

δ
E (M)

)
≥ 1− δ. (23)

Take M =
∑T−1

t=0 ztz
⊤
t :

P

(
T−1∑
t=0

ztz
⊤
t ⪯

n+ d

δ

T−1∑
t=0

Eztz⊤t

)
≥ 1− δ.

On the other hand, we have:

T−1∑
t=0

Eztz⊤t ⪯
T−1∑
t=0

E ∥zt∥2 In+d ≾ T log2(T )In+d.

As a result, we can take Γ̄ ≂ log2(T )In+d/δ.

By Theorem 2.4 of Simchowitz et al. (2018), the lower bound condition P
(∑T−1

t=0 ztz
⊤
t ⪰ TΓ

)
≥

1− δ in Eq. (8) could be replaced by the (k,Γ, p)-BMSB condition on {zt}t≥1.

Definition 1 (BMSB condition from (Simchowitz et al., 2018)). Given an {Ft}t≥1-adapted ran-
dom process {xt}t≥1 taking values in Rd, we say that it satisfies the (k,Γ, p)-matrix block martingale

small-ball (BMSB) condition for Γ ≻ 0 if, for any unit vector w and j ≥ 0, 1
k

∑k
i=1 P(|⟨w, xj+i⟩| ≥√

w⊤Γw|Fj) ≥ p a.s.
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The BMSB condition ensures a lower bound on the independent randomness in each entry of an
adapted sequence {xt}t≥1 given all past history. By Lemma 15 of Wang and Janson (2020), the
process {zt}T−1

t=0 satisfies the

(k,Γ, p) =

(
1, σ2

ηT
−1/2 min

(
1

2
,

σ2
ε

2σ2
εC

2
K + σ2

η

)
In+d,

3

10

)
BMSB condition.

Thus Γ̄Γ−1 ≂
√
T log2(T )In+d Then Eq. (8) becomes

P

∥∥∥Θ̂T −Θ
∥∥∥ ≳

√
1 + log det(log2(T )

√
TIn+d/δ) + log

(
1
δ

)
T 1/2

 ≤ δ.

Here log2(T )
√
T is dominated by T when T is large enough. Also we can hide the constant 1 because

δ < 1/2 which implies log(1/δ) ≳ 1. Thus,

P

∥∥∥Θ̂T −Θ
∥∥∥ ≳

√
log(T ) + log

(
1
δ

)
T 1/2

 ≤ δ.

The condition for the above equation to hold is Eq. (7):

T ≳ log

(
1

δ

)
+ 1 + log det(Γ̄Γ−1)

(because δ < 1/2 we can hide 1)

≳ log

(
1

δ

)
+ log det(Γ̄Γ−1),

which by Γ̄Γ−1 ≂
√
T log2(T )In+d becomes

T ≳ log(1/δ) + log(T ).

This condition can be simplified to T ≳ log(1/δ) because T dominates log(T ).

A.2 Proof of Lemma 2

Lemma. Algorithm 1 applied to a system described by Eq. (1) under Assumption 1 satisfies, for any
0 < δ < 1/2 and T ≳ log3(1/δ), with probability at least 1− δ:

TΓ :=

[
In
K

]
T

[
In
K

]⊤
+

[
−K⊤

Id

]
T 1/2

[
−K⊤

Id

]⊤
≾

T−1∑
t=0

ztz
⊤
t ≾

(
1

δ

[
In
K

]
T

[
In
K

]⊤
+

[
−K⊤

Id

]
λmax

(
T−1∑
t=0

∆t∆
⊤
t

)[
−K⊤

Id

]⊤)
:= T Γ̄,

(24)

where ∆t := (K̂t −K)xt + ηt.

Proof. Consider the matrix

GT :=

T−1∑
t=0

ztz
⊤
t

=

T−1∑
t=0

[
xt

ut

] [
xt

ut

]⊤

=

T−1∑
t=0

[
xt

Kxt + (K̂t −K)xt + ηt

] [
xt

Kxt + (K̂t −K)xt + ηt

]⊤
.

(25)
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Let
∆t = (K̂t −K)xt + ηt,

and then the previous equation can be written as

GT =

T−1∑
t=0

ztz
⊤
t =

[
I
K

] T−1∑
t=0

xtx
⊤
t

[
I
K

]⊤
+

T−1∑
t=0

[
0n xt∆

⊤
t

∆tx
⊤
t ∆t∆

⊤
t +Kxt∆

⊤
t +∆tx

⊤
t K

⊤

]
.

We consider the dominating part

[
I
K

]∑T−1
t=0 xtx

⊤
t

[
I
K

]⊤
(smallest eigenvalue scales with T ) and

the remainder part
∑T−1

t=0

[
0n xt∆

⊤
t

∆tx
⊤
t ∆t∆

⊤
t +Kxt∆

⊤
t +∆tx

⊤
t K

⊤

]
separately. This separation is useful

because the dominating part purely lies in the subspace spanned by

[
I
K

]
, and the remainder part is

of smaller order than T . For the dominating part we have

Lemma 7. Algorithm 1 applied to a system described by Eq. (1) under Assumption 1 satisfies, for
any 0 < δ < 1/2 and T ≳ log3(1/δ), with probability at least 1− δ:[

I
K

]
T

[
I
K

]⊤
⪯
[
I
K

] T−1∑
t=0

xtx
⊤
t

[
I
K

]⊤
⪯ 1/δ

[
I
K

]
T

[
I
K

]⊤
. (26)

The proof can be found at Appendix A.6. By Lemma 34 of Wang and Janson (2020), the process

(zt)
T−1
t=0 satisfies the (1, σ2

ηT
−1/2 min

(
1
2 ,

σ2
ε

2σ2
εC

2
K+σ2

η

)
In+d,

3
10 )-BMSB condition, which guarantees us a

lower bound GT =
∑T−1

t=0 ztz
⊤
t ≳ T 1/2In+d. Also by the left hand side of Lemma 7,

GT ⪰
[
I
K

] T−1∑
t=0

xtx
⊤
t

[
I
K

]⊤
⪰
[
I
K

]
T

[
I
K

]⊤
.

Combining these two equations we have:

Lemma 8 (Lower bound of GT ). Algorithm 1 applied to a system described by Eq. (1) under As-
sumption 1 satisfies, when 0 < δ < 1/2, for any T ≳ log3(1/δ), with probability at least 1 − δ:

GT ≿

[
In
K

]
T

[
In
K

]⊤
+ T 1/2In+d. (27)

See the proof at Appendix A.7. At first glance this seems wrong because the right hand side of
Eq. (27) does not have δ. Actually, the role of δ is present in the constraint T ≳ log3(1/δ). The result
is not surprising because as T grows larger it becomes exponentially unlikely that GT can be smaller
than, for example, 1

2EGT .

Lemma 9 (Upper bound of GT ). Algorithm 1 applied to a system described by Eq. (1) under As-
sumption 1 satisfies, when 0 < δ < 1/2, for any T ≳ log3(1/δ), with probability at least 1 − δ:

GT ≾

(
1

δ

[
In
K

]
T

[
In
K

]⊤
+

[
−K⊤

Id

]
λmax

(
T−1∑
t=0

∆t∆
⊤
t

)[
−K⊤

Id

]⊤)
. (28)

Proof can be found at Appendix A.8.
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Eq. (24) is a direct corollary of Eq. (27) and Eq. (28).[
In
K

]
T

[
In
K

]⊤
+

[
−K⊤

Id

]
T 1/2

[
−K⊤

Id

]⊤
≾

[
In
K

]
T

[
In
K

]⊤
+ T 1/2In+d

≾ GT

≾
1

δ

[
In
K

]
T

[
In
K

]⊤
+

[
−K⊤

Id

]
λmax

(
T−1∑
t=0

∆t∆
⊤
t

)[
−K⊤

Id

]⊤
.

The first inequality is because

α⊤

(∥∥∥∥[−K⊤

Id

]∥∥∥∥2 In+d −
[
−K⊤

Id

] [
−K⊤

Id

]⊤)
α ≥ 0.

for any α ∈ Rn+d.

A.3 Proof of Lemma 3

Lemma. Algorithm 1 applied to a system described by Eq. (1) under Assumption 1 satisfies, for any
0 < δ < 1/2 and T ≳ log2(1/δ),

P

(
λmax

(
T−1∑
t=0

∆t∆
⊤
t

)
≳ 1/δ

(
T−1∑
t=1

E
(
t1/2

∥∥∥K̂t −K
∥∥∥4)+ log2(1/δ) + T 1/2

))
≤ 2δ.

Proof. Lemma 4 defines a high probability “stable” event, where when T is large enough, the estima-
tion errors are uniformly bounded by some constant. See the proof at Appendix A.9.

Lemma 10 establishes moment bounds in the “stable” event Eδ.

Lemma 10. Algorithm 1 applied to a system described by Eq. (1) under Assumption 1 satisfies, for
any 0 < δ < 1/2, k ∈ N and T ≳ log2(1/δ),

E
(
∥xt∥k 1Eδ

)
≲ 1. (29)

See the proof at Appendix A.10.
Notice that

∥∆t∥ =
∥∥∥(K̂t −K)xt + ηt

∥∥∥ ≤ ∥∥∥K̂t −K
∥∥∥ ∥xt∥+ ∥ηt∥ .

Then, with probability 1− δ:

λmax

(
T−1∑
t=0

∆t∆
⊤
t 1Eδ

)

≤ Tr

(
T−1∑
t=0

∆t∆
⊤
t 1Eδ

)
(by Markov inequality, this holds with probability 1− δ)

≤ 1/δE

(
Tr

(
T−1∑
t=0

∆t∆
⊤
t 1Eδ

))

= 1/δE

(
T−1∑
t=0

∥∆t∥2 1Eδ

)
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≤ 1/δ

T−1∑
t=0

E
((∥∥∥K̂t −K

∥∥∥ ∥xt∥+ ∥ηt∥
)2

1Eδ

)

≲ 1/δ

T−1∑
t=0

E
((∥∥∥K̂t −K

∥∥∥2 ∥xt∥2 + ∥ηt∥2
)
1Eδ

)
(Bound t = 0 separately by constant 1 because t−1/2 is not well defined)

≲ 1/δ

(
T−1∑
t=1

(
E
((

t1/2
∥∥∥K̂t −K

∥∥∥4 + t−1/2 ∥xt∥4
)
1Eδ

)
+ t−1/2

)
+ 1

)

≲ 1/δ

(
T−1∑
t=1

E
(
t1/2

∥∥∥K̂t −K
∥∥∥4 + t−1/2 ∥xt∥4 1Eδ

)
+ T 1/2

)
.

By Lemma 10, for t ≳ log2(1/δ), E
(
∥xt∥4 1Eδ

)
≲ 1. Thus

λmax

(
T−1∑
t=0

∆t∆
⊤
t 1Eδ

)

≲ 1/δ

T−1∑
t=1

E
(
t1/2

∥∥∥K̂t −K
∥∥∥4)+

C log2(1/δ)∑
t=1

E
(
t−1/2 ∥xt∥4

)
+

T−1∑
t=C log2(1/δ)

t−1/2 + T 1/2


(By Eq. (16), E∥xt∥4 ≲ log4(t))

≲ 1/δ

T−1∑
t=1

E
(
t1/2

∥∥∥K̂t −K
∥∥∥4)+

C log2(1/δ)∑
t=1

t−1/2 log4(C log2(1/δ)) + T 1/2 + T 1/2


≲ 1/δ

(
T−1∑
t=1

E
(
t1/2

∥∥∥K̂t −K
∥∥∥4)+ (log2(1/δ))1/2 ∗ (2 log log(1/δ) + log(C)))

4
+ T 1/2

)

≲ 1/δ

(
T−1∑
t=1

E
(
t1/2

∥∥∥K̂t −K
∥∥∥4)+ log2(1/δ) + T 1/2

)
. (30)

Finally we finish the proof by removing 1Eδ
on the left hand side and changing the probability

from 1− δ to 1− 2δ.

A.4 Proof of Lemma 5

Lemma. Algorithm 1 applied to a system described by Eq. (1) under Assumption 1 satisfies, for any
0 < δ < 1/2 and T ≳ log3(1/δ),

P

[
T 1/2

∥∥∥Θ̂T −Θ
∥∥∥2 ≳ log

(
T−1/2

(
T−1∑
t=1

E
(
t1/2

∥∥∥K̂t −K
∥∥∥4))+ 1

)
+ log

(
1

δ

)]
≤ 3δ. (31)

Proof. Now we can use the refined upper and lower bound in Lemma 2.

TΓ ≂
[
In
K

]
T

[
In
K

]⊤
+

[
−K⊤

Id

]
T 1/2

[
−K⊤

Id

]⊤
and

T Γ̄ ≂
1

δ

[
In
K

]
T

[
In
K

]⊤
+

[
−K⊤

Id

]
λmax

(
T−1∑
t=0

∆t∆
⊤
t

)[
−K⊤

Id

]⊤
.
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Then
Tλmin(Γ) ≂ T 1/2.

Also

det(TΓ) = det

([
In −KT

K Id

] [
TIn 0
0 T 1/2Id

] [
In −KT

K Id

]⊤)
≂ Tn ·

(
T 1/2

)d
.

and similarly

det(T Γ̄) = det

([
In −KT

K Id

][
TIn 0

0 λmax

(∑T−1
t=0 ∆t∆

⊤
t

)
Id

] [
In −KT

K Id

]⊤)
≂ Tn·λmax

(
T−1∑
t=0

∆t∆
⊤
t

)d

.

With this particular upper and lower bound choices Γ and Γ̄, Eq. (8) can be written as

P

∥∥∥Θ̂T −Θ
∥∥∥ ≳

√√√√ log
(
λmax

(∑T−1
t=0 ∆t∆⊤

t

)
T−1/2

)
+ log

(
1
δ

)
T 1/2

 ≤ δ.

Then we apply Lemma 3:

P

[
T 1/2

∥∥∥Θ̂T −Θ
∥∥∥2 ≳ log

(
T−1/2

(
T−1∑
t=1

E
(
t1/2

∥∥∥K̂t −K
∥∥∥4)+ log2(1/δ)

)
+ 1

)
+ log

(
1

δ

)]
≤ 3δ.

Notice that

log

(
T−1/2

(
T−1∑
t=1

E
(
t1/2

∥∥∥K̂t −K
∥∥∥4)+ log2(1/δ)

)
+ 1

)
+ log

(
1

δ

)

≤ log

(
T−1/2

(
T−1∑
t=1

E
(
t1/2

∥∥∥K̂t −K
∥∥∥4))+ log2(1/δ) + 1

)
+ log

(
1

δ

)
(because 2ab ≥ a+ b when both a ≥ 1 and b ≥ 1)

≤ log

(
2

(
T−1/2

(
T−1∑
t=1

E
(
t1/2

∥∥∥K̂t −K
∥∥∥4))+ 1

)
∗ log2(1/δ)

)
+ log

(
1

δ

)

≲ log

(
T−1/2

(
T−1∑
t=1

E
(
t1/2

∥∥∥K̂t −K
∥∥∥4))+ 1

)
+ 2 log (log(1/δ)) + log(2) + log

(
1

δ

)

≲ log

(
T−1/2

(
T−1∑
t=1

E
(
t1/2

∥∥∥K̂t −K
∥∥∥4))+ 1

)
+ log

(
1

δ

)
.

Finally we have

P

[
T 1/2

∥∥∥Θ̂T −Θ
∥∥∥2 ≳ log

(
T−1/2

(
T−1∑
t=1

E
(
t1/2

∥∥∥K̂t −K
∥∥∥4))+ 1

)
+ log

(
1

δ

)]
≤ 3δ.

A.5 Proof of Theorem 1

Theorem. Algorithm 1 applied to a system described by Eq. (1) under Assumption 1 satisfies∥∥∥Θ̂T −Θ
∥∥∥ = Op(T

−1/4) and
∥∥∥K̂T −K

∥∥∥ = Op(T
−1/4).

20



Proof. By Proposition 4 of Simchowitz and Foster (2020),∥∥∥K̂T −K
∥∥∥ ≲

∥∥∥Θ̂T −Θ
∥∥∥ . (32)

as long as
∥∥∥Θ̂T −Θ

∥∥∥ ≤ ϵ0, where ϵ0 is some fixed constant determined by the system parameters

(this is the same ϵ0 as in Lemma 4). We want to focus on cases where
∥∥∥Θ̂T −Θ

∥∥∥ ≤ ϵ0 to transfer

T 1/2
∥∥∥Θ̂T −Θ

∥∥∥2 to T 1/2
∥∥∥K̂T −K

∥∥∥2 so that Lemma 5 has only estimation error of K.

We can estimate E
(
T
∥∥∥Θ̂T −Θ

∥∥∥4 1∥Θ̂T−Θ∥≤ϵ0

)
by calculating the integral using the tail bound

from Lemma 5 as long as T ≳ log3(1/δ). The further tails can be bounded by the constant ϵ0. Add
an extra 1∥Θ̂T−Θ∥≤ϵ0

on the left hand side of Eq. (31) inside the probability. When 0 < δ < 1/2 and

T ≳ log3(1/δ),

P

[
T 1/2

∥∥∥Θ̂T −Θ
∥∥∥2 1∥Θ̂T−Θ∥≤ϵ0

≳ log

(
T−1/2

(
T−1∑
t=1

E
(
t1/2

∥∥∥K̂t −K
∥∥∥4))+ 1

)
+ log

(
1

δ

)]
≤ 3δ.

Denote aT = T 1/2
∥∥∥Θ̂T −Θ

∥∥∥2 1∥Θ̂T−Θ∥≤ϵ0
, CT := T−1/2

(∑T−1
t=1 E

(
t1/2

∥∥∥K̂t −K
∥∥∥4))+1. When

T ≳ log3(1/δ), which is δ ≥ e−(cT )1/3 , we have

P
(
aT ≥ C

(
logCT + log

(
1

δ

)))
≤ 3δ. (33)

Here c and C are two fixed constants which do not depend on δ and T . Denote the tail bound of

aT corresponding to probability δ = e−(cT )1/3 as UT := C
(
log (CT ) + (cT )1/3

)
. When aT > UT , we

bound it by the bound aT ≤ T 1/2 · ϵ20.

Ea2T ≤
∫ UT

s=0

sP
(
a2T = s

)
ds+ 3e−(cT )1/3Tϵ40

≤ −
∫ UT

s=0

s dP
(
a2T > s

)
+ 3e−(cT )1/3Tϵ40

≤ −UTP
(
a2T > UT

)
+

∫ UT

s=0

P
(
a2T > s

)
ds+ 3e−(cT )1/3Tϵ40

(because aT > 0)

≤
∫ UT

s=0

P
(
aT >

√
s
)
ds+ 3e−(cT )1/3Tϵ40

≤
∫ UT

s=(C log(2CT ))2
P
(
aT >

√
s
)
ds+ (C log(2CT ))

2 + 3e−(cT )1/3Tϵ40

We choose s = (C log(2CT ))
2 because we only know the bound of P (aT >

√
s) up to δ = 1/2 with

the restriction δ < 1/2. We know that s = (C log(2CT ))
2 corresponds to δ = 1/2 by Eq. (33).

We also need to express probability δ in terms of the tail value s as δ(s). Solve the equation

√
s = C

(
logCT + log

(
1

δ(s)

))
=⇒ e

√
s/C = CT ·

1

δ(s)
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=⇒ δ(s) = e−
√
s/CCT .

Thus

Ea2T ≤
∫ UT

s=(C log(2CT ))2
P
(
aT >

√
s
)
ds+ (C log(2CT ))

2 + 3e−(cT )1/3Tϵ40

≤
∫ UT

s=(C log(2CT ))2
3δ(s) ds+ (C log(2CT ))

2 + 3e−(cT )1/3Tϵ40

≤
∫ ∞

s=(C log(2CT ))2
3e−

√
s/CCT ds+ (C log(2CT ))

2 + 3e−(cT )1/3Tϵ40

(By integral calculation)

= 3C(C log(2CT ) + C) + (C log(2CT ))
2 + 3e−(cT )1/3Tϵ40

≂ log(2CT ) + (log(2CT ))
2 + e−(cT )1/3Tϵ40

= (log(2CT ) + 1/2)2 − 1/4 + e−(cT )1/3Tϵ40

≲ (log(CT ) + 1)2 + e−(cT )1/3Tϵ40.

As a result, when T ≥ T0 (T0 is a large enough constant so that e−cT 1/3

Tϵ40 ≤ 1):

E
(
T
∥∥∥Θ̂T −Θ

∥∥∥4 1∥Θ̂T−Θ∥≤ϵ0

)
≲

(
log

(
T−1/2

(
T−1∑
t=1

t−1/2E
(
t
∥∥∥K̂t −K

∥∥∥4)))+ 1

)2

+ e−cT 1/3

Tϵ40

≲

(
log

(
T−1/2

(
T−1∑
t=1

t−1/2E
(
t
∥∥∥K̂t −K

∥∥∥4)))+ 1

)2

+ 1.

On the right hand side, consider the maximum of E
(
t
∥∥∥K̂t −K

∥∥∥4) from T0 to Tmax ≥ T ,

E
(
T
∥∥∥Θ̂T −Θ

∥∥∥4 1∥Θ̂T−Θ∥≤ϵ0

)

≲

(
log

(
T−1/2

(
T0∑
t=1

t−1/2E
(
t
∥∥∥K̂t −K

∥∥∥4)+

T−1∑
t=T0

t−1/2 max
T0≤s≤Tmax

E
(
s
∥∥∥K̂s −K

∥∥∥4)))+ 1

)2

+ 1

(Algorithm 1 restricted
∥∥∥K̂t

∥∥∥ ≤ CK)

≲

(
log

(
T−1/2

(
T0∑
t=1

t−1/2(CK + ∥K∥)4
)

+ max
T0≤s≤Tmax

E
(
s
∥∥∥K̂s −K

∥∥∥4))+ 1

)2

+ 1

≲

(
log

(
T−1/2T

1/2
0 · 1 + max

T0≤s≤Tmax

E
(
s
∥∥∥K̂s −K

∥∥∥4))+ 1

)2

+ 1

≲

(
log

(
1 + max

T0≤s≤Tmax

E
(
s
∥∥∥K̂s −K

∥∥∥4))+ 1

)2

+ 1.

By Eq. (32), we can transfer
∥∥∥Θ̂T −Θ

∥∥∥ on the right hand side to
∥∥∥K̂T −K

∥∥∥ as long as ∥∥∥Θ̂T −Θ
∥∥∥ ≤ ϵ0.

By Lemma 1, the upper bound for the probability δ that
∥∥∥Θ̂T −Θ

∥∥∥ ≤ ϵ0 does not hold can be solved

from

T−1/4

√(
log T + log

(
1

δ

))
= ϵ0,
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which gives

δ = Te−ϵ20T
1/2

.

As a result, when T ≥ T0:

E
(
T
∥∥∥Θ̂T −Θ

∥∥∥4 1∥Θ̂T−Θ∥≤ϵ0

)
≳ E

(
T
∥∥∥K̂T −K

∥∥∥4 1∥Θ̂T−Θ∥≤ϵ0

)
≥ E

(
T
∥∥∥K̂T −K

∥∥∥4)− Te−ϵ20T
1/2

T (CK + ∥K∥)4

(Choose T0 such that for any T ≥ T0, Te
−ϵ20T

1/2

T (CK + ∥K∥)4 ≤ 1)

≥ E
(
T
∥∥∥K̂T −K

∥∥∥4)− 1.

Now we have, for any T0 ≤ T ≤ Tmax

E
(
T
∥∥∥K̂T −K

∥∥∥4) ≲

(
log

(
1 + max

T0≤s≤Tmax

E
(
s
∥∥∥K̂s −K

∥∥∥4))+ 1

)2

+ 1.

Take maximum across T0 to Tmax on the left hand side:

max
T0≤s≤Tmax

E
(
s
∥∥∥K̂s −K

∥∥∥4) ≲

(
log

(
1 + max

T0≤s≤Tmax

E
(
s
∥∥∥K̂s −K

∥∥∥4))+ 1

)2

+ 1.

Thus

max
T0≤s≤Tmax

E
(
s
∥∥∥K̂s −K

∥∥∥4) ≲ 1.

The hidden constant is only related with T0. The same inequality hold for any Tmax. As a result,

max
s≥T0

E
(
s
∥∥∥K̂s −K

∥∥∥4) ≲ 1. (34)

Plug this back to Eq. (31). When T ≳ log3(1/δ),

P

[
T 1/2

∥∥∥Θ̂T −Θ
∥∥∥2 ≳ log

(
T−1/2

(
T0∑
t=1

t−1/2E
(
t
∥∥∥K̂t −K

∥∥∥4))+ 1

)
+ log

(
1

δ

)]
≤ 3δ.

Because Algorithm 1 restricted that
∥∥∥K̂t

∥∥∥ ≤ CK , the initial T0 items is of negligible order. The above

equation can be simplified as

P
[
T 1/2

∥∥∥Θ̂T −Θ
∥∥∥2 ≳ log

(
1

δ

)]
≤ 3δ.

Finally, ∥∥∥Θ̂T −Θ
∥∥∥ = Op(T

−1/4).∥∥∥K̂T −K
∥∥∥ = Op(T

−1/4) is a direct corollary from Eq. (32).

A.6 Proof of Lemma 7

Lemma. Algorithm 1 applied to a system described by Eq. (1) under Assumption 1 satisfies, for any
0 < δ < 1/2 and T ≳ log3(1/δ), with probability at least 1− δ:[

I
K

]
T

[
I
K

]⊤
⪯
[
I
K

] T−1∑
t=0

xtx
⊤
t

[
I
K

]⊤
⪯ 1/δ

[
I
K

]
T

[
I
K

]⊤
. (35)

23



High probability upper bound For t ≲ log2(1/δ), we can use the bound from Eq. (104) in

Wang and Janson (2020): E ∥xt∥2 ≲ log2(t). For t ≲ log2(1/δ) part, the total effect is bounded by

log2(1/δ) log2
(
log2(1/δ)

)
≲ log3(1/δ). For t ≳ log2(1/δ) , we can use Lemma 10: E

(
∥xt∥2 1Eδ

)
≲ 1.

We then combine the bounds for t ≲ log2(1/δ) and t ≳ log2(1/δ) to get

E

(
T−1∑
t=0

xtx
⊤
t 1Eδ

)

=

T−1∑
t=0

E
(
xtx

⊤
t 1Eδ

)
⪯

T−1∑
t=0

E
(
∥xt∥2 1Eδ

)
In

⪯
(
T + log3(1/δ)

)
In.

In order to make the formula neat, require T ≳ log3(1/δ), which guarantees the simplified formula

E

(
T−1∑
t=0

xtx
⊤
t 1Eδ

)
≾ T · In. (36)

By Eq. (23) we have:

P

(
T−1∑
t=0

xtx
⊤
t 1Eδ

⪯ d

δ
E[

T−1∑
t=0

xtx
⊤
t 1Eδ

]

)
≥ 1− δ.

Further combine this with Eq. (36):

P

(
T−1∑
t=0

xtx
⊤
t 1Eδ

⪯ C

δ
TIn

)
≥ 1− δ.

Also we can remove the 1Eδ
part by subtracting another δ on the right:

P

(
T−1∑
t=0

xtx
⊤
t ≾

1

δ
TIn

)
≥ 1− 2δ

or just hide the constant 2 by δ → δ/2. Now we can conclude that when T ≳ log3(1/δ):

P

(
T−1∑
t=0

xtx
⊤
t ≾

1

δ
TIn

)
≥ 1− δ. (37)

or, with probability 1− δ, [
I
K

] T−1∑
t=0

xtx
⊤
t

[
I
K

]⊤
≾ 1/δ

[
I
K

]
T

[
I
K

]⊤
.

High probability lower bound Next we want to show a high probability lower bound of this term,
which is a component in GT . It is sufficient to prove some BMSB condition because when BMSB
condition and high probability upper bounds both hold, the lower bound is also guaranteed (we will
illustrate this soon).
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Following Definition 1, in order to show the process {xt}t≥1 satisfies the (k,Γ, p) = (1, σ2
εIn,

3
10 )-

BMSB condition, we only need to prove that for any w ∈ Sn−1, P(|⟨w, xj+1⟩| ≥
√
w⊤σ2

εInw|Fj) ≥
p a.s. Let Ft be the filtration on all history before time t (including xt and ut), we know that

xt+1|Ft ∼ N
(
Axt +But, σ

2
εIn
)
.

We also know the distribution of its inner product with any constant vector w:

⟨w, xt+1⟩|Ft ∼ N
(
⟨w,Axt +But⟩, w⊤σ2

εInw
)
.

We want to lower bound the probability that the absolute value of this inner product (which follows
a normal distribution) is larger than its standard error, which is always lower bounded by the case
where the normal distribution is centered at zero. More specifically,

P
(
|⟨w, xj+1⟩| ≥

√
w⊤σ2

εInw|Fj

)
≥ P

(∣∣N (0, w⊤σ2
εInw

)∣∣ ≥√w⊤σ2
εInw

)
≥ 3/10.

The last equation is simply a numerical property of the normal distribution. Now we have proved
that the process {xt}t≥1 follows (k,Γ, p) = (1, σ2

εIn,
3
10 )-BMSB condition.

The BMSB-condition is useful in deriving high probability lower bounds. Specifically, assume
X = (x0, x1, . . . , xT−1), then if the Gram matrix

∑T−1
t=0 xtx

⊤
t has a high probability upper bound, then

the BMSB-condition can guarantee a high probability lower bound. In the last equation from section
D.1 in Simchowitz et al. (2018), it is shown that if {xt}t≥1 satisfies the (k,Γ, p)-BMSB condition, then

P

({
T−1∑
t=0

xtx
⊤
t ⪰̸

k⌊T/k⌋p2Γ
16

}
∩

{
T−1∑
t=0

xtx
⊤
t ⪯ T Γ̄

})
≤ exp

{
−Tp2

10k
+ 2d log(10/p) + log det(Γ̄Γ−1)

}
.

(38)

Here Γ̄ comes from the assumption in Eq. (8) which says P[
∑T−1

t=0 ztz
⊤
t ⪯ T Γ̄] ≥ 1 − δ. the upper

bound T Γ̄ is guaranteed by Eq. (37) with Γ̄ ≃ 1/δIn, and the lower bound is just shown to be Γ = σ2
εIn

with k = 1 and p = 3/10. Put these representations into the previous equation

P

({
T−1∑
t=0

xtx
⊤
t ⪰̸

⌊T ⌋
(

3
10

)2
Γ

16

}
∩

{
T−1∑
t=0

xtx
⊤
t ⪯ T Γ̄

})
≤ exp

{
−
T
(

3
10

)2
10

+ C + d log(1/δ)

}
.

Here C is some constant independent of δ and T . To make the right hand side smaller than δ, the
condition is exp

{
− 9T

1000 + C + d log(1/δ)
}
< δ, which means

9T

1000
− C − d log(1/δ) > log(1/δ),

which is just T ≳ log (1/δ). With this condition, we have

P

({
T−1∑
t=0

xtx
⊤
t ⪰̸

9⌊T ⌋Γ
1600

}
∩

{
T−1∑
t=0

xtx
⊤
t ⪯ T Γ̄

})
≤ δ.

which is

P

({
T−1∑
t=0

xtx
⊤
t ⪰̸

9⌊T ⌋σ2
εIn

1600

}
∩

{
T−1∑
t=0

xtx
⊤
t ≾

1

δ
TIn

})
≤ δ.
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We can exclude the later event and change the probability on the right hand side to δ+δ = 2δ. When
T ≳ log(1/δ),

P

({
T−1∑
t=0

xtx
⊤
t ⪰̸

9⌊T ⌋σ2
εIn

1600

})
≤ 2δ.

We can change 2δ to δ, and the constraint is still T ≳ log(1/δ).

P

({
T−1∑
t=0

xtx
⊤
t ⪰̸

9⌊T ⌋σ2
εIn

1600

})
≤ δ. (39)

Now with probability 1 − 2δ (one δ from upper bound Eq. (37), another δ from lower bound
Eq. (39)) we have both upper and lower bound of

TIn ≾
T−1∑
t=0

xtx
⊤
t ≾

1

δ
TIn,

and [
I
K

]
T

[
I
K

]⊤
≾

[
I
K

] T−1∑
t=0

xtx
⊤
t

[
I
K

]⊤
≾ 1/δ

[
I
K

]
T

[
I
K

]⊤
.

when T ≳ log3(1/δ). We can replace δ with δ/2 so that 1− 2δ becomes 1− δ. ■

A.7 Proof of Lemma 8

Lemma. Algorithm 1 applied to a system described by Eq. (1) under Assumption 1 satisfies, when
0 < δ < 1/2, for any T ≳ log3(1/δ), with probability at least 1− δ,

GT ≿

[
In
K

]
T

[
In
K

]⊤
+ T 1/2In+d.

By definition Eq. (25), GT −
[
I
K

]∑T−1
t=0 xtx

⊤
t

[
I
K

]⊤
⪰ 0, thus by Lemma 7

GT ≿

[
I
K

]
T

[
I
K

]⊤
. (40)

This lower bound is growing linearly with T but still is low rank, so we combine this with another
lower bound which is full rank but grows sub-linearly with T .

By Lemma 34 of Wang and Janson (2020), the process (zt)
T−1
t=0 satisfies the (1, σ2

ηT
−1/2In+d,

3
10 )-

BMSB condition. Here zt =

[
xt

ut

]
. Now we only need an upper bound to gaurantee the lower bound

using BMSB condition. Again by Eq. (23), we have

P

(
T−1∑
t=0

ztz
⊤
t ⪯̸

n+ d

δ
E

[
T−1∑
t=0

ztz
⊤
t

])
≤ δ.

Also by Eq. (104) from Wang and Janson (2020), E ∥zt∥2 ≲ log2(t). Thus E
[∑T−1

t=0 ztz
⊤
t

]
≲ log2(T )T ,

we have

P

(
T−1∑
t=0

ztz
⊤
t ⪯̸

C

δ
log2(T )TIn+d

)
≤ δ.
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Now that we have an upper bound, similar to Eq. (39), we can get the BMSB implied lower bound

with Γ ≂ T−1/2In+d: when T ≳ log(1/δ), with probability at least 1−δ, GT =
∑T−1

t=0 ztz
⊤
t ≿ T 1/2In+d.

Combining this and Eq. (40), with probability at least 1− δ:

GT +GT ≿

[
In
K

]
T

[
In
K

]⊤
+ T 1/2In+d.

We derived the lower bound, and we hope that the upper bound can have a similar form.

A.8 Proof of Lemma 9

Lemma (Upper bound ofGT ). Algorithm 1 applied to a system described by Eq. (1) under Assumption
1 satisfies, when 0 < δ < 1/2, for any T ≳ log3(1/δ), with probability at least 1− δ:

GT ≾

(
1

δ

[
In
K

]
T

[
In
K

]⊤
+

[
−K⊤

Id

]
λmax

(
T−1∑
t=0

∆t∆
⊤
t

)[
−K⊤

Id

]⊤)
. (41)

Proof. Any vector ξ ∈ Rn+d can be represented as the summation of vectors ξ1 ∈ Rn+d and ξ2 ∈ Rn+d

from orthogonal subspaces spanned by the columns of

[
In
K

]
and

[
−K⊤

Id

]
. We only need to show that,

for any ξ1 =

[
In
K

]
α1 and ξ2 =

[
−K⊤

Id

]
α2 (with α1 ∈ Rn, α2 ∈ Rd) , for any T ≳ log3(1/δ), with

probability at least 1− δ, we have

(ξ1+ξ2)
⊤GT (ξ1+ξ2) ≾ (ξ1+ξ2)

⊤

(
1

δ

[
In
K

]
T

[
In
K

]⊤
+

[
−K⊤

Id

]
λmax

(
T−1∑
t=0

∆t∆
⊤
t

)[
−K⊤

Id

]⊤)
(ξ1+ξ2).

We then show this inequality by the following two inequalities:

1. When T ≳ log3(1/δ), with probability at least 1− δ:

(ξ1 + ξ2)
⊤GT (ξ1 + ξ2)

≤ 2ξ⊤1 GT ξ1 + 2ξ⊤2 GT ξ2

(because ξ2 is orthogonal to

[
I
K

] T−1∑
t=0

xtx
⊤
t

[
I
K

]⊤
)

= 2ξ⊤1 GT ξ1 + 2ξ⊤2

T−1∑
t=0

[
0n xt∆

⊤
t

∆tx
⊤
t ∆t∆

⊤
t +Kxt∆

⊤
t +∆tx

⊤
t K

⊤

]
ξ2

= 2ξ⊤1 GT ξ1 + 2

([
−K⊤

Id

]
α2

)⊤ T−1∑
t=0

[
0n xt∆

⊤
t

∆tx
⊤
t ∆t∆

⊤
t +Kxt∆

⊤
t +∆tx

⊤
t K

⊤

]([
−K⊤

Id

]
α2

)

= 2ξ⊤1 GT ξ1 + 2 (α2)
⊤

(
T−1∑
t=0

∆t∆
⊤
t

)
(α2)

≤ 2ξ⊤1

T−1∑
t=0

ztz
⊤
t ξ1 + 2 ∥α2∥2 λmax

(
T−1∑
t=0

∆t∆
⊤
t

)

(Similar to Eq. (37), when T ≳ log3(1/δ), P

(
T−1∑
t=0

ztz
⊤
t ≾

1

δ
TIn+d

)
≥ 1− δ.)

≲
1

δ
T ∥ξ1∥2 + ∥ξ2∥2 λmax

(
T−1∑
t=0

∆t∆
⊤
t

)
.
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In the last step for bounding
∑T−1

t=0 ztz
⊤
t , most of the steps are the same as Eq. (37). The only

differences are:

(a) Replacing the xt with zt.

(b) Replacing the dimension d of xt with the dimension n+ d of zt.

We also need two other properties

(a) E ∥zt∥2 ≲ log2(t), which is proved by Eq. (104) in Wang and Janson (2020).

(b) For t ≳ log2(1/δ) , we can use Lemma 10’s conclusion E
(
∥xt∥2 1Eδ

)
≲ 1 to prove

E
(
∥zt∥2 1Eδ

)
≲ 1. Recall that ut = K̂txt + ηt.

∥zt∥2

= ∥xt∥2 + ∥ut∥2

≤ ∥xt∥2 + 2
∥∥∥K̂txt

∥∥∥2 + 2 ∥ηt∥2

≤ (1 + 2C2
K) ∥xt∥2 + 2 ∥ηt∥2 .

Thus,

E
(
∥zt∥2 1Eδ

)
≤ (1 + 2C2

K)E
(
∥xt∥2 1Eδ

)
+ 2E

(
∥ηt∥2

)
≲ 1.

2.

(ξ1 + ξ2)
⊤

(
1

δ

[
In
K

]
T

[
In
K

]⊤
+

[
−K⊤

Id

]
λmax

(
T−1∑
t=0

∆t∆
⊤
t

)[
−K⊤

Id

]⊤)
(ξ1 + ξ2)

=
1

δ
ξ⊤1

[
In
K

]
T

[
In
K

]⊤
ξ1 + ξ⊤2

[
−K⊤

Id

]
λmax

(
T−1∑
t=0

∆t∆
⊤
t

)[
−K⊤

Id

]⊤
ξ2

=
1

δ
α⊤
1 (In +K⊤K)T (In +K⊤K)α1 + α⊤

2 (Id +KK⊤)λmax

(
T−1∑
t=0

∆t∆
⊤
t

)
(Id +KK⊤)α2

(because In +K⊤K ⪰ In)

≥ 1

δ
α⊤
1 Tα1 + α⊤

2 λmax

(
T−1∑
t=0

∆t∆
⊤
t

)
α2

=
1

δ
∥α1∥2 T + ∥α2∥2 λmax

(
T−1∑
t=0

∆t∆
⊤
t

)

≳
1

δ
∥α1∥2

∥∥∥∥[InK
]∥∥∥∥2 T + ∥α2∥2

∥∥∥∥[−K⊤

Id

]∥∥∥∥2 λmax

(
T−1∑
t=0

∆t∆
⊤
t

)

≳
1

δ
T ∥ξ1∥2 + ∥ξ2∥2 λmax

(
T−1∑
t=0

∆t∆
⊤
t

)
.

We complete the proof by combining these two inequalities which have identical right hand side.
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A.9 Proof of Lemma 4

Lemma. Algorithm 1 applied to a system described by Eq. (1) under Assumption 1 satisfies, for fixed
ϵ0 ≲ 1 and any δ > 0,

Eδ :=
{∥∥∥Θ̂T −Θ

∥∥∥ ,∥∥∥K̂T −K
∥∥∥ ≤ ϵ0, for all T ≳ log2(1/δ)

}
,P (Eδ) ≥ 1− δ. (42)

Proof. By Lemma 1, replacing δ by δ/T 2, the condition on T becomes T ≳ log(T 2/δ), which is
T ≳ log(1/δ), we have

P
[∥∥∥Θ̂T −Θ

∥∥∥ ≳ T−1/4
√

log T + log (T 2/δ)
]
≤ δ/T 2.

Since
∑∞

T=2 1/T
2 <∞, we can sum T ≳ log(1/δ) these equations up:

P
[
Exists T ≳ log(1/δ),

∥∥∥Θ̂T −Θ
∥∥∥ ≳ T−1/4

√
3 log t+ log (1/δ)

]
≤ δ

∞∑
T=2

1/T 2.

Let new δ = 3δ
∑∞

T=2 1/T
2 , and we can hide the constants. As a result, we still have

P
[
Exists T ≳ log(1/δ),

∥∥∥Θ̂T −Θ
∥∥∥ ≳ T−1/4

√
log T + log (1/δ)

]
≤ δ.

We need a uniform upper bound ϵ0 on
∥∥∥Θ̂T −Θ

∥∥∥. Take ϵ0 that satisfies: ∥B∥ ϵ0 < 1− 1+ρ(A+BK)
2 .

Here ρ(·) is the spectural radius function. This choice of ϵ0 is to make sure even after perturbation,
the system controlled by K̂ is still “stable”. Here we use quotes on stable as stability is not satisfied
by the perturbation bound itself because ρ(A+BK̂T ) ≤ ρ(A+BK) + ρ(B(K̂T −K)) does not hold,
but this condition serves similar utility as stability as we will see in Appendix A.10. We need to find
the condition for T to satisfy:

T−1/4
√
log t+ log (1/δ) ≲ ϵ0.

T−1/2(log t+ log (1/δ)) ≲ ϵ20.

ϵ−4
0 (log T + log (1/δ))

2 ≲ T.

Because T dominates log(T ), and we can hide constant ϵ40, the final equation can be simplified to

T ≳ log2(1/δ).

Now we replace T−1/4
√

log T + log (1/δ) with ϵ0, and take the complement of the whole event:

P
[
For all T ≳ log2(1/δ),

∥∥∥Θ̂T −Θ
∥∥∥ ≲ ϵ0

]
≤ 1− δ.

By Eq. (19) we can also control
∥∥∥K̂T −K

∥∥∥ along with
∥∥∥Θ̂T −Θ

∥∥∥. With probability 1 − δ, we have

the following event holds:

Eδ :=
{∥∥∥Θ̂T −Θ

∥∥∥ ,∥∥∥K̂T −K
∥∥∥ ≤ ϵ0, for all T ≳ log2(1/δ)

}
.

29



A.10 Proof of Lemma 10

Lemma. Algorithm 1 applied to a system described by Eq. (1) under Assumption 1 satisfies, for any
0 < δ < 1/2, k ∈ N and T ≳ log2(1/δ),

E
(
∥xt∥k 1Eδ

)
≲ 1.

Proof. We know from the proof of Lemma 19 from Wang and Janson (2020) that for any m > 0:

xt+m =

t+m−1∑
p=t

(A+BK̂t+m−1) · · · (A+BK̂p+1)(Bηp + εp) + (A+BK̂t+m−1) · · · (A+BK̂t)xt. (43)

By Lemma 43 from Wang and Janson (2020), as long as K̂t is consistent, the norm of such product
(A+BK̂t+m−1) · · · (A+BK̂p+1) is decaying exponentially fast. More specifically, denote L := A+BK,
which by Assumption 1 satisfies ρ(L) < 1. Further define

τ(L, ρ) := sup
{∥∥Lk

∥∥ ρ−k : k ≥ 0
}
.

The proof of Lemma 43 of Wang and Janson (2020) showed that∥∥∥(A+BK̂t+m−1) · · · (A+BK̂p+1)
∥∥∥

≤ τ

(
L,

1 + ρ(L)

2

)(
1 + ρ(L)

2
+
∥∥∥B(K̂t+m−1 −K)

∥∥∥) · · ·(1 + ρ(L)

2
+
∥∥∥B(K̂p −K)

∥∥∥) .

By Eq. (15), under event Eδ, when t ≳ log2(1/δ), the difference K̂t −K is uniformly bounded by ϵ0.

Denote ρ0 = 1+ρ(L)
2 + ∥B∥ ϵ0 < 1. When p ≳ log2(1/δ),∥∥∥(A+BK̂t+m−1) · · · (A+BK̂p+1)1Eδ

∥∥∥ ≲ ρt+m−p
0 .

Apply this equation to Eq. (43):

E
(
∥xt+m∥k 1Eδ

)
≲ E

(∥∥∥∥∥
t+m−1∑
p=t

ρt+m−p
0 (Bηp + εp)

∥∥∥∥∥+ ρm0 ∥xt∥

)k

1Eδ


(By Holder’s inequality)

≲ 2k−1E

∥∥∥∥∥
t+m−1∑
p=t

ρt+m−p
0 (Bηp + εp)

∥∥∥∥∥
k

1Eδ
+ ρkm0 ∥xt∥k 1Eδ


≲ E

∥∥∥∥∥
t+m−1∑
p=t

ρt+m−p
0 (Bηp + εp)

∥∥∥∥∥
k
+ ρkm0 E

(
∥xt∥k 1Eδ

)
.

Consider the variance of
∑t+m−1

p=t ρt+m−p
0 (Bηp + εp):

Var

(
t+m−1∑
p=t

ρt+m−p
0 (Bηp + εp)

)

=

t+m−1∑
p=t

ρ
2(t+m−p)
0 Var ((Bηp + εp))
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≲
t+m−1∑
p=t

ρ
2(t+m−p)
0 =

m∑
i=1

ρ2i0 ≲ 1.

Since
∑t+m−1

p=t ρt+m−p
0 (Bηp + εp) is Gaussian with finite variance, the first item is of constant order

for any m. Thus

E
(
∥xt+m∥k 1Eδ

)
≲ 1 + ρkm0 E

(
∥xt∥k 1Eδ

)
.

Replace t← m, and m← t−m, then for m ≳ log2(1/δ),

E
(
∥xt∥k 1Eδ

)
≲ 1 + ρ

k(t−m)
0 E

(
∥xm∥k 1Eδ

)
.

Since the K̂t in Algorithm 1 cannot have norm greater than CK , we have

E
(
∥xm∥k 1Eδ

)
≤ E ∥xm∥k

≤ E
(
(∥A∥+ ∥B∥

∥∥∥K̂m

∥∥∥) ∥xm−1∥+ ∥B∥ ∥ηm∥+ ∥εm∥
)k

(By Holder’s inequality)

≤ 3k−1
(
(∥A∥+ ∥B∥CK)kE ∥xm−1∥k + ∥B∥k E ∥ηm∥k + ∥εm∥k

)
≤ 3k−1

(
(∥A∥+ ∥B∥CK)kE ∥xm−1∥k + ∥B∥k σk

η + σk
ε

)
.

By iterating this inequality down to ∥x0∥2, we know that E ∥xm∥k ≲ Ckm for some constant C. Thus,
we know

E
(
∥xt∥k 1Eδ

)
≲ 1 + ρ

k(t−m)
0 Ckm.

Since ρ0 < 1, we can take t ≥ (log1/ρ0
(C) + 1)m which satisfies ρ

k(t−m)
0 Ckm ≤ 1. Because we require

m ≳ log2(1/δ), the condition for t ≥ (log1/ρ0
(C) + 1)m is still t ≳ log2(1/δ), which satisfies

E
(
∥xt∥k 1Eδ

)
≲ 1.

B Proof of Theorem 2

Theorem. Algorithm 1 applied to a system described by Eq. (1) under Assumption 1 satisfies

R(U, T ) = Op

(√
T
)
. (44)

Proof. Recall from Lemma 6 that

J (U, T ) =
T∑

t=1

ε̃⊤t P ε̃t +

T∑
t=1

η⊤t Rηt +Op

(
T 1/2

)
,

and

J (U∗, T ) =

T∑
t=1

ε⊤t Pεt +Op

(
T 1/2

)
.
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Thus

R(U, T )
= J (U, T )− J (U∗, T )

=

T∑
t=1

ε̃⊤t P ε̃t +

T∑
t=1

η⊤t Rηt −
T∑

t=1

ε⊤t Pεt +Op

(
T 1/2

)
= 2

T∑
t=1

ε⊤t P (Bηt) +

T∑
t=1

(Bηt)
⊤P (Bηt) +

T∑
t=1

η⊤t Rηt +Op

(
T 1/2

)
.

(45)

Recall that ηt ∼ N (0, σ2
ηt

−1/2In)).

E
T∑

t=1

η⊤t Rηt =

T∑
t=1

Tr(REηtη⊤t ) =
T∑

t=1

Tr(Rσ2
ηt

−1/2) = O
(
T 1/2

)
.

Var

(
T∑

t=1

η⊤t Rηt

)
=

T∑
t=1

Var
(
η⊤t Rηt

)
=

T∑
t=1

O
(
t−1
)
= O (log(T )) .

The standard error is of smaller order than the expectation. Thus,
∑T

t=1 η
⊤
t Rηt = Op

(
T 1/2

)
. Simi-

larly,
∑T

t=1(Bηt)
⊤P (Bηt) = Op

(
T 1/2

)
.

It remains to consider the order of
∑T

t=1 ε
⊤
t P (Bηt). Its expectation is 0.

E
T∑

t=1

ε⊤t P (Bηt) = 0.

The variance is

Var

(
T∑

t=1

ε⊤t P (Bηt)

)
=

T∑
t=1

Var
(
ε⊤t P (Bηt)

)
=

T∑
t=1

O
(
t−1/2

)
= O

(
T 1/2

)
.

The standard error is of order T 1/4. Thus,
∑T

t=1 ε
⊤
t P (Bηt) = Op

(
T 1/4

)
= op(T

1/2). Using these
results, Eq. (45) becomes:

R(U, T )

= 2

T∑
t=1

ε⊤t P (Bηt) +

T∑
t=1

(Bηt)
⊤P (Bηt) +

T∑
t=1

η⊤t Rηt +Op

(
T 1/2

)
= Op

(
T 1/2

)
.

B.1 Proof of Lemma 6

Lemma. Algorithm 1 applied to a system described by Eq. (1) under Assumption 1 satisfies,

J (U, T ) =
T∑

t=1

ε̃⊤t P ε̃t +

T∑
t=1

η⊤t Rηt +Op

(
T 1/2

)
.

and

J (U∗, T ) =

T∑
t=1

ε⊤t Pεt +Op

(
T 1/2

)
,

where εt is the system noise and ηt is the exploration noise in Algorithm 1, and ε̃t = Bηt + εt.
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We only prove the first equation because the second equation is a simplified version of the first
equation (with ηt = 0 and K̂t = K).

Recursively applying system equations xt+1 = Axt +But + εt and ut = K̂txt + ηt we have:

xt =

t−1∑
p=0

(A+BK̂t−1) · · · (A+BK̂p+1)(Bηp + εp) + (A+BK̂t−1) · · · (A+BK0)x0. (46)

Notice that the state xt has the same expression as if the system had noise ε̃t = Bηt + εt and
controller ũt = K̂txt. We wish to switch to the new system because there are some existing tools with
controls in the form of ũt = K̂txt.

We are interested in the cost

J (U, T ) =
T∑

t=1

x⊤
t Qxt + u⊤

t Rut with ut = K̂txt + ηt.

We will first show in Appendix B.1.1 the new system cost is

Lemma 11. Algorithm 1 applied to a system described by Eq. (1) under Assumption 1 satisfies,

T∑
t=1

x⊤
t Qxt + ũ⊤

t Rũt =

T∑
t=1

ε̃⊤t P ε̃t +Op

(
T 1/2

)
.

and then prove in Appendix B.1.2 that the difference between the original cost and new cost is

Lemma 12. Algorithm 1 applied to a system described by Eq. (1) under Assumption 1 satisfies,

T∑
t=1

u⊤
t Rut − ũ⊤

t Rũt =

T∑
t=1

η⊤t Rηt + o
(
T 1/4 log

3
2 (T )

)
a.s.

Combining the above two equations, we conclude that

J (U, T ) =

[
T∑

t=1

x⊤
t Qxt + u⊤

t Rut

]

=

T∑
t=1

ε̃⊤t P ε̃t +

T∑
t=1

η⊤t Rηt +Op

(
T 1/2

)
.

The optimal controller U∗ is a simplified version of U from Algorithm 1 with ηt = 0 and K̂t−K = 0.
With the same proof we can show that

J (U∗, T ) =

T∑
t=1

ε⊤t Pεt +Op

(
T 1/2

)
.

B.1.1 Cost of new system

Lemma. Algorithm 1 applied to a system described by Eq. (1) under Assumption 1 satisfies,

T∑
t=1

x⊤
t Qxt + ũ⊤

t Rũt =

T∑
t=1

ε̃⊤t P ε̃t +Op

(
T 1/2

)
.
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Proof. Next we proceed as if our system was xt with system noise ε̃t = Bηt + εt and controller
ũt = K̂txt. The key idea of the following proof is from Appendix C of Fazel et al. (2018).

We are interested in the cost

T∑
t=1

x⊤
t Qxt + ũ⊤

t Rũt with ũt = K̂txt,

which can be written as

T∑
t=1

x⊤
t Qxt + ũ⊤

t Rũt =

T∑
t=1

x⊤
t Qxt + (K̂txt)

⊤RK̂txt

=

T∑
t=1

x⊤
t (Q+ K̂⊤

t RK̂t)xt

=

T∑
t=1

[
x⊤
t (Q+ K̂⊤

t RK̂t)xt + x⊤
t+1Pxt+1 − x⊤

t Pxt

]
+ x⊤

1 Px1 − x⊤
T+1PxT+1

=

T∑
t=1

[
x⊤
t (Q+ K̂⊤

t RK̂t)xt + ((A+BK̂t)xt + ε̃t)
⊤P ((A+BK̂t)xt + ε̃t)− x⊤

t Pxt

]
+ x⊤

1 Px1 − x⊤
T+1PxT+1

(by Lemma 18 in Wang and Janson (2020))

=

T∑
t=1

[
x⊤
t (Q+ K̂⊤

t RK̂t)xt + x⊤
t (A+BK̂t)

⊤P (A+BK̂t)xt − x⊤
t Pxt

+ 2ε̃⊤t P (A+BK̂t)xt + ε̃⊤t P ε̃t

]
+ Õp(1). (47)

We constructed the specific form of the first term on purpose. The following lemma translates the first
term into a quadratic term with respect to K̂t −K. We use the Lemma 25 from Wang and Janson
(2020):

Lemma 13 (Lemma 25 from Wang and Janson (2020)). For any K̂ with suitable dimension,

x⊤(Q+ K̂⊤RK̂)x+ x⊤(A+BK̂)⊤P (A+BK̂)x− x⊤Px

= x⊤(K̂ −K)⊤(R+B⊤PB)(K̂ −K)x.

As a result

T∑
t=1

x⊤
t Qxt + ũ⊤

t Rũt =

T∑
t=1

[
x⊤
t (K̂t −K)⊤(R+B⊤PB)(K̂t −K)xt

+ 2ε̃⊤t P (A+BK̂t)xt + ε̃⊤t P ε̃t

]
+ Õp(1).

Now we have three terms, and we will estimate the order of each of these three terms.

1. The first term we consider is
∑T

t=1 x
⊤
t (K̂t−K)⊤(R+B⊤PB)(K̂t−K)xt. For any 0 < δ < 1/2,

E

(
T∑

t=1

x⊤
t (K̂t −K)⊤(R+B⊤PB)(K̂t −K)xt1Eδ

)

≤ E

(
T∑

t=1

∥xt∥2
∥∥∥K̂t −K

∥∥∥2 ∥∥R+B⊤PB
∥∥ 1Eδ

)
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≲ E

(
T∑

t=1

∥xt∥2
∥∥∥K̂t −K

∥∥∥2 1Eδ

)

≲ E

(
T∑

t=1

t1/2
∥∥∥K̂t −K

∥∥∥4 + t−1/2 ∥xt∥4 1Eδ

)
(By Eq. (34) and the same inequalities as in Eq. (30))

≲
T∑

t=T0

t−1/2 +

T0−1∑
t=1

t1/2(CK + ∥K∥)4 + log2(1/δ) + T 1/2

≲ T 1/2 + log2(1/δ).

Then for any 0 < δ < 1/2, we have

P

(
T∑

t=1

x⊤
t (K̂t −K)⊤(R+B⊤PB)(K̂t −K)xt1Eδ

≳
1

δ
(T 1/2 + log2(1/δ))

)
≤ δ.

P

(
T∑

t=1

x⊤
t (K̂t −K)⊤(R+B⊤PB)(K̂t −K)xt ≳

1

δ
(log2(1/δ) + 1)T 1/2

)
≤ 2δ.

By big O in probability notation, this implies

T∑
t=1

x⊤
t (K̂t −K)⊤(R+B⊤PB)(K̂t −K)xt = Op

(
T 1/2

)
.

2. The second term we consider is
∑T

t=1 ε̃
⊤
t P (A+BK̂t)xt. Notice that ε̃t = εt+Bηt ⊥⊥ (A+BK̂t)xt.

Then

E
T∑

t=1

ε̃⊤t P (A+BK̂t)xt = 0.

E(
T∑

t=1

ε̃⊤t P (A+BK̂t)xt1Eδ
)2

=
T∑

t=1

E(ε̃⊤t P (A+BK̂t)xt)
21Eδ

≤
T∑

t=1

E
(
∥ε̃t∥2 ∥P∥2

∥∥∥(A+BK̂t)
∥∥∥2 ∥xt∥2 1Eδ

)
(
∥∥∥K̂t

∥∥∥ ≤ CK based on Algorithm 1 design)

≤
T∑

t=1

∥P∥2 (∥A∥+ ∥B∥CK)2E ∥ε̃t∥2 E
(
∥xt∥2 1Eδ

)
≲

T∑
t=1

E
(
∥xt∥2 1Eδ

)
(By the inequalities in Eq. (30))

≲ T + log2(1/δ) log log(1/δ)

≲ T + log3(1/δ).
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Then for any 0 < δ < 1/2, we have

P

(
T∑

t=1

ε̃⊤t P (A+BK̂t)xt1Eδ
≳

√
1

δ
(T + log3(1/δ))

)
≤ δ

and

P

(
T∑

t=1

ε̃⊤t P (A+BK̂t)xt ≳

√
1

δ
(1 + log3(1/δ))T

)
≤ 2δ.

By big O in probability notation, this implies

T∑
t=1

ε̃⊤t P (A+BK̂t)xt = Op

(
T 1/2

)
. (48)

3. The third term is
∑T

t=1 ε̃
⊤
t P ε̃t and we leave that in the equation.

Summing up the three parts we have:

T∑
t=1

x⊤
t Qxt + ũ⊤

t Rũt =

T∑
t=1

ε̃⊤t P ε̃t +Op

(
T 1/2

)
.

B.1.2 Cost difference induced by transformation

Lemma. Algorithm 1 applied to a system described by Eq. (1) under Assumption 1 satisfies,

T∑
t=1

u⊤
t Rut − ũ⊤

t Rũt =

T∑
t=1

η⊤t Rηt + o
(
T 1/4 log

3
2 (T )

)
a.s.

Proof. The difference is expressed as

T∑
t=1

u⊤
t Rut − ũ⊤

t Rũt =

T∑
t=1

(K̂txt + ηt)
⊤R(K̂txt + ηt)−

T∑
t=1

(K̂txt)
⊤R(K̂txt)

=2

T∑
t=1

(K̂txt)
⊤Rηt +

T∑
t=1

η⊤t Rηt.

Eq. (83) of Wang and Janson (2020) shows that

T∑
t=1

(K̂txt)
⊤Rηt = o

(
T 1/4 log

3
2 (T )

)
a.s.

As a conclusion,

T∑
t=1

u⊤
t Rut − ũ⊤

t Rũt =

T∑
t=1

η⊤t Rηt + o
(
T 1/4 log

3
2 (T )

)
a.s.
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