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Abstract

Consider the following three important problems in statistical inference, namely, constructing confidence inter-
vals for (1) the error of a high-dimensional (p > n) regression estimator, (2) the linear regression noise level, and
(3) the genetic signal-to-noise ratio of a continuous-valued trait (related to the heritability). All three problems
turn out to be closely related to the little-studied problem of performing inference on the `2-norm of the signal in
high-dimensional linear regression. We derive a novel procedure for this, which is asymptotically correct when the
covariates are multivariate Gaussian and produces valid confidence intervals in finite samples as well. The proce-
dure, called EigenPrism, is computationally fast and makes no assumptions on coefficient sparsity or knowledge
of the noise level. We investigate the width of the EigenPrism confidence intervals, including a comparison with a
Bayesian setting in which our interval is just 5% wider than the Bayes credible interval. We are then able to unify
the three aforementioned problems by showing that the EigenPrism procedure with only minor modifications is
able to make important contributions to all three. We also investigate the robustness of coverage and find that
the method applies in practice and in finite samples much more widely than just the case of multivariate Gaussian
covariates. Finally, we apply EigenPrism to a genetic dataset to estimate the genetic signal-to-noise ratio for a
number of continuous phenotypes.
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1 Introduction

1.1 Problem Statement

Throughout this paper we will assume the linear model

y = Xβ + ε, (1.1)

where y, ε ∈ Rn, β ∈ Rp, and X ∈ Rn×p. Denote the ith row and jth column of X by xi and Xj , respectively. We
assume the xi are drawn i.i.d. from a mean-zero distribution with covariance matrix Σ.

Our goal is to construct a two-sided confidence interval (CI) for the expected signal squared magnitude θ2 :=
‖Σ1/2β‖22 (or equivalently just θ). Explicitly, for a given significance level α ∈ (0, 1), we want to produce statistics
Lα and Uα, computed from the data, obeying

P
(
θ2 < Lα

)
≤ α/2,

P
(
θ2 > Uα

)
≤ α/2.

(1.2)

In words, we want to be able to make the following statement: “with 100(1 − α)% confidence, θ2 lies between Lα
and Uα.”

1.2 Motivation

This problem can be motivated first from a high level as an approach to performing inference on β in high dimensions.
Since p > n, we cannot hope to perform inference on the individual elements of β directly (without further assump-
tions, such as sparsity), but there is hope for the one-dimensional parameter θ. Although θ is not often considered a
parameter of inference in regression problems, it turns out to be closely related to a number of well-studied problems.

Suppose one has an estimator β̂ for β. Perhaps the most important question to be asked is: how close is β̂ to β?
This question can be answered statistically by estimating and/or constructing a CI for the error of that estimate,

namely, ‖β̂ − β‖2. This is a fundamental statistical problem arising in many applications. Consider, for example, a
compressed sensing (CS) experiment in which a doctor performs an MRI on a patient. In MRI, the image is observed
not in the spatial domain, but in the frequency domain. If as many observations as pixels are made, the result is the
Fourier transform (with some added noise) of the image, from which the original spatial pixels can be inferred. CS
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theory suggests that one can instead use a number of observations (rows of the Fourier matrix) that is a fraction of
the number of pixels, and still get very good recovery of the original image using perhaps sophisticated `1 methods
(Candès et al., 2006). However, for a specific instance, there is no good way to estimate how “good” the recovery
is. This can be important if the doctor is looking for a specific feature on the MRI, such as a small tumor, and
needs to know if what he or she sees on the reconstructed image is accurate. In the authors’ experience, this is the
most common question asked by end-users of CS algorithms. Put another way, when the Nyquist sampling theorem
is violated, there is always a possibility of missing some of the signal, so what reassurances can we make about the
quality of the reconstruction?

The estimation of the noise level σ2 in a linear model is another important statistical problem. Consider, for
example, performing inference on individual coefficients in the linear model. When n > p, OLS theory provides an
answer that depends on σ2 or at least an estimate of it. Indeed, one can find in almost any introductory statistics
textbook both estimation and inference results for σ2 in the case of n > p. However much recent work has investigated
the problem of performing inference on individual coefficients in the high-dimensional setting of n ≤ p (Berk et al.,
2013; Lockhart et al., 2014; Taylor et al., 2014; Javanmard and Montanari, 2014; van de Geer et al., 2014; Zhang
and Zhang, 2014; Lee et al., 2015), and they all require knowledge of σ2. Unfortunately very few such results exist
for the high-dimensional setting of n ≤ p. Beyond regression coefficient inference, σ2 can be useful for benchmarking
prediction accuracy and for performing model selection, for instance using AIC, BIC, or the Lasso. It also may be
of independent interest to know σ2, for instance to understand the variance decomposition of y.

A third topic is the study of genetic heritability (Visscher et al., 2008), which can be characterized by the
following question: what fraction of variance in a trait (such as height) is explained by our genes, as opposed to our
environment? Colloquially, this can be considered a way of quantifying the nature versus nurture debate.

It turns out that all three of these problems can be solved by connection with our original problem of estimating
and constructing CIs for θ2. Indeed, in the MRI example, the doctor may split the collected observations into two
independent subsamples, (y(0),X(0)) and (y(1),X(1)), and construct an estimator β̂ from just (y(0),X(0)). Then

the vector ỹ := y(1) −X(1)β̂ follows a linear model,

ỹ = X(1)(β − β̂) + ε, (1.3)

so that if Σ = I, inference on θ in this linear model corresponds exactly to inference on the `2 regression error of β̂.
Note that since the analysis is conditional on β̂, there is no restriction on how β̂ is computed from (y(0),X(0)), and
so the method applies to any coefficient estimation technique. We defer the connection between inference for θ2 and
inference for σ2 and genetic variance decomposition to Section 3.

1.3 Main Result

Although we will ultimately argue that our method applies more broadly, we will begin with the following distribu-
tional assumptions,

xi
i.i.d.∼ N(0, Ip), εi

i.i.d.∼ N(0, σ2), (1.4)

with X independent of ε. Note that p > n ensures the design matrix will have a nontrivial null space, and thus
conditional on X, the linear model (1.1) (including θ) is unidentifiable (since any vector in the null space of X can
be added to β without changing the data-generating process). This necessitates a random design framework. The
assumption of independence on the rows of the design matrix is often satisfied in realistic settings when observations
are drawn independently from a population. However, the independence (and multivariate Gaussianity) of the
columns is rather stringent and just a starting point—Sections 3.3, 4.1, and 5 demonstrate in simulations and on
real data that in practice EigenPrism achieves nominal coverage even when the marginal distribution of the entries
of X are far from Gaussian, as well as in some cases when Σ 6= I. We are treating the coefficient vector β as fixed,
not random.

Under these assumptions, we will develop in Section 2 an estimator that is unbiased for θ2, is asymptotically nor-
mally distributed, and has an estimable tight bound on its variance. None of these properties, including estimability
of the variance, require knowledge of the noise level σ2 or any assumption, such as sparsity, on the structure of the
coefficient vector β. From these results, it is easy to generate valid CIs for θ2 (or θ), and we will show that such CIs
are nearly as short as they can be, and provide nominal coverage in finite samples under a variety of circumstances
(even beyond the assumptions made here).

1.4 Related Work

When n > p, ordinary least squares (OLS) theory gives us inference for β and thus also for θ. When n ≤ p,
the problem of estimating θ2 has been studied in Dicker (2014). Dicker (2014) uses the method of moments on
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two statistics to estimate θ2 and σ2 without assumptions on β, and with the same multivariate Gaussian random
design assumptions used here. Dicker (2014) also derives asymptotic distributional results, but does not explore the
estimation of the parameters of the asymptotic distributions, nor the coverage of any CI derived from it. The main
contribution of our work is to provide tight, estimable CIs which achieve nominal coverage even in finite samples.

Inference for high-dimensional regression error, noise level, and genetic variance decomposition are each individu-
ally well-studied, so we review some relevant works here. To begin with, many authors have studied high-dimensional
regression error for specific coefficient estimators, such as the Lasso (Tibshirani, 1996), often providing conditions
under which this regression error asymptotes to 0 (see for example Bayati et al. (2013); Knight and Fu (2000)). To
our knowledge the only author who has considered inference for a general estimator is Ward (2009), who does so
using the Johnson–Lindenstrauss Lemma and assuming no noise, that is, εi ≡ 0 in the linear model (1.1). Thus the
problem studied there is quite different from that addressed here, as we allow for noise in the linear model. Fur-
thermore, because the Johnson–Lindenstrauss Lemma is not distribution-specific, it is conservative and thus Ward’s
bounds are in general conservative, while we will show that in most cases our CIs will be quite tight.

There has also been a lot of recent interest in estimating the noise level σ2 in high-dimensional regression problems.
Fan et al. (2012) introduced a refitted cross validation method that estimates σ2 assuming sparsity and a model
selection procedure that misses none of the correct variables. Sun and Zhang (2012) introduced the scaled Lasso for
estimating σ2 using an iterative procedure that includes the Lasso. Städler et al. (2010) also use an `1 penalty to
estimate the noise level, but in a finite mixture of regressions model. Bayati et al. (2013) use the Lasso and Stein’s
unbiased risk estimate to produce an estimator for σ2. All of these works prove consistency of their estimators,
but under conditions on the sparsity of the coefficient vector. Indeed, it can be shown (Giraud et al., 2012) that
such a condition is needed when X is treated as fixed (which it is not in the present paper). Under the same
sparsity conditions, Fan et al. (2012) and Sun and Zhang (2012) also provide asymptotic distributional results for
their estimators, allowing for the construction of asymptotic CIs. What distinguishes our treatment of this problem
from the existing literature is that our estimator and CI for σ2 make no assumptions on the sparsity or structure of
β.

An unpublished paper (Owen, 2012) estimates θ2 using a type of method of moments, with the goal of estimating
genetic heritability by way of a variance decomposition. Although Owen gives conditions for consistency of his
esimator, no inference is discussed, and he points out that the work is only valid for estimating heritability if the
SNPs are assumed to be independent. In general, heritability is a well-studied subject in genetics, with especially
accurate estimates coming from studies comparing a trait within and between twins (e.g. Silventoinen et al. (2003)).
However, in order to better understand the genetic basis of such traits, some authors have tried to directly predict
a trait from genetic information. Since most forms of genetic information, such as SNP data, are much higher-
dimensional than the number of samples that can be obtained, the main approaches are either to try and find a
small number of important variables through genome-wide association studies (e.g. Weedon et al. (2008)) before
modeling, to estimate the kinships among subjects and use maximum likelihood, assuming independence among
SNPs and random effects, on the trait covariances among subjects to estimate the (narrow-sense) heritability (e.g.
Yang et al. (2010); Golan and Rosset (2011)), or to assume random effects and use maximum likelihood to estimate
the signal-to-noise ratio in a linear model (e.g. Kang et al. (2008); Bonnet et al. (2014); Owen (2014)). However,
attempts to explain heritability by genetic prediction have fallen quite short of the estimates from twin studies,
leading to the famous conundrum of missing heritability (Manolio et al., 2009). Our main contribution to this
field will be to consistently estimate and provide inference for the signal-to-noise ratio in a linear model, which
is related to the heritability, without assumptions on the coefficient vector (such as sparsity or random effects),
knowledge of the noise variance, or feature independence. This contribution may be especially valuable given the
increased popularity of the rare variants hypothesis (Pritchard, 2001) for missing heritability, which conjectures that
the effects of genetic variation on a trait may not be strong and sparse, but instead distributed and weak (and their
corresponding mutations rare).

We note that neuroscientists have also done work estimating a signal-to-noise ratio, namely the explainable
variance in functional MRI. That problem is made especially challenging due to correlations in the noise, making it
different from the i.i.d. noise setting considered in this paper. For this related problem, Benjamini and Yu (2013)
are able to construct an unbiased estimator in the random effects framework by permuting the measurement vector
in such a way as to leave the noise covariance structure unchanged.

2 Constructing a Confidence Interval for θ2

In this section we develop a novel method for constructing a valid CI for θ2. This method does not require σ2 to
be known. However, for pedagogical reasons, we begin with the simpler situation in which σ2 is known, which may
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arise in many signal or image processing applications.

2.1 Known σ2

Consider a sample of size n from the linear model (1.1). Then

yi
i.i.d.∼ N(0, θ2 + σ2),

which implies
‖y‖22
θ2 + σ2

∼ χ2
n. (2.1)

Denote the τ th quantile of the χ2
n distribution by Q

(n)
τ . Then when σ2 is known, a valid CI can be obtained by

setting

Lα =
‖y‖22
Q

(n)
1−α/2

− σ2, Uα =
‖y‖22
Q

(n)
α/2

− σ2,

that is, (1.2) is satisfied under this choice of Lα, Uα. Note that the method of Ward (2009) also assumes σ2 is known,
and equal to zero, so we may consider comparing it to the above. In particular we want to emphasize that Ward
(2009)’s inference method is conservative due to the generality of the Johnson–Lindenstrauss lemma, while [Lα, Uα]
contitutes an exact 100(1 − α)% CI. The same procedure can be generalized using the bootstrap on the unbiased
estimator

T1 := ‖y‖22/n− σ2 . (2.2)

See Appendix A for details.

2.2 Unknown σ2

2.2.1 Theory

Consider again the linear model (1.1) with assumptions (1.4), in particular that X has i.i.d. standard Gaussian
elements. Recall that we assume n < p, and let X = UDV > be a singular value decomposition (SVD) of X, so
that U is n×n orthonormal, D is n×n diagonal with non-negative, non-increasing diagonal entries, and V is p×n
orthonormal. Let z = U>y, and denote the diagonal vector of D by d. We emphasize that the singular values in D
are arranged along the diagonal in decreasing order, so that d1 ≥ d2 ≥ · · · dn ≥ 0. Then

z = D(V >β) +U>ε,

and note that

E
(
z2i |d

)
=E

[(
diV

>
i β +U>i ε

)2∣∣∣d] ,
= d2iE

[(
V >i β

)2∣∣∣d]+ 2diE
(
V >i βU

>
i ε
∣∣d)+ E

[(
U>i ε

)2∣∣∣d] ,
= d2i θ

2/p+ σ2,

where the third equality follows from the fact that in our model the columns of V are uniformly distributed on the
unit sphere, and independent of d.

To give some intuition for what follows, assume n is even and consider the expectation, conditional on d, of the
difference between the sum of squares of the first half of the entries of z and the sum of squares of the second half
of the entries of z,

E

 n/2∑
i=1

z2i −
n∑

i=n/2+1

z2i

∣∣∣∣∣∣d
 =

n/2∑
i=1

d2i θ
2/p+

n

2
σ2

−
 n∑
i=n/2+1

d2i θ
2/p+

n

2
σ2

 ,

=
θ2

p

n/2∑
i=1

(
d2i − d2i+n/2

)
.

Note that the terms containing σ2 in the first line cancel out, but because the singular values di ofX are in decreasing
order, a term proportional to θ2 remains. We generalize this idea below.
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Let λi = d2i /p be the eigenvalues of XX>/p, let w ∈ Rn be a vector of weights (which need not be nonnegative),
and consider the statistic S =

∑n
i=1 wiz

2
i . We can compute its expectation, conditional on d, as

E (S| d) = E

(
n∑
i=1

wiz
2
i

∣∣∣d)

=

n∑
i=1

wi

(
λiθ

2 + σ2
)

= θ2
n∑
i=1

wiλi + σ2
n∑
i=1

wi.

(2.3)

Based on this calculation, constraining
∑n
i=1 wi = 0 and

∑n
i=1 wiλi = 1 makes S an unbiased estimator of θ2 (even

conditionally on d). We can also compute its conditional variance (see Appendix B for a detailed computation),

Var(S|d) = 2σ4
n∑
i=1

w2
i + 4σ2θ2

n∑
i=1

w2
i λi + 2θ4

[
p

p+ 2

n∑
i=1

w2
i λ

2
i −

(
∑n
i=1 wiλi)

2

p+ 2

]
, (2.4)

which, under the aforementioned constraint
∑n
i=1 wiλi = 1 can be rewritten as

= 2σ4
n∑
i=1

w2
i + 4σ2θ2

n∑
i=1

w2
i λi + 2θ4

(
p

p+ 2

n∑
i=1

w2
i λ

2
i −

1

p+ 2

)
,

≤ 2

n∑
i=1

w2
i

(
λiθ

2 + σ2
)2
,

= 2
(
θ2 + σ2

)2 n∑
i=1

w2
i (λiρ+ 1− ρ)

2
,

(2.5)

where

ρ =
θ2

θ2 + σ2
(2.6)

is the fraction of the variance of the yi accounted for by the signal (recall that Var(yi) = θ2 + σ2). The inequality
will be quite tight when p is large and 1

p
∑n
i=1 w

2
i λ

2
i
� 1. By noting that this variance bound, as a function of ρ, is a

quadratic equation with positive leading coefficient, it follows that it is maximized either at ρ = 0 or at ρ = 1. This
leads to one more upper-bound,

Var(S|d) ≤ 2
(
θ2 + σ2

)2 ·max

(
n∑
i=1

w2
i ,

n∑
i=1

w2
i λ

2
i

)
. (2.7)

The above equation has two striking features. The first is that it depends on θ2 and σ2 only through the sum
θ2 + σ2, for which we have an excellent estimator given by ||y||22/n. The second feature is that it separates into
the product of two terms: one term that does not depend on w, and a second term that is known (in that it
contains nothing that needs to be estimated) and (strictly) convex in w. Thus we can use convex optimization to
find the vector w that minimizes the upper-bound (2.7) on the variance subject to the two linear equality constraints
mentioned earlier,

∑n
i=1 wi = 0 and

∑n
i=1 wiλi = 1, which ensure that S remains unbiased for θ2. Figure 1 shows

an example of such an optimized weight vector when n = 200 and p = 2000. Note that instead of just giving some
positive weight to large λi’s and some negative weight to small λi’s, the optimal weighting is a smooth function of
the λi. This makes sense, as the zi’s with large associated λi have a larger signal-to-noise ratio, and should be given
greater weight. Denote the statistic S constructed using these constrained-optimal weights by T2. Explicitly, let w∗

be the solution to the following convex optimization program P1:

arg min
w∈Rn

max

(
n∑
i=1

w2
i ,

n∑
i=1

w2
i λ

2
i

)
such that

n∑
i=1

wi = 0,

n∑
i=1

wiλi = 1 (2.8)

and denote by val(P1) the minimized objective function value. Then the statistic for our main procedure in this
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Figure 1: Plot of weights wi as a function of normalized eigenvalues λi for n = 200 and p = 2000.

paper, which we call the EigenPrism procedure, is the following,

T2 :=

n∑
i=1

w∗i z
2
i ,

E (T2| d) = θ2,

SD(T2|d) .
√

2 val(P1)
‖y‖22
n

,

(2.9)

where the only approximation in the variance is the replacement of θ2 + σ2 by its estimator ‖y‖22/n.
With these calculations in place, we now define our (1−α)-confidence interval for θ2, by assuming that T2 follows

an approximately normal distribution (discussed later on). We construct lower and upper endpoints

Lα := max

(
T2 − z?1−α/2 ·

√
2 val(P1)

‖y‖22
n

, 0

)
, Uα := T2 + z?1−α/2 ·

√
2 val(P1)

‖y‖22
n

,

where the value of Lα is clipped at zero since it holds trivially that θ2 > 0, and where z?1−α/2 is the (1−α/2) quantile
of the standard normal distribution.

Remark. The idea of constructing the zi’s as contrasts has been used in the heritability literature before,
e.g. Kang et al. (2008); Bonnet et al. (2014); Owen (2014), but in a strict random effects framework. In particular,
when the entries of β are i.i.d. Gaussian, the zi’s become independent. With independent zi’s whose distribution
depends only on the signal (θ2) and noise (σ2) parameters, the authors are able to apply maximum likelihood
estimation, with associated asymptotic inference results for the signal, noise, or signal-to-noise ratio (we note that
Bonnet et al. (2014) generalize such estimators somewhat to the case of a Bernoulli-Gaussian random effects model).
The crucial difference between our work and theirs is that we make no assumptions (e.g., Gaussianity, sparsity) on
the coefficient vector, and thus not only are the zi’s not independent in our setting, but their dependence (and thus
the full likelihood) is a function of the products βiβj , and thus a maximum likelihood approach in this setting would
still be overparameterized.

Next, we discuss the coverage and width properties of this constructed confidence interval.

2.2.2 Coverage

Now that we are equipped with an unbiased estimator and a computable variance (upper-bound), and have con-
structed a confidence interval (CI) using a normal approximation, there are two main questions to answer in order
to determine whether these CIs will exhibit the desired coverage properties. In particular, we would like to know if
substituting θ2 + σ2 with ‖y‖22/n substantially affects the variance formula, and we would like to know if T2 is ap-
proximately normally distributed (so that we can construct arbitrary CIs from just the second moment). For the first
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question, since ‖y‖22 is a rescaled χ2
n random variable, for nominal coverage of 1− α, the coverage actually achieved

can be closely approximated by P
{
|N(0, 1)| ≤ z1−α/2 · χ2

n/n
}

(where the N(0, 1) and the χ2
n are independent), as-

suming exact normality. Table 1 shows that for nominal 95% coverage, one would need fewer than 20 samples to
achieve less than 90% coverage. For the second question, the following theorem establishes the asymptotic normality

n 10 20 50 100 500 1000 5000
Coverage 87.5% 91.0% 93.3% 94.1% 94.8% 94.9% 95.0%

Table 1: Values of P
{
|N(0, 1)| ≤ z0.975 · χ2

n/n
}

for a range of n.

of T2.

Theorem 1. Under the linear model (1.1) with Gaussian random design and errors given in Equation (1.4), the
estimator T2 as defined in Equation (2.9) is asymptotically normal as n, p → ∞ and n/p → γ ∈ (0, 1). This holds
for any values of θ2 and σ2, including values that vary with n. Explicitly,

T2 − θ2

SD(T2|d)

d−→ N(0, 1).

Proof. The proof is given in Appendix C.

For finite-sample results, we defer to the simulation results of Section 3.1 to show that for problems of reasonable
size (min{n, p} & 100), CIs constructed as if T2 were exactly normal with variance exactly given by Equation (2.9)
never result in below-nominal coverage.

2.2.3 Width

Once we have confirmed that our CIs provide the proper coverage, the next topic of interest is their widths. It is not
hard to obtain a closed-form asymptotic upper-bound for Var(T2) (the details are worked out in Appendix D). In
particular, letting Yγ denote a random variable with Marčenko–Pastur (MP) distribution with parameter γ (Marčenko
and Pastur, 1967), and Mγ denote the median of Yγ , define the constants,

Aγ =E
[
Yγ · (1Yγ≥Mγ

− 1Yγ<Mγ
)
]
,

Bγ =E
(
Y 2
γ

)
.

(2.10)

Then in the limit as n, p→∞ and n/p→ γ ∈ (0, 1),

√
n ·
√

Var(T2)

θ2 + σ2
≤
√

2 ·max

(
1

Aγ
,

√
Bγ

Aγ

)
. (2.11)

We can draw a few conclusions from Equation (2.11). The most obvious is that for n, p→∞, n/p→ γ ∈ (0, 1),
σ2 asymptotically bounded above and θ2 asymptotically bounded below, the error of T2, as a fraction of its estimand
θ2, converges to 0 in probability at a rate of n−1/2. Note that we make no assumptions at all on the structure of β,
and just require that θ2 does not asymptote at 0. The equation also lets us compute a conservative upper-bound
on the asymptotic relative efficiency (ARE), defined as the asymptotic ratio of standard deviations (although it is
often defined by variances elsewhere), of T2 with respect to T1 from Section 2.1 (see (2.2)), the latter of which uses
exact knowledge of σ2 and has standard deviation characterized by the χ2

n distribution. While we may not be able
to formulate a closed-form expression for it in terms of expectations due to the constrained minimization functional,
the standard deviation bound for T2 in Equation (2.9) will also converge to a constant times SD(T1) under the same
asymptotic conditions, where the constant depends only on the MP distribution. This is because the optimal weights
are a smooth function of the λi. Due to fast convergence to the MP distribution, we can numerically approximate
this exact asymptotic ratio. Figure 2 shows this estimate of the ARE of T2 to T1 as a function of γ. Note that the
standard deviation bound for T2 in Equation (2.9), used to compute the curve in Figure 2, is still an upper-bound for
the ARE of T2 with respect to T1, but it reflects the ratio of CI widths between the EigenPrism procedure and a CI
constructed from T1 with knowledge of σ2. The figure demonstrates how close in width the EigenPrism procedure
comes to an exact CI for T1 which knows σ2. In particular, for γ & 0.25, the EigenPrism CIs are at most twice as
wide as those for T1.

Another notable feature of Figure 2 is how large the ARE becomes as γ → 0. This is a symptom of an important
property of not just our procedure, but the frequentist problem as a whole. First, it is clear that if all the λi ≡ 1, our
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Figure 2: Estimate of the asymptotic relative efficiency of T2 to T1.

procedure fails, as the z2i no longer provide any contrast between θ2 and σ2, and no linear combination of them will
produce an unbiased statistic for θ2. Intuitively, note that E

(
z2i
)
∝ λiρ+ (1− ρ), so that the problem of estimating

ρ is that of estimating the slope and intercept of a regression line. But in regression, when the predictor variable
assumes a constant value, as it would when λi ≡ 1, it becomes impossible to estimate the slope and intercept. To
understand better how our procedure performs when the spread of the λi approaches zero, consider the case when
λ1 = · · · = λn/2 = 1 + a and λn/2+1 = · · · = λn = 1− a. In this case SD(λi) = a, and it is easy to show that

val(P1) =
1 + a2

a2n
,

so if
√
nSD(λi)→ 0, then a2n→ 0 and so val(P1)→∞.

Returning to our original model in which X is i.i.d. N(0, 1), the λi’s will be approximately MP-distributed with
parameter γ = n/p. Figure 3 shows visually how the width of the MP distribution depends on γ, and analytically,
SD(Yγ) =

√
γ. We show in the following theorem (proved in Appendix E) that if the λi’s are too close to 1 and

n� p, it is impossible for any procedure to reliably distinguish between the case of ρ = 0 (pure noise) and ρ = 1/2
(variance equally split between signal and noise).

Theorem 2. Let p ≥ n ≥ 1. Suppose that

Z = θ ·DV >a+ σ · ε (2.12)

where θ > 0, σ > 0, and a unit vector a are all fixed but unknown, D ∈ Rn×n is a known nonnegative diagonal matrix
with

∑n
i=1 λi :=

∑n
i=1D

2
ii/p = n, V ∈ Rp×n is a random Haar-distributed orthonormal matrix, and ε ∼ N(0, In)

independent of V . Consider the simple scenario where we are trying to distinguish between only two possibilities,
denoted by distributions P0 and P1:

P0 : Z follows (2.12) with θ = 0 and σ = 1, vs. P1 : Z follows (2.12) with θ = σ =
1√
2
.

Then for any test ψ : Rn → {0, 1}, the power to correctly distinguish between these two distributions is bounded as

PZ∼P0
[ψ(Z) = 1] + PZ∼P1

[ψ(Z) = 0] ≥ 1−

(√∑n
i=1(λi − 1)2

8
+

√
n/p

4π

)
.

In other words, every test ψ has high error, with

P(Type I error) + P(Type II error) ≥ 1−

(√∑n
i=1(λi − 1)2

8
+

√
n/p

4π

)
,
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Figure 3: Probability density function (PDF) of Marčenko–Pastur distribution for various values of γ.

so that if the λi are tightly distributed around 1 and n � p, the problem of estimating ρ, and thus θ, is extremely
difficult. Note that for approximately MP-distributed λi with γ = n/p ≈ 0, both

∑n
i=1(λi − 1)2 and n/p are quite

small, explaining the spike in ARE in Figure 2 as γ → 0.
Another way to evaluate how short the EigenPrism CIs are, compared to how short they could be, is to compare

to a Bayesian procedure on a Bayesian problem. This is done in Section 3.1.

2.2.4 Computation

As a procedure intended for use in high-dimensional settings, it is of interest to know how the EigenPrism proce-
dure scales with large problem dimensions. There are essentially two parts to the procedure: the SVD, and the
optimization (2.8) to choose w∗. Due to the strict convexity of the optimization problem, it is extremely fast to
solve (2.8) and in all of our simulations the runtime was dominated by the SVD computation. In Appendix F we
include a snippet of Matlab code in the popular convex optimization language CVX (Grant and Boyd, 2014, 2008)
that reformulates the optimization problem (2.8) as a second-order cone problem. Even if the optimization becomes
extremely high-dimensional, note that the optimal weights w∗ are a smooth function of their associated eigenvalues
λi. Thus we can approximate w∗ extremely well by subsampling the λi, computing a lower-resolution optimal weight
vector, and then linearly interpolating to obtain the higher-resolution, high-dimensional w∗. For the SVD, note that
V never needs to be computed. Thus, the computation scales as n2p with a small constant of proportionality, as the
SVD of XX> is all that is needed.

3 Derivative Procedures

In this section, we go into more detail about the three related problems of performing inference on estimation error
of a high-dimensional regression estimator, noise level in a high-dimensional linear model, and genetic signal-to-noise
ratio, including simulation results. MATLAB code for the numerical results in this paper is available on the first
author’s website.

3.1 High-Dimensional Regression Error

We have already shown in Section 1.2 that the problem of inference for high-dimensional regression error is equivalent,
with a change of variables, to that of inference on θ. Under assumptions (1.4), our framework even allows for selection

of a subset of β̂, for instance if the doctor sees an anomaly in a region of the reconstructed image, he or she may
only care about error in that region. In that case, for a subset of indices R (with corresponding complement Rc),
Equation (1.3) can be rewritten as

ỹ = X
(1)
R (βR − β̂R) +X

(1)
Rc (βRc − β̂Rc) + ε = X

(1)
R (βR − β̂R) + ε̃,

9
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Figure 4: (a) Coverage of 95% EigenPrism and Dicker confidence intervals as a function of ρ for p = 104 and
θ2 + σ2 = 104. (b) EigenPrism confidence interval, Dicker confidence interval, and Bayes credible interval widths as
a function of n for p = 104 and β sampled according to the Bayesian model in Equation (G.1).

where ε̃ is an i.i.d. Gaussian vector independent of X
(1)
R , so that defining θ = ‖βR− β̂R‖2 puts this problem squarely

into the EigenPrism framework, regardless of the fact that R may be chosen after observing β̂ (recall that β̂ was
fitted on an independent subset of the data, (X(0),y(0))).

We note that the requirement that the columns of X be independent in order to perform inference on ‖β̂ − β‖22
cannot be relaxed. However, with a known covariance Σ, one could instead perform inference on ‖Σ1/2(β̂ − β)‖22.

Of course, inference for either ‖β̂−β‖22 or ‖Σ1/2(β̂−β)‖22 is sufficient if the ultimate goal is to invert the CI to test
a global null hypothesis on the coefficient vector.

What remains to be seen then is (1) that coverage is not lost by approximating θ2 +σ2 by ‖y‖22 and by assuming
T2 is normal, and (2) how short the resulting CIs are relative to how short they could be. To investigate (1), we
fixed p at 104, θ2 + σ2 = 104, varied n on a log scale between 0 and p, and varied ρ (recall Equation 2.6) between
0 and 1 by taking equally spaced values of log(ρ/(1 − ρ)). Note that due to rotational symmetry, the direction of
β is irrelevant. We ran 104 simulations of the EigenPrism procedure to generate 95% CIs and compared coverage
across the settings in Figure 4(a). We also simulated CIs using the results of Dicker (2014) by simply plugging in its
estimators for θ2 and σ2 to its asymptotic variance formula (which depends on the exact parameters). Note that the
EigenPrism CIs achieve at least nominal coverage in all cases, while the Dicker procedure is less reliable, especially
for large ρ. One setting in which we see EigenPrism over-cover is when n ≈ p and ρ ≈ 1. This can be explained
by the variance upper-bound for T2 in Equation (2.5), which is tight when p is large and (p

∑n
i=1(w∗i λi)

2)−1 � 1.
Figure 5 shows that, except when n ≈ p, we indeed have (p

∑n
i=1(w∗i λi)

2)−1 � 1.
To investigate (2), we simulated the EigenPrism procedure on a Bayesian model and compared the EigenPrism

widths to those obtained by computing equal-tailed Bayes credible intervals (BCI) from a Gibbs-sampled posterior.
The details of the Bayesian setup are given in Appendix G, but the resulting CI widths are summarized in Figure 4(b)
for p = 104 and a range of n. Again, we also compared to Dicker CIs. Each point on the plot represents 1000
simulations. Although the Dicker CIs become slightly shorter than EigenPrism’s for large n, we note (as evidenced
by Figure 4(a)) that this is exactly the regime in which the Dicker CIs have unreliable coverage. We will see later
in Section 4.1 that even for small n and ρ, the Dicker CIs quickly lose coverage as correlations are added to the
design matrix, while EigenPrism’s coverage is in fact quite robust. The other salient features of this plot are that
the EigenPrism CI widths decrease at a steady

√
n-rate, while the BCI widths start much lower and appear to

asymptote around the EigenPrism CI width curve. The fact that the BCI widths are much shorter for small n can be
explained by the information contained in the priors, which is important for two reasons. In any frequentist-Bayesian
comparison of methods, there is always the phenomenon that small n means the data contains little information, so
the prior information given to the Bayesian method makes it heavily favored over the frequentist method. However,

10
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as we saw in Section 2.2.3, the frequentist problem is fundamentally limited not just by n but by SD(λi) as well,
and here since p is fixed, small n corresponds to small SD(λi) as well, adding an extra layer of challenge for the
EigenPrism procedure. As n increases though, the BCIs rely more heavily on the data, and come much closer in
width to the EigenPrism CIs, with the average relative width increase bottoming-out at about 5% for n = 5000. The
relative uptick in the EigenPrism CI widths for n ≈ p can again be explained by the upper-bound in Equation (2.5).

3.2 Inference on σ2

We can use almost exactly the same EigenPrism procedure for σ2 as we did for θ2. Recall Equation (2.3),

E (S| d) = θ2
n∑
i=1

wiλi + σ2
n∑
i=1

wi.

To make S unbiased for θ2, we constrained
∑n
i=1 wi = 0 and

∑n
i=1 wiλi = 1. However by switching these linear

constraints, so that
∑n
i=1 wi = 1 and

∑n
i=1 wiλi = 0, we make S unbiased for σ2. The variance formulae and

upper-bounds in Equations (2.4)–(2.7) still hold, so that we can construct T3 (and an associated CI). Let w∗∗ be the
solution to the following convex optimization program P2:

arg min
w∈Rn

max

(
n∑
i=1

w2
i ,

n∑
i=1

w2
i λ

2
i

)
such that

n∑
i=1

wi = 1,

n∑
i=1

wiλi = 0

and denote by val(P2) the minimized objective function value. Then the EigenPrism procedure for performing
inference on σ2 reads

T3 :=

n∑
i=1

w∗∗i z
2
i ,

E (T3| d) =σ2,

SD(T3|d) .
√

2 val(P2)
‖y‖22
n

,

where again, the only approximation in the variance is the replacement of θ2 + σ2 by its estimator ‖y‖22/n. The
analogue to Theorem 1 holds and is proved in Appendix C:

T3 − σ2

SD(T3|d)

d−→ N(0, 1).

11
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Figure 7: (a) Coverage and (b) width of scaled lasso, refitted cross validation, plug-in CI from Dicker (2014) described
in Section 3.1, and EigenPrism confidence intervals when n = 500, p = 1000, σ2 = 1, and non-zero entries of β equal
to 1. Each point represents 104 simulations, and the grey line denotes nominal coverage.

Finally, as before, we construct the lower and upper endpoints to obtain an approximate (1− α)-CI for σ2 via

Lα := max

(
T3 − z?1−α/2 ·

√
2 val(P2)

‖y‖22
n

, 0

)
, Uα := T3 + z?1−α/2 ·

√
2 val(P2)

‖y‖22
n

.

Note that if the columns of X have a known covariance matrix Σ, the exact same machinery goes through by
replacing X by XΣ−1/2 and replacing β by Σ1/2β.

Turning to simulations, we aim to show that the EigenPrism CIs for σ2 have at least nominal coverage. We take
the same setup as in Figure 4(a) but instead construct 95% CIs for σ2. Figure 6 shows the result, and as before we
see that EigenPrism’s coverage never dips below nominal levels in any of the settings, while for small ρ the Dicker
CI’s coverage can be unreliable, especially for large n. We performed a similar experiment with a Bayesian model

12



to compare EigenPrism CI widths for σ2 with those of equal-tailed BCIs, but found a less-desirable comparison than
in the θ case. In particular, the most favorable simulations showed the EigenPrism CI approximately 30% wider
than the BCI, which can likely be attributed to the more-informative prior (Inverse Gamma) on σ2 than that on θ2

(nearly Exponential) in the Bayesian model (G.1). Although we would have liked to try an Exponential prior for
σ2, due to a lack of conjugacy the resulting Gibbs sampler was computationally intractable. We note that except in
special cases, it can be very computationally challenging to construct BCIs, especially in high dimensions.

We point out that only two other σ2 estimators in the literature provide any inference results, namely the scaled
Lasso (Sun and Zhang, 2012) and the refitted cross validation (CV) method of Fan et al. (2012). In particular,
under some sparsity conditions on the coefficient vector, the authors find aymptotic normal approximations to their
estimators. To compare our CIs with theirs, we compared them on the same simulations, but quickly found that
scaled Lasso and refitted CV CIs only achieve nominal coverage in extremely sparse settings. We also compared the
plug-in CI for the estimator in Dicker (2014). This coverage comparison is shown in Figure 7(a). The scaled Lasso
CIs only achieve nominal coverage when 1 out of the 1000 coefficients are non-zero, and quickly drop off to less than
half of nominal coverage by 1% sparsity. The refitted CV CIs undercover by about 10% even in the sparsest settings,
and also fall off further in coverage as sparsity decreases. The EigenPrism and Dicker CIs achieve at least nominal
coverage at all sparsity levels examined. Figure 7(b) shows average CI widths for the same simulations. The much
smaller widths of the scaled Lasso and refitted CV CIs align with their lack of coverage, reflecting the fact that the
bias and variance of their estimators can be poorly characterized in finite samples. The Dicker CIs are consistently
wider than EigenPrism’s, with the inflation factor nearly 40% at the right-hand side of the plot.

3.3 Genetic Variance Decomposition

Consider a linear model for a centered continuous phenotype (yi) such as height, as a function of a centered SNP
array (xi). The variance can be decomposed as

E
(
y2i
)

= E
[
(x>i β)2

]
+ σ2. (3.1)

Under linkage disequilibrium, assuming column-independence is unrealistic. However, a wealth of genomic data has
resulted in this column dependence possibly being estimable from outside data sets (e.g. Abecasis et al. (2012)), so

we may instead take xi
i.i.d.∼ N(0,Σ) with Σ known (we will discuss a relaxation of the normality in Section 4.1).

Then Equation (3.1) reduces to
E
(
y2i
)

= ‖Σ1/2β‖22 + σ2,

which provides a formula for the linear model’s signal-to-noise ratio,

SNR =
‖Σ1/2β‖22

‖Σ1/2β‖22 + σ2
.

The SNR is connected to the genetic heritability in that, for the simplified approximation to a linear model with
additive i.i.d. noise, it quantifies what fraction of a continuous phenotype’s variance can be explained by SNP data.
We note that there are many different definitions of heritability, and the SNR aligns most closely with the narrow-
sense, or additive, heritability, as we do not allow for interactions or dominance effects. The extent of the connection
between the two definitions depends on how complete the SNP array is—if every SNP is measured, they correspond
exactly.

Although until now we have been working with ‖β‖22, while the SNR estimation problem seems to call for
‖Σ1/2β‖22, the above problem turns out to fit right into our framework. Explicitly, the linear model can be rewritten
as

y =
(
XΣ−1/2

)(
Σ1/2β

)
+ ε,

where now the rows of (XΣ−1/2) are i.i.d. N(0, I), and θ2 corresponds to the new quantity of interest: ‖Σ1/2β‖22.
Since E

(
‖y‖22/n

)
= ‖Σ1/2β‖22 + σ2 now, applying our methodology to XΣ−1/2 gives a natural estimate for SNR,

namely,

ŜNR :=
T2

‖y‖22/n
.

Continuing, as we have done throughout this paper, to treat ‖Σ1/2β‖22 + σ2 as if it is known and equal to ‖y‖22/n,

our distributional results for T2 extend to give us an approximate confidence interval for ŜNR.
We turn again to simulations to demonstrate the performance of the EigenPrism procedure described above for

constructing SNR CIs. One major consideration is that of course, SNP data is discrete, not Gaussian. However, we
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Figure 8: (a) Coverage, and (b) average widths, of EigenPrism SNR 95% confidence intervals. Experiments used
n = 105, p = 5×105, θ2+σ2 = 104, Bernoulli(0.01) design, and β with 10% non-zero, Gaussian entries. Each boxplot
summarizes the (a) coverage and (b) width for 20 different β’s, each of which is estimated with 500 simulations.
The whiskers of the boxplots extend to the maximum and minimum points. The black dotted line in (a) is the 95%
confidence lower-bound for the lowest whisker in each plot assuming all CIs achieve exact coverage, and the grey line
shows nominal coverage.

will show in Section 4.1 that the EigenPrism procedure works well empirically even under non-Gaussian marginal
distributions. Here, we run experiments for n = 105, p = 5 × 105, θ2 + σ2 = 104, Bernoulli(0.01) design with
independent columns, β having 10% non-zero entries, and SNR varying from nearly 0 to nearly 1. Figure 8 shows
the EigenPrism CI coverage and average widths. Note that although our CIs are conservative, we never lose coverage,
and at worst our 95% CI would give the SNR to within an error of ±6.8%.

4 Robustness and 2-Step Procedure

In this section we follow up our investigation of the EigenPrism framework by considering its robustness to model
misspecification and presenting a 2-step procedure that can improve the CI widths of the vanilla EigenPrism proce-
dure.

4.1 Robustness

An important practical question is how robust the EigenPrism CI is to model misspecification. In particular, our
theoretical calculations made some fairly stringent assumptions, and we explore here their relative importances.
Some standard assumptions that we rely on are that the model is indeed linear and the noise is i.i.d. Gaussian and
independent of the design matrix. These assumptions are all present, for instance, in OLS theory, and we assume
that problems substantially deviating from satisfying them are not appropriate for our procedure. As explained in
Section 1.2, the random design assumption is necessitated by the high-dimensionality (p > n) of our problem, and
within the random design paradigm, the assumption of i.i.d. rows is still broadly applicable, for instance whenever
the rows represent samples drawn independently from a population.

The not-so-standard assumption we make is that the columns of X are also independent, and all of X’s entries
are N(0, 1) (note that each column of a real design matrix can always be standardized so that at least the first two
marginal moments match this assumption). These assumptions are important because they ensure that the columns
of V are uniformly distributed on the unit sphere, so that we can characterize both the expectation and variance of
their inner product with β. Although we will see that the marginal distribution of the elements of X is not very
important as long as n and p are not small, in general the independence of the columns is crucial. We note that
there is work in random matrix theory showing that for certain random matrices which are not i.i.d. Gaussian, the
eigenvectors are still in some sense asymptotically uniformly distributed on the unit sphere (see for example Bai
et al. (2007)). This suggests that EigenPrism CIs, at least asymptotically, may work well in a broader context than
shown so far.
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Before explaining further, we feel it is important to recall that for two of the three inference problems this work
addresses (inference for σ2 and signal-to-noise ratio), the EigenPrism procedure extends to easily account for any
known covariance matrix among the columns of X. However in the vanilla example of simply constructing CIs for θ2,
correlation among the columns of X can cause serious problems. To first order, we need E

(
‖V >β‖22

∣∣ d) ≈ θ2n/p, or
else T2 will be biased and the resulting shifted interval will have poor coverage. From a practical perspective, unless
β is adversarially chosen, it may seem unlikely that β will be particularly aligned or misaligned (orthogonal) to the
directions in which X varies. In particular, if we make a random effects assumption and say that the entries of β
are i.i.d. N(0, τ2), then the EigenPrism procedure will achieve nominal coverage. A slightly more subtle problem
occurs if β is chosen not adversarially, but sparse in the basis of X’s principal components. In this case, although
T2 is approximately unbiased, the variance estimate could be far too small, resulting again in degraded coverage.

To investigate how wrong the model has to be to make our CIs undercover, we construct EigenPrism CIs on
data coming from models not satisfying our assumptions. In particular, we ran the EigenPrism procedure on design
matrices with either i.i.d. entries with very different higher-order moments than a Gaussian, i.i.d. entries that were
sparse, or Gaussian entries and correlated columns. Since the direction of β becomes relevant in all these cases,
we performed experiments with both dense and sparse β, and in each regime measured coverage for 20 different
β’s. The results of simulations with n = 103, p = 104, and θ2 + σ2 = 104 are plotted in Figure 9. Each boxplot
summarizes the coverage for 20 different β’s, each of which is estimated with 500 simulations. The whiskers of the
boxplots extend to the maximum and minimum points, and the black dotted line is the 95% confidence lower-bound
for the lowest whisker in each plot assuming all CIs achieve exact coverage. As can be seen from Figures 9(a) and
9(c), when β is dense, the marginal moments and sparsity of the entries of X do not affect coverage. Figures 9(e)
and 9(f) show that even small unaccounted-for correlations among the columns of X do not greatly affect coverage,
although larger correlations, as expected, can result in serious undercoverage for certain β’s. As a comparison, we
also simulated the Dicker CIs in the setting of Figures 9(e) and 9(f), wherein coverage never exceeded 40% for any
β or correlation structure. Figures 9(b) and 9(d) show that when β is sparse, coverage is much more sensitive to
sparsity in X, although if X is not sparse, coverage remains robust to higher-order moments of the design matrix.
Figure 10 demonstrates the crucial difference whenX is sparse by showing a few realizations of quantile-quantile plots
comparing the distribution of the entries of V1 to a Gaussian distribution, for Bernoulli(0.1)- and Bernoulli(0.001)-
marginally-distributed X. The figure shows that the distribution for Bernoulli(0.1) is very nearly Gaussian, but
that this is far from the case for Bernoulli(0.001), and thus it is the problem described at the end of the preceding
paragraph that causes problems.

4.2 2-Step Procedure

Note that in the variance upper-bound of Equation (2.7), the unknown ρ is maximized over to remove it from the
equation. This leads not only to conservative CIs, but suboptimal w∗ as well, since w∗ are obtained by minimizing
this upper-bound, as opposed to the more accurate function of ρ. However by the end of the EigenPrism procedure,
we have produced estimates of both θ and θ2 +σ2, suggesting the possibility of a 2-step plug-in procedure to remove
the need for the upper-bound in Equation (2.7). Explicitly, in the first step, we run the EigenPrism procedure to
obtain an estimate ρ̂ = T2/(‖y‖22/n) of ρ. In the second step, we re-run the procedure treating ρ = ρ̂ as known, and
thus minimize the bound (2.5) to compute w∗. Although the 2-step procedure indeed produces shorter CIs than the
EigenPrism procedure, it does not achieve nominal coverage with the same consistency, as shown in Figure 11.

There are two particularly surprising aspects of this plot. The first is that the 2-step procedure produces substan-
tial gains in width even for ρ values near 0 and 1. This is surprising because the upper-bound (2.7) that is eliminated
by the 2-step procedure is tight when ρ is nearly 0 or 1, however it is still not exact. The slightly loose variance
upper bound turns out to have an optimizing w that is substantially different from the exact variance formula. The
second surprising feature is that the width improvement is in fact smallest for ρ not near the endpoints 0 or 1. This
can be explained by the clipping at 0. For ρ ≈ 0, most CIs, both EigenPrism and 2-step, are cut nearly in half by
clipping, so the fractional width improvement achieved by the 2-step procedure is fully realized. For ρ ≈ 1, both
intervals are rarely clipped, and again the 2-step procedure realizes its full width improvement. However, for ρ not
close to 0 or 1, many EigenPrism CIs are only slightly shrunk by clipping, so that the shorter 2-step intervals shorten
the right side of the interval but leave the unclipped left side about the same, so that much less than the full width
improvement is realized.

Although the 2-step procedure can provide substantial gains in width, it loses the robustness of the EigenPrism
procedure, as shown in the slight undercoverage for n = 100 and the substantial undercoverage for large ρ and n = p.
Therefore, in practice, we recommend use of the 2-step procedure instead of the EigenPrism procedure when n 6≈ p
or when the statistician is confident that ρ is not close to 1.
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Figure 9: The first column of plots ((a), (c), (e)) generates βi
i.i.d.∼ N(0, 1) and renormalizes to control θ2, while the

second column of plots ((b), (d), (f)) does the same but then sets 99% of the βi to zero before renormalizing. The
first two rows of plots ((a), (b), (c), (d)) use Xij i.i.d. from some non-Gaussian distribution renormalized to have
mean 0 and variance 1. The third row of plots ((e), (f)) uses marginally standard Gaussian X but with correlations
among the columns; see Appendix H for detailed constructions. See text for detailed boxplot constructions and
interpretation of the dashed line.
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Figure 10: Quantile-quantile plots measuring the Gaussianity of 5 realizations of the entries of V1 for (a)
Bernoulli(0.1)-distributed X and (b) Bernoulli(0.001)-distributed X.
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Figure 11: (a) Coverage and (b) width relative to EigenPrism of 2-step confidence intervals for p = 104 and θ2 +σ2 =
104 across a range of ρ and n, with each point representing 104 simulations. Grey lines show (a) nominal coverage
and (b) reference ratio of 1.

5 Variance Decomposition in the Northern Finland Birth Cohort

We now briefly show the result of applying EigenPrism to a dataset of SNPs and continuous phenotypes to perform
inference on the SNR = ‖Σ1/2β‖22/(‖Σ1/2β‖22 + σ2). The data we use comes from the Northern Finland Birth
Cohort 1966 (NFBC1966) (Sabatti et al., 2009; Järvelin et al., 2004), made available through the dbGaP database
(accession number phs000276.v2.p1). The data consists of 5402 SNP arrays from subjects born in Northern Finland
in 1966, as well as a number of phenotype variables measured when the subjects were 31 years old. After cleaning
and processing the data (the details of which are provided in Appendix I), 328,934 SNPs remained. The resulting
5402× 328, 934 design matrix X contained approximately 58% 0’s (homozygous wild type), 34% 1’s (heterozygous),
and 8% 2’s (homozygous minor allele).

In order to use EigenPrism directly, we would need to know Σ, as simply using Ip presents two possible problems:
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Figure 12: Distribution of the entries of some eigenvectors of the NFBC1966 design matrix.

(1) If X is not whitened before taking the SVD, the columns of V may be far from Haar-distributed, rendering
our bias and variance computations incorrect.

(2) If Σ = Ip, then the ostensible target of our procedure is ‖β‖22/(‖β‖22 +σ2), which may differ substantially from
SNR = ‖Σ1/2β‖22/(‖Σ1/2β‖22 + σ2).

Unfortunately, the problem of estimating the covariance matrix of a SNP array is extremely challenging (and the
subject of much current research) due to the fact that n � p, even if we use outside data, so we prefer to avoid it
here. In order to simply treat the covariance matrix as diagonal, we must consider the two problems above. There
is a widely-held belief that the SNP locations that are important for any given trait are relatively rare (see, for
example, Yang et al. (2010); Golan and Rosset (2011)), and thus spaced far enough apart on the genome to be
treated as independent. This precludes problem (2) above, since with nonzero coefficients spaced far apart, we have
‖Σ1/2β‖22 ≈ ‖β‖22 (we take the columns of X to be standardized, so the diagonal of Σ is all ones). For problem (1),
we know that far apart SNPs are very nearly independent, so we may expect that the true Σ is roughly diagonal, and
we already showed in Section 4.1 that the EigenPrism procedure is robust to some small unaccounted-for covariances
when constructing CIs for ‖β‖22. To ensure that problems (1) and (2) do not cause EigenPrism to break down, we
perform a series of diagnostics before applying it to the real data.

Given the approximation of Σ as diagonal, we first performed a series of simulations to ensure EigenPrism’s accu-
racy was not affected. Specifically, we ran the EigenPrism procedure (with adjustments described in the paragraph
below) on artificially-constructed traits, but using the same standardized design matrix X from the NFBC1966 data
set. For 20 different β vectors, we generated 500 independent Gaussian noise realizations and recorded the coverage
of 95% EigenPrism CIs for SNR. The noise variance was 1, and the β’s were chosen to have 300 nonzero entries with
uniformly distributed positions and all nonzero entries equal to

√
0.3/[(1− 0.3) · 300] (so that SNR = 0.3 if Σ = Ip).

Table 2 shows the coverage over the 20 β’s, and they are indeed all quite close to 95%, even though this simulation
was conditional on X. Recomputing the target SNR using other estimates of Σ, such as hard-thresholding the
empirical covariance at 0.1, changed the value of SNR very little, so that coverage was largely unaffected.

Coverage 90% 91% 92% 93% 94% 95% 96% 97% 98% 99% 100%
Count 1 0 0 2 1 0 8 7 1 0 0

Table 2: Coverage of 20 SNR 95% CIs constructed for simulated traits using the NFBC1966 design matrix. Each
coverage is an average over 500 simulations.

A second diagnostic was to examine the columns of V to check for Gaussianity related to the phenomenon
mentioned in Section 4.1. Indeed, we find that some of the columns of V are quite non-Gaussian, as shown in
Figure 12. However, this phenomenon is localized to only the columns of V corresponding to the very largest λi.
Applying the unaltered EigenPrism procedure could cause two problems. First, if the the first columns of V are
not Haar-distributed, T2 could be biased and/or higher-variance than our theory accounts for. Second, recalling
the interpretation of EigenPrism as a weighted regression of z2i on λi, the fact that the problematic eigenvectors
correspond to the largest eigenvalues means that they have high leverage, which exacerbates any unwanted bias
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or variance they create. Luckily, both problems can be remedied by running the EigenPrism SNR-estimation
procedure (with Σ = Ip after standardizing the columns of X) with the added constraint to the optimization
program in Equation (2.8) that the first entries of w are equal to zero. Explicitly, as the non-Gaussianity of the
columns of V appears to dissipate after around the 100th column, we set w1 = · · · = w100 = 0. The choice of 100 is
somewhat subjective, but we tried other values and obtained very similar results. Because the resulting weights still
obey the original constraints, the estimator of ‖β‖22 remains unbiased and the variance upper-bounds remain valid.
Although motivated by the diagnostics from Section 4.1, this adjustment has the added advantage of making the
entire EigenPrism procedure completely independent of the first 100 rows of U . It has been shown that the first rows
of U are strongly related to the population structure of the sample (for example, the first two principal components
correspond closely with subjects’ geographic origin), so constraining the first weights to be zero has the added effect
of controlling for population structure (Price et al., 2006). As a final note, by subtracting off the means of each
column of X, we reduced X’s rank by one, resulting in λn = 0. As this is not actually reflective of the distribution
of X, we also force wn = 0 so that the last column of V and last row of U do not contribute to our estimate or
inference.

Encouraged by the simulation results from Table 2, we proceeded to generate EigenPrism CIs for the SNRs of
the 9 traits analyzed in Sabatti et al. (2009), as well as height (these 10 traits were also analyzed in Kang et al.
(2010)). For each trait, transformation and subject exclusion was performed before computing SNR, following closely
the procedures used in Sabatti et al. (2009); Kang et al. (2010) (see Appendix I for details). Lastly, all non-height
phenotype values were adjusted for sex, pregnancy status, and oral contraceptive use, while height was only adjusted
for sex. Table 3 gives the point estimate and 95% CI for the SNR of each phenotype, as well as the number of subjects

Phenotype Name # Samples SNR 95% CI (%) Point Estimate (%)
Triglycerides 4644 [3.1, 29.3] 16.2

HDL cholesterol 4700 [17.1, 42.9] 30.0
LDL cholesterol 4682 [27.7, 53.6] 40.7

C-reactive protein 5290 [5.6, 28.8] 17.2
Glucose 4895 [4.0, 28.9] 16.5
Insulin 4867 [0.0, 21.5] 9.0

BMI 5122 [8.9, 32.8] 20.9
Systolic blood pressure 5280 [7.8, 31.0] 19.4

Diastolic blood pressure 5271 [7.4, 30.7] 19.0
Height 5306 [46.0, 69.1] 57.6

Table 3: CIs for heritability estimates for each of the 10 continuous phenotypes considered, along with the number
of samples used for each.

used. Recall that these are CIs for the fraction of variance explained by the linear model consisting of the given array
of SNPs. Still, these CIs generally agree quite well with heritability estimates in the literature (Kang et al., 2010).
For instance, (Kang et al., 2010, Supplementary Information) reports two “pseudo-heritability” estimates of 73.8%
and 62.5% for height, and 27.9% and 24.2% for BMI, on the same data set. This is somewhat remarkable given that
they use a completely different statistical procedure with different assumptions. In particular, while other works in
the heritability literature tend to treat β as random, EigenPrism was motivated by a simple model with β fixed and
the rows of X random. We find this model more realistic, as true genetic effects are not in fact random, but fixed.
One could argue the difference is not too important as long as the genetic effects are approximately distributed as
the random effects model chosen, but such an assumption is impossible to verify in practice, as the true effects are
never observed. EigenPrism’s assumptions, on the other hand, are all on the design matrix, which is fully observed,
leading to checks and diagnostics that can be performed to ensure the procedure will generate reasonable CIs.

6 Discussion

We have presented a framework for performing inference on the `2-norm of the coefficient vector in a linear regression
model. Although the resulting confidence intervals are asymptotic, we show in extensive simulations that they
achieve nominal coverage in finite samples, without making any assumption on the structure or sparsity of the
coefficient vector, or requiring knowledge of σ2. In simulations, we are able to relax the restrictive assumptions
on the distribution of the design matrix and gain an understanding of when our procedure is not appropriate.
Applying this framework to performing inference on `2 regression error, noise level, and genetic signal-to-noise ratio,
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we develop new procedures in all three that are able to construct accurate CIs in situations not previously addressed
in the literature.

This work leaves open numerous avenues for further study. We briefly introduced a 2-step procedure that
provided substantially shorter CIs than the EigenPrism procedure, but had less-consistent coverage. If we could
better understand that procedure or come up with diagnostics for when it would undercover, we could improve on
the EigenPrism procedure. We also explored in simulation a number of model failures that our procedure was robust
(or not) to, but further study could provide theoretical guarantees on the coverage of the EigenPrism procedure for
a broader class of random design models. Section 4.1 also briefly alluded to improved robustness in a random effects
framework, which we have not explored further here. Finally, although in this work we consider a statistic that is
linear in the z2i , the framework and ideas of this work are not intimately tied to this restriction, and there may exist
statistics that are nonlinear functions of the z2i that give improved performance.
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