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SUMMARY

To most applied statisticians, a fitting procedure’s degrees of freedom is synonymous with
its model complexity, or its capacity for overfitting to data. In particular, it is often used to
parameterize the bias-variance tradeoff in model selection. We argue that, on the contrary, model
complexity and degrees of freedom may correspond very poorly. We exhibit and theoretically 10

explore various fitting procedures for which degrees of freedom is not monotonic in the model
complexity parameter, and can exceed the total dimension of the ambient space even in very
simple settings. We show that the degrees of freedom for any non-convex projection method can
be unbounded.

Some key words: Model complexity; Number of parameters; Optimism. 15

1. INTRODUCTION

1·1. A motivating example: best-subsets regression
Consider observing data y = µ+ ε with µ ∈ Rn and independent errors ε ∼ N(0, σ2In), and

producing an estimate of µ. A critical property of any estimator µ̂ is its so-called model com-
plexity; informally, how flexibly it is able to conform to the observed response y. Commonly we 20

set µ = Xβ for some n× p design matrix X .
For the ordinary-least-squares estimator µ̂, the most natural measure of complexity is the num-

ber p of fitted parameters, i.e., the degrees of freedom. For more general estimators, the effective
degrees of freedom of Efron (1986), defined as σ−2

∑n
i=1 cov

(
yi, µ̂i

)
, has emerged as a popular

and convenient measuring stick for comparing the complexity of very different fitting proce- 25

dures. The name suggests that a method with p degrees of freedom has a complexity comparable
to linear regression on p predictor variables, for which the effective degrees of freedom is p.

Now, suppose that instead of fitting a linear model using all p predictors, we fit the best-subsets
regression of size k. That is, we find the best linear model that uses only a subset of k predictors,
with k < p. What is the effective degrees of freedom, henceforth just degrees of freedom, of this 30

method?
A simple, intuitive, and wrong argument predicts that the degrees of freedom, which depends

on µ, is somewhere between k and p. We certainly expect it to be greater than k, since we use
the data to select the best model of size k among all the possibilities. However, we have only p
free parameters at our disposal, of which p− k must be set to zero, so best-subsets regression 35

with k parameters is still less complex than the saturated model with all p parameters and no
constraints.

As convincing as this argument may seem, it is contradicted by a simple simulation with
n = 50 and p = 15. Here µ = Xβ, where the entries of X are independent N(0, 1) variates
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Fig. 1: Estimated degrees of freedom versus subset size for 10 realizations of µ, with one high-
lighted for clarity, in the simulation described in Section 1·1 using best-subsets regression on the
left, and forward selection on the right. Simulation details, including code, are provided in the
Supplementary Material. Standard errors for all points are below 0.5, and are not shown. Dashed
lines show the constant ambient dimension p and the subset size k, for reference.

and the coefficients βj are independent N(0, 4) variates, and σ2 = 1. Figure 1 shows that the40

degrees of freedom for both best-subsets regression and another method, forward selection, can
exceed the ambient dimension p for values of k < p. The degrees of freedom of best-subsets
regression exceeded p for some k < p in 179 of 200 realizations of µ, or about 90% of the time.
To understand why our intuition should lead us astray here, we must first review why effective
degrees of freedom is defined as it is, and what classical concepts the definition is meant to45

generalize.

1·2. Degrees of freedom in classical statistics
The original meaning of degrees of freedom, the number of dimensions in which a random

vector may vary, plays a central role in classical statistics. In ordinary linear regression with
full-rank n× p predictor matrix X , the fitted response µ̂ = Xβ̂ is the orthogonal projection of50

y onto the p-dimensional column space of X , and the residual r = y − µ̂ is the projection onto
its orthogonal complement, whose dimension is n− p. We say this linear model has p model
degrees of freedom, with n− p residual degrees of freedom.

If the error variance is σ2, then r is constrained to have zero projection in p directions, and is
free to vary, with variance σ2, in the remaining n− p orthogonal directions. In particular, if the55

model is correct, so that E(y) = Xβ, then the residual sum of squares, ‖r‖22, has distribution
‖r‖22 ∼ σ2χ2

n−p, leading to the unbiased variance estimate σ̂2 = ‖r‖22/(n− p). More generally,
t-tests and F -tests are based on comparing lengths of n-variate Gaussian random vectors after
projecting onto appropriate linear subspaces.

In linear regression, the model degrees of freedom, henceforth just degrees of freedom, serves60

to quantify multiple related properties of the fitting procedure. The degrees of freedom coincides
with the number of non-redundant free parameters in the model, and thus constitutes a natural
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measure of model complexity or overfitting. In addition, the total variance of the fitted response
µ̂ is exactly σ2p, which depends only on the number of linearly independent predictors and not
on their size or correlation with each other. 65

The degrees of freedom also quantifies the optimism of the residual sum of squares as an
estimate of out-of-sample prediction error. In linear regression, one can easily show that the
residual sum of squares underestimates mean squared prediction error by 2σ2p on average. Mal-
lows (1973) exploits this identity as a means of model selection, by computing the Cp statistic
‖r‖22 + 2σ̂2p, an unbiased estimate of prediction error, for several models, and selecting the 70

model with the smallest estimated test error. In this case the degrees of freedom of a model
contributes a penalty to account for that model’s complexity.

1·3. Effective degrees of freedom
For more general fitting procedures such as smoothing splines, generalized additive models,

lasso, or ridge regression, the number of free parameters is often an inappropriate measure of 75

model complexity. Typically these methods have a tuning parameter, but it is not clear a priori
how to compare, e.g., a lasso fit with Lagrange parameter λ = 3 to a local regression fit with
window width 0.5. When comparing different methods, or the same method with different tuning
parameters, it can be quite useful to have some measure of complexity with a consistent meaning
across a range of algorithms. To this end, various authors have proposed alternative more general 80

definitions for the effective degrees of freedom of a method; see Buja et al. (1989) and references
therein.

If the method is linear, that is, if µ̂ = Hy for some fixed hat matrix H , then the trace of
H serves as a natural generalization. For linear regression H is a p-dimensional projection, so
tr(H) = p, coinciding with the original definition. Intuitively, whenH is not a projection, tr(H) 85

accumulates fractional degrees of freedom for directions of y that are shrunk, but not entirely
eliminated, in computing µ̂.

For nonlinear methods, further generalization is necessary. The most popular definition, due
to Efron (1986) and given in Equation (1), defines degrees of freedom in terms of the optimism
of residual sum of squares as an estimate of test error, and applies to any fitting method. 90

Measuring or estimating optimism is a worthy goal in and of itself. But to justify our intuition
that the degrees of freedom offers a consistent way to quantify model complexity, a bare require-
ment is that the degrees of freedom be monotone in model complexity when considering a fixed
method. The term model complexity is itself rather metaphorical when describing arbitrary fit-
ting algorithms, but has a concrete meaning for methods that minimize residual sum of squares 95

subject to the fit µ̂ belonging to a closed constraint set M, a model. Commonly, some tuning
parameter γ indexes a nested set of models Mγ , with γ1 ≤ γ2 implying Mγ1 ⊆Mγ2 ⊆ Rn.
Then the fitted vector for a tuning parameter γ is

µ̂(γ) = argmin
z∈Mγ

‖y − z‖22.

Examples include the lasso (Tibshirani, 1996) and ridge regression (Hoerl, 1962) in their con-
straint formulation, as well as best-subsets regression. The modelMk for best-subsets regression 100

with k variables is a union of k-dimensional subspaces.
Because estimates from larger models conform more closely to the observed data, one nat-

urally expects degrees of freedom to be monotone with respect to model inclusion. However,
as we have already seen in Figure 2, monotonicity is far from guaranteed even in very simple
examples, and can rise above p. Surprisingly, degrees of freedom need not be monotone even 105

for methods projecting onto convex sets, including ridge regression and the lasso, although the
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degrees of freedom cannot exceed the dimension of the convex set. The non-monotonicity of de-
grees of freedom for such convex methods was discovered independently by Kaufman & Rosset
(2014), who give a thorough account. Among other results, they prove that the degrees of free-
dom of the projection onto a convex set must always be smaller than the dimension of that set.110

In contrast, we show that projection onto any closed non-convex set can have arbitrarily large
degrees of freedom, regardless of the dimensions ofM and y.

2. PRELIMINARIES

We consider fitting techniques with some tuning parameter, discrete or continuous, that can
be used to vary a model from less to more constrained. In best-subsets regression, the tuning115

parameter k determines how many predictor variables are retained in the model. For a general
fitting technique, we will use the notation µ̂(k) for the fitted response produced using tuning
parameter k.

As mentioned in the introduction, a general formula for degrees of freedom can be motivated
by the following relationship between expected prediction error, which we will represent by the120

symbol EPE, and residual sum of squares for ordinary least squares (Mallows, 1973):

EPE = E(‖r‖22) + 2σ2p.

Analogously, once a fitting technique and tuning parameter k are chosen for fixed data y, the
degrees of freedom functional, which we will denote by DF, is defined by:

E

{
n∑
i=1

(y∗i − µ̂
(k)
i )2

}
= E

{
n∑
i=1

(yi − µ̂(k)i )2

}
+ 2σ2DF(µ, σ2, k), (1)

where σ2 is the variance of the εi, assumed finite, and y∗i is a new independent copy of yi with
mean µi. Thus degrees of freedom is defined as a measure of the optimism of residual sum of125

squares. This definition in turn leads to a simple closed form expression for degrees of freedom
under very general conditions, as shown by the following theorem.

THEOREM 1 (EFRON (1986)). For i ∈ {1, . . . , n}, let yi = µi + εi, where the µi are non-
random and the εi have mean zero and finite variance. Let µ̂i, i ∈ {1, . . . , n} denote estimates
of µi from some fitting technique based on a fixed realization of the yi, and let y∗i , i ∈ {1, . . . , n}130

be independent of and identically distributed as the yi. Then

E

{
n∑
i=1

(y∗i − µ̂i)2
}
− E

{
n∑
i=1

(yi − µ̂i)2
}

= 2
n∑
i=1

cov(yi, µ̂i)

Remark 1. For independent and identically distributed errors with finite variance σ2, Theo-
rem 1 implies that,

DF(µ, σ2, k) =
1

σ2
tr
{
cov(y, µ̂(k))

}
=

1

σ2

n∑
i=1

cov
(
yi, µ̂

(k)
i

)
. (2)

When using a linear fitting method with hat matrix H , Equation (2) reduces to
DF(µ, σ2, k) = tr(H).135
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Fig. 2: Heatmap of the degrees of freedom for 1-best-subset regression fit to data from the model
y ∼ N(µ, I2σ

2), as a function of the true mean vector µ ∈ R2.

3. UNBOUNDED DEGREES OF FREEDOM FOR NON-CONVEX MODELS

Before stating our main result, we present a very simple example illustrating how large the de-
grees of freedom can be. Consider estimating a no-intercept linear regression model with design
matrix X = I2 and response y ∼ N(µ, I2), with µ ∈ R2. Suppose further that, in order to obtain
a more parsimonious model than the full bivariate regression, we instead estimate the best fitting 140

of the two univariate models, in other words, best-subsets regression with model size k = 1.
Figure 2 shows the effective degrees of freedom for this model, plotted as a function of µ. As

before, the degrees of freedom can exceed the ambient dimension of 2. However, the plot shows
the degrees of freedom growing steadily as µ moves diagonally away from the origin, raising the
question of how large it can get. 145

For µ = (a, a)T and a large, y falls in the positive quadrant with high probability and the best
univariate model chooses the larger of the two response variables. Figure 3(a) illustrates the fit for
several realizations of y. For i ∈ {1, 2}, µ̂(1)i is either 0 or approximately a depending on small
changes in y. As a result, the variance of y is far smaller than that of µ̂(1). Since the correlation
between yi and µ̂(1)i is around 0.5,

∑n
i=1 cov(yi, µ̂

(1)
i ) is also much larger than the variance of 150

the yi, and the large degrees of freedom can be inferred from Equation (2).
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Fig. 3: (a) Sketch of the example described in Section 3. The square is µ and the solid black
lines are the coordinate axes. Some realizations of y are shown as circles, along with a few of
their best-subset projections µ̂(1), shown as triangles. The dashed line divides the points y with
respect to which axis they are closer to. (b) Sketch of a regression problem with n = 2 and a
non-convex constraint set. The filled area is the constraint set, the point the true mean vector µ,
and the circles are the contours of the least squares objective function.

We see below that the degrees of freedom actually diverges as a→∞,

1

a
DF{(a, a)T , 1, 1} = 1

2
E

[
1

a

2∑
i=1

{
(y∗i − µ̂

(1)
i )2 − (yi − µ̂(1)i )2

}]

=
1

2
E

[
1

a

2∑
i=1

{
(y∗i − µ̂

(1)
i )2 − (yi − µ̂(1)i )2

}
Iy∈Q1

]

+
1

2
E

[
1

a

2∑
i=1

{
(y∗i − µ̂

(1)
i )2 − (yi − µ̂(1)i )2

}
Iy/∈Q1

]

=
1

2
E

(
1

a

[
a2 + 2aε∗1 + {ε∗1}2 +

{
ε∗2 −min(ε1, ε2)

}2
−a2 − 2amin{ε1, ε2} −

{
min(ε1, ε2)

}2]Iy∈Q1

)
+ o(1)

→ 1

2
E {2ε∗1 − 2min(ε1, ε2)} = E {max(ε1, ε2)} , a→∞,

where Q1 is the first quadrant of R2, IS is the indicator function on the set S, and ε∗1, ε
∗
2 are

noise realizations independent of one another and of y. The o(1) term comes from the the fact
that a−1

∑2
i=1{(y∗i − µ̂

(1)
i )2 − (yi − µ̂(1)i )2} is Op(a) while pr(y /∈ Q1) shrinks exponentially155

fast in a, as it is a Gaussian tail probability. The convergence in the last line follows by the
dominated convergence theorem applied to the first term in the preceding line. For large a,
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E {max(ε1, ε2)} ≈ 0.56, giving DF{(a, a)T , 1, 1} ≈ 0.56a. Equivalently, the degrees of free-
dom would also diverge if a were held fixed and σ2 → 0.

The phenomenon we have just illustrated is not an idiosyncratic pathology of best-subsets 160

regression, but in fact can occur whenever we project onto a non-convex model.

THEOREM 2. For a fitting technique that minimizes squared error subject to a non-convex,
closed constraint µ̂(k) ∈Mk ⊂ Rn, consider the model,

y = µ+ σε, εi ∼ F (i = 1, . . . , n),

where the εi are independent and F is a mean-zero distribution with finite variance supported on
an open neighborhood of 0. Then there exists some µ∗ such that DF(µ∗, σ2, k)→∞ as σ2 → 0. 165

Proof of Theorem 2. An intuitive proof sketch follows below, while a rigorous proof is de-
ferred to the Supplementary Material. �

Best-subsets regression has a non-convex constraint set for k < p, and our toy example gave
some insight for why the degrees of freedom can be much greater than the ambient dimension.
We now give intuition for how the theorem generalizes to any non-convex constraint set. 170

Place the true mean at a point with non-unique projection onto the constraint set; see Fig-
ure 3(b). The salient feature of the figure is that the spherical contour spans the gap of the divot
where it meets the constraint set. A point with non-unique projection must exist by the Motzkin–
Bunt Theorem (Motzkin, 1935; Kritikos, 1938). The constraint set for µ̂ = Xβ̂ is just an affine
transformation of the constraint set for β̂, and thus a non-convex β̂-constraint is equivalent to a 175

non-convex µ̂ constraint. Then the fit depends sensitively on the noise process, even when the
noise is very small, since y is projected onto multiple well-separated sections of the constraint
set. Thus as the magnitude of the noise, σ, goes to zero, the variance of µ̂ remains roughly con-
stant. Equation (2) then tells us that degrees of freedom can be made arbitrarily large, as it will
be roughly proportional to σ−1. By inserting that rate into Equation (1), we also see that, for 180

σ2 → 0, the difference between the expected prediction error and the residual sum of squares
converges to zero, with both just approaching the expected squared bias of the model.

Theorem 2 and its proof have practical ramifications for the use of degrees of freedom in model
selection criteria. Akaike information criterion and Bayes information criterion use degrees of
freedom to mitigate overfitting of a model. Since theoretical results for these criteria, such as 185

conditions for model consistency, rely solely on the definition of degrees of freedom which we
have also used, those results still hold in the settings we consider here, but only so long as the
correct degrees of freedom is used. Our result sheds light on the dangers of using a naı̈ve estimate
of degrees of freedom based on model size. For instance, using k as the degrees of freedom for
best-subsets regression with k can be arbitrarily far from the truth, resulting in values of model 190

selection criteria that are also arbitrarily wrong.
Our proof also clarifies that the degrees of freedom are most likely to be large when the true

mean is nearly equidistant from two or more well-separated parts of the model constraint set.
For methods like best-subsets or forward selection that explicitly seek a parsimonious model fit,
this could occur if there are several different parsimonious models that describe µ almost equally 195

well. Thus, if we use a parsimony-seeking model because we know the truth to be parsimonious,
we would not expect the degrees of freedom to misbehave very often. By contrast, if we force the
fit to be parsimonious even when the truth is not, the degrees of freedom may well misbehave,
as it does in our simulation examples.
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4. DISCUSSION200

The common intuition that effective degrees of freedom serves as a consistent and interpretable
measure of model complexity merits some skepticism. Our results, combined with those of Kauf-
man & Rosset (2014), demonstrate that for many widely-used convex and non-convex fitting
techniques, the degrees of freedom can be non-monotone with respect to model nesting. Further-
more, in the non-convex case, the degrees of freedom can exceed the dimension of the model205

space by an arbitrarily large amount, and may do so in run-of-the-mill datasets.
In light of the above, the term degrees of freedom seems misleading, as it is suggestive of

a quantity corresponding to model size or complexity. It is also misleading to consider degrees
of freedom as a measure of overfitting, or how flexibly the model conforms to the data, since a
model is always at least as flexible as a submodel. By definition, the effective degrees of freedom210

of Efron (1983) measures optimism of in-sample error as an estimate of out-of-sample error, but
we should not be too quick to carry over our intuition from linear models.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes the proof of Theorem 2 and220

further explanation, including code, for the examples in Sections 1·1 and 3.
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