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1. PROOF OF THEOREM 2

Proof. The proof relies heavily on the fact that for every non-convex set M in Euclidean
space there is at least one point whose projection onto M is not unique. This fact was proved
independently in the 1934 Rijks-Universiteit PhD thesis by L. N. H. Bunt, Motzkin (1935), and 1
Kritikos (1938). A schematic for this proof in two dimensions is provided in Figure 1. Let u be

Fig. 1. Schematic for the proof of Theorem 2, in two di-
mensions.

a point with non-unique projection onto the non-convex set M and let 1 and x5 be two distinct
projections of y onto M. Let d = || — x1||2 = ||t — x2||2 be the Euclidean distance between
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w and M, and

ot { @) (@2 —p)
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be the angle between x; and x5, taken as vectors from p. Define the set
— — 0
Dy = {UER”: cos_l{(x1 RIG N)} <z llv—ull2 <d},
|21 — pl|v = p 5
and D- analogously for zs. Let B be a one-dimensional affine subspace that is both parallel to the
line connecting x; and x2, and contained in the hyperplane defined by u, z1, and x2. Denoting
the projection operator onto B by Pg, let z = ||Pgy — Pgpl||2/o, and § = || Psi*) — Pgpl|o.
Let a = dcos{(m — 6/5)/2}. We now have,
tr{cov(y, i*))} > cov(Pgy, Psi™)
= E(ozy)
= E(U'Zglyeplupz) + E(02g1y¢D1UD2)
> 0E(2§lyep,) + 0 E(271lyep,)
> aU{E(ZlyEDQ) + E(Zly€D1)}7
= 2a0E(z1yep,).

The first inequality follows from the translation and rotation invariance of the trace of a covari-
ance matrix, and from the positivity of the diagonal entries of the covariance matrix for the case
of projection fitting methods. For the second inequality, F(oz71,¢p,up,) > 0, again because of
the positivity of the degrees of freedom of projection methods, applied to the same model with
a noise process that has support on D; and D9 removed. The third inequality follows from con-
sidering the projections of D; and Dy onto M and then onto B, and noting that the two double
projections must be separated by at least a distance of 2a.

Defining
— — 6
fl—{veR": Cosl{(gj1 (v M)} <}
i —pllo—pl =5

and JF, analogously for xo, pr(y € F1 \ D1) = pr(y € F2 \ D2) — 0as 02 — 0. Thus,
tr{eov(y, i)} > 200 {B(=1,e5,) + o(0)}

Neither z nor the event y € F» depend on o, so define the constant b = 2aE(z1,cx,) > 0 which
is independent of o. Thus we have shown that,

« 1 N
DR(p*, 0% k) = — tr{cov(y, i)}

> b+ o(o)
o
— 00

as o2 — 0. O

2. DETAILED EXPLANATION OF EXAMPLES

In Sections 3 and 1-1, degrees of freedom is estimated by computing an unbiased estimator
of degrees of freedom for each simulated noise realization. This unbiased estimator for degrees
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of freedom can be obtained from Equation (2) by exploiting the linearity of the expectation and

trace operators,
1
DF(/L’ 02a k) = ﬁ tI‘{COV(y, ﬂ(k))}
1 . N
= B [{y—wy" (i — B)}

= %E <5Tﬂ(k)> )

€]

where the last inequality follows because E(¢) = 0. Note that for the full ordinary least squares

regression, we have DF(y, 02, p) = p, so that it is equally true that
1 ~ ~
DF(,uy 0-27 k) = ;E (ETM(k) — 5T'u(p) + p0.2>

-2.T

Writing §, = 0~ %¢ (/fb(k) — ﬂ(p)) + p, we can estimate the true degrees of freedom by averag-
ing d, over many simulations. Since this estimate of degrees of freedom is an average of indepen-
dent and identically distributed random variables, its standard deviation can be estimated by the
emipirical standard deviation of the J; divided by the square root of the number of simulations.

The following is the code for the best subsets regression simulation in Section 1-1.

set.seed (1)

library (leaps)

library (gplots)

n = 50; p = 15; By = 20000
dfmat = matrix (0, By, p)

x = matrix(rnorm(n * p), n, p)
beta <- rnorm(p)*2
mu = x %$*% beta
for(j in 1:By) {
if(j %% 100 == 0) cat(j,"\n")
y = rnorm(n) + mu
temp = regsubsets(x, y, nbest = 1, nvmax = p, intercept = FALSE)
for(i in 1:p){

jcoef = coef (temp, id = 1)
xnames = names (jcoef
which = match (xnames, letters[l:p])
if(i == 1){
vhat = matrix(x[ , which], n, 1) %%% Jjcoef
} else(
vhat = x[ , which] %*% jcoef
}
dfmat[j, 1] = sum((y - mu) x yhat)
}
dfmat[j, ] <= p + dfmat[]j,] - dfmat[]j,p]

}
df = apply(dfmat, 2, mean)
error = sqrt (apply(dfmat, 2, var) / By)

The code for the forward selection simulation in Section 1-1 is almost identical.

set.seed (1)

library (leaps)

library (gplots)

n = 50; p = 15; By = 20000
dfmat = matrix (0, By, p)

X = matrix(rnorm(n * p), n, p)
beta <- rnorm(p) %2

mu = X %$x% beta

for(j in 1:By) {
if (3 %% 100 == 0) cat(3j,"\n")
y = rnorm(n) + mu

temp = regsubsets(x, y, nbest = 1, nvmax = p, method="forward", intercept = FALSE)
for(i in 1:p){

jcoef = coef (temp, id = i)

xnames = names (jcoef)
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which = match (xnames, letters[l:p])

if(i == 1)¢{
yhat = matrix(x[ , which], n, 1) %%% jcoef
} else{
yvhat x[ , which] %x% jcoef
}
dfmat[j, i] = sum((y - mu) =* yhat)

}

dfmat[j, ] <- p + dfmat([]j,] - dfmat[],p]
}
df = apply (dfmat, 2, mean)
error = sqrt (apply(dfmat, 2, var) / By)
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