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1. PROOF OF THEOREM 2
Proof. The proof relies heavily on the fact that for every non-convex set M in Euclidean

space there is at least one point whose projection onto M is not unique. This fact was proved
independently in the 1934 Rijks-Universiteit PhD thesis by L. N. H. Bunt, Motzkin (1935), and 10

Kritikos (1938). A schematic for this proof in two dimensions is provided in Figure 1. Let µ be
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Fig. 1. Schematic for the proof of Theorem 2, in two di-
mensions.

a point with non-unique projection onto the non-convex setM and let x1 and x2 be two distinct
projections of µ ontoM. Let d = ||µ− x1||2 = ||µ− x2||2 be the Euclidean distance between
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µ andM, and

θ = cos−1
{
(x1 − µ)(x2 − µ)
|x1 − µ||x2 − µ|

}
be the angle between x1 and x2, taken as vectors from µ. Define the set15

D1 =

{
v ∈ Rn : cos−1

{
(x1 − µ)(v − µ)
|x1 − µ||v − µ|

}
<
θ

5
, ||v − µ||2 < d

}
,

andD2 analogously for x2. Let B be a one-dimensional affine subspace that is both parallel to the
line connecting x1 and x2, and contained in the hyperplane defined by µ, x1, and x2. Denoting
the projection operator onto B by PB, let z = ||PBy − PBµ||2/σ, and ỹ = ||PBµ̂(k) − PBµ||2.
Let a = d cos{(π − θ/5)/2}. We now have,

tr{cov(y, µ̂(k))} ≥ cov(PBy, PBµ̂
(k))

= E(σzỹ)

= E(σzỹ1y∈D1∪D2) + E(σzỹ1y/∈D1∪D2
)

≥ σE(zỹ1y∈D1) + σE(zỹ1y∈D2)

≥ aσ
{
E(z1y∈D2) + E(z1y∈D1)

}
,

= 2aσE(z1y∈D2).

The first inequality follows from the translation and rotation invariance of the trace of a covari-20

ance matrix, and from the positivity of the diagonal entries of the covariance matrix for the case
of projection fitting methods. For the second inequality, E(σzỹ1y/∈D1∪D2

) ≥ 0, again because of
the positivity of the degrees of freedom of projection methods, applied to the same model with
a noise process that has support on D1 and D2 removed. The third inequality follows from con-
sidering the projections of D1 and D2 ontoM and then onto B, and noting that the two double25

projections must be separated by at least a distance of 2a.
Defining

F1 =

{
v ∈ Rn : cos−1

{
(x1 − µ)(v − µ)
|x1 − µ||v − µ|

}
<
θ

5

}
and F2 analogously for x2, pr(y ∈ F1 \ D1) = pr(y ∈ F2 \ D2)→ 0 as σ2 → 0. Thus,

tr{cov(y, µ̂(k))} ≥ 2aσ {E(z1y∈F2) + o(σ)} .

Neither z nor the event y ∈ F2 depend on σ, so define the constant b = 2aE(z1y∈F2) > 0 which
is independent of σ. Thus we have shown that,30

DF(µ∗, σ2, k) =
1

σ2
tr{cov(y, µ̂(k))}

≥ b+ o(σ)

σ
→∞

as σ2 → 0. �

2. DETAILED EXPLANATION OF EXAMPLES

In Sections 3 and 1·1, degrees of freedom is estimated by computing an unbiased estimator
of degrees of freedom for each simulated noise realization. This unbiased estimator for degrees
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of freedom can be obtained from Equation (2) by exploiting the linearity of the expectation and 35

trace operators,

DF(µ, σ2, k) =
1

σ2
tr{cov(y, µ̂(k))}

=
1

σ2
E
[
{y − µ}T {µ̂(k) − E(µ̂(k))}

]
=

1

σ2
E
(
εT µ̂(k)

)
,

(1)

where the last inequality follows because E(ε) = 0. Note that for the full ordinary least squares
regression, we have DF(µ, σ2, p) = p, so that it is equally true that

DF(µ, σ2, k) =
1

σ2
E
(
εT µ̂(k) − εT µ̂(p) + pσ2

)
Writing δk = σ−2εT

(
µ̂(k) − µ̂(p)

)
+ p, we can estimate the true degrees of freedom by averag-

ing δk over many simulations. Since this estimate of degrees of freedom is an average of indepen- 40

dent and identically distributed random variables, its standard deviation can be estimated by the
emipirical standard deviation of the δk divided by the square root of the number of simulations.

The following is the code for the best subsets regression simulation in Section 1·1.
set.seed(1)
library(leaps) 45

library(gplots)
n = 50; p = 15; By = 20000
dfmat = matrix(0, By, p)

x = matrix(rnorm(n * p), n, p) 50

beta <- rnorm(p)*2
mu = x %*% beta
for(j in 1:By){

if(j %% 100 == 0) cat(j,"\n")
y = rnorm(n) + mu 55

temp = regsubsets(x, y, nbest = 1, nvmax = p, intercept = FALSE)
for(i in 1:p){

jcoef = coef(temp, id = i)
xnames = names(jcoef)
which = match(xnames, letters[1:p]) 60

if(i == 1){
yhat = matrix(x[ , which], n, 1) %*% jcoef

} else{
yhat = x[ , which] %*% jcoef

} 65

dfmat[j, i] = sum((y - mu) * yhat)
}
dfmat[j, ] <- p + dfmat[j,] - dfmat[j,p]

}
df = apply(dfmat, 2, mean) 70

error = sqrt(apply(dfmat, 2, var) / By)

The code for the forward selection simulation in Section 1·1 is almost identical.
set.seed(1)
library(leaps)
library(gplots) 75

n = 50; p = 15; By = 20000
dfmat = matrix(0, By, p)

x = matrix(rnorm(n * p), n, p)
beta <- rnorm(p)*2 80

mu = x %*% beta
for(j in 1:By){

if(j %% 100 == 0) cat(j,"\n")
y = rnorm(n) + mu
temp = regsubsets(x, y, nbest = 1, nvmax = p, method="forward", intercept = FALSE) 85

for(i in 1:p){
jcoef = coef(temp, id = i)
xnames = names(jcoef)
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which = match(xnames, letters[1:p])
if(i == 1){90

yhat = matrix(x[ , which], n, 1) %*% jcoef
} else{

yhat = x[ , which] %*% jcoef
}
dfmat[j, i] = sum((y - mu) * yhat)95

}
dfmat[j, ] <- p + dfmat[j,] - dfmat[j,p]

}
df = apply(dfmat, 2, mean)
error = sqrt(apply(dfmat, 2, var) / By)100
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