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Abstract

Shampoo, a second-order optimization algorithm which uses a Kronecker product
preconditioner, has recently garnered increasing attention from the machine learn-
ing community. The preconditioner used by Shampoo can be viewed either as an
approximation of the Gauss–Newton component of the Hessian or the covariance
matrix of the gradients maintained by Adagrad. We provide an explicit and novel
connection between the optimal Kronecker product approximation of these matri-
ces and the approximation made by Shampoo. Our connection highlights a subtle
but common misconception about Shampoo’s approximation. In particular, the
square of the approximation used by the Shampoo optimizer is equivalent to a
single step of the power iteration algorithm for computing the aforementioned
optimal Kronecker product approximation. Across a variety of datasets and ar-
chitectures we empirically demonstrate that this is close to the optimal Kronecker
product approximation. Additionally, for the Hessian approximation viewpoint,
we empirically study the impact of various practical tricks to make Shampoo
more computationally efficient (such as using the batch gradient and the empir-
ical Fisher) on the quality of Hessian approximation.

1 Introduction

Second-order optimization is a rich research area within deep learning that has seen multiple in-
fluential works over the past few decades. Recently, these methods have seen success in practical
large scale training runs such as Gemini 1.5 Flash (Gemini Team, 20024) and in academic bench-
marks (Dahl et al., 2023). One of the primary challenges in this field arises from the substantial
memory and computational demands of traditional second-order methods, such as Adagrad (Duchi
et al., 2011b) and Newton’s method. In the context of neural networks, both of these methods require
storing and inverting a |P | ˆ |P | dimensional matrix H (either covariance of the gradients for Ada-
grad or the Gauss–Newton component of the Hessian for Newton’s method), where |P | represents
the number of parameters of the neural network. With modern deep learning architecture scaling to
billions of parameters, these requirements make the direct application of these methods impractical.
To address this issue, various approaches have been proposed, including Hessian-free optimization
(Martens et al., 2010) and efficient approximations of the matrix H (Gupta et al., 2018b; Martens
& Grosse, 2015b). These methods aim to leverage second-order information while mitigating the
computational and memory overhead.

˚Equal contribution. Randomized Author Ordering.
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Figure 1: Top: Cosine similarity between different approximations of the Gauss–Newton (GN)
component of the Hessian and its true value for different datasets and architectures. Bottom: Similar
plot showing the cosine similarity between different approximations of the Adagrad preconditioner
matrix and its true value. As can be seen, Shampoo2 tracks the optimal Kronecker approximation
much more closely than Shampoo does. MNIST-2 refers to a binary subsampled MNIST dataset.
For more details about datasets and architectures, please refer to Appendix B.

The class of methods for efficiently approximating the matrix H predominantly involve either a
diagonal or a layer-wise Kronecker product approximation of H . These choices are motivated by the
fact that, compared to maintaining the matrix H , both diagonal and layer-wise Kronecker products
are significantly more memory-efficient to store and computationally efficient to invert. Two of
the most well-known methods that utilize a layer-wise Kronecker product approximation of H are
K-FAC (Martens & Grosse, 2015b) and Shampoo (Gupta et al., 2018b).

In this work, we primarily focus on the Shampoo optimizer (Gupta et al., 2018b), which has recently
gained increasing attention from the research community. Notably, in a recent benchmark of opti-
mization algorithms proposed for practical neural network training workloads (Dahl et al., 2023),
Shampoo appears to outperform all other existing methods. Another recent study, elucidating the
Google Ads recommendation search pipeline, revealed that the Google Ads CTR model is trained
using the Shampoo optimizer (Anil et al., 2022). Additionally, a recent work (Shi et al., 2023) imple-
mented a distributed data parallel version of Shampoo, demonstrating its superior speed in training
ImageNet compared to other methods.

Previously, Shampoo’s approximation was shown to be an upper bound (in spectral norm) on the
matrix H (Gupta et al., 2018b). In this work, we make this connection much more precise. Prior
research has established the notion of the optimal Kronecker product approximation (in Frobenius
norm) of H (Koroko et al., 2023b), which can be obtained numerically using a power iteration
scheme. The primary contribution of this work is to theoretically and empirically demonstrate that
the square of the approximation used by Shampoo is nearly equivalent to the optimal Kronecker
factored approximation of H .

The main contributions of the work are summarized below:

• We theoretically show (Proposition 1) that the square of the Shampoo’s approximation of
H is precisely equal to one round of the power iteration scheme for obtaining the optimal
Kronecker factored approximation of the matrix H . Informally, for any covariance matrix
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H “ ErggT s where g P Rmn 2, we argue that the right Kronecker product approximation
of H is ErGGJs b ErGJGs while Shampoo proposes ErGGJs1{2 b ErGJGs1{2, with
G P Rmˆn representing a reshaped g into a matrix of size m ˆ n.

• We empirically establish that the result of one round of power iteration is very close to the
optimal Kronecker factored approximation (see Figure 1), and provide theoretical justifica-
tion for the same.

• For the Hessian based viewpoint of Shampoo (Section 2.1.2), we empirically demon-
strate the impact on the Hessian approximation of various practical tricks implemented
to make Shampoo more computationally efficient such as averaging gradients over batch
(Section 4.1) and using empirical Fisher instead of the actual Fisher (Section 4.2).

Remark. Previous works (Balles et al., 2020; Lin et al., 2024) have explored the question of why
Adagrad-based approaches like Adam and Shampoo have an extra square root compared to the
Hessian inverse in their update. This alternative question is orthogonal to our contribution. For
details, refer Appendix F.

Paper organization. In Section 2, we cover the technical background necessary for understanding
this work. In Section 3, we provide a general power iteration scheme for obtaining the optimal Kro-
necker product approximation of the matrix H , and establish the the connection between Shampoo’s
approximation and the optimal Kronecker product approximation of H . In Section 4, we explore
the Hessian approximation viewpoint of Shampoo and empirically study how various practical tricks
to make Shampoo more computationally efficient impact the quality of the Hessian approximation.
In Section 5, we cover closely related works and conclude with discussing the limitations of the
work in Section 6. In Appendix A, we include additional experiments on the ViT architecture and
compare with the K-FAC approximation to the Hessian. Detailed related work, proofs, dataset and
architecture details have been deferred to the Appendix.

2 Technical background

We use lowercase letters to denote scalars and vectors, and uppercase letters to denote matrices. For
a symmetric matrix A, A ě 0 (resp. A ą 0) denotes that A is positive semi-definite (resp. positive
definite). Similarly, for symmetric matrices A and B, A ě B (resp. A ą B) denotes A ´ B ě 0
(resp. A ´ B ą 0). We will use M ri, js refer to the 0-indexed pi, jq entry of the matrix M . The
Kronecker product of two matrices A P Rpˆq and B P Rrˆs is denoted by A b B P Rprˆqs. It is
defined such that pA b Bqrri ` i1, sj ` j1s “ Ari, jsBri1, j1s where 0 ď i ă p, 0 ď j ă q, 0 ď

i1 ă r, 0 ď j1 ă s. Vectorization of a matrix A P Rmˆn, denoted by vecpAq, is a mn-dimensional
column vector obtained by stacking the columns of A on top of one another. We will usually denote
vecpAq by a.

Following is a basic lemma about Kronecker products that will be used later

Lemma 1 (Henderson & Searle (1981)). pA b Bq vecpGq “ vecpBGAJq.

2.1 Shampoo

The original Shampoo (Gupta et al., 2018b) paper introduced its algorithm as an approximation of
an online learning algorithm Adagrad (Duchi et al., 2011a). Shampoo can also be interpreted (Anil
et al., 2020; Osawa et al., 2023a) as approximating the Gauss–Newton component of the Hessian.
Both of these perspectives will be discussed in Section 2.1.1 and 2.1.2 respectively. .

2.1.1 Adagrad based perspective of Shampoo

Adagrad: This is a preconditioned online learning algorithm, that uses the accumulated covariance
of the gradients as a preconditioner. Let θt P Rp denote the parameters at time t and let gt P Rp

denote the gradient. It maintains a preconditioner HAda “
řT

t“1 gtg
J
t . The update for the parameter

for learning rate η are given by

2Gauss–Newton component of the Hessian can also be expressed as a covariance matrix. For details, refer
Section 2.1.2
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θT`1 “ θT ´ ηH
´1{2
Ada gT .

Shampoo is a preconditioned gradient method which maintains a layer-wise Kronecker product
approximation to full-matrix Adagrad. Let the gradient for a weight matrix3 Wt P Rmˆn at time t
be given by Gt P Rmˆn. The lemma below is used to obtain the Shampoo algorithm from Adagrad:

Lemma 2 (Gupta et al. (2018b)). Assume that G1, ..., GT are matrices of rank at most r. Let
gt “ vecpGtq for all t. Then, with ď representing the for any ϵ ą 0,

ϵImn `
1

r

T
ÿ

t“1

gtg
J
t ď

˜

ϵIm `

T
ÿ

t“1

GtG
J
t

¸1{2

b

˜

ϵIn `

T
ÿ

t“1

GJ
t Gt

¸1{2

.

Based on the above lemma, Shampoo maintains two preconditioners Lt P Rmˆm and Rt P Rnˆn,
which are initialized to ϵIm and ϵIn respectively. . The update for the preconditioners and the
Shampoo update for a learning rate η is given by

LT “ LT´1 ` GTG
J
T ; RT “ RT´1 ` GJ

TGT ; WT`1 “ WT ´ ηL
´1{4
T GTR

´1{4
T .

In Lemma 2 the matrix HAda “
řT

t“1 gtg
J
t is approximated (ignoring ϵ and scalar factors) by the

the Kronecker product
´

řT
t“1 GtG

J
t

¯1{2

b

´

řT
t“1 G

J
t Gt

¯1{2

. Our main focus will be to study
the optimal Kronecker product approximation of the matrix HAda and its connection to Shampoo’s
approximation (done in Section 3).

2.1.2 Hessian based perspective of Shampoo

In this section we describe the Hessian approximation viewpoint of Shampoo explored by previous
works (Anil et al., 2020; Osawa et al., 2023a) as an alternative to the Adagrad viewpoint described
above. Our theoretical and empirical results hold for both viewpoints.

Gauss–Newton (GN) component of the Hessian. For a datapoint px, yq, let fpxq denote the output
of a neural network and Lpfpxq, yq represent the training loss. Let W P Rmˆn represent a weight
matrix in the neural network and D denote the training distribution. Then, for CE loss, the Gauss-
Newton component of the Hessian of the loss with respect to W is given by (see Appendix D for
details)

HGN “ E
px,yq„D

«

Bf

BW

B2L
Bf2

Bf

BW

J
ff

“ E
x„Dx

s„fpxq

“

gx,sg
J
x,s

‰

,

where, for brevity, fpxq denotes the output distribution of the neural network and Dx represents the
training distribution of x (Pascanu & Bengio, 2014). The right-hand side of the equation is also re-
ferred to in the literature as the Fisher matrix, and its counterpart for real labels, Epx,yq„D

“

gx,yg
J
x,y

‰

,
is referred to as the empirical Fisher. For brevity, going forward, we will assume that x is drawn
from Dx and represent the Fisher matrix as Ex,s„fpxq

“

gx,sg
J
x,s

‰

. Similarly, when both x and y are
used, we will assume they are drawn from D.

The aim of algorithms such as K-FAC and Shampoo (when viewed from the Hessian perspective) is
to do a layerwise Kronecker product approximation of the Fisher matrix HGN. The following lemma
establishes the approximation made by Shampoo:

Lemma 3 (Adapted from Gupta et al. (2018b); Anil et al. (2020)). Assume that Gx,s are matrices
of rank at most r. Let gx,s “ vecpGx,sq . Then, for any ϵ ą 0,

E
x,s„fpxq

“

gx,sg
J
x,s

‰

ď r

ˆ

E
x,s„fpxq

“

Gx,sG
J
x,s

‰

˙1{2

b

ˆ

E
x,s„fpxq

“

GJ
x,sGx,s

‰

˙1{2

. (1)

3We will focus on weights structured as matrices throughout this paper.
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In Lemma 2 the matrix on the left hand side is equal to HGN and the right hand side represents the
HGN approximation made by Shampoo. However, computing this approximation at every step is
expensive. So, in practice, Shampoo makes two additional approximations on top.

First, it replaces the per-input gradient by batch gradient, i.e, replaces Ex,s„fpxqrGx,sG
J
x,ss by

EB,srGB,sG
J
B,ss, where B denotes the batch, s is the concatenation of s „ fpxq for all px, yq P B

and GB,s “ 1
|B|

ř

px,yqPB,s“srxs Gx,s is the sampled batch gradient, with srxs representing the
sampled label corresponding to x P B.

Second, it replaces sampled labels with real labels, i.e., it replaces EB,srGB,sG
J
B,ss with

EBrGBG
J
Bs, where GB “ 1

|B|

ř

px,yqPB Gx,y is the batch gradient.

Thus, if Gj and Wj represent the batch gradient and weight matrix at iteration j, and λ is an expo-
nential weighting parameter, then the update of Shampoo is given by

Lj “ λLj´1 ` p1´λqGjG
J
j ; Rj “ λRj´1 ` p1´λqGJ

j Gj ; Wj`1 “ Wj ´ηL
´1{4
j GjR

´1{4
j ,

where Lj and Rj represent the left and right preconditioners maintained by Shampoo, respectively.

Our focus (when viewing Shampoo from the Hessian perspective) will be to study

• The optimal Kronecker product approximation of the matrix HGN and its connection to
Shampoo’s approximation (done in Section 3).

• The effect of the aforementioned two approximations on the approximation quality (done
in Section 4).

2.2 Optimal Kronecker product approximation

For Frobenius norm (or other “entry-wise” matrix norms), finding the optimal Kronecker product
approximation of a matrix H P Rmnˆmn is equivalent to finding the optimal rank-one approxima-
tion of a rearrangement of H . We define the rearrangement operator reshapepq, applied to a matrix
H such that,

reshapepHqrmi ` i1, nj ` j1s “ Hrmj ` i,mj1 ` i1s,

where ti, i1u P r0, 1, ...,m ´ 1s, tj, j1u P r0, 1, ..., n ´ 1s and reshapepHq P Rm2
ˆn2

. A property
of reshapep) that will be useful to us is:

H “ A b B ðñ reshapepHq “ abJ, (2)

where A P Rmˆm, a “ vecpAq P Rm2

, B P Rnˆn and b “ vecpBq P Rn2

. This property can be
used to prove the following result on optimal Kronecker product approximation:
Lemma 4 (Van Loan & Pitsianis (1993)). Let H P Rmnˆmn be a matrix and let L P Rmˆn, R P

Rnˆm. Then, the equivalence of the Kronecker product approximation of H and the rank-one
approximation of reshapepHq is given by:

}H ´ L b R}F “ } reshapepHq ´ vecpLq vecpRqJ}F ,

where } ¨ }F denotes the Frobenius norm.

Since the optimal rank-1 approximation of a matrix is given by its singular value decomposition
(SVD), we conclude:
Corollary 1. Let H P Rmnˆmn. If the top singular vectors and singular value of reshapepHq are
represented by u1, v1 and σ1, respectively, then the matrices L P Rmˆm and R P Rnˆn defined by

vecpLq “ σ1u1, vecpRq “ v1,

minimize the Frobenius norm }H ´ L b R}F .

Obtaining SVD by power iteration. Power iteration (Golub & Van Loan, 1996) is a well-known
method for estimating the top eigenvalue of a matrix M . It can also be specialized for obtaining the
top singular vectors of a matrix. The corresponding iterations for the left singular vector ℓ and the
right singular vector r are given by

ℓk Ð Mrk´1; rk Ð MJℓk´1, (3)

5



where k denotes the iteration number.

Cosine similarity. We will be using cosine similarity between matrices as a metric for approxima-
tion. For two matrices M1 and M2, this refers to TrpM1M

J
2 q{p||M1||F ¨ ||M2||F q. A value of 1

indicates perfect alignment, while a value of 0 indicates orthogonality.

3 Optimal Kronecker product approximation and Shampoo

In this section, we will specialize the theory of Section 2.2 for finding the optimal Kronecker prod-
uct approximation of a covariance matrix H “ Eg„Dg rggJs for g P Rmn. Both perspectives of
Shampoo described in Section 2.1 are concerned with Kronecker product approximations of H of
the form L b R where L P Rmˆm, R P Rnˆn, but for different distributions Dg . For the Adagrad
viewpoint, with Dg as the uniform distribution over gt where 1 ď t ď T refers to the gradient at
timestep t, H “ HAda. For the Hessian viewpoint, with Dg as the distribution over gradients with
batch size 1 and with sampled labels, H “ HGN (see Section 2.1.2 for derivation).

Since our results will hold for all distributions Dg , we will use ErggJs to refer to Eg„Dg rggJs to
simplify notation. The main goal of this section will be to study the optimal Kronecker product
approximation to such a generic matrix H , see its connection to Shampoo, and experimentally val-
idate our results for H “ HAda and H “ HGN, which are described in Section 2.1.1 and 2.1.2,
respectively.

Loan & Pitsianis (1993) describe an approach to find the optimal Kronecker product approximation
of a matrix (with respect to the Frobenius norm). Koroko et al. (2023b) use this approach to find
the optimal layer-wise Kronecker product approximation of the hessian matrix for networks with-
out weight sharing. We will now do a general analysis which would also be applicable to neural
networks with weight sharing.

Since g P Rmn, each entry of g can be described as a tuple pi, jq P rms ˆ rns. Consequently,
every entry of H can be represented by the tuple ppi, jq, pi1, j1qq. We now consider the matrix
Ĥ – reshapepHq P Rm2

ˆn2

, which is a rearrangement (see Section 2) of the entries of H .

By using equation 2 we get that:
Ĥ “ ErG b Gs.

Further, by Lemma 4, we have that if L b R is the optimal Kronecker product approximation of H ,
then ℓrJ is the optimal rank-1 approximation of Ĥ , where ℓ “ vecpLq and r “ vecpRq. Hence, the
problem reduces to finding the optimal rank-1 approximation of Ĥ . Applying the power iteration
scheme described in Equation 3 for estimating the top singular vectors of Ĥ and using Lemma 1
yields (where k denotes the kth step of power iteration):

ℓk Ð Ĥrk´1 “ ErG b Gsrk´1 “ vecpErGRk´1G
Jsq,

rk Ð ĤJℓk´1 “ ErG b GsJℓk´1 “ vecpErGJLk´1Gsq.

Reshaping vectors on both sides into matrices results in:

Lk Ð ErGRk´1G
Js; Rk Ð ErGJLk´1Gs. (4)

3.1 One round of power iteration

Our first and main approximation involves replacing the iterative power iteration scheme (Equa-
tion 4) with just a single iteration. This leads to the main contribution of our work:

Proposition 1. One step of power iteration, starting from the identity, for obtaining the optimal Kro-
necker product approximation of H is precisely equal to the square of the Shampoo’s approximation
of H

Proof. The initialization for the single iteration will use the identity matrix, i.e., Im and In for L
and R, respectively. Thus, we transition from the iterative update equations:

Lk Ð ErGRk´1G
Js; Rk Ð ErGJLk´1Gs,

6



to the simplified single-step expressions:

L Ð ErGGJs; R Ð ErGJGs.

With the above expression for L and R, L b R is precisely equal to the square of the Shampoo’s
approximation of H given by the right hand side of Equation 1.

As shown in Figure 1, for various datasets and architectures, this single step of power iteration is
very close to the optimal Kronecker product approximation for both H “ HGN (top) and H “ HAda
(bottom). However, we can see that the upper bound proposed by the original Shampoo work (Gupta
et al., 2018b) is significantly worse.

3.1.1 Why initialize with the identity matrix?

MNIST-2 CIFAR-5M ImageNet
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Figure 2: Comparing σ1?
ř

i σ
2
i

and α1σ1?
ř

i α
2
iσ

2
i

for various datasets and architectures. The top row is

for H “ HGN while the bottom row is for H “ HAda. The L and R legends represent α1σ1?
ř

i α
2
iσ

2
i

for

the left and right singular vector respectively. The “Optimal Kronecker” legend represents σ1?
ř

i σ
2
i

(see Section 3.1.1). As seen, α1σ1?
ř

i α
2
iσ

2
i

is much closer to 1 as compared to σ1?
ř

i σ
2
i

, demonstrating

the role played by identity initialization in ensuring convergence of power iteration in one round.
See Appendix B.1 for details.

Suppose the SVD of Ĥ is given by Ĥ “
ř

i σiuiv
T
i , or equivalently, H “

ř

i σiUi b Vi. The
convergence of the power iteration in one step depends on the inner product of the initialization
vector with the top singular vector. Let us focus on the left side,4 i.e., the update L Ð ErGGJs

which as described earlier is equivalent to starting with the initialization In. Let vec pInq “
ř

i αivi
i.e. In “

ř

i αiVi. After one iteration, we obtain ℓ :“
ř

i αiσiui, and correspondingly, L :“
ř

i αiσiUi. We are interested in assessing how closely ℓ approximates the leading eigenvector u1.
The cosine similarity between ℓ and u1 is given by α1σ1?

ř

i α
2
iσ

2
i

.

One reason why the cosine similarity might be large is that Ĥ is nearly rank-1 (σ1 is large); that is,
H is closely approximated by a Kronecker product. As illustrated in Figure 1, this assumption does
not universally hold. Instead, we propose an alternative explanation for why a single step of power

4The discussion for the other side is analogous.
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iteration is typically sufficient: the coefficient α1 is usually larger than αi for all i ě 2. We begin by
providing a theoretical justification for this, followed by empirical evidence from our experiments.

We start by noting that αi “ vec pInq
T
vi “ TrpViq. Now, we will show that using the identity

matrix as initialization is a good choice since a) shows it has the maximal dot product with possible
top components i.e., PSD matrices (Proposition 2), and b) we expect it to have a small dot product
with later components.

Lemma 5 ( Loan & Pitsianis (1993)). V1 is a Positive Semi-Definite (PSD) matrix.

Since V1 is a PSD matrix we would like to initialize our power iteration with a matrix which is close
to all PSD matrices. Now, we will show that identity is the matrix which achieves this, specifically
it maximizes the minimum dot product across the set of PSD matrices of unit Frobenius norm.

Proposition 2. Consider the set of PSD matrices of unit Frobenius norm of dimension m denoted
by Sm. Then

1
?
m
Im “ argmax

MPSm

min
M 1PSm

xvecpMq, vecpM 1qy.

The previous proposition argues that Im maximizes the worst-case dot product with possible top
singular vectors. Now, we argue that its dot product with other singular vectors should be lower.

Lemma 6. If V1 is positive-definite, then Vi for i ě 2 are not PSD.

Therefore, the diagonal elements of Vi for i ě 2 need not be positive, and this might lead to can-
cellations (for i ě 2) in the trace of Vi which is equal to αi. Hence we expect αi’s for i ě 2 to be
smaller than α1. We now show experiments to demonstrate this in practice. To quantify the benefit
of α1 usually being larger than αi for i ě 2, we will compare α1σ1?

ř

i α
2
iσ

2
i

(for both left and right sin-

gular vectors) and σ1?
ř

i σ
2
i

. The latter can be interpreted as the cosine similarity if all α’s were equal

or as a measure of how close Ĥ is to being rank 1 since it is equal to the cosine similarity between
u1v

T
1 and Ĥ . Thus σ1?

ř

i σ
2
i

is equal to the “Optimal Kronecker” cosine similarity used in Figure 1.

In Figure 2 we track both of these quantities through training and indeed observe that α1σ1?
ř

i α
2
iσ

2
i

are

significantly closer to 1 than σ1?
ř

i σ
2
i

for both H “ HGN (top) and H “ HAda (bottom).

3.1.2 Exact Kronecker product structure in H

The previous discussion shows that E
“

GGJ
‰

bE
“

GJG
‰

is close to the optimal Kronecker product
approximation of H . In this section we will show that this holds exactly if H is a Kronecker product.
Intuitively, this holds since if H is a Kronecker product, then Ĥ is rank-1, and one round of power
iteration would recover Ĥ . Until now, we have been focusing on the direction of top singular vectors
of Ĥ , but with the assumption of Ĥ being rank 1, we can compute the explicit expression for Ĥ ,
and hence of H .

Corollary 2. Under the assumption that Ĥ is rank-1,

H “
`

E
“

GGJ
‰

b E
“

GJG
‰˘

{Tr
`

E
“

GGJ
‰˘

.

Proof. Let Ĥ “ σuvJ, i.e, H “ σU b V . Let Im “ TrpUqU ` Rm and In “ TrpV qV ` Rn,
where Rm and Rn are the residual matrices. Now, after one round of power iteration, the left and
right estimates provided by Shampoo are given by

E
“

GGJ
‰

“ σTrpV qU, E
“

GJG
‰

“ σTrpUqV.

From this, we can see that Tr
`

E
“

GGJ
‰˘

“ σTrpUqTrpV q. Thus

H “ σU b V “
`

E
“

GGJ
‰

b E
“

GJG
‰˘

{Tr
`

E
“

GGJ
‰˘

.
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Since H “ ĤGN is an m2 ˆ 1 matrix for binomial logistic regression, it is rank-1, so the equality in
the corollary holds. In other words, the square of Shampoo’s HGN estimate perfectly correlates with
HGN for binomial logistic regression. This is demonstrated in the first plot of Figure 1.

We note that
`

E
“

GGJ
‰

b E
“

GJG
‰˘

{Tr
`

E
“

GGJ
‰˘

as an estimate of H was also derived by Ren
& Goldfarb (2021). But their assumptions were much stronger than ours, specifically they assume
that the gradients follow a tensor-normal distribution, which implies that Ĥ is rank 1. Instead, we
only make a second moment assumption on the gradients: H “ ErggJs is an exact Kronecker
product. We also note that our derivation of the direction E

“

GGJ
‰

b E
“

GJG
‰

being close to the
optimal Kronecker product approximation holds independently of Ĥ being rank 1.

3.1.3 Discussion about optimization

Let us refer to ErGGJsbErGJGs by H1. As mentioned in Equation 1, the original Shampoo paper
used the approximation H used was H1{2 – ErGGJs1{2 b ErGJGs1{2. In practice, when using
Shampoo as an optimization algorithm, the gradient step is taken in the direction of H´p

1{2∇L where

p is tuned as a hyperparameter (Anil et al., 2020; Shi et al., 2023). Since H´p
1{2 “ H

´p{2
1 , searching

over p in H´p
1{2 yields the same search space as H´p

1 . Therefore, the difference between H1 and
H1{2 does not manifest practically in optimization speed, but it yields a significant difference in our
understanding of how Shampoo works.

4 Hessian Approximation of Shampoo

From the Hessian approximation viewpoint, the previous section covers the case of using batch size
1 and sampled labels, as described in Section 2.1.2. To be precise, in Figure 1 top, we consider how
well HGN is correlated with Ex,srGx,sG

T
x,ss b Ex,srGT

x,sGx,ss, where s represents that the labels
are sampled from the model’s output distribution. On the other hand, as discussed in Section 2.1.2,
Shampoo in practice is generally used with arbitrary batch sizes and real labels. We now investigate
the effect of these two factors on the Hessian approximation.

4.1 Averaging gradients across the batch

The next approximation towards Shampoo is to average the gradient across the batch, i.e., we go
from

L Ð E
x,s„fpxq

rGx,sG
J
x,ss; R Ð E

x,s„fpxq

rGJ
x,sGx,ss

to
L Ð |B| E

B,s
rGB,sG

J
B,ss; R Ð |B| E

B,s
rGJ

B,sGB,ss,

where B denotes the batch, s is the concatenation of s „ fpxq for all x P B and GB,s “
1

|B|

ř

xPB,s“srxs Gx,s is the batch gradient, with srxs representing the sampled label correspond-
ing to x P B.

As previous works have shown, this change does not have any effect in expectation due to Gx,s being
mean zero for all x when we take expectation over s „ fpxq (Bartlett, 1953) i.e. EsrGx,ss “ 0.
Lemma 7 (Implicitly in Liu et al. (2024); Osawa et al. (2023b)).

|B| E
B,s

rGB,sG
J
B,ss “ E

x,s„fpxq

rGx,sG
J
x,ss.

However, this does lead to a significant improvement in computational complexity by saving up to
a factor of batch size.

4.2 Using real labels instead of sampled labels

As our final approximation we replace using sampled labels s „ fpxq to using real labels y. This
approximation, denoted in the literature by empirical Fisher when batch size is 1, has been discussed
at length by prior works (Osawa et al., 2023a; Kunstner et al., 2019). The main theoretical argument
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Figure 3: Cosine similarity between approximations of HGN and its true value. First row is for batch
size 1 while the second row is for batch size 256. We observe deterioration in approximation quality
at larger batch size. We note that the batch size does not refer to the batch size used in optimization,
rather it refers to the batch size used for Hessian approximation.

for why this approximation may work well is that, as we move towards optima, the two quantities
converge in the presence of label noise (Grosse, 2021).

In Figure 3 (top), when evaluating HGN approximation with batch size 1, we surprisingly find that
the approximation quality is good throughout the training. However, unlike the case of sampled
labels, the approximation starts to degrade at large batch sizes because the gradients with real labels
are not mean 0. The lemma below (Grosse, 2021) shows how this estimator changes with batch size.
Lemma 8 (Grosse (2021)). Let B denote the batch and GB “ 1

|B|

ř

px,yqPB Gx,y denote the batch
gradient. Then

E
B

rGBG
J
Bs “

1

|B|
E
x,y

rGx,yG
J
x,ys `

ˆ

1 ´
1

|B|

˙

E
x,y

rGx,ys E
x,y

rGx,ysJ.

The above lemma shows that, depending on the batch size, the estimator interpolates between
Ex,yrGx,yG

J
x,ys (Empirical Fisher) and Ex,yrGx,ysEx,yrGx,ysJ. As shown in Figure 3 (top), at

batch size 1, when EBrGBG
J
Bs is equal to Ex,yrGx,yG

J
x,ys, it closely tracks the optimal Kronecker

product approximation. In other words, approximating the empirical Fisher is nearly sufficient in
our experiments to recover the optimal Kronecker product approximation to HGN. However, with
increasing batch size (Figure 3, bottom row), the approximation quality degrades.

We note that this approximation has the computational benefit of not requiring another backpropa-
gation with sampled labels; instead, these computations can be done alongside usual training.

5 Related work

We discuss the related works in detail in Appendix E. Here, we discuss two closely related works:
Ren & Goldfarb (2021) and Koroko et al. (2023a).

Ren & Goldfarb (2021) study the Hessian perspective of Shampoo and show that, under the assump-
tion that sampled gradients follow a tensor-normal distribution, the square of the Hessian estimate
of Shampoo is perfectly correlated with HGN. We also show the same result under much weaker
conditions in Corollary 2. Moreover, in Proposition 1 we show that, in general, the square of the

10



Hessian estimate of Shampoo is closely related to the optimal Kronecker product approximation of
HGN. We additionally also study the approximations used by Shampoo to make it computationally
efficient (Section 4) and the Adagrad perspective of Shampoo’s preconditioner.

Loan & Pitsianis (1993) develop the theory of optimal Kronecker product approximation of a matrix
(in Frobenius norm). Koroko et al. (2023a) use it for finding layer-wise optimal Kronecker product
approximation of HGN for a network without weight sharing. We extend their technique to net-
works with weight-sharing, and show that the square of the Hessian estimate of Shampoo is nearly
equivalent to the optimal Kronecker product approximation of HGN.

6 Limitations

The main contribution of our work is to show that the square of the Shampoo’s approximation of H
(where H refers to either HAda or HGN) is nearly equivalent to the optimal Kronecker approximation
of H . Although we verify this empirically on various datasets and provide theoretical arguments,
the gap between them depends on the problem structure. In some of our experiments with ViT
architecture (Appendix A), we find that the gap is relatively larger compared to other architectures.
Moreover, it remains an open question to understand the conditions (beyond those described in K-
FAC Martens & Grosse (2015b)) under which H is expected to be close to a Kronecker product.
Again, in some of the experiments with ViTs (Appendix A), we find that the optimal Kronecker
product approximation to H is much worse as compared to other architectures.
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A Additional experimental results
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Figure 4: Cosine similarity between different approximations of the Gauss–Newton (GN) com-
ponent of the Hessian and its true value for different datasets and architectures. As can be seen,
Shampoo2 tracks the optimal Kronecker approximation much more closely than Shampoo. These
plots also include the K-FAC approximation, and we note that Shampoo2 always outperforms K-
FAC, though they are close in some settings.

A.1 ViT architecture
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Figure 5: Analogue of Figure 1 for ViT architecture and the CIFAR-5m dataset for 3 layers of the
network. For some of the figures we observe relatively larger gaps between Shampoo2 and optimal
Kronecker approximation.

In this subsection, we present the results for a Vision Transformer (ViT) architecture trained on the
CIFAR-5m dataset. This architecture features a patch size of 4, a hidden dimension of 512, an MLP
dimension of 512, 6 layers, and 8 attention heads.

For these experiments, we utilize three layers from the fourth transformer block: two layers from the
MLP (referred to as ’FFN Linear Layer 1’ and ’FFN Linear Layer 2’) and the QK layer5 (referred
to as ’Q-K Projection Layer’).

5The QK layer is separated from the V part of the layer, following similar decomposition method described
by Duvvuri et al. (2024)
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B Experiments

Datasets and Architectures. We conducted experiments on three datasets: MNIST (LeCun et al.,
1998), CIFAR-5M (Nakkiran et al., 2020), and ImageNet (Deng et al., 2009), using logistic regres-
sion, ResNet18 (He et al., 2016), and ConvNeXt-T (Liu et al., 2022) architectures, respectively. For
MNIST, we subsampled two digits (t0, 1u) and trained a binary classifier.

Table 1: Summary of Experimental Configurations. λ denotes weight decay and β1 indicates mo-
mentum.

Dataset Architecture Optimizer Batch Size Steps lr λ β1

MNIST Linear Classifier GD Full Batch 25 0.01 None 0
CIFAR-5M ResNet18 SGD 128 10000 .02 None .9
ImageNet ConvNeXt-T AdamW 2048 50000 3e-3 5e-3 0.9

For MNIST, we used the only layer, i.e, the first layer of the linear classifier for computing
the cosine similarities. For Resnet18 and Imagenet, we picked arbitrary layers. In particular,
for Resnet 18, we used one of the convolution layers within the first block (’layer1.1.conv1’ in
https://pytorch.org/vision/master/_modules/torchvision/models/resnet.html#
resnet18). For Imagenet, we used the 1x1 convolutional layer within the 2nd block of convnext-
T (’stages.2.1.pwconv1’ in https://pytorch.org/vision/main/models/generated/
torchvision.models.convnext_tiny.html#torchvision.models.convnext_tiny).

Cosine similarity estimation for HGN. For estimating the Frobenius norm of HGN, we used the
identity:

E
v„N p0,Idq

rvJH2
GNvs “ E

v„N p0,Idq

r}HGNv}22s “ }HGN}2F

Hessian-vector products with the Gauss–Newton component were performed using the Deep-
NetHessian library provided by Papyan (2019).

For estimating the cosine similarity between HGN and its estimator rHGN, we used the following
procedure:

1. Estimate }HGN}F , and calculate } rHGN}F .

2. Define scaled rHGN as rSGN “
}HGN}F

}ĂHGN}F

rHGN.

3. Cos-simpHGN, rHGNq “ 1 ´
}HGN´ rSGN}

2
F

2}HGN}2F
, where the numerator is again estimated via

Hessian-vector products.

Note that in the above procedure, we can exactly calculate } rHGN}F as it is generally of a Kronecker
product form with both terms of size m ˆ m or n ˆ n, where m ˆ n is the size of a weight matrix.

Cosine similarity estimation for HAda. We follow a similar recipe as before, but using a difference
method for computing the product HAdav. For a given time T , HAda “

řT
t“1 gtg

J
t . Thus, HAdav “

řT
t“1pgJ

t vqgt. We maintain this by keeping a running estimate of the quantity for multiple random
vectors v during a training run, and use it for estimating the product HAdav.

B.1 Figure details

Optimal Kronecker method, wherever used was computed with five rounds of power iteration, start-
ing from the identity. For H “ HGN, the Hessian approximations Shampoo2, Shampoo, and K-FAC
were done using sampled labels and a batch size of 1. For H “ HAda and step t, we used gradient
enocoutered during the training run in steps ď t.

K-FAC was computed with the “reduce” variant from Eschenhagen et al. (2023).

In Figure 2, the Optimal Kronecker legend represents the cosine similarity between the optimal
Kronecker approximation of HGN and HGN. This is precisely equal to σ1?

ř

i σ
2
i

. Similarly, the label
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L (resp. R) represents the cosine similarity between the top left (resp. right) singular vector of ĤGN
and the estimate obtained after one round of power iteration starting from In (resp. Im). This is
precisely equal to α1σ1?

ř

i α
2
iσ

2
i

.

In Figure 3 (top), the Hessian approximation is calculated with batch size 1, i.e, |B| “ 1 in Sec-
tion 4.2. Similarly, in Figure 3 (bottom), |B| “ 256.

C Deferred proofs

Lemma 6. If V1 is positive-definite, then Vi for i ě 2 are not PSD.

Proof. Consider two PSD matrices M1 and M2 having the eigenvalue decomposition M1 “
ř

λ1iq1iq
J
1i and M2 “

ř

λ2iq2iq
J
2i. Then

TrpM1M2q “
ÿ

i,j

λ1iλ2j

`

qJ
1iq2j

˘2

Thus, if M1 and M2 have unit frobenius norm and M1 is positive definite, then TrpM1M2q ą 0.

Thus, if V1 is positive definite, then by orthogonality of successive singular vectors, Vi for i ě 2
cannot be positive semi-definite.

Proposition 2. Consider the set of PSD matrices of unit Frobenius norm of dimension m denoted
by Sm. Then

1
?
m
Im “ argmax

MPSm

min
M 1PSm

xvecpMq, vecpM 1qy.

Proof. Consider the eigendecomposition of any M P Sq given by
řq

i“1 λiviv
J
i . Denote L “ ti :

λi ď 1?
q u. As

ř

λ2
i “ 1, therefore, |A| ě 1. Consider any j P A. Then

xV ecpMq, V ecpvjv
J
j qy ď

1
?
q

As vj is orthogonal to the other eigenvectors. Thus, we can see

max
MPSq

min
M 1PSq

xvecpMq, vecpM 1qy ď
1

?
q

Moreover, for the matrix 1?
q Iq , for any matrix M 1,

1
?
q

xIq,M
1y “

trpM 1q
?
q

where trpM 1q denotes the trace of the matrix M 1. However, we know trpM 1q “
ř

λi ě 1 as
ř

λ2
i “ 1. Thus

1
?
q

xIq,M
1y “

trpM 1q
?
q

ě
1

?
q

Note that this is the only matrix with this property as any other matrix will at least have one eigen-
value less than 1?

q . Thus

1
?
q
Iq “ argmax

MPSq

min
M 1PSq

xvecpMq, vecpM 1qy
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Lemma 7 (Implicitly in Liu et al. (2024); Osawa et al. (2023b)).
|B| E

B,s
rGB,sG

J
B,ss “ E

x,s„fpxq

rGx,sG
J
x,ss.

Proof. Evaluating GB,sG
T
B,s, we get

GB,sG
T
B,s “

1

|B|2

ÿ

x,x1
PB,

s“srxs,s1
“srx1

s

Gx,sG
J
x1,s1

Taking the expectation over s for a given B, and by using EsrGx,ss “ 0 we get

E
s
rGB,sG

T
B,ss “

1

|B|2

ÿ

x

E
s„fpxq

rGx,sG
J
x,ss “

1

|B|
E

x„B,s„fpxq

rGx,sG
J
x,ss

Now taking an expectation over batches, we get

|B| E
B,s

rGB,sG
T
B,ss “ E

x,s„fpxq

rGx,sG
T
x,ss

Lemma 8 (Grosse (2021)). Let B denote the batch and GB “ 1
|B|

ř

px,yqPB Gx,y denote the batch
gradient. Then

E
B

rGBG
J
Bs “

1

|B|
E
x,y

rGx,yG
J
x,ys `

ˆ

1 ´
1

|B|

˙

E
x,y

rGx,ys E
x,y

rGx,ysJ.

Proof. Evaluating GBG
T
B , we get

GBG
T
B “

1

|B|2

ÿ

px,yq,px1,y1qPB

Gx,yG
J
x1,y1

Taking the expectation over B on both the sides, we get

E
B

“

GBG
T
B

‰

“
1

|B|2

„

|B| E
x,y

rGx,yG
J
x,ys ` p|B|2 ´ |B|q E

x,y
rGx,ys E

x,y
rGx,ysJ

ȷ

ùñ E
B

“

GBG
T
B

‰

“
1

|B|
E
x,y

rGx,yG
J
x,ys `

ˆ

1 ´
1

|B|

˙

E
x,y

rGx,ys E
x,y

rGx,ysJ

D Technical Background on Hessian

Gauss–Newton (GN) component of the Hessian. For a datapoint px, yq, let fpxq denote the output
of a neural network and Lpfpxq, yq represent the training loss. Let W P Rmˆn represent a weight
matrix in the neural network and D denote the training distribution. Then, the Hessian of the loss
with respect to W is given by

E
px,yq„D

„

B2L
BW 2

ȷ

“ E
px,yq„D

«

Bf

BW

B2L
Bf2

Bf

BW

J
ff

` E
px,yq„D

„

BL
Bf

B2f

BW 2

ȷ

.

The first component, for standard losses like cross-entropy (CE) and mean squared error (MSE),
is positive semi-definite and is generally known as the Gauss–Newton (GN) component (HGN).
Previous works have shown that this part closely tracks the overall Hessian during neural network
training (Sankar et al., 2021), and thus most second-order methods approximate the GN component.
Denoting BLpfpxq,yq

BW by Gx,y P Rmˆn and gx,y “ vecpGx,yq, for CE loss, it can also be shown that

HGN “ E
px,yq„D

«

Bf

BW

B2L
Bf2

Bf

BW

J
ff

“ E
x„Dx

s„fpxq

“

gx,sg
J
x,s

‰

,
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E Related work

The literature related to second order optimization within deep learning is very rich, with methods
that can be broadly classified as Hessian-free and methods based on estimating the preconditioner H
(which could refer to either HAda or HGN). Hessian-free methods (Martens, 2010) generally tend to
approximate the preconditioned step (for Newton’s method) using Hessian vector products, but do
not maintain an explicit form of the Hessian. Estimating H (Martens & Grosse, 2015a; Gupta et al.,
2018a) methods maintain an explicit form of the preconditioner that could be efficiently stored as
well as estimated.

E.1 Hessian-free

One of the seminal works related to second order optimization within deep learning was the intro-
duction of Hessian-free optimization (Martens, 2010). The work demonstrated the effectiveness of
using conjugate gradient (CG) for approximately solving the Newton step on multiple auto-encoder
and classifications tasks. Multiple works (Martens & Sutskever, 2011; Cho et al., 2015) have ex-
tended this algorithm to other architectures such as recurrent networks and multidimensional neural
nets. One of the recent works (Garcia et al., 2023) also takes motivation from this line of work, by
approximately using single step CG for every update, along with maintaining a closed form for the
inverse of the Hessian, for the single step to be effective.

E.2 Estimating Preconditioner

Given that it is costly to store the entire matrix H , various works have tried to estimate layer-
wise H . KFAC (Martens & Grosse, 2015a) was one of the first work, that went beyond diagonal
approximation and made a Kronecker product approximation to layer-wise HGN. It showed that this
structure approximately captures the per layer Hessian for MLPs. This approximation was extended
to convolutional (Osawa et al., 2019) and recurrent (Martens et al., 2018) architectures. Subsequent
works also improved the Hessian approximation, by further fixing the trace (Gao et al., 2021) as well
as the diagonal estimates (George et al., 2018; Gao et al., 2020) of the approximation. A recent work
(Eschenhagen et al., 2023) also demonstrated that K-FAC can be extended to large-scale training.

From the viewpoint of approximating Adagrad (Duchi et al., 2011b), Gupta et al. (2018a) introduced
Shampoo, that also makes a Kronecker product approximation to HAda. One of the subsequent work
(Ren & Goldfarb, 2021) introduced a modification of Shampoo, that was precisely estimating the
layer-wise HGN under certain distributional assumptions. Other works (Anil et al., 2021) intro-
duced a distributed implementation of Shampoo, that has recently shown impressive performance
for training large scale networks (Shi et al., 2023). Recently, another paper (Duvvuri et al., 2024)
proposed a modification of Shampoo, empirically and theoretically demonstrating that the new esti-
mator approximates HAda better than Shampoo’s approximation. Our work shows that the square of
Shampoo’s approximation of HAda is nearly equivalent to the optimal Kronecker approximation.

F Comparison with extra square root in Adagrad based approaches

Multiple previous works (Balles et al., 2020; Lin et al., 2024) have tried to address the question of
why Adagrad-based approaches like Adam and Shampoo, have an extra square root in their update
compared to Hessian inverse in their updates. This question is primarily concerned with the final
update to the weights being used in the optimization procedure, once we have approximated the
Hessian.

The primary contribution of this work is completely orthogonal to this question. We are addressing
the question of optimal Kronecker approximation of the Hessian, and its connection to Shampoo’s
Hessian approximation. This is orthogonal to the Hessian power used in the final update.
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